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Abstract. Given a (thick) irreducible spherical building Ω, we establish a bound on the difference
between the generating rank and the embedding rank of its long root geometry and the dimension
of the corresponding Weyl module, by showing that this difference does not grow when taking
certain residues of Ω (in particular the residue of a vertex corresponding to a point of the long
root geometry, but also other types of vertices occur). We apply this to the finite case to obtain
new results on the generating rank of mainly the exceptional long root geometries, answering an
open question by Cooperstein about the generating ranks of the exceptional long root subgroup
geometries. We completely settle the finite case for long root geometries of type An, and the case
of type F4,4 over any field with characteristic distinct from 2 (which is not a long root subgroup
geometry, but a hexagonic geometry).

1. Introduction and statement of the main results4

The absolutely universal embedding of most “popular” Lie incidence geometries, i.e., the point-5

line geometries arising naturally from simple algebraic groups and their variants, are known. This6

knowledge allows one to treat each projective embedding of such geometry as a quotient, or in7

geometric terms a projection, of a unique, usually well known and natural embedding. A major8

exception is the class of long root geometries, which is perhaps the most important class of Lie9

incidence geometries in that each split algebraic group admits such geometry, and all long root10

geometries share a number of common intrinsic properties, turning them into a class of geometries11

ready-made to treat all corresponding algebraic groups simultaneously. A consequence of a group12

theoretic result of Völklein [36, Remark(2)] implies that also the universal embedding of the long13

root geometries are known, as long as their symplecta (see below for the definition) have rank at14

least 3, and as long as they are defined over either a perfect field in positive characteristic, or a15

(possibly infinite dimensional) algebraic extension of the rationals. We note that this consequence16

was not mentioned in the survey paper [15].17

The usual geometric technique to show that a given embedding in a projective space of dimension18

r of a given geometry ∆ is absolutely universal is to exhibit a set of r + 1 points of ∆ that19

(linearly) generates ∆. This method has been applied a number of times and it works well for20

many geometries, in particular for the exceptional geometries of type E6,1 and E7,7, see for instance21

Blok & Brouwer [3] and Cooperstein & Shult [16]. Hence, for those geometries, the generating22

rank, or briefly g-rank (that is, the smallest number of points generating the geometry) is equal23

to the embedding rank, or briefly e-rank (that is, the largest rank of a projective space hosting an24

embedding of the geometry that spans the whole projective space—the rank of a projective space25

is its projective dimension plus one, that is, the dimension of the underlying vector space). We will26

frequently use the notation •-rank to simultaneously provide statements and reasonings for both27
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the e-rank and g-rank where it is understood that once •-rank is chosen to be either the e-rank or28

g-rank it is fixed for the entire statement or reasoning.29

However, for the long root geometries the relation between these two ranks seems to be more30

complex. In the classical cases, Cooperstein [13] proved that, over a finite prime field, the generating31

rank equals the embedding rank, but he does not say anything about other (finite) fields. The32

smallest case, type A2, has been investigated by Blok & Pasini [4] and they prove that the generating33

rank strongly depends on the minimal number of generators of the multiplicative group of the34

underlying field. This is somewhat in contrast with Völklein’s result mentioned above (because35

Völklein’s result applies to fields for which this number is large, even unbounded). Indeed, it is36

even unknown whether the embedding rank for geometries of type A2,{1,2} over fields that are not37

finitely generated is finite or not. This situation is particularly complicated since there might not38

exist a universal embedding.39

The aim of the present paper is to prove some general results about both the embedding rank40

and generating rank of long root geometries, primarily of exceptional type, but we also handle41

some classical cases, by relating the respective ranks of different types of geometries. A major42

consequence of our investigations is that the generating rank and embedding rank of any long43

root geometry over a prime field (except possibly for type F4 over F2) are equal to each other44

(Theorem C below). For finite fields other than prime fields, the generating rank is at most one45

more than the embedding rank if symplecta have rank at least 3, and they are equal again for46

type An,{1,n} (Theorem D below). We also completely settle the case of type F4,4, regardless of the47

underlying field in characteristic distinct from 2.48

More exactly, we relate the e-rank and g-rank of a long root geometry to the e-rank and g-rank, re-49

spectively, of the long root geometry of a residual geometry in the corresponding spherical building,50

showing that a certain excess is non-increasing as the rank of the building increases. More pre-51

cisely, and using some terminology introduced later, the excess is the difference between either the52

e-rank or g-rank of a long root geometry and the dimension of the so-called Weyl module associated53

with the longest root of the corresponding root system of the underlying split spherical building54

(the adjoint representation module). Concerning the exceptional cases, we have the following main55

result.56

Theorem A. Abbreviating the assertion “The excess of the generating rank of the long root geom-57

etry of type Xr over the field K is at most the excess of the long root geometry of type Ys over K”58

to “ Ys → Xr”, we have the following assertions:59

A5 → E6,

D6 → E7,

D5 → E6 → E7 → E8,

A2 → C3 → F4.

The same thing holds for the embedding rank.60

The arrows A2 → C3 → F4 of the previous result have to be read in a specific sense, which will be61

explained in Subsection 6.2.2.62

The same method can also be applied to the classical cases, and we obtain:63

Theorem B. With the same notation as Theorem A, we have the following assertions (where the64

geometries are defined over the field K):65

An → An+1 → Dn+2 → Dn+3, n ≥ 2, K arbitrary,

Bn → Bn+1, n ≥ 2, charK 6= 2.

(This holds for both the embedding rank and generating rank.)66
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Here, also the arrow B2 → B3 has to be read in a specific sense, which we explain in Subsection 7.4.67

The upshot of both theorems is that, if progress is made for some low-rank classical case, then this68

has implications on many long root geometries of higher rank, but also on (some of) the exceptional69

cases. In the limit, new results in the case of type A2,{1,2} could imply better bounds for all other70

cases! As far as we know, it is the first time that this connection is made so explicit.71

We now specialise to the finite case. A result of Völklein [36, Remark(2)] implies that the e-rank72

of the finite long root geometries that admit the universal embedding (hence with symplecta of73

rank at least 3; so not of type A2 or G2) is precisely the dimension of the Weyl module, that is, the74

universal embedding in case there are no symplecta of rank 2 is given by the corresponding Weyl75

embedding. We use Theorem A to show the following result (which is the analogue of the classical76

case).77

Theorem C. The generating rank of the long root geometry of type En, n ∈ {6, 7, 8}, and F4 over78

a prime field (distinct from F2 in case of F4) is exactly the dimension ω of the corresponding Weyl79

module.80

This answers an open question by Cooperstein [15, p.117]. We do not know whether the case F481

over F2 is a true exception or not.82

Over a general finite field, we can prove the following, as a corollary to Theorems A and B.83

Theorem D. The long root geometry of type An, n ≥ 2, Bn, n ≥ 3 and odd characteristic, Dn,84

n ≥ 3, En, n ∈ {6, 7, 8}, and F4 over a finite field (distinct from F2 in case of F4) is generated by85

ω+ 1 points, where ω is the dimension of the corresponding Weyl module. Hence the corresponding86

generating rank always belongs to {ω, ω + 1}. Also, over a finite field which is not a prime field,87

both the generating rank and the embedding rank of the long root geometry of type An, n ≥ 2, are88

equal to ω + 1 = (n+ 1)2.89

Our proof, which restricted to the classical cases is very different from the one in [13], uses the90

existence and construction of the so-called equator geometries, which are also long root geometries,91

but of lower rank. This induction process can be carried out in different ways, providing the92

different sufficient conditions stated in Theorem A above. It can also be applied to the classical93

cases and to the metasymplectic space F4,4(K). However, for the latter we can use the notion of an94

extended equator geometry to determine both the g-rank and e-rank of F4,4(K), charK 6= 2. This95

provides a complete answer to another question by Cooperstein if charK 6= 2 [15, p.120].96

Theorem E. The generating rank and embedding rank of the Lie incidence geometry of type F4,497

over an arbitrary field of characteristic distinct from 2 is 26.98

2. Definitions and notation99

Henceforth let K be a field. We denote by Pn(K) the n-dimensional projective space over K, where100

n ≥ 1. The subspace generated by a family F of subsets of points is denoted by 〈S | S ∈ F 〉.101

Point-line geometries—A point-line geometry ∆ is a pair (X,L ), with L ⊆ 2X . The members102

of X are called the points, usually denoted with lower case Latin letters, those of L are the lines,103

usually denoted with upper case Latin letters. Since we will deal with embedded geometries, we will104

always assume that two points are contained in at most one line, and that lines have constant size105

at least 3 (this true for all Lie incidence geometries, which we will introduce in the next paragraph).106

Points on a common line are called collinear ; if two points x, y are collinear we write x ⊥ y. If the107

joining line is unique, we denote it by 〈x, y〉. The set of points collinear to a given point x is x⊥108

and for Y ⊆ X we define Y ⊥ = {x ∈ X | x ⊥ y,∀y ∈ Y }. Two subsets Y1, Y2 of X are said to be109

collinear, in symbols also Y1 ⊥ Y2, if each point of either is collinear to every point of the other.110
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We will frequently talk about collinear lines, for instance. The collinearity graph of ∆ is the graph111

with vertices the points of ∆, adjacent when collinear.112

Lie incidence geometries—The geometries of importance in the present paper are Lie incidence113

geometries. These are (natural) point-line geometries associated to spherical buildings (we always114

assume that a building is thick) or, equivalently, to simple algebraic groups and their variants like115

mixed groups and classical groups. A Lie incidence geometry ∆ = (X,L ) is constructed from a116

spherical building Ω of rank r ≥ 2 in the following way. Let T = {1, 2, . . . , r} be the type set of117

Ω (using Bourbaki labelling [5]) and choose J ⊆ T . Then the point set X is the set of flags (or118

simplices) of type J ; the lines are the sets of flags of type J completing flags of type T \ {j} to119

a chamber, for j ∈ J . (A chamber is a flag or simplex of type T ; note that different flags of type120

T \{j} can give rise to the same line.) If Ω has a simply laced diagram, then it is determined by its121

Coxeter diagram Xr and a field K and we denote ∆ by Xr,J(K), and say that ∆ has type Xr,J . We122

write Xr,j if J = {j}. In this paper, we only consider subsets J consisting of one element, except123

in case Ar, where J = {1, r} will play a role. If the Dynkin diagram contains a double bond, then124

we will only be concerned about the split case, that is,125

(1) for type Bn the building associated with a parabolic quadric (viewed as polar space) in P2n(K)126

with standard equation X2
0 = X−1X1 +X−2X2 + · · ·+X−nXn,127

(2) for type Cn the building associated with a non-degenerate alternating form in P2n−1(K),128

(3) for type F4 the building whose residue of type B2 is precisely the case n = 2 in (1) above.129

We also denote the associated Lie incidence geometries by Xn,i(K), where X ∈ {B,C,F}, and for130

appropriate n, i. If J corresponds to the set of fundamental roots not perpendicular to the longest131

root of the root system corresponding to the Dynkin diagram, then we say that Xn,J(K) is a long132

root (Lie incidence) geometry. More precisely, these are the Lie incidence geometries of split types133

An,{1,n}, n ≥ 2, Bn,2, n ≥ 2, Cn,1, n ≥ 3, Dn,2, n ≥ 4, E6,2, E7,1, E8,8, F4,1 and G2,1.134

In spherical buildings the notion of opposition is an important one. Two chambers in a spherical135

building are opposite is they are at a maximal distance in the chamber graph, whose vertices are136

chambers, adjacent if they differ in one element. Two flags F, F ′ are opposite if for every chamber C137

containing F , there is a chamber C ′ opposite C containing F ′, and for every chamber C ′ containing138

F ′, there is a chamber C opposite C ′ containing F . Elements of a Lie incidence geometry which139

correspond to opposite vertices of the underlying building will also be called opposite in the Lie140

incidence geometry. If we want to emphasize in which geometry ∆ the opposition is considered, we141

sometimes write ∆-opposite.142

Embedded geometries—We are interested in embedded geometries. Let K be a field and let143

n ≥ 2 be a natural number. Then we say that the geometry ∆ = (X,L ) is embedded in Pn(K) if144

X is a subset of the point set of Pn(K), and each member of L coincides (as a set of points) with145

a unique line of Pn(K). In the literature, this is sometimes also called a full embedding. Usually146

it is also tacitly assumed that X spans Pn(K). We can also view an embedding as a map ι from147

X to the point set of Pn(K). Using this point of view, an embedding ι into Pn(K) (with ι(X)148

generating Pn(K)) is called universal if for each other embedding, say ι′ into Pm(K), there exists149

an isomorphism θ : Pm(K) → U , with U an m-dimensional subspace of Pn(K), and a subspace W150

complementary to U in Pn(K), such that for each point x ∈ X, the point ι(x) is projected from151

W onto U onto the point θ(ι′(x)), that is, 〈ι(x),W 〉 ∩ U = θ(ι′(x)). If ∆ is a long root geometry152

Xn,J(K), then there always exists an embedding that arises from the adjoint representation (we153

shall refer to the corresponding module briefly as the Weyl module, as we do not consider other154

representations), called briefly the Weyl embedding (cf. Section 4.3 of [2] (in type Cn, we consider155

the Veronese embedding, see below for definitions). The dimension of the Weyl module shall be156

denoted by ω(Xn(K)), and it equals the number of roots of a root system of type Xn, plus the rank157
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n. For convenience, we tabulate this value for the different geometries appearing in the present158

paper.159

∆ ω(∆) Diagram ∆ ω(∆) Diagram

An,{1,n}(K) n2 + 2n E6,2(K) 78

Bn,2(K) 2n2 + n E7,1(K) 133

Cn,1(K) 2n2 + n E8,8(K) 248

Dn,2(K) 2n2 − n F4,1(K) 52

160

Polar Spaces—Parapolar spaces were introduced to capture the (Lie incidence geometries related161

to the) spherical buildings of exceptional type. It is convenient to work within this framework,162

especially when dealing with (classes of) different Lie incidence geometries sharing some common163

properties. Since parapolar spaces amply contain polar spaces as subgeometries, we first provide a164

definition of polar spaces.165

Polar spaces have been introduced by Veldkamp [35], later on included in the theory of buildings166

by Tits [33], and around the same time the axioms have been simplified by Buekenhout & Shult167

[6]. It is the latter point of view we take here.168

Recall that a subspace of a point-line geometry ∆ = (X,L ) is a subset S of the point set X such169

that, if two points a, b belong to S, then all lines containing both a and b are contained in S. A170

subspace H is called a geometric hyperplane if each line of Γ intersects H nontrivially. A geometric171

hyperplane is proper if it does not coincide with X. A singular subspace is a subspace every two172

points of which are collinear. Note that the empty set and a single point are singular subspaces. A173

deep point of a subspace S is a point x such that each line containing x is contained in S.174

We can now define polar spaces.175

Definition 2.1. A point-line geometry ∆ = (X,L ) is called a polar space if the following hold.176

(PS1) Every line contains at least three points.177

(PS2) No point is collinear to all other points.178

(PS3) Every nested sequence of singular subspaces is finite.179

(PS4) For any point x and any line L, either one or all points on L are collinear to x.180

Some basic properties—Let ∆ be a polar space. Then every one of its singular subspaces is a181

projective space, and its dimension can hence be defined as the dimension of the projective space.182

There exists an integer r ≥ 2 such that each nested sequence of singular subspaces has length r+1.183

We call r the rank of ∆. Consequently, the maximal singular subspaces of ∆ have dimension r− 1.184

Note that axiom (PS3) implies that the rank is finite, which is not strictly necessary for polar185

spaces. As we will only consider polar spaces of finite rank, we preferred to include this axiom.186

Parapolar spaces—Let ∆ = (X,L ) be a point-line geometry. A subspace S of ∆ is called convex187

if, for any pair of points {p, q} ⊆ S, every point incident with a line occurring in a shortest path188

between p and q is contained in S. Also, ∆ is called connected if its incidence graph is connected.189

Definition 2.2. A parapolar space is a point-line geometry ∆ = (X,L ) such that:190

(PPS1) ∆ is connected and, for each line L and each point p /∈ L, p is collinear to either none, one191

or all of the points of L and there exists a pair (p, L) ∈ X ×L with p /∈ L such that p is192

collinear to no point of L.193

(PPS2) For every pair of non-collinear points p and q in P, one of the following holds:194

(a) the convex closure of {p, q} is a polar space, called a symplecton; we say that p and q195

are symplectic and denote p ⊥⊥ q;196
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(b) p⊥ ∩ q⊥ is a single point called the centre; we say p is special to q, denoted ponq. The197

centre of the special pair {p, q} is denoted c(p, q);198

(c) p⊥ ∩ q⊥ = ∅.199

(PPS3) Every line is contained in at least one symplecton,200

For p ∈ X, denote by p⊥⊥ = {q ∈ X | p ⊥⊥ q} and let pon= {q ∈ X | ponq}.201

Some basic properties—Let ∆ = (X,L ) be a parapolar space. First of all, note that it is never202

a polar space by (PPS1) and (PS4). In general, a singular subspace of a parapolar space should not203

necessarily be projective; however, in the Lie incidence geometries that we will consider all singular204

spaces are projective spaces. Therefore, a plane always means a singular subspace of projective205

dimension 2. This enables us to define the residue at a point x ∈ X in the usual way: it is the206

geometry Res∆(x) with point set the set of lines through x and line set the set of (full) planar line207

pencils with vertex x. It corresponds to the building-theoretic notion of the residue at x. Likewise,208

the residue at any other singular subspace can be defined, as long as the rank of the symps is at209

least two more than the dimension of the subspace. Objects that are opposite in the residue at a210

point x will be briefly called locally opposite at x.211

If there are no special pairs in ∆, we say that ∆ is strong. Symplecta are also briefly called symps.212

We denote symps with greek letters like ξ and ζ. By Kasikova & Shult [24], all Lie incidence213

geometries with symps of rank at least 3 that we will encounter admit a universal embedding.214

A para is a proper convex subspace of ∆, whose points and lines form a parapolar space themselves.215

The set of symps of a para is a subset of the set of symps of ∆. Paras are rather rare in long root216

geometries; they are classified in [26]. Restricted to the exceptional types, Main Result 1 of [26]217

says that all paras of E7,1(K) are isomorphic to E6,1(K), and all paras of E6,2(K) are isomorphic to218

D5,5(K); the geometry E8,8(K) does not contain paras, just like any geometry of type F4,1 or F4,4.219

Hexagonic geometries—In the present paper we are mainly concerned with a particular class220

of parapolar spaces, some specific Lie incidence geometries of exceptional type, known as the221

(split) exceptional hexagonic geometries. They are the (exceptional) long root geometries of type222

E6,E7,E8,F4, but also the Lie incidence geometry F4,4(K), which very much behaves like a long223

root geometry, but is not. They have in common the following properties, which are the defining224

axioms for abstract hexagonic geometries and can be found in [30, Chapter 17]:225

(H1) If x is a point and ξ is a symplecton, with x /∈ ξ, then x⊥ ∩ ξ is not exactly one point.226

(H2) If a plane π and a line L meet at a point p, then either227

(a) every line of π containing p lies in a common symplecton with L, or228

(b) exactly one such line incident with p and π has this property.229

(H3) If (p, L) is an incident point-line pair, then there exists a second line N such that L∩N = {p}230

and no symplecton contains L ∪N , i.e., xony for each x ∈ L \ {p} and y ∈ N \ {p}.231

By definition, all symps have rank at least 3. The diameter of the collinearity graph of a hexagonic232

geometry is 3 [25, Theorem 39]. Points p, q at distance 3 are opposite and we denote this by p↔ q.233

The hexagonic Lie incidence geometries that we will be considering are Bn,2(K), n ≥ 3, Dn,2(K),234

n ≥ 4, E6,2(K), E7,1(K), E8,8(K), F4,1(K) and F4,4(K) and for the purposes of the present paper,235

we also call the parapolar space An,{1,n}(K), n ≥ 3, hexagonic. All these, except for F4,4(K), are236

long root geometries. We will also work with A2,{1,2}(K), B2,2(K) and Cn,1(K), but these are not237

parapolar spaces and are hexagonic in a broader sense, namely, in the sense of root filtration spaces238

[10, 11]. Without going into details, we mention that all hexagonic geometries are root filtration239

spaces, but the latter is more general. In the present paper, we shall use the notion exceptional240

hexagonic geometries to refer to the Lie incidence geometries E6,2(K), E7,1(K), E8,8(K), F4,1(K) and241

F4,4(K).242
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Generating rank—Let ∆ = (X,L ) be a point-line geometry. Let S ⊆ X. Since obviously the243

intersection of an arbitrary family of subspaces of ∆ is again a subspace, and since X itself is a244

subspace, the intersection of all subspaces containing S is well defined and is a subspace again,245

which we denote by 〈S〉. A subset S is said to generate ∆ if 〈S〉 = X. The generating rank ρg(∆)246

of ∆ is the minimal cardinality of a generating set. For a long root geometry Xn,J(K), we write247

ρg(Xn(K)) = ρg(Xn,J(K)). We sometimes abbreviate ‘generating rank’ to g-rank.248

Embedding rank—Let ∆ = (X,L ) be a point-line geometry. If ∆ does not admit any embedding
into some finite dimensional projective space, then we say that its embedding rank is 0. Otherwise,
the embedding rank ρe(∆) is equal to

1 + sup{n ∈ N | ∆ is embedded in Pn(K), for some field K, with 〈X〉 = Pn(K)}.

If ∆ admits a universal embedding in Pn(K), then the embedding rank is equal to n + 1. We249

sometimes abbreviate ‘embedding rank’ to e-rank. Note that the e-rank of ∆ is always at most the250

g-rank of ∆. For A2,{1,2}(K), we need a more restrictive notion of the embedding rank:251

Segre embedding rank of A2,{1,2}(K)—Let ∆ be the Lie incidence geometry A2,{1,2}(K). This252

geometry is a subgeometry of all hexagonic parapolar spaces, in particular those with symps of253

rank at least 3, and so, in particular of those that admit a universal embedding. That universal254

embedding admits a projection onto the Weyl embedding, by definition of universality. This Weyl255

embedding, however, contains the Weyl embedding of A2,{1,2}(K). Hence, we are only interested in256

those embeddings of A2,{1,2}(K) that admit a projection onto the Weyl embedding of A2,{1,2}(K).257

One plus the corresponding supremum of such (projective) dimensions will be called the Segre258

embedding rank of A2,{1,2}(K) and denoted by ρ◦e(A2(K)). To motivate this name, we note that259

the Weyl embedding of A2,{1,2}(K) arises from intersecting the Segre variety corresponding to the260

product geometry P2(K)×P2(K) with a generic hyperplane. Indeed, that Segre geometry is given,261

after introducing homogeneous coordinates in P2(K) and P8(K), by the image of the map262

P2(K)× P2(K)→ P8(K) : (a, b, c;x, y, z) 7→ (ax, ay, az; bx, by, bz; cx, cy, cz),

and we can choose the hyperplane such that it induces the equality ax+ by+ cz = 0. This provides263

the Weyl embedding of A2,{1,2}(K).264

Veronese embedding rank and Veronese generating rank—In order for our procedure to265

make sense for the arrows in Theorem A involving type C3, and to be uniform across all types, we266

need to consider a different type of embedding and generation of symplectic polar spaces, but also267

of projective spaces. Let ∆ = (X,L ) be a point-line geometry. A Veronese subspace V is a set268

of points such that each line not entirely contained in V intersects V in at most two points. Any269

(ordinary) subspace is a Veronese subspace, but the converse is not true: consider two collinear270

points. The intersection of an arbitrary family of Veronese subspaces is again a Veronese subspace,271

and X itself is a Veronese subspace, hence we can again consider the Veronese subspace V spanned272

by a subset S ⊆ X; we say that V is Veronese generated by S. The minimal cardinality of such a273

set S Veronese generating X is called the Veronese generating rank and denoted by ρ∗g(∆).274

We say that ∆ = (X,L ) is Veronese embedded in Pn(K) if X is a subset of the point set of Pn(K)275

(generating it), and each member of L is a nondegenerate conic in some plane of Pn(K). The276

Veronese embedding rank ρ∗e(∆) is 0 if there does not exist any Veronese embedding of ∆ in a finite277

dimensional projective space; otherwise it is the supremum of all natural numbers n for which ∆ is278

embedded in Pn−1(K), for some field K. Given a Veronese embedding ε : X ⊆ Pn(K) of ∆, then the279

ε-relative Veronese embedding rank is the supremum of all natural numbers m for which ∆ admits280

an embedding in Pm−1(K) that projects onto ε.281

Again we abbreviate ‘Veronese generating rank’ and ‘Veronese embedding rank’ to Veronese g-rank282

and Veronese e-rank, respectively.283
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Structure of the paper—In Section 3 we gather some known results on the g-rank and e-rank284

of a number of Lie incidence geometries. In particular, we focus on long root geometries of types285

An and Dn over finite fields, in particular over (finite) prime fields. In Section 4 we discuss various286

properties of long root geometries, starting with general properties in Section 4.1, before focussing287

on E6,2 in Section 4.2 and E7,1 in Section 4.3. We define the equator geometries related to paras.288

In Section 5 we prove Theorem A for the long root geometries of types E6,E7 and E8. In Section289

4.4 we explain the role of geometric hyperplanes (since these are essential to our arguments). In290

Sections 5.1 and 5.2 we define certain subspaces and prove these are hyperplanes. We show that291

these are designed to allow us to inductively compute the g-rank and e-rank, and we conclude the292

proof of Theorem A in the case E. In Section 6 we discuss the cases of geometries of type F4,1 and293

F4,4 in detail. We prove Theorem E and the remainder of Theorem A. The proof of Theorem B is294

very similar and we only sketch the proof, leaving the details to the reader, in Section 7. The proof295

of Theorem C (being well known for the classical cases [13]) is given in Section 5.3 for the case of296

type E, and in Section 6.3 for type F4. Finally, Theorem D is proved in Section 8, where we also297

provide a geometric proof of Völklein’s result (restricted to finite fields) using the statements of the298

present paper, for types Dn, n ≥ 4, E6,E7,E8 and F4 (the latter in characteristic distinct from 2).299

3. Generation and embeddings of some Lie incidence geometries300

3.1. Projective spaces, polar spaces, strong parapolar spaces. In the table below we list the301

g-rank and e-rank for several Lie incidence geometries, strong if they are parapolar spaces. Since302

in all cases ρg(∆) = ρe(∆) we write ρ(∆) in the table. The table includes the so-called minuscule303

embeddings of geometries of type E6,1 and E7,7. The results there follow from the existence of304

embeddings in the given (vector) dimension (see for instance [1] and [12]), the fact that the g-rank305

is exactly equal to that dimension (see [3] or [16, Corollary 7.5]), and the existence of the absolutely306

universal embedding (see [24]). The results we mention in this section are also surveyed in [15].307

Fact 3.1. The following is known for g-rank and e-rank, where K is an arbitrary field:308

∆ ρ(∆) References ∆ ρ(∆) References

An,k(K)
(
n+1
k

)
[3, 16] E6,1(K) 27 [1, 3, 16, 24]

Dn,1(K) 2n [3, 16] E7,7(K) 56 [3, 12, 16, 24]

Dn,n(K) 2n−1 [3, 16, 37]

309

In particular, the g-rank and e-rank of A5,3(K), D6,6(K) and E7,7(K) are equal to 3.2r−3 + 8, where310

r is the rank of the corresponding building.311

All geometries mentioned in the table of Fact 3.1 are generated by the set of points contained in312

one given apartment, as is proved in [3, 16]. The constructions and decompositions of apartments313

given in Section 7 of [34] imply immediately the following facts.314

Fact 3.2. The Lie incidence geometry D6,6(K) is generated by two opposite 5-spaces and the set of315

points collinear to a plane in each of these 5-spaces.316

Proof. This follows from the third to last diagram of Section 7.2 in [34]. One can also (easily) prove317

this directly using the associated polar space. �318

Proposition 3.3. The Lie incidence geometries A5,3(K), D6,6(K) and E7,7(K) are generated by two319

opposite symps and the set of points collinear to maximal singular subspaces in both these symps.320

Proof. This follows from the fourth diagram of Section 7.2 in [34] for type E7,7. The other types321

are similar. �322
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3.2. Some classical hexagonic geometries over finite fields and prime fields. In order to323

prove Theorems C and D, we collect some known results about the e-rank and the g-rank of long324

root geometries of types An and Dn over finite fields, in particular over (finite) prime fields.325

Fact 3.4 (Theorem 4.1 of [13]). The •-rank of An,{1,n}(K), for K a finite prime field, is n2 + n.326

In fact, Cooperstein [13] only proves the above for finite fields. However, the proof of this, and of327

the next fact, also works for K = Q and n = 2.328

Fact 3.5. The •-rank of A2,{1,2}(K), for K a finite field, but not a prime field, is 9. The Segre329

embedding rank of A2,{1,2}(K) for a finite field K is equal to 8.330

Proof. It follows from Section 2 of [31] that the g-rank is at least 9, that the e-rank is equal to 9331

and that the Segre e-rank is equal to 8. The rest follows straight from Theorem 1.1 of [4]. �332

Remark 3.6. If K is not finitely generated, for example when K is the algebraic closure Fp of333

Fp, then ρg(An,{1,n}(K)) is infinite as shown by Cardinali, Giuzzi and Pasini [7]. On the other334

hand ρe(An,{1,n}(Fp)) ∈ {(n+ 1)2 − 1, (n+ 1)2}, as also shown in [7]. However, it will follow from335

Proposition 8.1 that ρe(An,{1,n}(Fp)) = (n+ 1)2.336

Fact 3.7 (Theorem 5.1 of [13]). The •-rank of Dn,2(K), for K a finite prime field, is 2n2 − n.337

4. Properties of the long root geometries of exceptional type338

4.1. General properties. We start by listing a number of general properties which we will use339

later on. Note that the references we use may use a labelling convention different from our Bourbaki340

labelling.341

Fact 4.1 (Proposition 2 of [9]). In the Lie incidence geometries B3,3(K), A5,3(K), D6,6(K) and342

E7,7(K), given a point p and a symp ξ, p is collinear to at least one point of ξ. If p /∈ ξ is collinear343

to at least a line of ξ, then p is collinear to a maximal singular subspace of ξ. If p /∈ ξ is collinear344

to precisely a point x of ξ, then p is at distance 3 (in the collinearity graph) of all points of ξ not345

collinear to x.346

Fact 4.2. In the Lie incidence geometries B3,3(K), A5,3(K), D6,6(K) and E7,7(K), collinearity is an347

isomorphism between the point sets of two symps if and only if these symps are opposite.348

Proof. This follows from Theorem 3.28 and Proposition 3.29 of [33]. �349

Fact 4.3. Let ∆ be a hexagonic Lie incidence geometry or one of B3,3(K), A5,3(K), D6,6(K) and350

E7,7(K). If p and q are opposite points of ∆, and L is any line containing q, then L contains a351

unique point at distance 2 from p.352

Proof. This is condition (F) for root filtration spaces, see [10]. For the geometries B3,3(K), A5,3(K),353

D6,6(K) and E7,7(K), this follows from Theorem 17.1.2(2) in [30]. �354

In several ways, F4,1(K) or F4,4(K) behave slightly different compared to the other exceptional355

hexagonic geometries.356

Fact 4.4 (Theorem 2 of [9]). Let ∆ be an exceptional hexagonic geometry. If a point p of ∆ is357

collinear to a point of a symp ξ, and p /∈ ξ, then p⊥ ∩ ξ is either a line, or a maximal singular358

subspace of ξ. The latter possibility does not occur in F4,1(K) and in F4,4(K).359

Fact 4.5 ([8]). Let ∆ be F4,1(K) or F4,4(K). If two symps of ∆ share a line, their intersection is360

a plane.361
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Fact 4.6 (Lemma 6 of [29]). Let ∆ be a hexagonic Lie incidence geometry. If a point x of ∆ is362

collinear to a unique line L of a symp ξ, then all points of ξ collinear to L, but not on L, are363

symplectic to x, whereas all points of ξ \ L⊥ are special to x.364

Lemma 4.7. Let ∆ be a hexagonic Lie incidence geometry. Each point x of ∆ is symplectic to at365

least one point of each symp ξ. Moreover, being symplectic is an isomorphism between the point sets366

of two symps if and only if these symps are opposite. In particular, if ξ contains a point opposite367

x, then ξ contains a unique point symplectic to x. Also, if ∆ is F4,1(K) or F4,4(K) and x⊥ ∩ ξ = ∅,368

then ξ contains a unique point symplectic to x.369

Proof. Let x be a point not contained in a symp ξ. Assume for a contradiction that no point of370

ξ is collinear or symplectic to x. Hence by Fact 4.3, there exists a point y ∈ ξ special to x. Set371

r = c(x, y). By (H1), r is collinear to some line L ⊆ ξ and since all points of L are now at distance372

2 from x, (H2) implies that some point of L is symplectic to x. This shows the first assertion. The373

second assertion follows from Theorem 3.28 and Proposition 3.29 of [33]. The third assertion follows374

from the second, as there exists a symp ξ′ through x opposite ξ (this follows from the definition of375

opposition in [33, §2.39]).376

For the last assertion, suppose for a contradiction that x⊥∩ ξ = ∅ and x is symplectic to two points377

y and z of ξ. If y ⊥ z, then y is collinear to a line L 3 z of the symp ξ(x, z) determined by x and378

z by Fact 4.4. Since y and x are symplectic, Fact 4.6 implies that x is collinear to L and hence to379

z, a contradiction. So y ⊥⊥ z. Let u be a point of y⊥ ∩ z⊥ ⊆ ξ. Again by Fact 4.4, u is collinear to380

lines L and M of the respective symps ξ(x, y) and ξ(x, z). Let y′ be the unique point on L collinear381

to x, likewise, z′ the unique point on M collinear to x. If y′ = z′ then this point is contained in ξ,382

contradicting x⊥ ∩ ξ = ∅. So y′ 6= z′ and hence x and u are symplectic, a contradiction to Fact 4.6383

as x is not collinear to L. �384

Lemma 4.8. Let ∆ be a hexagonic Lie incidence geometry. If a point p of ∆ is symplectic to a385

unique point x of a symp ξ, then all points of ξ collinear to x, but distinct from x, are special to p,386

whereas all points of ξ \ p⊥ are opposite p. In particular, p⊥⊥ ∩ q⊥ = ∅ for opposite points p, q.387

Proof. Note that p cannot be collinear with any point ξ since otherwise there would be more than388

one point of ξ symplectic to p. Let t be a point of ξ ∩x⊥ \ {x}. By the foregoing, t is either special389

to or opposite p. Therefore, t is not contained in the symp ξ(p, x) and hence, by (H1), t is collinear390

to a line M of ξ(p, x). Since p is collinear with a point on M we find that p and t are at distance391

2 and hence special. Note that pont is collinear to x. Observe that the last statement of the lemma392

can be deduced from this argument.393

Next, let y be a point in ξ \ x⊥ and suppose for a contradiction that y is special to p, and let394

r = c(p, y) (note that r /∈ ξ because r ⊥ p). By (H1), r is collinear with at least a line L of ξ. Note395

that r is not collinear to x for otherwise r ∈ x⊥ ∩ y⊥ ⊆ ξ, whereas we deduced above r /∈ ξ. So x is396

collinear to a unique point t of L \ {y}. By the above, p and t are special and r = c(p, t). However,397

in the previous paragraph, we noted that r is collinear to x, contradicting the above. �398

From Lemma 2(v) of [11] we immediately obtain399

Lemma 4.9. Let ∆ be a hexagonic Lie incidence geometry and let x0, x1, x2 and x3 be four points400

of ∆. If x0 ⊥ x1 ⊥ x2 ⊥ x3, with x0onx2 and x1onx3, then x0 ↔ x3.401

Lastly, we will use the following.402

Lemma 4.10. If in a hexagonic Lie incidence geometry a point p ∈ X is special to all points of403

a line L ∈ L , then there exists a unique line M collinear to p such that M and L are ξ-opposite404

lines in a symp ξ.405
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Proof. Select x, y ∈ L, x 6= y, and set c = c(p, x). Then {c, y} is not special as otherwise p would406

be opposite y by Lemma 4.9. Also, by Condition (H2) of hexagonic geometry, c is not collinear to407

y. Hence we may consider ξ := ξ(c, y). Then, by Fact 4.4, p is collinear to a line M of ξ, obviously408

with c ∈M . No point of L is collinear to M as such a point would be automatically symplectic to409

p, contrary to our assumption that all points of L are special to p. Hence L and M are ξ-opposite.410

Moreover M is unique, otherwise at least two points of L are symplectic to p. The lemma is proved.411

�412

4.2. The long root geometry of type E6. Since a point of the long root geometry E6,2(K) is413

given by a 5-space of the Lie incidence geometry E6,1(K), we first state facts about the latter.414

Fact 4.11. The Lie incidence geometry E6,1(K) is a strong parapolar space of diameter 2, which415

is self-dual, that is, the geometry (Ξ,M ), where Ξ is the set of symps of ∆ and a typical member416

of M consists of all symps of E6,1(K) containing a given maximal singular 4-space, is isomorphic417

to E6,1(K). In particular, two symps of E6,1(K) either intersect in a unique point or in a 4-space.418

Given a point p and a symp ξ with p /∈ ξ, the intersection p⊥∩ ξ is either empty or a singular space419

of dimension 4 corresponding to a flag of type {2, 6} of the underlying spherical building of type E6.420

Proof. The first statement is 3.7 of [32]; the second follows from Section 3.3 of [32]. The rest is an421

immediate consequence of these two statements. �422

A singular space of dimension 4 that corresponds to a flag of type {2, 6} of the underlying building423

will be referred to as a 4′-space. It is obviously always contained in a (unique, maximal) 5-space.424

If p⊥ ∩ ξ = ∅ (which means that p and ξ are opposite), we have:425

Fact 4.12. Given a point p and a symp ξ in E6,1(K) with p⊥ ∩ ξ = ∅, each symp through p meets426

ξ in a unique point and this correspondence induces an isomorphism between the dual of the point427

residue at p and ξ. In particular, each line L containing p contains a unique point pL with p⊥L ∩ ξ428

a 4′-space VL (and hence 〈pL, VL〉 is a 5-space), and for each 5-space U containing p, there is a429

unique 4′-space VU in U which is in a symp together with a unique 4-space V ′U of ξ.430

Proof. This follows from Theorem 3.28 and Proposition 3.29 of [33]. �431

Proposition 4.13. Given a symp ξ of E6,1(K), the set of points {p | p⊥ ∩ ξ 6= ∅} is a geometric432

hyperplane of E6,1(K).433

Proof. This is exactly (5.3.1) of Section 5.3 in [17]. �434

Since the 5-spaces of E6,1(K) are the points of E6,2(K), their relation with respect to each other and435

to points and symps is also relevant for us.436

Fact 4.14 (Tits [32]). Two 5-spaces of E6,1(K) meet in at most a plane; for a point p and a 5-space437

U , either p and U are incident (so p ∈ U) or p⊥ ∩ U is a unique point or a 3-space. Dually, for a438

symp ξ and a 5-space U , either ξ and U are incident (so U ∩ ξ is a 4′-space) or ξ ∩ U is a line or439

a 4′-space.440

The set of points of E6,2(K) on a line corresponds to the set of 5-spaces incident with a plane of441

E6,1(K). Using the diagram, one sees that the maximal singular subspaces of E6,2(K) are 4-spaces,442

and that the symps of E6,2(K) are of type D4 (they correspond to a flag of type {1, 6}). There443

are two types of paras in E6,2(K), corresponding to a residue related to a node of type 1 and to a444

residue related to a node of type 6, respectively. Both carry the structure of a D5,5(K) geometry.445

We refer to the first type as a para of point-type and to the latter as a para of symp-type. We list446

the possibilities for the mutual relations between these paras.447
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Lemma 4.15. Let Π1 and Π2 be distinct paras of E6,2(K). If Π1 and Π2 have the same type, then448

they intersect each other either in the empty subspace, or in a 4-space; if Π1 and Π2 have different449

types, then they either meet in a symp, in a unique point, or are disjoint. In the latter case, no450

point of Π1 is collinear to a point of Π2, and every point of Π1 (resp. Π2) is contained in a unique451

para Π with a unique 4-space of Π2 (resp. Π1), and Π has the same type as Π2 (resp. Π1).452

Proof. Suppose first that Π1 and Π2 have the same type. By duality, we may assume that both453

have point-type. Let p1 and p2 be the corresponding (distinct) points of E6,1(K). Obviously, p1454

and p2 are either on a unique line L, or there is no line joining them. Since the points in Π1 ∩ Π2455

correspond to the 5-spaces of E6,1(K) containing both p1, p2, it follows that in the first case, Π1∩Π2456

is a 4-space (corresponding to the residue of L), and in the latter case, Π1 ∩Π2 is empty.457

Next, suppose that Π1 and Π2 have different types. By symmetry, we may assume that Π1 cor-458

responds to a point p1 of E6,1(K) and Π2 to a symp ξ2. Again using Fact 4.11, either p1 ∈ ξ2 or459

p⊥1 ∩ξ2 is either a 4′-space or the empty set. In the first case, Π1∩Π2 is a symp, since it corresponds460

to the set of 5-spaces of E6,1(K) incident with both p1 and ξ2, i.e., to a flag of type {1, 6}. In the461

second case, 〈p1, p
⊥
1 ∩ ξ2〉 is the unique 5-space incident with both p1 and ξ2 and hence Π1 ∩ Π2 is462

a unique point. Finally, in the last case, p⊥1 ∩ ξ2 is empty so every 5-space containing p1 is disjoint463

from ξ2, leading to Π1 ∩Π2 = ∅.464

We continue with the final case. In that case, no point of Π1 is collinear to a point of Π2, as this465

would correspond to a plane π in E6,1(K) which is contained in a 5-space incident with p1 and in a466

5-space incident with ξ2, implying that π shares a line with p⊥1 ∩ ξ2, which is empty however. Now,467

a point in Π1 corresponds to a 5-space U containing p1, and according to Fact 4.12, U contains468

a unique 4′-space VU contained in a symp ξU together with a unique 4-space V ′U of ξ2. Moreover,469

each point of VU is contained in a unique 5-space with a 4′-space of ξ2, and each such 5-space is470

incident with both ξU and ξ2. Hence ξU corresponds to a para (of symp-type, i.e., same type as471

Π2) which meets Π1 in a point (corresponding to U) and Π2 in a 4-space (corresponding to the472

5-spaces incident with ξU and ξ2). By duality, we may interchange the roles of Π1 and Π2. The473

statement follows. �474

Disjoint paras of different types are opposite, as they correspond to opposite elements of E6.475

Let Π1 and Π2 be two opposite paras of E6,2(K), where Π1 corresponds to a point p1 and Π2 to a476

symp ξ2 of E6,1(K).477

Definition 4.16. Given opposite paras Π1,Π2 of E6,2(K), the set E(Π1,Π2) of points x of E6,2(K)478

with the property that x⊥ ∩ Π1 and x⊥ ∩ Π2 are maximal 3-spaces in Π1 and Π2, respectively,479

equipped with the lines of E6,2(K) fully contained in it, is called the equator geometry E(Π1,Π2)480

with poles Π1 and Π2.481

In E6,1(K), a 5-space U corresponds to a point of E(Π1,Π2) if and only if p⊥1 ∩ U is 3-dimensional482

and U ∩ ξ2 is a line, as is easily verified.483

The definition hints at a bijection between the maximal 3-spaces of Π1 and the points of E(Π1,Π2).484

Indeed, consider any maximal 3-space W in Π1. Then W is contained in a unique 4-space VW of485

E6,2(K), which corresponds to a 4-space V ′W of E6,1(K) containing p1. By Fact 4.12, V ′W contains486

a unique 3-space UW , which is collinear to a unique line LW in ξ2. The 5-space 〈UW , LW 〉 gives487

us a point of E(Π1,Π2), as it is contained in a 4-space incident with Π2 too, namely the one488

corresponding to the line LW of ξ2. By duality, the points of E(Π1,Π2) are also in bijection with489

the maximal 3-spaces of E(Π1,Π2). Another verification using the correspondence with E6,1(K)490

shows that two points of E(Π1,Π2) which are on a line L of ∆, correspond to 3-spaces of Π1 which491

share a line L′, moreover, each point on L corresponds to a 3-space of Π1 containing L′ and hence492

L is a full line of E(Π1,Π2). More precisely, this shows:493
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Fact 4.17. Given opposite paras Π1,Π2 in E6,2(K), the equator geometry E(Π1,Π2) is a D5,2(K)494

geometry and collinearity induces the natural isomorphism between Πi and E(Π1,Π2), i = 1, 2. A495

point of Π1 is hence collinear with a subgeometry of E(Π1,Π2) isomorphic to A4,2(K).496

4.3. The long root geometry of type E7. The points of the long root geometry E7,1(K) can be497

identified with the symps of the Lie incidence geometry E7,7(K), which is a strong parapolar space498

of diameter 3 and hence more manageable than the long root geometry (which also has diameter499

3 but is non-strong). By Main Result 1 of [26], the paras of E7,1(K) correspond to the points of500

E7,7(K) and are isomorphic to E6,1(K).501

Since points, lines and symps of E7,7(K) correspond to paras, symps and points, respectively, of502

E7,1(K), we deduce the following possibilities for the mutual position of paras in E7,1(K):503

Proposition 4.18. Two paras in ∆ either are disjoint (in which case they are opposite), or meet504

in exactly one point, or meet exactly in a symp.505

Two opposite paras Π1 and Π2 define an equator geometry E(Π1,Π2) as follows (see [21])506

Definition 4.19. Given opposite paras Π1,Π2 of E7,1(K), the set E(Π1,Π2) of points x of E7,1(K)507

with the property that x⊥∩Π1 and x⊥∩Π2 are 5-spaces in Π1 and Π2, respectively, equipped with508

the lines of E7,1(K) fully contained in it, is called the equator geometry E(Π1,Π2) with poles Π1509

and Π2.510

It is shown in Lemma 6.7 of [21] that the poles of the equator geometry are unique. It is noted in511

Section 6 of the same paper that E(Π1,Π2) is isomorphic to E6,2(K).512

We also have the following property. In the proof, a 5′-space of E7,7(K) corresponds to a flag in the513

corresponding building of type {1, 2}.514

Proposition 4.20. If Π1 and Π2 are two opposite paras of E7,1(K), then every 6-space intersecting515

Π1 ∪Π2 in a 5-space contains a unique point of E(Π1,Π2).516

Proof. Translated to E7,7(K), we are given two opposite points p, q (points at distance 3) and a517

maximal singular subspace W of dimension 6 containing p. We have to find a symp ξ intersecting518

W in a 5′-space and such that q is collinear to a 5′-space of ξ. By Fact 4.3, each line of W through p519

contains a unique point at distance 2 from q, and this yields a 5′-space U ⊆W of points symplectic520

to q. Since U corresponds to a flag of type {1, 2} of the underlying spherical building, it is contained521

in a unique symp ξ. Since q is symplectic to all points of a 5′-space of ξ, Fact 4.1 implies that either522

q is collinear to a point of U , contradicting p and q being opposite, or q is collinear to a unique523

5′-space of ξ, which concludes the proof of the proposition. �524

4.4. Geometric hyperplanes. Our technique to prove Theorem A uses geometric hyperplanes525

of the long root geometries in question. Essential in the arguments will be the fact that the526

complement of these hyperplanes is a connected geometry, which is Theorem 2.2 in [23].527

We will need the following lemma by Hall and Shult [22, Lemma 3.1(2)].528

Lemma 4.21. No polar space is the union of two (proper) geometric hyperplanes.529

Proposition 4.22 (Kasikova [23]). The complement of any geometric hyperplane H of any hexag-530

onic Lie incidence geometry ∆ = (X,L ) with no rank 2 symplecta is connected.531

This will be applied in two well-known ways (we include a proof for completeness):532

Lemma 4.23. Let ∆ = (X,L ) be a hexagonic geometry with no rank 2 symplecta and let H ⊆ X533

be a geometric hyperplane (which may also coincide with X).534
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(i) If ∆ admits an embedding in a projective space of dimension d, then H spans a subspace of535

dimension at least d− 1.536

(ii) If the generating rank of H is r, then the generating rank of ∆ is at most r + 1.537

Proof. If H = X the statements are trivially true, so suppose H ( X. Let x be a point of X \H.538

Since each line of ∆ through x intersects H in a point, all points of X \ H collinear to x are539

generated by x and H. By connectivity (see Proposition 4.22), all points of X \H are generated540

by x and H, showing the two assertions. �541

We will also need the connectivity of the complement of a geometric hyperplane in the point residues542

of the long root geometries of type E6,E7,E8. This has been proved by Shult [28, Lemma 5.2].543

Proposition 4.24 (Shult [28]). The complement of any geometric hyperplane H of a Lie incidence544

geometry of type A5,3,D6,6,E7,7 is connected.545

5. Geometries of type E6,E7,E8546

Recall that547

ρ•(Xr(K)) = ω(Xr(K)) + ε•(Xr(K))

for the •-rank of the long root geometry of type Xr over the field K, where ω(Xr(K)) is the dimension548

of the corresponding Weyl module, and ε•(Xr(K)) is the excess.549

5.1. Bounds by point-equator geometries. Let (Xr,Yr−1) ∈ {(E6,A5), (E7,D6), (E8,E7)}. Our550

principal aim is to show551

Theorem 5.1. ε•(Xr(K)) ≤ ε•(Yr−1(K)).552

We will do this by showing the following slightly more explicit form.553

Theorem 5.2. ρ•(Xr(K)) ≤ 3.2r−3 + 19 + ρ•(Yr−1(K)).554

To show that Theorem 5.1 really follows from Theorem 5.2, we notice that, for all r ∈ {6, 7, 8},555

ω(Xr(K)) = 3.2r−3 + 19 + ω(Yr−1(K))

(use the explicit value of the dimension of the Weyl module, which is 35, 66 and 133 for types A5,556

D6 and E7, respectively). Hence Theorem 5.2 yields557

ω(Xr(K)) + ε(Xr(K)) = ρ(Xr(K)) ≤ −1 + ω(Xr(K)) + 1 + ε(Yr−1(K)),

which proves Theorem 5.1.558

Theorem A then follows from Theorem 5.1 for the cases A5 → E6, D6 → E7, E7 → E8.559

Remark 5.3. (1) It is not by coincidence that the number 3.2r−3 + 18 is 2 more than the double560

of the e-rank and g-rank of the Lie incidence geometries mentioned in Fact 3.1, as will become561

apparent in the proof.562

(2) There is also a closed formula for ω(Yr−1), which reads 22r−12 + 27.2r−6 + r + 1. But we will563

not need this.564

In order to prove Theorem 5.1, we use Lemmas 4.4 and 4.23. Throughout we denote by ∆ = (X,L )565

the long root geometry of type Xr, r = 6, 7, 8. We will establish a geometric hyperplane H ⊆ X of566

∆. Let p and q be two opposite points of ∆ and define H as the subspace of ∆ generated by p⊥⊥567

and q⊥⊥, that is,568

H := 〈{x ∈ X | x ⊥⊥ p or x ⊥⊥ q}〉 = 〈p⊥⊥ ∪ q⊥⊥〉.
We first prove a bound on the g-rank and e-rank of H, and then we show that H is really a geometric569

hyperplane of ∆. We begin with a lemma. Recall that E(p, q) = {x ∈ X | p ⊥⊥ x ⊥⊥ q} = p⊥⊥∩q⊥⊥.570
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Proposition 5.4. The subspace H of ∆ is generated by p⊥, q⊥ and E(p, q).571

Proof. Set H ′ = 〈p⊥, q⊥, E(p, q)〉. We show H = H ′. By their definitions, E(p, q) ⊆ H. Let L572

be any line containing p. By (PPS3), there is a symp ξ containing L. Since the points of ξ not573

collinear to p are symplectic to p, and p⊥⊥ ∩ ξ generates ξ, we see that p⊥ ⊆ H. Likewise q⊥ ⊆ H,574

and we conclude H ′ ⊆ H.575

Now let ξ be an arbitrary symp containing p. Since 〈p⊥ ∩ ξ〉 is a geometric hyperplane of ξ and576

ξ ∩ q⊥⊥ is nonempty by Lemma 4.7 and belongs to E(p, q) by the last statement of Fact 4.8, we577

deduce that ξ ⊆ H ′. Hence each point x ⊥⊥ p is contained in H ′. Similarly, every point y ⊥⊥ q578

belongs to H ′. This yields H ⊆ H ′. �579

Lemma 5.5. The •-rank of H is at most 3.2r−3 + 18 + ρ•(Yr−1(K)).580

Proof. We know that p⊥ is a cone with vertex p and with basis A5,3(K), D6,6(K), and E7,7(K), for581

r = 6, 7, 8, respectively. Fact 3.1 implies that both the g-rank and e-rank of p⊥, as a point-line582

geometry, are bounded above by 3.2r−4 + 9 (in fact they are easily seen to be equal to it). Likewise583

for q⊥. Now, since E(p, q) is isomorphic to the long root geometry of type Yr−1 over K, the assertion584

follows from Proposition 5.4. �585

Now we embark on the proof that H is a geometric hyperplane of ∆. Throughout, let L ∈ L be586

arbitrary. In a series of lemmas, we will show that L∩H 6= ∅. We start, though, with showing that587

H is proper. Note that this is not necessary for the proof of Theorem A (as H = X would even588

give a stronger upper bound), but it is good to know.589

Lemma 5.6. The subspace H of ∆ does not coincide with X.590

Proof. By letting the Lie algebra e7 act in its adjoint representation on e8, one deduces that in591

the Weyl embedding of ∆, the equator geometry E(p, q) is the Weyl embedding of the long root592

geometry of type Yr−1. Now the subspace of the ambient projective space generated by H has593

(projective) dimension at most 3.2r−3 + 17 +ω(Yr−1), which is equal to (ω(Xr)− 1)− 1, as one can594

compute in the three cases r = 6, 7, 8. The lemma follows. �595

Recall that a deep point of a hyperplane of a Lie incidence geometry is a point for which every line596

containing this point is fully contained in the hyperplane.597

We will call a line rebellious if it has empty intersection with H.598

Lemma 5.7. Each line with a point in E(p, q) belongs to H, that is, each point of E(p, q) is a deep599

point of H. Hence a line contained in a symp ξ with ξ ∩ E(p, q) 6= ∅ is not rebellious.600

Proof. Let x ∈ E(p, q) be arbitrary. In Res∆(x), the lines through x contained in ξ(p, x) ∪ ξ(q, x)601

form the union of two opposite symps ζ1 and ζ2. By Proposition 3.3, Res∆(x) is generated by ζ1602

and ζ2 and the set S of points collinear to maximal singular subspaces in both these symps. Let603

S′ be the set of points s′ of ∆ such that the line xs′ is a point of S and take s′ ∈ S′. Then s′ is604

collinear to a maximal singular subspace of ξ(p, x), and also to one of ξ(q, x). This implies that605

p ⊥⊥ s′ ⊥⊥ q, and so s′ ∈ E(p, q). We conclude that x⊥ = 〈ζ1, ζ2, S
′〉 ⊆ 〈p⊥, q⊥, E(p, q)〉 = H606

(the latter equality by Proposition 5.4), from which the first assertion follows. The second follows607

immediately from the fact that the union of the set of lines through a certain point (the perp of608

that point) in a polar space is a geometric hyperplane. �609

Remark 5.8. The next results and their proofs, until Proposition 5.13, only use Lemma 5.7 and610

the fact that ∆ is a hexagonic geometry with no rank 2 symps. In particular, they also hold in611

F4,1(K). We will need this in Proposition 6.4.612
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Lemma 5.9. If all points of a line L are special to either p or q, that is, L ⊆ pon or L ⊆ qon, then613

L is not rebellious.614

Proof. Without loss of generality we may assume that all points of L are special to p. By615

Lemma 4.10, there is a line M collinear to p and contained in a symp ξ together with L, and616

M and L are ξ-opposite. By Fact 4.6, all points of ξ collinear to M are symplectic to p and hence617

contained in H. By Lemma 4.7, there is at least one point x ∈ ξ symplectic to q. If x ∈ M , then618

Lemma 4.8 contradicts p and q being opposite. If M 63 x ⊥ M , then x ∈ p⊥⊥ ∩ q⊥⊥ = E(p, q)619

and the result follows from Lemma 5.7. Finally, if x /∈ M⊥, then M⊥ and x generate a geometric620

hyperplane T of ξ contained in H, proving the assertion as L will meet T in at least a point. �621

Recall that, according to Lemma 4.7, if a point x and a symp ξ are such that ξ contains a point622

opposite x, then ξ contains a unique point symplectic to x. We will use this a couple of times.623

Lemma 5.10. Suppose L is a rebellious line. Then L contains a point opposite p and q. Conse-624

quently, if ξ is a symp containing L, then ξ contains unique points p′ and q′ symplectic to p and q,625

respectively, and p′ 6= q′.626

Proof. We show that L contains a point opposite p. Firstly, since p⊥ ⊆ H by Proposition 5.4 and627

since p⊥⊥ ⊆ H by definition, L contains no points collinear or symplectic to p. By Lemma 5.9, not628

all points of L are special to p. Therefore, all points of L but one are opposite p (and the unique629

remaining one is special to p by the last statement of Lemma 4.8). The same goes for q.630

Now let ξ be a symp containing L. Since L contains a point opposite p, ξ has a unique point p′631

symplectic to p by Lemma 4.7; likewise ξ∩q⊥⊥ is a unique point q′. If p′ = q′ then this point belongs632

to ξ ∩ E(p, q), and Lemma 5.7 implies that L is not rebellious, a contradiction. So p′ 6= q′. �633

Lemma 5.11. Suppose a line L is contained in a symp ξ which has a unique point p′ symplectic to634

p and a unique point q′ symplectic to q, with p′ 6= q′. Let r be the unique point of ξ(p, p′) symplectic635

to q. Then p′ ⊥⊥ r if and only if p′ ⊥⊥ q′. Moreover, if p′ ⊥⊥ q′, then L is not rebellious and every636

point a ∈ (pon∩ ξ) \H is contained in a line M ⊆ ξ which intersects H in a point opposite p.637

Proof. Note that p′ 6= q′ implies that p′ 6= r. Suppose that q′ ⊥ p′ ⊥⊥ r. Then by Lemma 4.8, since638

q ⊥⊥ q′ ⊥ p′, we see that qonp′. Since p′ ⊥⊥ r, Lemma 4.8 yields q ↔ p′ and hence p′ ⊥⊥ r implies639

p′ ⊥⊥ q′. Likewise, p′ ⊥⊥ q′ implies p′ ⊥⊥ r.640

Now, every line in p′⊥ ∩ ξ not through p′ only contains points special to p and hence contains at641

least one point of H (by Lemma 5.9). It follows that each plane in p′⊥ containing p′ either contains642

a unique line through p′ in H, or is contained in H. Hence we may assume that Hp := H ∩ (p′⊥∩ ξ)643

is a geometric hyperplane of p′⊥ ∩ ξ containing p′ (if Hp would coincide with the whole of p′⊥ ∩ ξ,644

then L∩H is nontrivial and the lemma is proved; in fact in this case L ⊆ H because q′ ∈ H \Hp).645

Since q′ /∈ Hp, we see that Hp and q′ generate a hyperplane of ξ, and so L has a point in common646

with 〈Hp, q
′〉 ⊆ H. This is the first assertion.647

If ξ ⊆ H, then the second assertion is trivial. If not, then every line M in ξ through a and not648

contained in p′⊥ intersects H in unique point (as we showed above that ξ ∩ H is a geometric649

hyperplane of ξ) which is automatically opposite p. �650

The remaining problem is when a line is not contained in a symp satisfying the assumptions of651

Lemma 5.11. So, a rebellious line contains points opposite both p and q, and for every symp652

containing L, the unique points p′ and q′ symplectic to p and q, respectively, are collinear.653

Lemma 5.12. If there exists a rebellious line, then there is one, say L, with the properties that it654

contains unique points t, u ∈ L with t 6= u, tonp and uonq and such that there exists a line M 3 t655

which intersects H in a point opposite p.656
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Proof. Let ξ be any symp containing some rebellious line. Define p′, q′ ∈ ξ as before (symplectic657

to p, q, respectively). By Lemma 5.11, p′ ⊥ q′. Define Hp and Hq as in the proof of Lemma 5.11;658

so Hp = H ∩ p′⊥ ∩ ξ and Hq = H ∩ q′⊥ ∩ ξ. If these do not coincide, then they generate at least a659

geometric hyperplane of ξ and no line of ξ is rebellious. Hence Hp = Hq = {x ∈ ξ | x ⊥ 〈p′, q′〉} (as660

Hp and Hq are geometric hyperplanes of p′⊥ and q′⊥, respectively). Note that, since ξ contains a661

rebellious line, we have H ∩ ξ = Hp = Hq.662

By Fact 4.2 applied in the residue of p′, each line K contained in Hp and containing p′ is coplanar663

with a unique line Kα in ξ(p, p′), which itself is coplanar with (p′q′)α. All such lines Kα hence664

constitute a geometric hyperplane of p′⊥∩ ξ(p, p′). It is easy to see that we can select a line T665

through p′ in ξ(p, p′) not belonging to that geometric hyperplane and not collinear to r ⊥ p′, where666

q ⊥⊥ r ∈ ξ(p, p′). Then T is collinear to a unique line T ′ through p′ in ξ, which does not belong to667

Hp. Pick any t ∈ T ′ \ {p′}, then there exists a line L 3 t such that the unique point u ∈ L collinear668

to q′ does not belong to Hq, and clearly t 6= u. Since t is not collinear to q′, we see that L∩Hp = ∅669

and hence L is rebellious.670

Take a point p∗ on T \ {p′} not collinear to p and let U be the line tp∗. Let ζ be a symp containing671

U and locally opposite ξ(p, p′) at p∗ (and note p∗ ⊥⊥ p). Since the unique point of ζ symplectic672

to p is p∗, and p∗ is symplectic to r (by the choice of T ), the unique point q∗ of ζ symplectic to q673

is symplectic to p∗ by Lemma 5.11. The second assertion of the same lemma yields a line M ⊆ ζ674

through t containing a point z ∈ H ∩ p↔. �675

We now show that rebellious lines cannot exist.676

Proposition 5.13. There do not exist rebellious lines, that is, H is a geometric hyperplane of ∆.677

Proof. Suppose for a contradiction that there exists a rebellious line L. By Lemma 5.12, we may678

assume that it contains unique distinct points tonp and uonq, and that there exists a line M 3 t679

containing a point z ∈ H opposite p. Consider the subspace W := t⊥. The points not opposite p680

in W form a geometric hyperplane G; by Lemma 5.10, H intersects that geometric hyperplane in681

a geometric hyperplane thereof. But also z belongs to H. It suffices to show that L has nonempty682

intersection with J := 〈G ∩ H, z〉 ⊆ H. Since W is a cone with vertex t, the subspace 〈t, J〉 just683

consist of the points on a line connecting t with a point of J . But 〈t, J〉 = 〈t, z,G ∩H〉 = 〈z,G〉,684

and, by Proposition 4.24, the latter coincides with W . Hence J contains a point of every line of W685

through t. In particular L ∩ J 6= ∅. �686

Now combining Lemmas 4.23, 5.5 and Proposition 5.13 yields Theorem 5.2, and hence also Theo-687

rem 5.1. This shows the arrows A5 → E6, D6 → E7 and E7 → E8 of Theorem A.688

5.2. Bounds by para-equator geometries. In this subsection we show the arrows D5 → E6,689

E6 → E7 of Theorem A. Although there are similarities, there are also differences between the690

cases, so we treat these two arrows separately.691

5.2.1. The case E6,2(K) from D5,2(K). In this section, ∆ = (X,L ) is a long root geometry of type692

E6 over the field K. With previous notation, we show:693

Theorem 5.14. ε•(E6(K)) ≤ ε•(D5(K)).694

This is a consequence of the following theorem.695

Theorem 5.15. ρ•(E6(K)) ≤ 33 + ρ•(D5(K)).696
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Indeed, ω(E6(K))− ω(D5(K)) = 78− 45 = 33. Hence697

ε•(E6(K)) = ρ•(E6(K))− ω(E6(K)) ≤ 33 + ρ•(D5(K))− ω(D5(K))− 33,

thus ε•(E6(K)) ≤ ε•(D5(K)).698

The method to show Theorem 5.15 is the same as in the previous section: we exhibit a geometric699

hyperplane of ∆, determine a bound on its e-rank and its g-rank, and use Lemma 4.23. So we start700

by introducing the geometric hyperplane H.701

Let Π1 and Π2 be two opposite paras of ∆, where Π1 corresponds to a point p1 and Π2 to a symp ξ2702

of E6,1(K). Let H be the subspace of E6,2(K) generated by Π1,Π2, E(Π1,Π2), see Definition 4.16.703

Then we already have the following result.704

Lemma 5.16. The •-rank of H is at most 32 + ρ•(D5(K)).705

Proof. This follows immediately from Fact 3.1. �706

Our next aim is to show that H is a geometric hyperplane of E6,2(K). To that end, we first show707

that all points of Π1 ∪Π2 are deep points of H.708

Lemma 5.17. For any point x ∈ Π1 ∪Π2, its perp x⊥ is contained in H.709

Proof. We may suppose that x ∈ Π1. The residue of x in Π1 is isomorphic to A4,2(K). Moreover,710

we know that x⊥ ∩ E(Π1,Π2) is also isomorphic to A4,2(K) by Fact 4.17. On the other hand, in711

E6,2(K), the residue of x is isomorphic to A5,3(K). Now x⊥ ∩ Π1 and x⊥ ∩ E(Π1,Π2) are clearly712

disjoint. Since two disjoint A4,2(K) geometries generate A5,3(K), as can easily be checked, it follows713

that x⊥ is generated by x⊥ ∩Π1 and x⊥ ∩ E(Π1,Π2) and hence x⊥ ⊂ H. �714

Next, we show that H contains certain paras which intersect Π1∪E(Π1,Π2)∪Π2. Let ∆∗ = E6,1(K).715

Lemma 5.18. For each symp Σ of Π1, there is a unique para ΠΣ containing Σ and meeting716

E(Π1,Π2) in the symp Σ′ corresponding to Σ. Moreover, ΠΣ is of symp-type, and the corresponding717

symp contains p1. Finally, the para ΠΣ is generated by Σ and Σ′ and as such contained in H.718

Proof. Recall that Π1 corresponds to the point p1 of ∆∗ and note that Σ corresponds to a flag719

{p1, ξΣ}, where ξΣ is a symp of ∆∗ containing p1. Then ξΣ corresponds to the unique para ΠΣ of720

∆ distinct from Π1 and containing Σ. Since p1 is opposite ξ2, the symps ξ2 and ξΣ intersect in a721

point x. Every 5-space U incident with {x, ξΣ} intersects ξ2 in a line and shares a 3-space with p⊥1 .722

Hence the symp Σ′ of ∆ corresponding to {x, ξΣ} entirely belongs to E(Π1,Π2). This shows the723

first two assertions. Since D5,5(K) is generated by two disjoint symps, such as Σ and Σ′, also the724

final statement follows. �725

We need one other type of para.726

Lemma 5.19. For each point z of Π2, there is a unique para Πz containing z and meeting Π1727

in the unique 4-space of Π1 containing the points symplectic to z. Moreover, Πz is of point-type,728

and the corresponding point pz is collinear to p1 and to a 4′-space of ξ2 (which, together with pz729

generates the 5-space Uz corresponding to z). Finally, Πz is contained in H.730

Proof. We argue in ∆∗. Since Uz shares a 4′-space with ξ2, and p1 is opposite ξ2, there is a731

unique point pz in Uz collinear to p1. Recalling that symplectic points of ∆ correspond to 5-spaces732

intersecting in a point, we now see that the set z⊥⊥∩Π1 of points of Π1 symplectic to z corresponds733

to the set of 5-spaces of ∆∗ containing the line 〈p1, pz〉. Since the intersection of all these 5-spaces734

is exactly pz, the unique para Πz we are looking for corresponds to pz and all assertions except the735

last one follow.736
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For the last assertion, we translate the situation to the polar space D5,1(K) corresponding to the737

para Πz, where the points of Πz correspond to 4-spaces; the other maximal subspaces will be called738

4′-spaces (they correspond to 4-dimensional subspaces of Πz). Then z corresponds to a 4-space Wz739

and the 4-dimensional subspace z⊥⊥ ∩Π1 corresponds to a 4′-space Vz. Since z⊥ ⊆ H and s⊥ ⊆ H740

for any point s ∈ z⊥⊥ ∩ Π1 by Lemma 5.17, H induces in D5,1(K) a set of 4-spaces containing all741

4-spaces intersecting Wz in a plane, or intersecting Vz in a line. Any other 4-space W of D5,1(K)742

intersects Wz in a point x. Select an arbitrary plane π ⊆ W with x ∈ π. Then 〈π, π⊥ ∩ Vz〉 and743

〈π, π⊥ ∩Wz〉 are two distinct 4-spaces induced by H containing π; hence also W is induced by H744

(since H is a subspace). �745

Definition 5.20. By the previous two lemmas, we may introduce the following paras:746

• For each symp Σ of Π1, the para ΠΣ of symp-type meeting Π1 in Σ and meeting E(Π1,Π2) in747

the symp Σ′ corresponding to Σ.748

• For each point z ∈ Π2, the para Πz of point-type meeting Π2 in {z} and Π1 in z⊥⊥ ∩Π1.749

Using these paras, we can show that H is a possibly nonproper geometric hyperplane of ∆. In fact,750

analogously to Lemma 5.6, one shows that H is proper, but since we do not strictly need this, we751

only state:752

Proposition 5.21. H is a (possibly nonproper) geometric hyperplane of ∆.753

Proof. We argue in ∆∗. Set H∗ the set of 5-spaces corresponding to points of H. Recall that the754

lines of ∆ correspond to the planes of ∆∗ (and the points on the line are the 5-spaces through that755

plane of course). Recall also that p1 is the point corresponding to Π1. Let π be an arbitrary plane756

in ∆∗. We have to show that some 5-space through π is contained in H∗. Let S(π) be the set of757

5-spaces containing π. By Lemma 5.17, we may assume that no member of S(π) contains a plane758

collinear to p1.759

Then p1 is collinear to a unique point rW of W , for each W ∈ S(π). Suppose first that rW ∈ π760

(that is, all points rW coincide; denote this common point by r). Select two points s, t ∈ π not on761

one line with r. Set ξ := ξ(p1, s) and W = 〈t, t⊥ ∩ ξ〉. Note that, since r, s ∈ t⊥ ∩ ξ, the space W is762

5-dimensional, and it contains π. So W ∈ S(π) and {r} ( p⊥1 ∩W , contradicting our assumption.763

Hence we may assume that the points rW , W ∈ S(π), do not belong to π and are hence all distinct.764

We claim that they are exactly the points of a line L. Indeed, firstly, they are pairwise collinear765

for otherwise the unique symp determined by two noncollinear ones among them contains both p1766

and π, contradicting p⊥1 ∩ π = ∅. Since U := 〈π ∪{rW |W ∈ S(π)}〉 is a singular subspace sharing,767

for each W ∈ S(π), the 3-space 〈rW , π〉 with W , we see that U is 4-dimensional. Since p⊥1 ∩ U is a768

subspace disjoint from π and containing all rW , W ∈ S(π), we conclude that 〈rW | W ∈ S(π)〉 is769

a line L. Since each point of L is collinear to π and there is a unique 5-space through a singular770

3-space, L = {rW | W ∈ S(π)} indeed. Now, Proposition 4.13 yields a point rW ∈ L, for some771

W ∈ S(π), collinear to some point, and hence some 4′-space, of ξ2. As rW is also collinear to p1,772

Lemma 5.19 implies that the point of ∆ corresponding to W belongs to the para Πz of point-type,773

with z the point of ∆ corresponding to the 5-space of ∆∗ generated by rW and r⊥W ∩ ξ2. �774

Now combining Lemmas 4.23, 5.16 and Proposition 5.21 yields Theorem 5.15, and hence also775

Theorem 5.14.776

This shows the arrow D5 → E6 of Theorem A.777

5.2.2. The case E7,1(K) from E6,2(K). Let ∆ = (X,L ) be the long root geometry E7,1(K). We778

show the arrow E6 → E7 of Theorem A, see the theorem below (using the same notation as before).779

Although this case is somewhat similar to the previous case, the details of the arguments are quite780

different, so we provide an explicit proof.781
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Theorem 5.22. ε•(E7(K)) ≤ ε•(E6(K)).782

As before this is a consequence of the following theorem.783

Theorem 5.23. ρ•(E7(K)) ≤ 55 + ρ•(E6(K)).784

Indeed, ω(E7(K))− ω(E6(K)) = 133− 78 = 55. Hence785

ε•(E7(K)) = ρ•(E7(K))− ω(E7(K)) ≤ 55 + ρ•(E6(K))− ω(E6(K))− 55

thus ε•(E7(K)) ≤ ε•(E6(K)).786

Again, the method to show Theorem 5.23 is the same as in Section 5.1: we exhibit a geometric787

hyperplane of ∆, determine a bound on its •-rank, and use Lemma 4.23. So we start by introducing788

the geometric hyperplane H.789

Select two opposite paras Π1 and Π2 in ∆ and recall that these are isomorphic to E6,1(K). Denote790

by H the subspace of ∆ generated by Π1,Π2 and E(Π1,Π2), cf. Definition 4.19.791

Lemma 5.24. The •-rank of H is at most 54 + ρ•(E6(K)).792

Proof. Both Π1 and Π2 are isomorphic to E6,1(K) whose •-rank is 27. �793

Now we show that H is a geometric hyperplane of ∆. As before we do not insist on the fact H 6= X.794

Lemma 5.25. If x is a point of E(Π1,Π2), then x⊥ ⊆ H, that is, the points of E(Π1,Π2) are deep795

points of H.796

Proof. The residue Res∆(x) is a geometry isomorphic to D6,6(K). The lines joining x to a point of797

Π1 and Π2 correspond to opposite 5-spaces W1 and W2, respectively, in Res∆(x). Fact 3.2 implies798

that Res∆(x) is generated by W1, W2 and the set S of points collinear to planes in both W1 and799

W2. Similarly as in the proof of Lemma 5.7, it follows that the lines xs′ corresponding to points of800

S in Res∆(x) are contained in E(Π1,Π2), leading to x⊥ ⊆ H. �801

Lemma 5.26. If p is a point of ∆ collinear to at least a plane of Π1 ∪Π2, then p ∈ H.802

Proof. We may assume that p is collinear to some plane π of Π1. Select any symp ξ in Π1 containing803

π (since Π1 is a para, ξ is also a symp of ∆). By Fact 4.4, p⊥ ∩ ξ is a 4-dimensional subspace U804

containing π. Let V be the unique 5-space in Π1 containing U and let W be the unique 6-space in805

∆ containing U . Then W contains both V and p (as otherwise a standard argument shows that the806

symp through two non-collinear points of W ∪V ∪{p} contains a subspace of projective dimension807

at least 5, a contradiction). But W has a unique point x in E(Π1,Π2) by virtue of Proposition 4.20.808

Hence p ∈ 〈x, V 〉 ⊆ H. �809

Lemma 5.27. Every para Π sharing a symp ξ with Π1 intersects H in at least a hyperplane of Π;810

if moreover Π contains a point of Π2, then Π ⊆ H.811

Proof. The set H ∩ Π contains all points of ξ and all points close to ξ (collinear to a 4-space of812

ξ) by Lemma 5.26. The first assertion now follows from Proposition 4.13. A point of Π2 is never813

collinear with any point of Π1, so the second assertion now also follows from Proposition 4.13. �814

We now translate the situation to ∆∗ := E7,7(K), where it is somewhat easier to argue. Note that815

points, lines, symps and paras of ∆ = E7,1(K) correspond to symps, maximal 5-spaces, lines and816

points, respectively, of ∆∗. Moreover, paras of ∆ intersecting in symps correspond to collinear817

points of ∆∗, paras in ∆ intersecting in just a point correspond to symplectic points of ∆∗. Denote818

by p1, p2 the points of ∆∗ corresponding to Π1,Π2. Then the set of paras in ∆ intersecting Π1 in819

a symp and intersecting Π2 in a point, corresponds to the set p⊥1 ∩ p⊥⊥2 of points of ∆∗ collinear to820
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p1 and symplectic to p2. Also, the set of paras of ∆ intersecting Π1 in a symp corresponds to p⊥1821

in ∆∗. From this discussion and Lemma 5.27 follows:822

Lemma 5.28. Let L be a line of ∆ and let U be the corresponding maximal singular 5-space in823

∆∗. Then L contains a point of H as soon as either p⊥1 ∩ U is nonempty, or some symp of ∆∗824

contains U and a point of p⊥1 ∩ p⊥⊥2 .825

Proof. Suppose first that U is such that p⊥1 ∩ U is a point a. Then a corresponds to a para Πa in826

∆ sharing a symp ξ with Π1, and U corresponds to a line L in Πa. By Lemma 5.27, L has at least827

a point contained in H. Next, suppose U is such that it is contained in a symp ζ of ∆ meeting828

p⊥1 ∩ p⊥⊥2 in a point b. Then b corresponds to a para Πb meeting Π1 in a symp and Π2 in a point829

and is hence contained in H by Lemma 5.27. The symp ζ corresponds to a point x in Πb and U830

corresponds to a line containing x. Since x ∈ H, the statement follows. �831

We are now ready to show that:832

Proposition 5.29. H ∩X is a geometric hyperplane of ∆.833

Proof. As above, we argue in ∆∗. Let U be any maximal 5-space of ∆∗ and suppose p⊥1 ∩ U = ∅.834

Let S(U) be the set of symps of ∆∗ containing U . By Fact 4.1, for each symp ξ ∈ S(U), there exists835

at least one point pξ ∈ ξ collinear to p1. Select two distinct members ξ, ζ of S(U) and suppose836

for a contradiction that pξ and pζ are not collinear. Since they are collinear to at least a common837

3-space of U , they are symplectic and the symp ξ1 containing them also contains p1. But then838

p⊥1 ∩ U is at least a 2-space, contradicting our hypothesis. Hence pξ and pζ are collinear.839

Now note that pξ is collinear to a 4-space of U and hence a 5-space of ζ, i.e., a maximal singular840

subspace of ζ, implying that p⊥1 ∩ ζ = {pζ}. Similarly, pξ is unique. Now let ξ, ζ, υ be three distinct841

symps containing U . We claim that pξ, pζ , pυ are contained in a common line L. Suppose not, then842

the span is a plane π all points of which are collinear to p1. The convexity of ξ implies that every843

point of p⊥ζ ∩U is collinear to pξ; hence V := p⊥ξ ∩U = p⊥ζ ∩U and likewise V = p⊥υ ∩U . So V and844

π are contained in a singular subspace, which has dimension at most 6 in ∆∗. Since dimV = 4, it845

follows that π ∩ V 6= ∅, contradicting our assumption that p⊥1 ∩ U = ∅. The claim is proved.846

So L ⊆ p⊥1 . Now there is some point x ∈ L contained in p⊥⊥2 . Due to Lemma 5.28, it suffices to847

show that there is a symp containing U ∪ {x}. Notice that the previous paragraph yields V ⊆ L⊥.848

Pick y ∈ U \ V . Since U is a maximal singular subspace, it follows that y /∈ x⊥. The symp defined849

by x and y contains U and x and hence the proposition is proved. �850

Now combining Lemmas 4.23, 5.24 and Proposition 5.29 yields Theorem 5.23, and hence also851

Theorem 5.22. This shows the arrow E6 → E7 of Theorem A.852

5.3. Proof of Theorem C for type E. By Fact 3.7, the excess ε•(D5(K)) for a finite prime field853

K, is equal to 0. Indeed, the number of roots of a root system of type D5 is equal to 40; hence the854

Weyl module has dimension 40 + 5 = 45 = 2n2 − n for n = 5. Now Theorem A, in particular the855

arrows D5 → E6 → E7 → E8, implies that the excesses ε•(Ei(K)), i = 6, 7, 8, are 0, too.856

6. Geometries of type F4,1 and F4,4857

6.1. The embedding rank and generating rank of F4,4(K). The e-rank and g-rank of F4,4(K)858

can be completely determined for all fields K not of characteristic 2.859

Theorem 6.1. Let K be any field not of characteristic 2. Then both the embedding rank and860

generating rank of F4,4(K) is 26.861
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Proof. Since the standard embedding of F4,4(K) happens in a projective space of dimension 25, it862

suffices to show that F4,4(K) is generated by 26 points.863

By [20], each pair of opposite points p, q is contained in a unique so-called extended equator geometry,864

which can be described as follows. Each symplectic pair of points x, y is contained in a unique symp865

ξ(x, y), which is isomorphic to a symplectic polar space of rank 3. The set {x, y}⊥⊥ =: L(x, y)866

contains x and y, and is called a hyperbolic line. In the standard embedding of the polar space867

in 5-dimensional projective space over K, it is an ordinary, though non-isotropic, line. Now, the868

points symplectic to both p and q, together with p and q generate by hyperbolic lines a polar space869

Ê(p, q) isomorphic to B4,1(K) (whose lines are thus hyperbolic lines), This is the extended equator870

geometry defined by p and q. The set T̂ (p, q) of all points collinear to a maximal singular subspace871

of Ê(p, q), together with all lines it contains, is a geometry isomorphic to the dual polar space872

B4,4(K) (called the tropic circle geometry of p and q in [20]). Now the set of points of F4,4(K)873

contained in some line joining a point of Ê(p, q) with a point of T̂ (p, q), constitutes a geometric874

hyperplane Ĥ(p, q) of F4,4(K) by Lemma 5.37(iv) of [21].875

Now let T be a minimal generating set of T̂ (p, q), and E a minimal generating set of Ê(p, q) (as a876

polar space, hence with respect to hyperbolic lines). By Theorem 5.3 of [18], we have |T | = 16. Since877

Ê(p, q) is a parabolic polar space, we have |E| = 9. Proposition 5.3.1 of [20] implies that, for any878

pair of symplectic points x, y ∈ Ê(p, q), the set {x, y}⊥ ∩ ξ(x, y) is contained in 〈T 〉. Now ξ(x, y) is879

isomorphic to C3,1(K), a symplectic polar space of rank 3 over a field of characteristic different from880

2. Since x and {x, y}⊥ generates a singular hyperplane of ξ(x, y), we see that T ∪ {x, y} generates881

ξ(x, y) and hence also L(x, y). It follows that T ∪E generates Ĥ(p, q). Hence, by Lemma 4.23(ii),882

the g-rank of F4,4(K) is at most |T |+ |E|+ 1 = 16 + 9 + 1, which is 26. As noted in the beginning883

of this proof, this implies that the g-rank is exactly 26, as is the e-rank. �884

This proves Theorem E.885

Remark 6.2. The proof of the previous theorem also works for perfect fields of characteristic 2 not886

of size 2. In this case one obtains that bot the embedding and generating rank of F4,1(K) equals887

52.888

6.2. The generating rank and embedding rank of F4,1(K). Let ∆ = (X,L ) be the Lie889

incidence geometry F4,1(K). Recall that the Segre e-rank of A2,{1,2}(K) is denoted by ρ◦e(A2(K)).890

In this section we want to prove:891

Theorem 6.3. If K is a field with characteristic distinct from 2 and size at least 5, then ρe(F4(K)) ≤892

44 + ρ◦e(A2(K)) and also ρg(F4(K)) ≤ 44 + ρg(A2(K)).893

6.2.1. The equator geometry for F4,1(K). We consider two opposite points p and q and define894

H = 〈p⊥⊥ ∪ q⊥⊥〉. Recall that E(p, q) = p⊥⊥ ∩ q⊥⊥. We start by showing that H is a geometric895

hyperplane.896

Proposition 6.4. The subspace H is a geometric hyperplane of ∆.897

Proof. By Remark 5.8, we only have to show that each point of E(p, q) is a deep point of H (not898

using the fact that H is a geometric hyperplane).899

So let L be a line containing a point x of E(p, q) and suppose L is not contained in ξ(p, x)∪ ξ(q, x).900

In the polar space C3,1(K) corresponding to Res∆(x), the symps ξ(p, x) and ξ(q, x) correspond to901

two opposite points a and b. The line L corresponds to a plane π neither containing a nor b. Then902

a point c ∈ π ∩ a⊥ ∩ b⊥ corresponds to a symp ξ through L intersecting both ξ(p, x) and ξ(q, x)903

in (different) planes, say αp and αq, respectively. Set Lp = αp ∩ p⊥ and Lq = αq ∩ q⊥ and note904
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that ξ = 〈Lp, Lq, L⊥p ∩ L⊥q 〉. Then every point of L⊥p ∩ L⊥q is symplectic to both p and q and hence905

belongs to E(p, q). Since also Lp and Lq are contained in H, it follows that ξ is entirely contained906

in H. Since L ⊆ ξ, Lemma 5.7 follows for the current ∆ and H. �907

A proof similar to that of Proposition 5.4 yields:908

Proposition 6.5. The subspace H of ∆ is generated by p⊥, q⊥ and E(p, q).909

We now first concentrate on the equator geometry E(p, q). We will equip this point set with “lines”910

with the help of the following lemma. Recall that the symps of ∆ are polar spaces isomorphic to a911

parabolic quadric B3,1(K) in P6(K).912

Lemma 6.6. Let ξ = ξ(x, y) be a symp with x, y a symplectic pair of points of E(p, q). Then913

L := p⊥∩ξ and M := q⊥∩ξ are lines, which are opposite in ξ, and L⊥∩M⊥ is a conic C ⊆ E(p, q)914

in the ambient projective space of ξ. Moreover, the set of symps ξ(p, c) with c ∈ C coincides with915

the set of all symps of ∆ through the plane 〈p, L〉.916

Proof. Since p is, by definition of E(p, q), symplectic to the two points x and y of ξ, it follows from917

Fact 4.5 that p⊥ ∩ ξ is non-empty. Fact 4.4 then implies that p⊥ ∩ ξ is a line, say L. Likewise,918

q⊥ ∩ ξ is a line M . We claim that L and M are opposite in ξ. Since p and q have distance 3, it is919

clear that L and M are disjoint. Let r be any point of L and suppose for a contradiction that r is920

collinear to M . Then r and q are symplectic (see also Fact 4.6), which however implies that p and921

q are not opposite (cf. Fact 4.9), a contradiction. We conclude that L and M are opposite lines922

in ξ. Hence C := L⊥ ∩M⊥ (which is contained in ξ by convexity of ξ) is a conic in the ambient923

6-dimensional projective space of ξ as a polar space isomorphic to B3,1(K). Note that the points924

of L⊥ ∩M⊥ are symplectic to both p and q by Fact 4.6 and hence C ⊆ E(p, q) indeed. Moreover,925

for any point c ∈ C, ξ(p, c) contains the plane 〈p, L〉. To prove the last statement, suppose ξ′ is a926

symp containing the plane 〈p, L〉. Then ξ′ ∩ ξ is a plane π by Fact 4.5. The plane π contains L and927

hence contains a unique point z collinear to M , so z ∈ C and ξ′ = ξ(p, z). �928

We now declare two points x, y of E(p, q) collinear if they are symplectic in ∆, and the joining929

“line” is given by L⊥ ∩M⊥, where L = p⊥ ∩ ξ(x, y) and M = q⊥ ∩ ξ(x, y). Noting that a point930

x of E(p, q) corresponds to a symp containing p (namely (ξ(p, x)) and that, by the above lemma,931

the just defined “lines” correspond to the symps containing a plane of ∆ through p; we see that932

E(p, q) equipped with the new lines has the structure of the symplectic polar space C3,1(K).933

Since the Weyl embedding of F4,1(K) induces the Weyl embedding of C3,1(K), and the latter in-934

duces the Weyl embedding of its planes (as in the proof of Lemma 5.6, these assertions follow by935

considering the adjoint action of the corresponding Lie subalgebras on the appropriate Lie algebra),936

and since the universal embedding of ∆ projects onto the Weyl embedding of ∆, we see that the937

“planes” of E(p, q) span a subspace of dimension at least 5. By Theorem 2.3 of [27], these planes938

correspond to ordinary Veronese surfaces in projective 5-space. Therefore we may consider the939

Veronese e-rank of E(p, q). Likewise, we are only interested in the Veronese g-rank of E(p, q).940

6.2.2. The Veronese generating rank and Veronese embedding rank of C3,1(K). We now determine941

the Veronese e-rank ρ∗e(C3,1(K)) and the Veronese g-rank ρ∗g(C3,1(K)) of C3,1(K) in terms of the942

Segre e-rank ρ◦e(A2(K)) and the g-rank ρg(A2(K)), respectively, of A2,{1,2}(K), where K is a field943

whose characteristic is not equal to 2.944

Let ∆′ = (X ′,L ′) be the symplectic polar space C3,1(K). We choose two opposite (that is, disjoint)945

planes π1 and π2 in ∆′. Consider the following set P of points of ∆′:946

P = {x ∈ X ′ | ∃L ∈ L ′ : x ∈ L and πi ∩ L 6= ∅, i = 1, 2}.
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In this section we forget the notation E(p, q); in particular the letters p and q do not refer to the947

points introduced in the previous subsection. Recall that a hyperbolic line of ∆′ is an ordinary line948

of the 5-dimensional projective space P5(K) in which ∆′ naturally embeds.949

Lemma 6.7. The set P , endowed with all lines and hyperbolic lines of ∆′ fully contained in P , is950

isomorphic to a Klein quadric, that is, an irreducible hyperbolic quadric of rank 3.951

Proof. This follows from the fact that P is the union of all planes of ∆′ intersecting π1 in a point952

x and π2 in a line L, the mapping p 7→ L being a duality, using Proposition 5.2 of [34]. �953

Lemma 6.8. Let p, q be two noncollinear points of the generalized quadrangle B2,1(K). Then954

{p, q}⊥⊥ = {p, q}.955

Proof. Since the characteristic of K is not equal to 2, the relation ⊥ is induced by a non-degenerate956

polarity ρ in the ambient projective space P4(K) of B2,1(K). Let Z be the point set on B2,1(K) in957

P4(K). Then {p, q}⊥⊥ = Z ∩ 〈p, q〉ρρ = Z ∩ 〈p, q〉 = {p, q}. �958

Lemma 6.9. Each singular line contained in P intersects π1 ∪ π2 nontrivially.959

Proof. Assume for a contradiction that some line L disjoint from π1 ∪ π2 is contained in P . Then960

each point x of L is contained in a unique line Lx intersecting πi in a point tx,i, i = 1, 2. If tx,1 = ty,1961

for two distinct points x, y ∈ L, then L is contained in the plane spanned by tx,1, tx,2, ty,2 and hence962

intersects π2 nontrivially, a contradiction. Note that in P5(K), the point tx,1 is the projection of x963

from π2 onto π1. Hence {tx,1 | x ∈ L} is the projection of L from π2 onto π1 and is hence the point964

set of a line L1. Likewise, {tx,2 | x ∈ L} is a line L2.965

Set p1 = L⊥2 ∩ π1 and p2 = L⊥1 ∩ π2. Assume that p1 ∈ L1 and let α be the plane spanned by L2966

and p1. Let x ∈ L be such that p1 = tx,1 (note x ∈ α) and pick y1, y2 ∈ L \ {x}. Then y1 ⊥ ty1,2967

and inside the plane 〈y1, x, ty1,2〉 = 〈L, ty1,2〉 we see that y2 ⊥ ty1,2, implying ty1,2 = ty2,2, so by968

the above y1 = y2, contradicting the fact that L contains at least three points. Hence p1 /∈ L1 and969

likewise p2 /∈ L2. Hence p1 6⊥ p2, so {p1, p2}⊥ is isomorphic to C2,1(K), i.e., the dual of B2,1(K).970

But L intersects every line which intersects both L1 and L2, contradicting Lemma 6.8. �971

Corollary 6.10. A singular plane α of ∆′ disjoint from π1 ∪ π2 intersects P in a (possibly empty)972

non-degenerate conic.973

Proof. Considering the situation in P5(K), the intersection α∩P is given by a quadratic equation in974

the coordinates, hence is a possibly degenerate conic. If it is degenerate, then by possibly considering975

the situation over a quadratic extension, we may assume that α∩P contains a (singular) line, which976

contradicts Lemma 6.9. �977

Lemma 6.11. Let (Γ,∼) be the graph with vertex set X ′ \P , where two vertices x1, x2 are adjacent978

if they are collinear in ∆′ and contained in a common singular plane α disjoint from π1 ∪π2 which979

intersects P nontrivially. Then Γ is connected.980

Proof. First we claim that any singular line L disjoint from π1 ∪ π2 is contained in at least one981

singular plane disjoint from π1∪π2 and having nonempty intersection with P . Indeed, if L∩P 6= ∅,982

then it suffices to select a plane of ∆′ through L distinct from 〈L,L⊥ ∩ π1〉 and 〈L,L⊥ ∩ π2〉.983

Now suppose L ∩ P = ∅. It is easy to select a line L1 ⊆ π1 such that L⊥ ∩ L1 = ∅ and that984

p2 := L⊥1 ∩ π2 6= L⊥ ∩ π2. Let α be the plane spanned by L and put y := L⊥ ∩ 〈L1, p2〉. Note985

that y ∈ P and that our assumptions on L1 and p2 imply that y /∈ π1 ∪ π2 ∪ L (so α is really a986

plane). Assume for a contradiction that α contains some point p1 of π1. Then p1 = L⊥ ∩ π1 and987

y ⊥ 〈p1, L1〉. The latter is, by assumption on L1, the whole of π1, forcing y ∈ π1, a contradiction.988

Next, assume for a contradiction that α contains some point x2 of π2. Then p2 ⊥ x2 ⊥ y and the989
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plane 〈x2, p2, y〉 intersects π1 in some point z1 (the latter is L1∩〈p2, y〉). Hence the point L∩〈x2, y〉990

belongs to P , a contradiction. The claim is proved.991

Let x1, x2 be two distinct points of X ′ \ P . Suppose first that x1 ⊥ x2 in ∆′. If L := 〈x1, x2〉 is992

disjoint from π1 ∪ π2, then x1 ∼ x2 by the first paragraph. So assume that L intersects π1 ∪ π2. It993

is easy to see that we can find a plane α containing L so that α \ L is disjoint from π1 ∪ π2. Pick994

x ∈ α \ (L ∪ P ). Note that this is possible by Corollary 6.10 (including any line of α disjoint from995

π1 ∪ π2 in a plane disjoint from π1 ∪ π2). Then both 〈x1, x〉 and 〈x2, x〉 are disjoint from π1 ∪ π2996

and hence x1 ∼ x ∼ x2 by the previous paragraph.997

At last suppose that x1 is not collinear to x2. Let α1 be any plane through x1 disjoint from π1 ∪π2998

and not disjoint from P (this exists by the first paragraph). Let α′2 be the plane generated by x2999

and L2 := x⊥2 ∩ α1. Then L2 ∩ P has size at most 2 (since P ∩ α1 is a non-degenerate conic).1000

Hence we can pick x3 ∈ L2 \ P . By the previous cases, both x1 and x2 are in the same connected1001

component of Γ as x3. �1002

Lemma 6.12. Let (Γ′,∼) be the graph with vertex set X ′\P , where two vertices x1, x2 are adjacent1003

if they are collinear in ∆′ and the joining line 〈x1, x2〉 intersects P in exactly two points. Then Γ′1004

is connected.1005

Proof. If |K| ≥ 5, then this follows straight from Lemma 6.11. So we may suppose that |K| = 3.
We coordinatize P5(F3) such that the underlying alternating form is given by(

(x1, · · · , x6)(y1, · · · , y6)
)
7→ x1y2 − x2y1 + x3y4 − x4y3 + x5y6 − x6y5.

Then we may define π1 as the plane with equations X2 = X4 = X6 = 0 and π2 as the plane with1006

equationsX1 = X3 = X5 = 0. One easily calculates that a point with coordinates (x1, x2, x3, x4, x5, x6)1007

belongs to P if and only if x1x2+x3x4+x5x6 = 0 (which indeed represents an irreducible hyperbolic1008

quadric). Now, two points (x1, x2, x3, x4, x5, x6) and (y1, y2, y3, y4, y5, y6) belong to X ′ \ P and are1009

adjacent in Γ′ if and only if1010 

x1x2 + x3x4 + x5x6 6= 0,

y1y2 + y3y4 + y5y6 6= 0,

x1y2 + x3y4 + x5y6 = x2y1 + x4y3 + x6y5,

(x1 + y1)(x2 + y2) + (x3 + y3)(x4 + y4) + (x5 + y5)(x6 + y6) = 0,

(x1 − y1)(x2 − y2) + (x3 − y3)(x4 − y4) + (x5 − y5)(x6 − y6) = 0.

Define the weight of a point as the number of nonzero coordinates of each of its coordinate tuples.1011

Now let x1, x2, x3, x4, x5, x6 be six arbitrary but nonzero elements of F3 (hence each of them is 11012

or −1). Using the above conditions, we see that (x1, x2, 0, 0, 0, 0) ∼ (0, 0, x1,−x2, 0, 0). Permuting1013

the coordinates in blocks of two in the obvious way, this implies that all points of weight 2 of Γ′1014

belong to the same connected component, say C.1015

Up to permuting coordinates, a generic weight 3 vertex of Γ′ is given by (x1, x2, x3, 0, 0, 0), and1016

one calculates that this is adjacent to (0, 0, 0, 0, x1,−x2). Hence also all weight 3 points in X ′ \ P1017

belong to C. Likewise, a generic weight 4 vertex has coordinates either (x1, x2, x3, x4, 0, 0) with1018

x1x2 + x3x4 6= 0, or (x1, x2, x3, 0, x5, 0). The former is adjacent to (0, 0, 0, 0, x1, x2), and the1019

latter is adjacent to (0, 0, x3, x1x2x3,−x5,−x1x2x5) (note that x2
3 = x2

5 = 1). Hence all weight1020

4 elements belong C. A generic weight 5 vertex is a point with coordinates (x1, x2, x3, x4, x5, 0),1021

with x1x2 + x3x4 6= 0 (and note that this implies x1x2 − x3x4 = 0). This point is now adjacent to1022

(x1,−x2,−x3, x4, 0, 0), showing that all weight 5 vertices belong to C. Finally, for the vertex with1023

25



coordinates (x1, x2, x3, x4, x5, x6) we may, without loss of generality, assume that x1x2 = x3x4 =1024

−x5x6. It follows that this vertex is adjacent to (x1, x2,−x3,−x4, 0, 0).1025

We have shown that all vertices belong to C, and the assertion follows. �1026

Define the following geometry ∆′′ = (X ′′,L ′′). The set X ′′ is the set of lines of ∆′ intersecting1027

both π1 and π2 nontrivially. A typical member of L ′′ is the pencil determined by (p, α), where1028

p ∈ πi and α is a plane of ∆′ containing p and intersecting π3−i in a line, i ∈ {1, 2}.1029

Lemma 6.13. The geometry ∆′′ is isomorphic to A2,{1,2}(K).1030

Proof. Let {p, L} be a flag of π1, where p ∈ π1 is a point and L ⊆ π1 a line containing p. Obviously,1031

the mapping {p, L} 7→ 〈p, L⊥ ∩ π2〉 is a bijection between the set of flags of π1 and X ′′. Also,1032

for each line L of π1, that bijection maps the set of flags {{p, L} | p ∈ L} onto the line pencil1033

determined by (L⊥ ∩ π2, L), which belongs to L ′′, and, for each point p ∈ π1, it maps the set of1034

flags {{p, L} | p ∈ L ∈ L ′, L ⊆ π1} onto the pencil determined by (p, p⊥ ∩ π2), which belongs to1035

L ′′. One checks that this correspondence is bijective onto L ′′. �1036

The next lemma holds for all fields with at least 3 elements.1037

Lemma 6.14. Let K be an arbitrary field with at least three elements. Then the Veronese generating1038

rank and the Veronese embedding rank of P2(K) are both equal to 6.1039

Proof. Clearly a line and a point do not Veronese generate P2(K). Since five arbitrary points no1040

four on a line determine a (possibly degenerate) conic of P2(K), and every such conic intersects each1041

line that it does not contain in at most two points, the Veronese g-rank of P2(K) is at least 6. Let1042

p1, p2, p3 be a triangle in P2(K) (that is, they are not contained in a common line). Select a point1043

qi in 〈pj , pk〉 \ {pj , pk}, with {1, 2, 3} = {i, j, k}. Then {p1, p2, p3, q1, q2, q3} generates the three lines1044

〈p1, p2〉, 〈p2, p3〉, 〈p1, p3〉. Since |K| > 2, every point is contained in a line intersecting the union1045

of these three lines in three distinct points. Whence the assertion concerning the Veronese g-rank.1046

The assertion concerning the Veronese e-rank follows straight from Theorem 2.3 of [27]. �1047

Let ε′ : X ′ ⊆ P20 be the Veronese embedding of ∆′ obtained from the Veronese map on the1048

underlying projective space P5(K). Let ε be the restriction of ε′ to P . We note that ε, and hence1049

every embedding that projects onto it, satisfies the following easy to verify statements.1050

(a) Every projective plane contained in P spans a 5-space and hence defines an ordinary quadric1051

Veronese surface (use Theorem 2.3 of [27] again);1052

(b) The span of two disjoint planes of P intersects P in the union of those planes.1053

Lemma 6.15. Consider P as a subgeometry of ∆′ with induced line set. Then the Veronese1054

generating rank of P is at most 12 + ρg(A2(K)). Also, the ε-relative Veronese embedding rank of P1055

is at most 12 + ρ◦e(A2(K)).1056

Proof. We first prove the assertion about the Veronese g-rank of P . Let G be a minimum generating1057

set of points for ∆′′. For each g ∈ G, we select an arbitrary point pg on the corresponding line1058

Lg of ∆′, but not belonging to π1 ∪ π2. We claim that G∗ := π1 ∪ π2 ∪ {pg | g ∈ G} generates P ,1059

which then proves the assertion using Lemmas 6.13 and 6.14. Indeed, it suffices to show that, if1060

g1, g2 ∈ G and g1 is collinear to g2 in ∆′′, then each point of the singular plane α := 〈Lg1 , Lg2〉 of1061

∆′ is (Veronese) generated by G∗. Now α intersects π1 ∪ π2 in the union of a point and a line, say1062

{x} ∪K. Then clearly {x, pg1 , pg2} ∪K is a Veronese generating set of α (because it contains the1063

triangle {x, pg1 , pg2} together with an additional point on each side, namely the intersection of that1064

side with K). The claim follows.1065
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Next we consider the ε-relative Veronese e-rank. So we assume that P is embedded in some1066

projective space P such that each of its lines is a plane conic, and P projects into the usual1067

Veronese (Weyl) embedding of C3,1(K) obtained from the ordinary Veronese embedding of the1068

ambient projective space P5(K). By (a), the planes contained in P correspond to ordinary Veronese1069

surfaces. The subspace spanned by π1 ∪ π2 in P is strictly contained in the one generated by P1070

(as this is the case in the Weyl embedding). So we can project P \ (π1 ∪ π2) from W := 〈π1, π2〉1071

(generation is now in P) onto some complementary subspace U of P. Let α be a singular plane in1072

P intersecting π1 in some point p1 and π2 in some line L2. By (b), the projection of α in P from1073

〈p1, L2〉 is either a point or a (full) line. If it were a point, then some 4-space of 〈α〉 would intersect1074

α in just {p1} ∪ L2, a contradiction. It follows that the projection of P \ (π1 ∪ π2) from W onto U1075

is isomorphic to an embedded A2,{1,2}(K). Moreover, in the Weyl embedding, the same procedure1076

yields the Weyl embedding, hence the dimension of the subspace generated by the image of the1077

projection of P \ (π1 ∪ π2) from W onto U is at most ρ◦e(A2(K))− 1. Since dim〈π1 ∪ π2〉 ≤ 11, the1078

lemma is proved. �1079

We are now ready to prove the main result of this subsection.1080

Proposition 6.16. Let K be a field with characteristic distinct from 2. Then ρ∗g(C3,1(K)) ≤1081

13 + ρg(A2(K)) and ρ∗e(C3,1(K)) ≤ 13 + ρ◦e(A2(K)).1082

Proof. First we consider the Veronese g-rank. It suffices to prove that, for an arbitrary point1083

x ∈ X ′ \ P , the set P ∪ {x} is a Veronese generating set of ∆′. Clearly, all points on each line L1084

through x that intersects P in two points are Veronese generated by P ∪ {x}. Now the assertion1085

follows from Lemma 6.12.1086

Concerning the Veronese e-rank, we have to show that, if ∆′ is Veronese embedded in the projective1087

space P, then X ′ is contained in the subspace of P generated by P and one additional point1088

x ∈ X ′ \ P . Suppose α is a plane disjoint from π1 ∪ π2, containing x and meeting P non-trivially,1089

i.e., in a non-degenerate conic by Corollary 6.10. Then, since every conic in α generates a hyperplane1090

in the corresponding ambient projective 5-space of the Veronese surface, and that hyperplane does1091

not contain any other points than those of the conic, we see that all points of α are contained in1092

the (projective) subspace of P spanned by P and x. Now again Lemma 6.11 completes the proof.1093

�1094

6.3. Conclusion. In this subsection, we let p and q again be two opposite points of ∆ ∼= F4,1(K),1095

and H is again 〈p⊥⊥ ∪ q⊥⊥〉 as in Subsection 6.2.1. We can now complete the proof of Theorem 6.3.1096

First we notice that this theorem follows from Lemmas 4.23 and Proposition 6.4 as soon as we show1097

the following lemma:1098

Lemma 6.17. The generating rank of H is at most 30 + ρ∗g(C3,1(K)) ≤ 43 + ρg(A2(K)), and the1099

embedding rank is at most 30 + ρ∗e(C3,1(K)) ≤ 43 + ρ◦e(A2(K)).1100

Proof. We start by noting that Res∆(p) is isomorphic to C3,3(K). Such a geometry has e-rank and1101

g-rank equal to
(

6
3

)
−
(

6
1

)
= 14, by [14] and [19]. Hence the e-rank of p⊥ ∪ q⊥ is at most 30. The1102

second assertion of Proposition 6.16 implies that the e-rank of H is at most 30 + 13 + ρ◦e(A2(K)).1103

Now consider a set T of 30 points generating p⊥ ∪ q⊥ and a set E Veronese generating E(p, q) =1104

p⊥⊥ ∩ q⊥⊥. Let C be a line of E(p, q), the latter viewed as a symplectic polar space. Let ξ(C) be the1105

symplecton containing C. Then, as explained in Lemma 6.6 and just after it, C = L⊥ ∩M⊥, with1106

L = p⊥ ∩ ξ(C) and M = q⊥ ∩ ξ(C). Hence if E contains at least three points of C, then the whole1107

of C is generated by T ∪E. It follows that, if E is a Veronese generating set of E(p, q), then T ∪E1108

generates H. The first assertion now follows from the first assertion of Proposition 6.16. �1109
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Since ω(F4(K)) − ω(C3(K)) = 52 − 21 = 31 and ω(C3(K)) − ω(A2(K)) = 21 − 8 = 13, the arrows1110

A2 → C3 → F4 of Theorem A follow, as before, from Lemma 4.23, Propositions 6.4 and 6.16, and1111

Lemma 6.17. Moreover, Fact 3.4 implies that the g-rank of F4,1(p) is equal to 52, for any prime p.1112

This shows Theorem C for type F4.1113

7. The classical cases An,Bn and Dn+1, n ≥ 21114

The structure of the proof of Theorem B is exactly the same as that of Theorem A. Hence we1115

are not going to repeat it here. We content ourselves with only mentioning the various geometric1116

hyperplanes H, based on the various equator geometries. We consider all cases separately.1117

7.1. Case An−1 → An, n ≥ 3. Recall that An,{1,n}(K) is the geometry with point set the incident1118

point-hyperplane pairs of the projective space Pn(K), where lines are given by the incident line-1119

hyperplane pairs and incident point-subhyperplane pairs, with natural incidence (a subhyperplane1120

is a subspace of codimension 2, that is, a hyperplane of a hyperplane).1121

Let ∆ = (X,L ) be isomorphic to An,{1,n}(K). Pick a non-incident point-hyperplane pair (p,W )1122

in the underlying projective space Pn(K). Define H to be the subspace of ∆ generated by all1123

points (x,W ) ∈ X, x ∈ W , all points (p, U) ∈ X, p ∈ U and all points (x, U) ∈ X, x ∈ W1124

and p ∈ U . One easily checks that H indeed generates a hyperplane. Moreover, the singular1125

subspaces {(x,W ) ∈ X | x ∈ W} and {(p, U) ∈ X | p ∈ U} have •-rank n, whereas the subspace1126

{(x, U) ∈ X | x ∈ W and p ∈ U} is isomorphic to An−1(K). The arrow now follows from the1127

numerical equality ω(An(K)) = (n+ 1)2 − 1 = ((n2 − 1) + n+ n) + 1 = ω(An−1(K)) + 2n+ 1.1128

Remark 7.1. This arrow implies that the •-rank of the geometry An,{1,n}(K), for K finite but not1129

prime, is equal to ω(An(K)) + 1. Indeed, this is true for n = 2 by Lemma 3.5, and it follows from1130

Proposition 8.1 below for n ≥ 3.1131

Remark 7.2. This arrow can also be interpreted as an arrow in the class of Segre embeddings,1132

with the same proof. Hence, as a consequence, the Weyl embedding of An,{1,n}(K), for K a finite1133

field, is relatively universal.1134

7.2. Case An−1 → Dn, n ≥ 3. Recall that Dn,2(K) is the geometry with point set the set of lines1135

of a hyperbolic polar space Γ of rank n and lines the planar line pencils.1136

Let ∆ = (X,L ) be isomorphic to Dn,2(K). Pick two disjoint (opposite) maximal singular subspaces1137

W1,W2 in the underlying polar space Γ = (Y,M ); hence X = M . Define H to be the subspace1138

of ∆ generated by all points M ∈ M either contained in W1 or W2, or intersecting both W1 and1139

W2 nontrivially. It is routine to check that H indeed generates a hyperplane of ∆ (use the fact1140

that every point of Γ is contained in a line intersecting both W1 and W2 nontrivially). Clearly1141

the subspace on the set {M ∈ M | M ⊆ Wi}, i = 1, 2, is isomorphic to An−1,2(K), whereas the1142

subspace on the set {M ∈M |M∩Wi 6= ∅, i = 1, 2} is clearly isomorphic to the long root geometry1143

An−1,{1,n−1}(K). Now, by Fact 3.1, the g-rank and e-rank of An−1,2(K) are both equal to n(n−1)
2 .1144

The arrow then follows from the numerical equality ω(Dn(K)) = 2n2−n = ω(An−1(K))+n(n−1)+1.1145

7.3. Case Dn−1 → Dn, n ≥ 4. Let ∆ = (X,L ) again be isomorphic to Dn,2(K). This time, we1146

pick two non-collinear (opposite) points p1, p2 in the underlying polar space Γ = (Y,M ). Define1147

H to be the subspace of ∆ generated by all points M ∈M either incident with p1 or with p2, or1148

contained in p⊥1 ∩ p⊥2 . It is again routine to check that H indeed generates a hyperplane of ∆ (use1149

the fact that every singular plane of Γ intersects p⊥1 ∩ p⊥2 nontrivially). Clearly the subspace on1150

the set {M ∈M | pi ∈ M}, i = 1, 2, is isomorphic to Dn−1,1(K), whereas the subspace on the set1151

{M ∈M |M ⊆ p⊥1 ∩p⊥2 } is isomorphic to the long root geometry Dn−1,2(K). Now, by Fact 3.1, the1152
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g-rank and e-rank of Dn−1,1(K) are equal to 2(n− 1). The arrow then follows from the numerical1153

equality ω(Dn(K)) = 2n2−n = (2(n−1)2−(n−1))+2(n−1)+2(n−1)+1 = ω(Dn−1,2(K))+4n−3.1154

7.4. Case Bn → Bn+1, n ≥ 2. This case is completely similar to the previous arrow. Note that,1155

for the case n = 2, we have to use ρ∗g(B2,2(K)) and ρ∗e(B2,2(K)), which are the Veronese g-rank and1156

Veronese e-rank, respectively, as defined in Section 2.1157

8. Proof of Theorem D1158

Putting Theorems A and B together, we see that the excess in the g-rank of A2,{1,2}(K) is at least1159

the excess in g-rank of all long root geometries mentioned in the statement of Theorem D. Since1160

for a finite field, this excess is 0 in the prime case, and 1 otherwise, the first part of Theorem D1161

follows. We now show the last part. This will follow from the next result.1162

Proposition 8.1. If K is a field with Aut(K) 6= 1, then ρe(An,{1,n}(K)) ≥ (n+ 1)2.1163

Proof. Let θ ∈ Aut(K). Consider the following map from An,{1,n}(K) to Pn2+2n(K). We label1164

the coordinates in the latter with (xij)1≤i≤n,1≤j≤n. We also denote a point of An,{1,n}(K) by the1165

coordinates of a point-hyperplane flag in Pn(K), that is, with a pair ((xi)1≤i≤n, (aj)1≤j≤n), all1166

elements in K, and
∑n

i=1 aixi = 0:1167

((xi)1≤i≤n, (aj)1≤j≤n) 7→ (xia
θ
j)1≤i≤n,1≤j≤n.

If θ = 1, this induces the ordinary Weyl embedding. If θ is nontrivial, one shows, exactly as in1168

Section 2 of [31], that this induces an embedding spanning Pn2+2n(K). �1169

Now the second part of Theorem D follows from the first arrow of Theorem B and Fact 3.5.1170

Finally, we can prove the finite case of Völklein’s result in a purely geometric way.1171

Proposition 8.2. The embedding rank of any finite long root subgroup geometry of type Dn, n ≥ 4,1172

E6,E7,E8 and F4 (the latter in characteristic distinct from 2) is exactly equal to the dimension of1173

the Weyl module.1174

Proof. This follows from Fact 3.5, the fact that the stated geometries admit the universal embedding1175

by [24], Theorem 6.3, Remark 7.2 and the arrows An−1 → Dn and D5 → E6 → E7 → E8. �1176
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