
3-UNIFORM HYPERGRAPHS FROM VECTOR SPACES
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Abstract. The Fundamental Theorem of Projective Geometry states that,
in a vector space, a permutation of vector lines preserving triples that span a

vector plane is induced by a semi-linear automorphism. We consider a general-

isation to triples of subspaces, not necessarily of the same dimension, spanning,
or being contained in a subspace of fixed dimension. We determine all cases in

which the permutation is necessarily induced by a semi-linear automorphism.

1. Introduction

Let L be any skew field and let V be a finite-dimensional vector space over L, say of
dimension n+1. Let PG(n,L) be the corresponding n-dimensional projective space
over L. Let P be the set of 1-spaces of V ; hence P is the set of points of PG(n,L).
Let T be the set of triples {a, b, c} of P such that a, b, c are contained in a 2-space
of V , or, equivalently, a, b, c span a line of PG(n,K). Then (P, T ) is a so-called
3-uniform hypergraph, i.e., a set with a given collection of 3-subsets, called the
triangles. The Fundamental Theorem of Projective Geometry (see e.g. [1]) states
that every automorphism of (P, T ) is induced by a semi-linear automorphism of V .
We shall call 3-uniform hypergraphs simply 3-graphs for brevity. We shall call an
edge of a 3-graph a triangle.

In the present paper, we consider the following problem, which gives rise to a direct
generalisation of the aforementioned fundamental theorem. Let i, j, k, ` be natural
numbers, 0 ≤ i ≤ j ≤ k ≤ n− 1, k ≤ ` ≤ n. Let Vi, Vj , Vk be copies of the set of i-
spaces, j-spaces and k-spaces, respectively, of PG(n,L). Put V = VitVjtVk and let
Ti,j,k;` or Ti,j,k;≤` consist of the triples {I, J,K}, with I ∈ Vi, J ∈ Vj , K ∈ Vk, such
that I, J,K span an `-space, or are contained in an `-space, respectively. Then the
question is whether the 3-graphs Γi,j,k;` = (V, Ti,j,k;`) and Γi,j,k;≤` = (V, Ti,j,k;≤`)
uniquely determine the structure of V , or, in other words, determine the projective
space PG(n,L). If this is the case, then the automorphism group of the 3-graph
coincides with that of the projective space. So we determine the automorphism
group of such a 3-graph. Note that every such 3-graph is tripartite, i.e., every
triangle has exactly one vertex in each of the sets Vi, Vj , Vk, whose union is the
complete vertex set.

If two or more of the parameters i, j, k are equal, say i = j, then we assume that
Vi and Vj are different copies of the same set without introducing new notation.
Formally, we conceive Vj as a set V ′i , but we shall not be so formal: the use of the
subscripts i and j suffices to distinguish them in our statements and arguments,
and this will rather be convenient than confusing. Also, in this case, the vertices of
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Vi and Vj corresponding to the same subspace of PG(n,L) of projective dimension
i = j will be called copies.

In case two or more of i, j, k coincide, we can also consider a smaller graph. The
following possibilities occur. If i = j = k, then we consider the 3-graphs Γi;` =
(Vi, Ti;`) and Γi;≤` = (Vi, Ti;≤`), where a triple of (distinct) i-spaces forms a triangle
if they generate an `-space or are contained in an `-space, respectively. If i = j < k,
then we consider the 3-graphs Γi,{i,k};` = (Vi t Vk, Ti,{i,k};`) and Γi,{i,k};≤` = (Vi t
Vk, Ti,{i,k};≤`), where a triple {I1, I2,K} consisting of two (distinct) i-spaces and
a k-space forms a triangle if I1, I2,K generate an `-space, or are contained in an
`-space, respectively. Finally, if i < j = k, then we define the 3-graphs Γk,{i,k};`
and Γk,{i,k};≤` similarly. The cases i = j < k and i < j = k are called bipartite
since the vertex set can be split into two sets in such a way that one vertex of
every triangle is contained in the first of those sets, while the other two vertices are
always contained in the second one.

Our proofs reduce the 3-graphs to ordinary graphs. Then we have to our dis-
posal the results of [3], where it is proved that the automorphism group of the
following graphs, if not trivial or not a matching, are induced by the semi-linear
automorphisms or possibly dualities of the given vector space: the bipartite graph
with vertices the i-dimensional subspaces and j-dimensional subspaces (two distinct
copies if i = j) of a vector space of dimension at least max{i, j} + 1, an i-space
being adjacent to a j-space if they intersect in a subspace of given dimension k,
0 ≤ k ≤ min{i, j}, or if they intersect in a subspace of dimension at least k, respec-
tively. If i = j, then we may also consider the non-partite graphs of subspaces of
dimension i, adjacent when intersecting in a k-subspace, or when their intersection
contains a k-subspace, respectively. It is the latter graphs that were earlier treated
by Lim [5]. Chow [2] already proved the non-bipartite case with k = i− 1 in 1949.
For the precise and detailed statements we refer to Theorems 3.1 and 3.2 below.

2. Statements of the results

Obviously, every semi-linear automorphism of the vector space V (or, equivalently,
every collineation of the projective space PG(n,L)), induces a unique automorphism
of any of the graphs Ti,j,k;`, Ti,j,k;≤`, Γi,{i,k};`, Γi,{i,k};≤`, Γk,{i,k};`, Γk,{i,k};≤`, Γi;`
and Γi;≤` preserving the different classes Vi, Vj , Vk (in the cases where these exist).
We briefly talk about naturally induced automorphisms in these cases. In this
paper, we will prove the following results.

Main Result 2.1. • Let 0 ≤ i ≤ j ≤ k ≤ n−1, k ≤ ` ≤ n with n ≥ 2. Then
every automorphism of the tripartite 3-graph Γi,j,k;≤` is naturally induced ,
except only in the following cases.
◦ ` = n; in this case Γi,j,k;≤` is a complete tripartite 3-graph.
◦ i + j + k + 2 ≤ `; in this case Γi,j,k;≤` is also a complete tripartite

3-graph.
◦ i = j = k = `; in this case Γi,j,k;≤` is a 3-matching, i.e., every vertex

is contained in exactly one triangle.
◦ i = j < k, ` < n, 2i + k + 2 > ` and the automorphism interchanges

the classes Vi and Vj; composing it with the automorphism fixing ev-
ery member of Vk and interchanging each member of Vi with its copy
contained in Vj, we obtain a naturally induced automorphism. (Here,
the normal subgroup of naturally induced automorphisms has index 2
in the full group of automorphisms.)
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◦ i < j = k < ` < n, i+ 2k + 2 > ` and the automorphism interchanges
the classes Vj and Vk; composing with the automorphism fixing every
member of Vi and interchanging each member of Vj with its copy con-
tained in Vk, we obtain a naturally induced automorphism. (Here, the
normal subgroup of naturally induced automorphisms has index 2 in
the full group of automorphisms.)
◦ i = j = k < ` < n, 3i + 2 > ` and the automorphism permutes the

classes Vi, Vj and Vk nontrivially (say, it maps Va to Va∗); compos-
ing with the automorphism mapping each member of Va∗ to its copy
contained in Va, a ∈ {i, j, k}, we obtain a naturally induced auto-
morphism. (Here, the normal subgroup of naturally induced automor-
phisms has index 6 in the full group of automorphisms and the corre-
sponding quotient is the symmetric group on 3 letters.)
◦ i < j = k = ` < n, the automorphism preserves Vj ∪ Vk but not
Vj itself, and it also preserves the set of pairs consisting of copies in
Vj and Vk. The map that fixes every member of Vi and interchanges
every element J of Vj with its copy in Vk if J got mapped to a member
of Vk by the automorphism, is itself an automorphism of Γi,k,k;≤`.
The composition of these two commuting automorphisms is naturally
induced.

• Let 0 ≤ i, k ≤ ` ≤ n with n ≥ 2. Then every automorphism of the bi-
partite 3-graph Γi,{i,k};≤` is induced by a semi-linear automorphism of the
underlying vector space V , except only in the following cases.
◦ ` = n; in this case Γi,{i,k};≤` is a complete bipartite 3-graph.
◦ 2i + k + 2 ≤ `; in this case Γi,{i,k};≤` is also a complete bipartite

3-graph.
◦ k ≤ i = `; in this case Γi,{i,k};≤` has no triangles.

• Let 0 ≤ i ≤ ` ≤ n with n ≥ 2. Then every automorphism of the 3-graph
Γi;≤` is induced by a semi-linear automorphism of the underlying vector
space V , except only in the following cases.
◦ ` = n; in this case Γi;≤` is a complete 3-graph.
◦ 3i+ 2 ≤ `; in this case Γi;≤` is also a complete 3-graph.
◦ i = `; in this case Γi;≤` has no triangles.

Now we note that the 3-graphs Γi,j,k;k and Γi,j,k;≤k are isomorphic, hence we may
assume in Main Result 2.2 that ` > k. Similar considerations hold for the bipartite
3-graphs and the graph Γi;i; the latter being isomorphic to Γi;≤i has no triangles
anyway.

Main Result 2.2. • Let 0 ≤ i ≤ j ≤ k < ` ≤ n, with n ≥ 2. Then every
automorphism of the tripartite 3-graph Γi,j,k;` is induced by a semi-linear
automorphism of the underlying vector space V , except only in the following
cases.
◦ i+ j + k + 3 ≤ `; in this case Γi,j,k;` has no triangles.
◦ i = j = k = n − 1 and ` = n; in this case Γi,j,k;` is the tripartite

complement of a 3-matching, i.e., a complete tripartite graph minus a
3-matching.
◦ i = j < k, ` < n, 2i + k + 3 > ` and the automorphism interchanges

the classes Vi and Vj; composing with the automorphism fixing every
member of Vk and interchanging each member of Vi with its copy con-
tained in Vj, we obtain a naturally induced automorphism. (Here, the
normal subgroup of naturally induced automorphisms has index 2 in
the full group of automorphisms.)
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◦ i < j = k < ` ≤ n, i+ 2k + 3 > ` and the automorphism interchanges
the classes Vj and Vk; composing with the automorphism fixing every
member of Vi and interchanging each member of Vj with its copy con-
tained in Vk, we obtain a naturally induced automorphism. (Here, the
normal subgroup of naturally induced automorphisms has index 2 in
the full group of automorphisms.)
◦ i = j = k < ` < n, 3i + 3 > ` and the automorphism permutes the

classes Vi, Vj and Vk nontrivially (say, it maps Va to Va∗); compos-
ing with the automorphism mapping each member of Va∗ to its copy
contained in Va, a ∈ {i, j, k}, we obtain a naturally induced auto-
morphism. (Here, the normal subgroup of naturally induced automor-
phisms has index 6 in the full group of automorphisms and the corre-
sponding quotient is the symmetric group on 3 letters.)

• Let 0 ≤ i, k < ` ≤ n, with n ≥ 2. Then every automorphism of the bipartite
3-graph Γi,{i,k};` is induced by a semi-linear automorphism of the underlying
vector space V , except in the following cases.
◦ 2i+ k + 3 ≤ `; in this case Γi,{i,k};` has no triangles.
◦ i+ 1 = n = `; in this case Γi,{i,k};` is a complete bipartite 3-graph.

• Let 0 ≤ i < ` ≤ n with n ≥ 2. Then every automorphism of the 3-graph Γi;`
is induced by a semi-linear automorphism of the underlying vector space V ,
except in the following cases.
◦ 3i+ 3 ≤ `; in this case Γi;` has no triangles.
◦ i+ 1 = n = `; in this case Γi;` is a complete 3-graph.

In the special case that L is a finite field, one can use a group theoretic result of
Liebeck, Preager and Saxl [4] to determine the automorphism groups. However, we
treat the problem in a purely geometric way since this is necessary for general skew
fields anyway, and since it gives more insight into the problem.

In all cases, we will be able to reduce the situation to an ordinary (perhaps bipartite)
graph, and then use [2], [3] or [5].

It is most convenient to work in the projective space PG(n,L), and that is what we
are going to do. We now introduce some notation.

Notation. For a set S of subspaces (possibly just points) of PG(n,L), we define
〈S〉 to be the subspace of PG(n,L) generated by all members of S. If S consists
of two distinct points p1, p2, then we also denote the unique line passing through
these points by p1p2. We use projective dimension. In particular, the dimension of
the empty space (this corresponds to the trivial subspace of V ) is −1. Finally, for
a k-subspace K, we denote by Res(K) the projective space of dimension n− k − 1
obtained from the underlying vector space by factoring out K, and we call it the
residue of K. Hence the i-spaces of Res(K), −1 ≤ i ≤ n− k − 1, are the quotients
W/K, where W is an (i+ k + 1)-space of PG(n,L) containing K.

3. Proofs—Reduction

3.1. Main tools and Strategy. Tools—Our first important tool consists of the
main results of [3], which we now recall.

We say that an ordinary bipartite graph is trivial if it is a graph without edges, a
complete bipartite graph, a matching, or the bipartite complement of a matching
(the latter is a complete bipartite graph minus a matching).
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Theorem 3.1 (Main Results 2.1 and 2.2 of [3]). Let Γna,b;≥c(L) and Γna,b;c(L) be the
ordinary bipartite graphs consisting of the a-spaces and the b-spaces of a projective
space of dimension n over the skew field L, with −1 ≤ c ≤ a ≤ b ≤ n − 1, 0 ≤ a,
and an a-space A is adjacent to a b-space B if dim(A∩B) ≥ c and dim(A∩B) = c,
respectively. Then

(1) Γna,b;≥c(L) is trivial if and only if one of the following occurs:
• a+ b ≥ n+ c;
• c = −1;
• a = b = c.

(2) Γna,b;c(L) is trivial if and only if one of the following occurs:
• a = b = c;
• a = b = 0 and c = −1;
• a = b = n− 1 and c = n− 2;
• n+ c < a+ b.

(3) If Γna,b;≥c(L) or Γna,b;c(L) is not trivial, then its class preserving automorphism

group is the collineation group of PG(n,L), except if a = b = n−1
2 , in which case

every class preserving automorphism which is not a collineation of PG(n,L) is
a duality of PG(n,L).

We say that an ordinary (not necessarily bipartite) graph is trivial if either it is a
complete graph, or it does not contain any edges.

Theorem 3.2 (Corollaries 3.12 and 3.16 of [3]). Let Γna;≥c(L) and Γna;c(L) be the
ordinary graphs consisting of the a-spaces of a projective space of dimension n over
the skew field L, with −1 ≤ c ≤ a ≤ n− 1, 0 ≤ a, and an a-space A is adjacent to
another a-space A′ if dim(A ∩A′) ≥ c and dim(A ∩A′) = c, respectively. Then

(1) Γna;≥c(L) is trivial if and only if one of the following occurs:
• 2a ≥ n+ c;
• c = −1;
• c = a.

(2) Γna;c(L) is trivial if and only if one of the following occurs:
• a = c;
• a = 0 and c = −1;
• a = n− 1 and c = n− 2;
• n+ c < 2a.

(3) If Γna;≥c(L) or Γna;c(L) is not trivial, then its automorphism group is the collineation

group of PG(n,L), except if a = n−1
2 , in which case every automorphism which

is not a collineation of PG(n,L) is a duality of PG(n,L).

The cases of Γna;≥a−1(L) ≡ Γna;a−1(L) and Γna;−1(L) of the previous theorem were

already handled by Chow [2] and Lim [5], respectively.

Our second important tool is the following ‘observation’. We call a graph trivial if
it is one of the exceptions in the main results.

Proposition 3.3. (i) Let 0 ≤ i ≤ j ≤ k ≤ n − 1, k ≤ ` ≤ n with n ≥ 2, and
suppose that Γi,j,k;≤` is not trivial. Then every automorphism of the tripartite
3-graph Γi,j,k;≤` permutes the classes of vertices if we do not have j = k = l.
Also, if it fixes all these classes and fixes at least one of the classes vertexwise,
it is the identity.

(ii) Let 0 ≤ i, k ≤ ` ≤ n, and suppose that Γi,{i,k};≤` is not trivial. Then every
automorphism of the bipartite 3-graph Γi,{i,k};≤` preserves the classes. Also,
if it fixes at least one of the classes vertexwise, it is the identity.
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(iii) Let 0 ≤ i ≤ j ≤ k ≤ n − 1, k ≤ ` ≤ n with n ≥ 2, and suppose that
Γi,j,k;` is not trivial. Then every automorphism of the tripartite 3-graph Γi,j,k;`
permutes the classes of vertices if we do not have j = k = l. Also, if it fixes all
these classes and fixes at least one of the classes vertexwise, it is the identity.

(iv) Let 0 ≤ i, k ≤ n− 1, i, k ≤ ` ≤ n with n ≥ 2, and suppose that Γi,{i,k};` is not
trivial. Then every automorphism of the bipartite 3-graph Γi,{i,k};` preserves
both classes. Also, if it that fixes at least one of the classes vertexwise, it is
the identity.

Proof

(i) Note that Γi,j,k;≤` being non-trivial implies ` ≤ n− 1. Let θ be an automor-
phism of Γi,j,k;≤`. We will deduce the classes of vertices in terms of T and
hence these classes are permuted by θ. Consider any {I, J,K} ∈ T . We will
show that a vertex I ′ is contained in the same class as I if and only if there
exist vertices I1, I2, . . . , Im−1, J1, . . . , Jm,K1, . . . ,Km, with m ∈ N, such that

{Ia−1, Ja,Ka}, {Ia, Ja,Ka} ∈ T
for all a ∈ {1, . . . ,m}, where we set I0 = I and Im = I ′. If I ∈ Vi, then clearly
I ′ ∈ Vi if it satisfies these conditions. Conversely, suppose I ′ ∈ Vi. Assume
dim(I ∩ I ′) = i− 1. Since our graph is non-trivial we have ` ≤ i+ j + k + 2,
so we can find J ∈ Vj and K ∈ Vk such that 〈I, J,K〉 is an `-space coinciding
with 〈I ′, J,K〉, unless i = j = k = l but then our graph is also trivial. Since
Γni,i−1 is connected we obtain the above claim. Similarly if I ∈ Vj or I ∈ Vk,
unless ` = k. Since we excluded the case j = k = l, we get j < `. Then
K ∈ Vk if and only if for all vertices I, J,K ′, {I, J,K}, {I, J,K ′} ∈ T implies
K = K ′. Hence Vk is mapped onto itself, and the previous arguments show
that Vi and Vj are (possibly trivially) permuted.

Now suppose θ fixes Vi and Vj and fixes Vk vertexwise. Let T be the
set of triangles of Γi,j,k;≤`. We claim that, if I1, I2 ∈ Vi, J1, J2 ∈ Vj , with
`− k ≤ dim〈I1, J1〉 ≤ dim〈I2, J2〉 ≤ `, then the sets

{K ∈ Vk : {I1, J1,K} ∈ T } and {K ∈ Vk : {I2, J2,K} ∈ T }
coincide if and only if 〈I1, J1〉 = 〈I2, J2〉. The “if”-part is clear. We now show
the “only if”-part. Set 〈I1, J1〉 = U1 6= U2 = 〈I2, J2〉. Since ` ≤ n− 1, we can
select an `-space L containing U1 but not containing U2. Since dimU1 ≥ `−k,
we can select K ∈ Vk such that 〈U1,K〉 = L, and K ∩U1 is not empty. There
are two possibilities.
• If U1 ⊆ U2, then dimU2 > dimU1 and

` = dim〈U1,K〉 = dimL < dim〈L,U2〉 = dim〈U1, U2,K〉 = dim〈U2,K〉,
which shows that {I1, J1,K} is a triangle of Γi,j,k;≤`, but {I2, J2,K} is
not.
• If U1 \ U2 6= ∅, then it is convenient to again distinguish two cases.

– Suppose dimU1 > dim(L ∩ U2). Then we may re-choose K such
that dim(U1 ∩K) > dim(U2 ∩K). It then follows that

` = dim〈U1,K〉
= dimU1 + dimK − dim(U1 ∩K)

< dimU2 + dimK − dim(U2 ∩K)

= dim〈U2,K〉,
which shows that {I1, J1,K} is a triangle of Γi,j,k;≤`, but {I2, J2,K}
is not.
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– Suppose dimU1 ≤ dim(L ∩ U2). Then we can re-choose K such
that 〈K,L ∩ U2〉 = L. It then follows that

` = dim〈U1,K〉 < dim〈L,U2〉 = dim〈U2,K〉,

which again shows that {I1, J1,K} is a triangle of Γi,j,k;≤`, but
{I2, J2,K} is not.

Our claim follows. Now we claim that, if I1, I2 ∈ Vi, J1, J2 ∈ Vj , with
`− k ≤ dim〈I1, J1〉 ≤ `, then, regardless of dim〈I2, J2〉, the sets

{K ∈ Vk : {I1, J1,K} ∈ T } and {K ∈ Vk : {I2, J2,K} ∈ T }

are distinct, unless 〈I1, J1〉 = 〈I2, J2〉. Indeed, if ` − k ≤ dim〈I2, J2〉 ≤
`, this follows from the previous claim; if dim〈I2, J2〉 < ` − k, then {K ∈
Vk : {I1, J1,K} ∈ T } 6= Vk whereas {K ∈ Vk : {I2, J2,K} ∈ T } = Vk; if
` < dim〈I2, J2〉, then {K ∈ Vk : {I1, J1,K} ∈ T } 6= ∅ whereas {K ∈ Vk :
{I2, J2,K} ∈ T } = ∅.

We have j ≤ ` and i+j+k+1 ≥ ` (since Γi,j,k;≤` is non-trivial). Hence, we
can select an arbitrary natural number r, with max{j, `−k} ≤ r ≤ min{`, i+
j + 1}. Consider any pair (I, J) ∈ Vi × Vj with dim(I ∩ J) = i + j − r =: d,
and note that by the choice of r, we have −1 ≤ i+ j − r ≤ i. By our second
claim, θ maps the pair {I, J} onto a pair {I ′, J ′} with 〈I, J〉 = 〈I ′, J ′〉. In
particular, dim(I ∩ J) = dim(I ′ ∩ J ′). Hence θ is an automorphism of the
graph Γni,j;d(L).

Suppose i = j and the only possibility for r is i. Then i = min{`, i+ j+ 1}
and so, since i ≥ 0, we have i = j = k = ` and Γi,j,k;≤` is a 3-matching. Hence
we can avoid i = j = d. Likewise, if i = j = n− 1, then k = n− 1 and either
we have a 3-matching (` = n − 1) or a complete tripartite graph (` = n).
Finally, n + d = n − r + i + j ≥ i + j. Hence, according to Theorem 3.1(2),
there are two possibilities.
(a) The graph Γni,j;d(L) is non-trivial. Then θ comes from a collineation or

duality of PG(n,L). Since θ fixes every r-space (since every r-space is
generated by some pair (I, J) ∈ Vi×Vj), it must be the identity and the
assertion is proved.

(b) i = j = 0 and d = −1. Then θ maps any pair of points (p, q) ∈ V0 × V0
to a pair (p′, q′) with 〈p, q〉 = 〈p′, q′〉. If p 6= p′, then we choose a
point x /∈ 〈p, p′〉. The line 〈p′, xθ〉 is certainly distinct from 〈p, x〉, a
contradiction. Hence p = p′ and θ is the identity. The assertion again
follows.

A very similar proof, which we shall not repeat here, holds if θ fixes each
vertex of Vj , or each vertex of Vi.

(ii) This is completely similar to (i).
(iii) The proof of (i) can be copied, except for the cases ` = n, and i+j+k+2 = `,

since these cases did not occur in (i). The proof of the first part of (i) still
holds in these cases. Now we adapt the proof of the second part.

First suppose that i + j + k + 2 = ` and that θ is an automorphism of
Γi,j,k;` which fixes every vertex of Vk and stabilises Vi and Vj . The only pairs
(I, J) ∈ Vi × Vj contained in a triangle are those for which I ∩ J = ∅. Hence,
θ maps the pair (I, J) onto a pair (I ′, J ′) ∈ Vi × Vj with 〈I, J〉 = 〈I ′, J ′〉,
as distinct (i+ j + 1)-spaces do not intersect the same k-spaces non-trivially.
Similarly as in (i), we conclude that θ is the identity.

Now suppose that ` = n. It is more instructive to assume now that an
automorphism of Γi,j,k;` fixes every vertex of Vi and stabilises Vj and Vk.
Then, exactly as above, for every pair (Ja,Ka) ∈ Vj × Vk, with n − i − 1 ≤
dim〈Ja,Ka〉 < n, a = 1, 2, we find an i-space I such that dim〈I, J1,K1〉 =
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n − 1 and dim〈I, J2,K2〉 = n if and only if 〈J1,K1〉 6= 〈J2,K2〉. Then we
can finish the proof exactly as before, unless j = k = n − 1, as in this
case the graph Γnj,k;d(L) we want to use can not be chosen distinct from the

matching Γnn−1,n−1;n−1 (in all other cases there are choices that give non-
trivial graphs). But in this case, for every J ∈ Vj , the I ∈ Vi such that for
at least one K ∈ Vk, the triple {I, J,K} is not a triangle, are precisely the
I ∈ Vi such that I ⊆ J . Since this set is different for different J (noting that
i < n− 1), the permutation θ must fix every vertex of Vj and likewise of Vk.

(iv) This is again similar to the proof of (iii).

The proof of the proposition is complete. �

The next lemma shows that, if our graph is non-trivial, the tripartite parts Vi, Vj
and Vk are often stabilised.

Lemma 3.4. (i) Let 0 ≤ i ≤ j ≤ k ≤ n− 1, k ≤ ` < n with n ≥ 2, and suppose
that Γi,j,k;≤` is not trivial. Then every automorphism of the tripartite 3-graph
Γi,j,k;≤` fixes every class Va for which (a, a, a) and (i, j, k) differ in exactly
two positions.

(ii) Let 0 ≤ i ≤ j ≤ k ≤ n − 1, k ≤ ` ≤ n with n ≥ 2, and suppose that Γi,j,k;`
is not trivial. Then every automorphism of the tripartite 3-graph Γi,j,k;` fixes
every class Va for which (a, a, a) and (i, j, k) differ in exactly two positions.

Proof

(i) Suppose first ` ≤ j + k. Consider I ∈ Vi and J ∈ Vj . By ` − k ≤ j ≤ `
and the claim proven in the second paragraph of the proof of Proposition 3.3
we get that I ⊆ J if and only if {K ∈ Vk | {I, J,K} ∈ T } = {K ∈ Vk |
{I ′, J ′,K} ∈ T } implies J = J ′, for any I ′ ∈ Vi and J ′ ∈ Vj . Similarly one
can describe when I ⊆ K, with K ∈ Vk, purely in terms of T . If i < j we get
that we can describe, using T , that an element of I ∈ Vi is strictly contained
in elements of the two other classes and hence Vi is mapped onto itself. So
if a = i, then by assumption i < j and we are done. Assume i = j. Then
by assumption a = k > j. We can describe when I ⊆ K and J ⊆ K, for
I ∈ Vi, J ∈ Vj and K ∈ Vk. So vertices properly contained in vertices of
another class are mapped onto each other, and hence Vk is stabilised. So we
may assume i < j < k and a = j or a = k. The j-spaces J and J ′ intersect
in a (j − 1)-space if and only if there exist I, I ′ ∈ Vi such that I, I ′ ⊆ J ,
I, I ′ 6⊆ J ′, and for any such I and I ′ we have 〈I, J ′〉 = 〈I ′, J ′〉. Again, by
the claim proven in the second paragraph of the proof of Proposition 3.3 we
can describe all these properties in terms of T , as long as j + 1 ≤ `; but this
holds since j < k ≤ `. Similarly we can describe when two distinct k-spaces
intersect maximally, as long as k < l. So, if k < l, then J0 ∈ Vj if and
only if there exist J1, . . . , Jj−i in the same component as J0, with Jm and
Jm+1 distinct and maximally intersecting, such that there is a unique I ∈ Vi
contained in all these subspaces. Here we used j < k. We obtain that Vj and
Vk are also stabilised. If ` = k > j, then as shown in the first paragraph of
Proposition 3.3 we get that Vk (and hence Vj) is stabilised.

Suppose now ` = j+k+d, with d ≥ 1. Consider I ∈ Vi, J ∈ Vj and K ∈ Vk
arbitrary. Note that the nontriviallity of Γi,j,k;≤` implies i− d+ 1 ≥ 0. Then
dim(I ∩ J) ≥ i − d + 1 if and only if dim(〈I, J〉) ≤ j + d − 1 if and only if
{I, J,K} ∈ T for all K ∈ Vk. Similarly, one can deduce when dim(I ∩K) ≥
i− d+ 1 and dim(J ∩K) ≥ i− d+ 1 from T . Now clearly I ⊆ J if and only
if for all K ∈ Vk: dim(I ∩ K) ≥ i − d + 1 implies dim(J ∩ K) ≥ i − d + 1.
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Similarly we can describe J ⊆ K and I ⊆ K in terms of T . Hence Va is
stabilised.

(ii) The above proof can be easily adopted to cover this case as well, except if
` = j + k + 1 or ` = n. We first handle the former case. For I ∈ Vi and
J ∈ Vj we have I ⊆ J if and only if {K ∈ Vk | {I, J,K} ∈ T } = {K ∈ Vk |
{I ′, J ′,K} ∈ T } implies J = J ′. Indeed, note that if I 6⊆ J , we can easily find
J ′ ∈ Vj with J ′ 6= J and 〈I, J〉 = 〈I, J ′〉, and note that a j-space is uniquely
defined by all k-spaces not intersecting it. Similarly I ⊆ K can be described
in terms of T , with K ∈ Vk. Now the argument to show that Va is stabilised
is the same as in the first part. For ` = n, note that the previous arguments
still apply if ` ≥ j + k + 1. If ` ≤ j + k, one combines the arguments in the
first part of this proof with these of part (iii) of Proposition 3.3.

�

Strategy—We proceed as follows to prove the main results. We generally as-
sume that θ is an automorphism of one of the 3-graphs Γi,j,k;`, Γi,j,k;≤`, Γi,{i,k};≤`,
Γk,{i,k};≤`, Γi,{i,k};`, Γk,{i,k};`, Γi;≤` or Γi;`. In the tripartite case, we initially and
additionally assume that θ preserves the tripartition classes. Then we show that,
under the appropriate conditions, θ acts on two classes (in the tripartite or bi-
partite case) or a single class (in the ordinary case, or the class containing two
vertices of each triangle in the bipartite case) as the restriction of an automor-
phism of PG(n,K), using Theorems 3.1 and 3.2 above. Below, we will show that
this automorphism can never be a duality. Then we apply a known automorphism
of the 3-graphs to fix one of the classes, and apply Proposition 3.3. We gradually
reduce the tripartite case to the bipartite one, and then to the ordinary one. Af-
ter that, using Lemma 3.4, we treat the automorphisms that permute the classes
non-trivially.

3.2. Dualities. We first rule out dualities.

Lemma 3.5. The permutation of the vertices of Γi,j,k;`, Γi,j,k;≤`, Γi,{i,k};≤`, Γi,{i,k};`,
Γi;≤` or Γi;` induced by a duality of PG(n,L) is never an automorphism of the re-
spective graph.

Proof If no confusion is possible, we denote for short by Γ = (V, T ) the appro-
priate 3-graph under consideration.

Suppose σ is a duality of PG(n,L) and induces an automorphism of Γi,j,k;` or
Γi,j,k;≤`. Then i + k = 2j = n − 1. Suppose first that i < j and ` < n. Let J be
an arbitrary j-space. Let K be an arbitrary k-space containing J , and let I be an
arbitrary i-space intersecting K in an (n − 1 − `)-space and such that I ∩ J has
dimension max{i+ j − `,−1} (the latter means that I ∩ J is as small as possible).
Then {I, J,K} ∈ T . However, 〈Iσ, Jσ,Kσ〉 = 〈Jσ, Iσ〉. The latter has dimension
min{n, k − j + `} > ` and so {Iσ, Jσ,Kσ} /∈ T , a contradiction.

If i < j and ` = n, then we may assume Γ = Γi,j,k;n. We choose an i-space I
contained in a k-space K. Then we select a j-space J intersecting K in a (j+k−n)-
space and intersecting I in a space of dimension min{j − i − 1, i} (an as large
as possible intersection). Then {I, J,K} ∈ T whereas {Iσ, Jσ,Kσ} /∈ T since
〈Iσ, Jσ,Kσ〉 = 〈Jσ, Iσ〉, and the latter has dimension max{n− i− 1, n− j + i} <
n = `.

Now assume i = j = k. Then ` ≥ i + 1. The following argument also applies to
the graphs Γi,{i,i};≤`, Γi,{i,i};`, Γi;≤` and Γi;`. First let ` < n. Then we can select
two i-spaces I, I ′ generating an `-space L. We may then select an i-space I ′′ ⊆ L
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with I ∩ I ′ not contained in I ′′. Then {I, I ′, I ′′} ∈ T , but I ′′σ is not contained
in 〈Iσ, I ′σ〉 = (I ∩ I ′)σ, yielding {Iσ, I ′σ, I ′′σ} /∈ T . If ` = n, then the previous
argument for ` = n−1 yields {I, I ′, I ′′} /∈ T and {Iσ, I ′σ, I ′′σ} ∈ T , a contradiction
(note that ` = n only applies to the graphs Γi,{i,i};n and Γi;n).

This completes the proof of the lemma. �

In fact, we need a slightly stronger result for the graphs Γi,j,k;`, Γi,j,k;≤` (with
|{i, j, k}| ≤ 2), Γi,{i,k};≤` and Γi,{i,k};`.

Lemma 3.6. (i) No automorphism θ of the nontrivial 3-graphs Γi,j,k;` or Γi,j,k;≤`
has the same action on two (stabilised) tripartition classes as some common
duality σ of PG(n,L).

(ii) No automorphism θ of the nontrivial 3-graphs Γi,{i,k};≤` or Γi,{i,k};` has
the same action on the (stabilised) class Vi as some duality of PG(n,L).

Proof As in the previous proof, we let Γ = (V, T ) be the 3-graph under consid-
eration.

(i) We first consider the case ` < n. The assumptions imply that two of i, j, k
equal n−1

2 , say i = j = n−1
2 , and θ restricted to Vi t Vj is induced by a

duality of PG(n,L) (preserving the two classes separately). We abandon
for once the assumption j ≤ k and also allow k < j. Consider four i-
spaces I, I ′ ∈ Vi and J, J ′ ∈ Vj such that 〈I, J〉 = 〈I ′, J ′〉 is an `-space and
I∩J 6= I ′∩J ′. Then the set of k-spaces K such that {I, J,K} ∈ T coincides
with the set of k-spaces K ′ such that {I ′, J ′,K ′} ∈ T (namely, all K and
K ′ in 〈I, J〉). But the set of k-spaces K such that {Iσ, Jσ,K} ∈ T is the
set of k-spaces contained in (I ∩ J)σ and differs from the set of k-spaces
contained in (I ′ ∩ J ′)σ (by the choice of I, J, I ′, J ′), which equals the set
of k-spaces K ′ such that {I ′σ, J ′σ,K ′} ∈ T . This contradiction shows the
non-existence of θ.

Now suppose ` = n. We select I, I ′, J, J ′ exactly as in the previous
paragraph for ` = n−1. Then the set of k-spaces K such that {I, J,K} ∈ T
coincides with the set of k-spaces not contained in the hyperplane 〈I, J〉 =
〈I ′, J ′〉. But the set of k-spaces K such that {Iσ, Jσ,K} ∈ T coincides with
the set of k-spaces not contained in the hyperplane (I ∩ J)σ 6= (I ′ ∩ J ′)σ.
The non-existence of θ follows again.

(ii) This is proved in completely the same way, now picking the i-spaces in Vi.

�

3.3. The tripartite case. We start with the most general cases Γ := Γi,j,k;` =
(V, Ti,j,k;`) and Γ≤ := Γi,j,k;≤` = (V, Ti,j,k;≤`) and gradually reduce to special cases.

So let θ be an automorphism of Γ or of Γ≤. We have to show that, under the as-
sumptions stated in the main results, θ is induced by a collineation of PG(n,L), and
otherwise there exist automorphisms of Γ or Γ≤ that do not come from collineations
of PG(n,L).

It is clear that, if ` ≥ i+ j + k + 3, then Γi,j,k;` is the empty 3-graph and Γi,j,k;≤`
is a complete tripartite 3-graph. In these cases the result follows easily.

Now let ` ≤ i+k. Take J ∈ Vj and K ∈ Vk. Suppose that dim(J∩K) ≤ j+k−`−1.
Then dim〈J,K〉 ≥ ` + 1. So {J,K} is not part of any triangle of neither Γ nor
Γ≤. Suppose now that dim(J ∩ K) > j + k − ` − 1. Then dim〈J,K〉 ≤ `. Since
dim〈J,K〉 ≥ k, it follows that {J,K} is part of a triangle of both Γ and Γ≤. Hence
the bipartite graph with vertex set VjtVk and J ∈ Vj adjacent withK ∈ Vk if {J,K}
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is part of a triangle of Γ (or Γ≤) is isomorphic to the graph Γnj,k;≥j+k−`(L) and is

non-trivial (not a matching, not empty, not complete bipartite, not the bipartite
complement of a matching), except if ` = n or j = k = `. Indeed, we check when
the conditions of Theorem 3.1(1) are satisfied. First, j + k ≥ n + (j + k − `) is
equivalent with ` ≥ n, hence ` = n. Also, j+k−` = −1 contradicts the assumption
` ≤ i+ k ≤ j + k. Finally, j = k = j + k − ` implies j = k = `.

Suppose first that we do not have ` = n or j = k = `. By Theorem 3.1(3), the
restriction of θ to Vj t Vk is then induced by a collineation (and not a duality by
Lemma 3.6) θ′ of PG(n,L). Let α be the automorphism of Γ or Γ≤ induced by θ′.
By Proposition 3.3(i),(iii), θα−1 is the identity. Hence, θ = α and θ is induced
by a collineation of PG(n,L). In the subsequent cases, we will not repeat the
latter argument and only content ourselves with proving that θ acts on at least two
tripartition classes as the restriction of a collineation or duality. Note that, if the
parameters imply that a duality is impossible (for instance, if i 6= j for the bipartite
graph Γni,j;≤`(L) since we only consider automorphisms preserving the classes), we
will not mention the need for Lemma 3.5 or 3.6.

Suppose now that j = k = `, still assuming ` ≤ i + k. In that case, θ restricted
to Vj t Vk is an automorphism of Γn`,`;≥`. Hence, we can recognise when V ∈ Vj
and W ∈ Vk represent the same `-space (namely, when they are contained in a
common triangle), and θ induces an automorphism of Γ`,{i,`};≤` and we reduced
the problem to the bipartite case. Note that if i = `, we clearly have (as claimed
in Main Result 2.1 and 2.2) that Γ and Γ≤ are 3-matchings.

Finally suppose ` = n, still assuming ` ≤ i + k. Then Γ≤ is complete tripartite
(this also holds if we have ` > i + k). Also, for J ∈ Vj and K ∈ Vk we have
dim(J ∩K) = j+ k− ` if and only if {J,K} is contained in a triangle of Γ together
with every I ∈ Vi. This yields the graph Γnj,k;j+k−`(L) and, if that graph is non-

trivial, we are likewise done, now using Theorem 3.1(2),(3) and Proposition 3.3(iii)
(the parameters imply that no duality can appear). Note that Γnj,k;j+k−`(L) is

trivial if j = k = n − 1 and n − 2 = j + k − n, or j = k = j + k − n (and thus
j = k = ` = n, a trivial case). In the former case, just as before, we can recognise
when V ∈ Vj and W ∈ Vk represent the same space, and as in the previous case,
we get that θ induces an automorphism of Γj,{i,j};`. So we reduced the problem to
the bipartite case.

The argument also works for n = ` = i + k + 1, since then the only case where
Γj,k;j+k−` is trivial (excluding the cases previously discussed) is j = k = i = 0,
` = n = 1. But as claimed in Main Result 2.2, Γ is then the tripartite complement
of a 3-matching.

If n > ` = i+ k+ 1 and i < j, then the argument in the previous paragraphs yields
the graph Γnj,k;≥j−i−1(L), which is non-trivial by Theorem 3.1(1) (since j + k <

j − i− 1 + n by assumption, and j − i− 1 = −1 is impossible). By Theorem 3.1(3)
and Proposition 3.3, θ is induced by a collineation (and, according to Lemma 3.6,
not a duality) of PG(n,L).

Suppose now i = j and ` = i + k + 1. In view of the paragraph preceding the
previous one, we may assume that ` < n. Recall that we here consider Vi and Vj as
distinct sets (copies of the same set however). Let I ∈ Vi and J ∈ Vj and suppose
that dim〈I, J〉 > i (i.e., as i-spaces of PG(n,L), I and J are distinct). Let J ′ ∈ Vj be
such that 〈I, J ′〉 = 〈I, J〉 and J 6= J ′. Then clearly {K ∈ Vk : {I, J,K} ∈ Ti,j,k;`} =
{K ∈ Vk : {I, J ′,K} ∈ Ti,j,k;`} and {K ∈ Vk : {I, J,K} ∈ Ti,j,k;≤`} = {K ∈ Vk :
{I, J ′,K} ∈ Ti,j,k;≤`}. Also, if I and J coincide as i-spaces, and J ′ ∈ Vj is arbitrary
but distinct from J , then, since ` < n, we can select an `-space L such that I ⊆ L
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but J ′ 6⊆ L. Since ` = i+ k + 1, there exists a k-space K such that 〈I,K〉 = L. It
follows that {I, J,K} ∈ Ti,j,k;` ∩ Ti,j,k;≤` but {I, J ′,K} /∈ Ti,j,k;` ∪ Ti,j,k;≤`. Hence
we can recognise the elements of Vi and Vj that coincide in PG(n,L) and we can
deduce the bipartite 3-graphs Γi,{i,k};` and Γi,{i,k};≤` from the 3-graphs Γi,i,k;` and
Γi,i,k;≤`, respectively. So we reduced this case to the bipartite case.

Now suppose ` = i + k + 2. Let J ∈ Vj and K ∈ Vk be arbitrary. Then J ⊆ K
in PG(n,L) if, and only if, they are not contained in a member of Ti,j,k;i+k+2.
Hence, if j = k, we can reduce to the bipartite case Γj,{i,j};i+j+2. If j < k,
then this determines the non-trivial bipartite graph Γnj,k;j(L) ∼= Γnj,k;≥j(L), and

Theorem 3.1(3) and Proposition 3.3(iii) settle this case. Also, in general, dim(J ∩
K) ≥ j−1 if and only if {I, J,K} is a triangle of Ti,j,k;≤i+k+2 for every I ∈ Vi. This
determines the bipartite graph Γnj,k;≥j−1(L). Theorem 3.1(3), Proposition 3.3(i)

and Lemma 3.6 settle this case (note that j− 1 = −1 implies i+ j+ k+ 2 = `, and
this case is covered in the next paragraph; also k < n− 1 as otherwise ` exceeds n
by assumption).

Now let i+k+3 ≤ ` ≤ i+j+k+2. Then `−i−2 ≥ k+1 and so there exist j-spaces
J and k-spaces K with dim〈J,K〉 ≤ ` − i − 2, or dim〈J,K〉 ≤ ` − i − 1. In this
case, however, no i-space I exists such that dim〈I, J,K〉 ≥ `, or dim〈I, J,K〉 > `,
respectively. Hence {J,K} is not contained in any triangle of Γ, or {J,K} is
contained in a triangle of Γ≤ with every element of Vi, respectively. On the other
hand, if for a given J ∈ Vj and K ∈ Vk we have dim〈J,K〉 > `− i− 2, then, since
`− i−2 ≤ j+k, there always exists an i-space I such that dim〈I, J,K〉 = `. Hence
the bipartite graph with vertex set Vj t Vk and J ∈ Vj adjacent with K ∈ Vk if
{J,K} is not part of a triangle of Γ is isomorphic to the graph Γnj,k;≥i+j+k+2−`(L)

and is non-trivial by Theorem 3.1(1) (j = k = i+ j + k + 2− ` is impossible since
` > i+ j+ 2, and i+ j+ k+ 2− ` > −1 by assumption). Also, if for a given J ∈ Vj
and K ∈ Vk we have dim〈J,K〉 > ` − i − 1, then, since ` < n, there always exists
an i-space I such that dim〈I, J,K〉 > `. Hence the bipartite graph with vertex
set Vj t Vk and J ∈ Vj adjacent with K ∈ Vk if {J,K} is part of a triangle of
Γ≤ with any element of Vi is isomorphic to the graph Γnj,k;≥i+j+k+1−`(L) and is
non-trivial, like above, except if ` = i+ j + k + 2, in which case clearly Γ≤ is also
trivial (complete tripartite graph). By Theorem 3.1(3), Proposition 3.3(i),(iii) and
Lemma 3.6, θ is induced by a collineation of PG(n,L).

If i < j < k, then we exhausted all cases with the previous arguments, and we
reduced the other cases to bipartite cases (or solved them).

3.4. The bipartite case. In this paragraph we consider Γ := Γi,{i,j};` = (V, Ti,{i,j};`)
and Γ≤ := Γi,{i,j};≤` = (V, Ti,{i,j};≤`) and we start with the case i ≤ j. The reduc-
tion uses similar arguments as above, so we will leave out some details. We will
also always assume that ` < n when we consider Γ≤.

THE CASE i ≤ j.
First of all, when ` ≥ 2i+j+3, then we either have an empty 3-graph or a complete
bipartite one.

When ` ≤ i + j, then for I ∈ Vi and J ∈ Vj we have dim(I ∩ J) ≤ i + j − ` − 1
if and only if {I, J} is not contained in any triangle of Γ or of Γ≤. We derive
Γni,j;≥i+j−`(L) from this, and Theorem 3.1 together with Lemma 3.5 concludes this
case, if we do not have ` = n or i = j = `. In the latter case, Γ and Γ≤ have no
triangles. If n = `, then we derive Γni,j;i+j−`(L) from the fact that for I ∈ Vi and

J ∈ Vj we have dim(I ∩J) = i+ j− ` if and only if {I, J} is contained in a triangle
of Γ together with every I ′ ∈ Vi, I ′ 6= I. By Theorem 3.1(2), Γni,j;i+j−`(L) is trivial
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if i = j = 0, ` = n = 1 (which contradicts ` ≤ i + j) or i = j = n − 1. In the
latter case, Γ is a complete bipartite 3-graph, so we’re done. So if we do not have
i = j = n− 1, we can apply Theorem 3.1(3) and Lemma 3.5 to conclude this case.

Suppose now i + j + 2 ≤ ` ≤ 2i + j + 2 and i < j. Let I ∈ Vi and J ∈ Vj be
arbitrary. Then dim〈I, J〉 ≤ `− i−2 if and only if dim(I ∩J) ≥ 2i+ j+2− ` if and
only if {I, J} is not contained in any triangle of Γ. Also, dim〈I, J〉 ≤ `− i−1 if and
only if dim(I ∩ J) ≥ 2i+ j + 1− ` if and only if {I, J} is contained in a triangle of
Γ≤ together with any I ′ ∈ Vi, I ′ 6= I. Again we can conclude using Theorem 3.1(3)
and Lemma 3.5, except if ` = 2i+ j+2 for Γ≤. But in this case, the latter is trivial
(complete bipartite, i.e., every pair in Vi forms a triangle with every vertex in Vj).

Next consider Γ≤ and suppose ` = i + j + 1 and i < j. Let I ∈ Vi and J ∈ Vj be
arbitrary. Then I ⊆ J as subspaces of PG(n,L) if and only if {I, J} is contained in
a triangle of Γ≤ together with any I ′ ∈ Vi, I ′ 6= I. This yields the graph Γni,j;i(L)
and Theorem 3.1(3) concludes this case.

Now suppose i = j (but remember we keep writing i and j to distinguish the
biparts). The case 2i+ 3 ≤ ` ≤ 3i+ 2 is similarly as above: For I ∈ Vi and J ∈ Vj ,
we have dim(I ∩J) ≥ 3i+ 2− ` if and only if {I, J} is not contained in any triangle
of Γ; dim(I ∩ J) ≥ 3i + 1 − ` if and only if {I, J} is contained in a triangle of Γ≤
together with every I ′ ∈ Vi, I

′ 6= I (and the case ` = 3i + 2 yields a complete
bipartite 3-graph); we can now again apply Theorem 3.1(3).

Still for i = j, consider the case ` = 2i+2. The vertices I ∈ Vi and J ∈ Vj represent
the same subspace of PG(n,L) if and only if {I, J} is not contained in any triangle
of Γ. This allows reduction to the 3-graph Γi,`. Also, the vertices I ∈ Vi and J ∈ Vj
represent i-subspaces of PG(n,L) that intersect in at least an (i − 1)-space if and
only if {I, J} is contained in a triangle of Γ≤ together with every I ′ ∈ Vi, I ′ 6= I
(recall ` < n). Theorem 3.1(1) implies that Γni,j;≥i−1(L) is trivial if, and only if,
i = j = 0, but then ` = 2 ≥ 3i+ 2, and thus Γ≤ is a complete bipartite 3-graph. In
all other cases, Theorem 3.1(3) concludes this case.

Still for i = j, consider now the case ` = 2i + 1. The vertices I ∈ Vi and J ∈ Vj
represent the same subspace of PG(n,L) if and only if {I, J} is contained in a
triangle of Γ≤ together with every I ′ ∈ Vi, I

′ 6= I. Also, the vertices I ∈ Vi
and J ∈ Vj represent the same subspace of PG(n,L) if and only if there does not
exist I ′ ∈ Vi, I ′ 6= I, such that {I∗ ∈ Vi : {I, I∗, J} ∈ Ti,{i,i};2i+1} = {I∗ ∈ Vi :
{I ′, I∗, J} ∈ Ti,{i,i};2i+1}. This again allows reduction to the 3-graphs Γi;≤` and
Γi;`.

So, in conclusion, we have either solved the case, or reduced to Γi;≤`, or to Γi;`,
or we have the unique case Γi,{i,j};i+j+1, with i < j. In this case we can also
assume that n > i + j + 1, since otherwise I ∈ Vi and J ∈ Vj are disjoint if and
only if for all I ′ ∈ Vi, the triple {I, I ′, J} is a triangle of Γ, and Theorem 3.1(3)
concludes this case. If n > i + j + 1, then we claim that I ∈ Vi and J ∈ Vj are
disjoint if and only if there exists I ′ ∈ Vi such that {I, I ′, J} is a triangle of Γ, and
Ω(I, J) := {I∗ ∈ Vi : {I, I∗, J} ∈ Ti,{i,j};i+j+1, I

∗ 6= I ′} = {I∗ ∈ Vi : {I ′, I∗, J} ∈
Ti,{i,j};i+j+1, I

∗ 6= I} =: Ω(I ′, J). Indeed, if I and J are disjoint, then clearly
Ω(I, J) consists of all i-spaces in 〈I, J〉 except for I and I ′. We can then take I ′

such that I 6= I ′ and 〈I, J〉 = 〈I ′, J〉, which is easy to do. If I and J are not
disjoint, and I ′ ∈ Vi is arbitrary but such that {I, I ′, J} is a triangle in Γ, then we
can choose I∗ ∈ Vi such that 〈I, J〉 = 〈I∗, J〉. It follows that 〈I ′, I, J〉 = 〈I ′, I∗, J〉,
hence {I ′, I∗, J} is a triangle of Γ, but {I, I∗, J} is clearly not a triangle of Γ,
proving our claim. We can apply Theorem 3.1(3) to conclude this case.

THE CASE i > j.
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We again put Γ := Γi,{i,j};` = (V, Ti,{i,j};`) and Γ≤ := Γi,{i,j};≤` = (V, Ti,{i,j};≤`),
with i > j.

For ` ≥ 2i+ j + 3, the 3-graph Γ is empty, and for ` ≥ 2i+ j + 2, the 3-graph Γ≤
is complete bipartite.

If ` ≤ i+ j + 2 and ` < n, then, as before, we derive Γni;≥2i−`(L) from Γ and from

Γ≤. This graph is trivial either if ` = i (in which case both Γ and Γ≤ are also
trivial, namely, empty), or if both ` = i + j + 2 and i = j + 1. If ` = n, then
Γ≤ is complete bipartite, and we derive Γni;2i−`(L) from Γ. This graph is trivial

(using Theorem 3.2(2)) if, and only if, i = n − 1 = l − 1. In that case Γ is a
complete bipartite 3-graph. If Γni;2i−`(L) is non-trivial, we conclude these cases

with Theorem 3.2(3), Proposition 3.3(iv) and Lemma 3.6.

Also the cases i + j + 3 ≤ ` ≤ 2i + j + 2 are similarly as before. So the only case
remaining is when ` = i + j + 2 and i = j + 1, implying ` = 2i + 1. But then a
j-space J is contained in an i-space I if and only if {I, J} is contained in a triangle
of Γ≤ together with every I ′ ∈ Vi, I 6= I, and we again reduced the situation to
Theorem 3.1. So we are only left with the unique case Γi,{i,i−1};2i+1. Put j = i− 1
for ease of notation. Also, for I, I ′ ∈ Vi, put Ω(I, I ′) = {J ∈ Vj : {I, I ′, J} ∈
Ti,{i,j};2i+1}. We claim that, in this case, I, I ′ ∈ Vi span an (i+1)-space if, and only
if, for every I∗ ∈ Vi such that Ω(I, I ′) = Ω(I, I∗), we also have Ω(I, I ′) = Ω(I ′, I∗).
Indeed, suppose first that 〈I, I ′〉 is (i+ 1)-dimensional and I∗ ∈ Vi is not contained
in 〈I, I ′〉. If I ′ ⊆ 〈I, I∗〉, then dim〈I, I∗〉 ≥ i+ 2 and we can choose a j-space J not
disjoint from I ′ such that 〈I, I∗, J〉 is (2i+ 1)-dimensional. Otherwise we can find
a j-space J containing a point of I ′ \ 〈I, I∗〉 and spanning a (2i+ 1)-space together
with 〈I, I∗〉, except if I and I∗ are disjoint. In the latter case we select the j-space
J in 〈I, I∗〉 not disjoint from I. In each of these three cases J belongs to Ω(I, I∗)
but not to Ω(I, I ′). We conclude that, in order to have Ω(I, I ′) = Ω(I, I∗), we
must have I∗ ⊆ 〈I, I ′〉. But then also Ω(I, I ′) = Ω(I ′, I∗). Now suppose that I
and I ′ span a space of dimension at least i + 2. We select an i-space I∗ in 〈I, I ′〉
such that 〈I, I∗〉 = 〈I, I ′〉 and dim〈I ′, I∗〉 = i + 1 (this is easily done). Clearly
Ω(I, I ′) = Ω(I, I ′′), but by the foregoing, we know Ω(I, I ′) 6= Ω(I ′, I∗). Our claim
is proved. Hence we can construct the graph Γni;i−1(L), which is non-trivial (note
that i = 0 is impossible since j = i − 1 ≥ 0). Theorem 3.2(3), Proposition 3.3(iv)
and Lemma 3.6 conclude this case.

3.5. The ordinary case. Let Γ be the 3-graph Γi;` and Γ≤ the 3-graph Γi;≤`. If
` ≥ 3i+ 3, then Γ has no triangles, and Γ≤ is complete. If ` ≤ 2i, then I1, I2 ∈ Vi
intersect in a space of dimension at most 2i − 1 − ` if and only if {I1, I2} is not
contained in any triangle of Γ or Γ≤. By considering the complement, we get
Γni;≥2i−l(L), which is, by Theorem 3.2(1), trivial if, and only if, ` = n or i = `. In
the latter case, Γ and Γ≤ have no triangles. Now consider ` = n, then I1, I2 ∈ Vi
intersect in a space of dimension 2i − n if and only if {I1, I2, I3} is a triangle of Γ
for all I3 ∈ Vi, I1 6= I3 6= I2. By Theorem 3.2(2), Γni;2i−n(L) is trivial if, and only
if, 0 < i = n− 1 = l− 1 (i = 0, l = 1 contradicts ` ≤ 2i). But then, Γ is a complete
3-graph and we are done. If n 6= l 6= i, Theorem 3.2(3) and Lemma 3.5 conclude
this case.

Now suppose 2i+ 3 ≤ ` ≤ 3i+ 2. Let I1, I2 ∈ Vi. Then dim(I1 ∩ I2) ≥ 3i+ 2− ` if
and only if {I1, I2} is not contained in any triangle of Γ, and dim(I1∩I2) ≥ 3i+1−`
if and only if {I1, I2} is contained in a triangle of Γ≤ together with every I ∈ Vi,
I 6= I1. Noting that Γ≤ is complete if ` = 3i+ 2, we can conclude these cases with
Theorem 3.2(3). This also holds for Γ≤ if ` = 2i+ 2.
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So only the cases Γi;≤2i+1, Γi;2i+1 and Γi;2i+2 remain. Moreover, in these cases we
may assume that n > 2i+1. Indeed, this is trivial for Γi;2i+2. Concerning Γi;≤2i+1,
we obtain a complete 3-graph for n = 2i+ 1. Finally, if n = 2i+ 1 for Γi;2i+1, then
I, I ′ ∈ Vi are disjoint if and only if for all I ′′ ∈ Vi, I 6= I ′′ 6= I ′, the triple {I, I ′, I ′′}
is a triangle of Γ, and Theorem 3.2(3) and Lemma 3.5 conclude this case, except if
i = 0. But in that case, we use the Fundamental Theorem of Projective Geometry
(see [1]).

First let Γ≤ = (Vi, T ) be the 3-graph Γi;≤2i+1, with n > 2i + 1. We are going to
characterise the disjoint pairs of i-spaces.

Lemma 3.7. Two i-spaces I1 and I2 of PG(n,L) are disjoint if, and only if, for
all I3, I4 ∈ Vi, the fact that {I1, I2, I3} and {I1, I2, I4} are triangles of Γ≤ implies
that {I1, I3, I4} and {I2, I3.I4} are triangles of Γ≤.

Proof Suppose first that I1 and I2 are two disjoint i-spaces. Let I3, I4 ∈ Vi be
such that {I1, I2, I3} and {I1, I2, I4} are triangles of Γ≤. Then I3, I4 ⊆ 〈I1, I2〉 and
hence 〈I1, I3, I4〉 ⊆ 〈I1, I2〉, implying {I1, I3, I4} ∈ T . Likewise {I2, I3, I4} ∈ T .

Now suppose I1 and I2 are two i-spaces intersecting in a subspace of dimension
` ≥ 0. Then dim〈I1, I2〉 = 2i− ` and hence we can find a subspace U of PG(n,L) of
dimension `+1 disjoint from 〈I1, I2〉. We can choose two distinct subspaces U3 and
U4 of U of dimension ` and a subspace W of 〈I1, I2〉 of dimension i− `− 1 disjoint
from I1. Then the subspaces I3 = 〈U3,W 〉 and I4 = 〈U4,W 〉 are i-dimensional.
Moreover dim〈I1, I2, I3〉 = (2i − `) + ` + 1 = 2i + 1, so that {I1, I2, I3} ∈ T .
Similarly, {I1, I2, I4} ∈ T . But, since 〈I1, I3, I4〉 = 〈I1,W,U3, U4〉 = 〈I1, I2, U〉, we
have dim〈I1, I3, I4〉 = 2i− `+ (`+ 1) + 1 = 2i+ 2 and so {I1, I3, I4} /∈ T . �

As before, recognising disjoint i-spaces concludes with Theorem 3.2(3) the proof
of this case, except if i = 0. We then, again, use the Fundamental Theorem of
Projective Geometry (see [1]).

Now consider Γi;2i+1 and Γi;2i+2. Let Γ be either one of these two graphs. Put
` = 2i+ 1 or 2i+ 2, respectively.

Lemma 3.8. Let I1, I2, I3 ∈ Vi be three distinct i-spaces of PG(n,L), where n >
2i + 1. If dim〈I1, I2〉 = i + 1 and I3 is not contained in 〈I1, I2〉, then there exists
an i-space I ∈ Vi such that dim〈I1, I2, I〉 = 2i+ 1 and dim〈I1, I3, I〉 = 2i+ 2.

Proof Let x ∈ I2 \I1. Select a subspace S of 〈I1, I2, I3〉 disjoint from 〈I1, I2〉 and
such that dim〈I1, I2, S〉 = −1 + dim〈I1, I2, I3〉 (possibly S is the empty subspace).
Note that dimS ≤ i − 1. Finally, select a subspace S′ disjoint from 〈I1, I2, I3〉
such that dimS + dimS′ = i − 2 (possibly S′ is empty; this happens if and only
if dimS = i − 1 if and only if I3 is disjoint from 〈I1, I2〉). Then I = 〈x, S, S′〉
is i-dimensional and we have dim〈I1, I2, I〉 = dim〈I1, I2〉 + dim I = 2i + 1. Also,
dim〈I1, I3, I〉 = dim〈I1, I2, I3〉+ dimS′+ 1 = dim〈I1, I2〉+ dimS+ 2 + dimS′+ 1 =
2i+ 2. �

Let, for distinct i-spaces I, I ′ ∈ Vi, the set Ω(I, I ′) be the set of all i-spaces I∗

such that {I, I ′, I∗} is a triangle of our 3-graph. It is clear, for I1, I2, I3 ∈ Vi,
that Ω(I1, I2) = Ω(I1, I3) as soon as 〈I1, I2〉 = 〈I1, I3〉 (and dim〈I1, I2〉 6= `). The
previous lemma also implies that Ω(I1, I2) 6= Ω(I1, I3) if dim〈I1, I2〉 = i + 1 and
〈I1, I2〉 6= 〈I1, I3〉. Hence, if i 6= 0, I1 and I2 intersect in a space of dimension i−1 if
and only if, for all I ∈ Vi, as soon as Ω(I1, I2) = Ω(I1, I), then Ω(I1, I2) = Ω(I2, I)
and {I1, I2, I} is not a triangle of Γ. So we constructed Γni;i−1(L), which is trivial
if, and only if, i = 0 or i = n− 1. In the former case, the claim of Main Result 2.2
follows from the Fundamental Theorem of Projective Geometry. In the latter case,
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n ≥ l ≥ 2i + 1 = 2n − 1 yields n = 1 = l and thus Γ = Γ0;1 is a complete 3-
graph, as claimed in Main Result 2.2. In all other cases, the result follows from
Theorem 3.2(3).

3.6. Automorphisms that do not preserve all classes. By Proposition 3.3,
this only applies to the tripartite cases Γi,j,k;` and Γi,j,k;≤`. So let θ be an auto-
morphism of Γi,j,k;` or Γi,j,k;≤` (which we shall refer to as Γ below) not stabilising
each tripartition class.

First suppose that θ does not permute the classes. By Proposition 3.3(i) we then
have i < j = k = ` and it is easy to see that Vi is preserved. The ordinary graph
induced on the classes Vj and Vk is a matching, and clearly interchanging any
two adjacent vertices and fixing all others induces an automorphism of Γ. Hence
composing with an appropriate number of such automorphisms brings us back to
the classes preserving case.

Hence from now on we may assume that θ permutes the classes nontrivially. Ac-
cording to Lemma 3.4 this only happens when i = j or j = k (or both). If i = j < k,
then we can compose θ with the automorphism of Γ that maps every vertex of VitVj
to its copy, and we are reduced to the classes preserving case. Similarly if i < j = k,
and likewise for the case i = j = k < `.

This completes the proof of our Main Results.

4. The thin case

The analogue of the previous problems for sets is the following (we only consider the
cases where we do not have a tripartite or bipartite graph, since similar arguments
as before can reduce these cases to the given cases): Given a set S, possibly infinite,
and given two natural numbers i, `, with i < `, define the 3-graphs Γi;` and Γi,≤`
as follows. The vertices are the i-subsets of S and the triangles are the triples of
i-subsets whose union is an `-subset, or whose union is contained in an `-subset,
respectively. It is easy to see that Γi;` is non-trivial (meaning there is at least
one triangle) if and only if i + 1 ≤ ` ≤ 3i and ` ≤ |S|. Also, Γi;≤` is non-trivial
(meaning there is at least one triangle and not every triple is a triangle) if and only
if i+ 1 ≤ ` ≤ 3i− 1 and ` < |S|.

We now show the following theorem.

Theorem 4.1. Whenever Γi;` or Γi,≤` is non-trivial, every automorphism of it is
induced by a permutation of S.

Proof By Theorem 4.8 and (the remarks after) Theorem 4.2 of [3], it suffices
to recognise pairs of i-subsets intersecting in either at least n elements, for some
n, such that 1 ≤ n ≤ i − 1 and 2i − n < |S|, or in exactly n elements, for some
n, such that 1 ≤ n ≤ i − 1 and 2i − n ≤ |S|, excluding the case (|S|, i, n) =
(4n∗ − 1, 2n∗ − 1, n∗ − 1), n∗ ≥ 2.

Suppose first that ` ≤ 2i− 1. Then it is clear that two i-subsets are contained in a
triangle if and only if their union is at most an `-subset, and that happens if and
only if their intersection contains at least 2i−` elements. Note that 1 ≤ 2i−` ≤ i−1
and 2i − (2i − `) = ` ≤ |S|. So, if ` < |S|, we are done. Suppose now ` = |S|.
Then we are dealing with the 3-graph Γi;`, and it is easy to see that two i-subsets
intersect in exactly 2i− ` elements if, and only if, they are contained in a triangle
with every other i-subset.
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Next suppose that ` ≥ 2i + 1 and first consider Γi;≤`. Then it is clear that two
i-subsets intersect in at least 3i− ` elements if and only if they are contained in a
triangle with every other i-subset (because it is equivalent with the two i-subsets
contained in an (`− i)-subset). Note 1 ≤ 3i− ` ≤ i− 1, 2i− (3i− `) = `− i < |S|
and (|S|, i, 3i − l) = (4n∗ − 1, 2n∗ − 1, n∗ − 1) does not hold for any n∗ ≥ 2, since
otherwise ` < |S| = 2i+ 1.

Now suppose ` ≥ 2i + 2 and consider Γi;`. Here it is clear that two i-subsets
are not contained in any triangle if and only if their union has at most ` − i − 1
elements, and this happens if and only if they intersect in at least 3i − ` + 1
elements. We have 1 ≤ 3i − ` + 1 ≤ i − 1, 2i − (3i − ` + 1) = ` − i − 1 < |S| and
(|S|, i, 3i − l + 1) = (4n∗ − 1, 2n∗ − 1, n∗ − 1) does not hold for any n∗ ≥ 2, since
otherwise ` ≤ |S| = 2i+ 1

So only the three graphs Γi;≤2i, Γi;2i and Γi;2i+1 remain (note that this fact is
completely similar to the “thick” case).

First assume n = 2i, then we just have to consider Γi;2i since the other graphs
are trivial. Clearly two i-subsets are disjoint if and only if all other i-subsets
form a triangle with these two subsets. So we can characterise when two i-subsets
intersect in at least one element, note that 2i−1 < |S|. We may now assume n > 2i.
Consider two i-subsets I1, I2 intersecting in an (i−1)-subset J . Let I3 be an i-subset
(different from I1 and I2) with the property that the set Ω(I1, I2) of i-subsets I such
that {I1, I2, I} is a triangle coincides with the set Ω(I1, I3) of i-subsets I such that
{I1, I3, I} is a triangle. Suppose I3 is not contained in I1∪I2 and let x ∈ I3\(I1∪I2).
Let I be an i-subset disjoint from I1, containing ((I2 \ I1) ∪ (I3 \ I1)) \ {x} and
not containing x, we can find such set because n > 2i. Then clearly |I1 ∪ I2 ∪ I| =
i+ 1 + i− 1 = 2i, whereas |I1 ∪ I3 ∪ I| = 1 + i+ i− 1 + 1 = 2i+ 1. This contradicts
our assumption on I3. On the other hand, if I3 ⊆ I1 ∪ I2 and I1 6= I3 6= I2, then
clearly, for all i-subsets I we have I1∪I2∪I = I1∪I3∪I = I2∪I3∪I. We conclude
that, if two i-subsets I1, I2 intersect in an (i − 1)-subset, then for each i-subset I3
holds that, if Ω(I1, I2) = Ω(I1, I3), then Ω(I1, I2) = Ω(I2, I3).

Now suppose the i-subsets I1, I2 are such that |I1∪I2| ≥ i+2. Suppose I1∩I2 = ∅,
and suppose that we are considering Γi,≤2i or Γi,2i. Then Ω(I1, I2) consists of all
i-subsets in I1∪I2 distinct from I1 and I2. Hence Ω(I1, I3) = Ω(I1, I2) for a certain
i-subset I3 implies I3 = I2. For the graph Γi,2i+1 one obtains the same result in
a similar fashion. Now suppose that I1 and I2 intersect non-trivially. Then we
can easily choose an i-subset I3 such that |I2 ∪ I3| = i + 1 and I1 ∪ I2 = I1 ∪ I3.
It follows from the previous paragraph that Ω(I2, I3) 6= Ω(I1, I2), whereas clearly
Ω(I1, I2) = Ω(I1, I3). Hence, we conclude that two i-subsets I1, I2 intersect in an
(i − 1)-subset if, only if, there exist an i-subset I3 (distinct from I1 and I2) such
that Ω(I1, I2) = Ω(I1, I3), and for any such subset Ω(I1, I2) = Ω(I2, I3).

Hence we can recognise pairs of i-subsets intersecting in exactly i−1 elements (note
that (|S|, i, i− 1) = (4n∗ − 1, 2n∗ − 1, n∗ − 1) for some n∗ ≥ 2 is impossible). This
concludes the proof of the theorem. �
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