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Abstract

We study some properties of the nonembeddable polar spaces related to octonion division
rings (and related to the index E28

7,3). More exactly, we classify its subspaces and show that
its generating rank is equal to 5, whereas it was always believed to be at least 6. We also
study self-projectivities of length 3 in the maximal singular subspaces, and these turn out to
be polarities of octonion projective planes. We establish a connection between the conjugacy
classes of such polarities and the orbits of the collineation group of the polar space on triples
of opposite singular planes. Along the way, we classify all polar spaces for which each self-
projectivity of length 3 in a maximal singular subspace is a polarity.

1 Introduction

The subject of this paper dedicated to the memory of Jacques Tits is chosen very carefully.
Indeed, for Jacques, Hans Freudenthal was the first established mathematician (being 25 years
older than Jacques) who took Jacques’ work seriously in that he referred quite early to Jacques’
papers in his own articles. For a while Jacques and Hans were working on similar topics, but they
stimulated and respected each other. The outcome of this parallel work is nowadays referred
to as the Freudenthal-Tits Magic Square, and one important ingredient of that square is the
polar space with octonion projective planes. Freudenthal had written a cycle of papers on that
geometry in the real case, mostly algebraic and computational, but however also containing
some incidence geometry that was introduced by Jacques in his thesis [12]; that was Jacques’
influence.

Also Jacques Tits dealt with these polar spaces in the early fifties of last century. However,
the purposes of Jacques and Hans were quite different. Whereas Jacques was developing his
general ideas about incidence geometry, diagram geometry, buildings, Witt indices, BN-pairs,
even classifying polar spaces, Hans was particularly interested in the real form E28

8,4, and therefore

also in E28
7,3, of the complex exceptional algebraic groups. In particular, he developed an axiom

system for the geometry that we nowadays call “the nonembeddable real polar space”. These
axioms were later on the basis of Ferdinand Veldkamp’s approach [15] to “polar geometry”,
which, strangely, did not include the nonembeddable polar spaces. Jacques Tits [13] closed
the circle by simplifying and generalizing Ferdinand’s axioms and classifying all resulting polar
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spaces of rank at least 3, including the nonembeddable ones. Once again this was done as part
of a more general and monumental project, namely the classification of spherical buildings of
rank at least 3. In fact, Jacques Tits had the axioms of polar spaces already when Veldkamp
started his thesis, so the “simplification” just mentioned is purely technical, but not historically
correct.

Before going on we have to clarify what exactly we mean with “polar space” and “nonembeddable
polar space”. Indeed, in the literature, the notion of a polar space ranges from any point-line
geometry satisfying the one-or-all axiom to the precisely defined rank n geometry associated
to any thick building of type Bn or Dn, n ≥ 2. There are a lot of gradations in between,
corresponding to notions like “thick”, “thick-lined”, “nondegenerate”, “arbitrary or finite rank”.
In the present paper, we focus on the most strict form of polar spaces, namely those related to
thick buildings of type Bn or Dn, n ≥ 2. They have a finite rank, and when this rank is at least
3, they have been classified in [13]. The result is that either such a polar space arises from a
“form” in a vector space (more exactly, an alternating or a pseudo-quadratic form), or it is the
line Grassmannian of a projective space of dimension 3 over a noncommutative division ring, or
it arises from the real form of relative rank 3 of an exceptional algebraic group of type E7. In the
latter case, the smallest splitting field is a subfield of an octonion division algebra; the subfield
has dimension 2 over the centre of the octonion division algebra. Over that smallest splitting
field, it is the fixed point structure of a semi-linear involution in a building of type E7, see [9].
The latter polar spaces are commonly known as the “thick nonembeddable polar spaces”. We
will refer to them as the Freudenthal-Tits polar spaces. An explicit and elementary description
of them can be found in [6]; we recall it briefly in Subsection 6.1.

The Freudenthal-Tits polar spaces play a somewhat isolated and special role in the theory of
polar spaces. An important reason is that they always have an infinite number of points. Hence
within finite geometry and combinatorics one is not concerned with them. Another reason is
that they are less accessible just because they do not live in a projective space as most other
polar spaces do. However, they also appear in the third row of the Freudenthal-Tits Magic
Square, and as such they share some characteristic properties with the other polar spaces in
that row, namely, the polar spaces of rank n embeddable in a projective space of dimension
2n− 1, different from the hyperbolic quadrics. These polar spaces appear as sub polar spaces of
the Freudenthal-Tits polar spaces, and another reason to be unpopular is that, in characteristic
2, one of these sub polar spaces is related to a pseudo-quadratic form but cannot be described
with an ordinary quadratic or Hermitian form. Nevertheless the Freudenthal-Tits polar spaces
have some remarkable properties, and the purpose of this essay is to uncover some of them.
More exactly, here is what we intend to do, with motivation.

Subspaces. In the embeddable case, all subspaces of a polar space arise from (intersecting the
polar space with) subspaces of the ambient projective space in some or all of its embeddings,
except possibly when the subspace is a family of (d+ 1)-dimensional singular subspaces sharing
a common d-dimensional subspace, for some d ≥ −1 (see [3]). This leaves us with the problem
of classifying all subspaces of the nonembeddable polar spaces. In [5], Cohen & Shult determine
all geometric hyperplanes of such polar spaces; in [11], we determine all subspaces of the line
Grassmannians of projective 3-spaces. In the present paper we complete the job by classifying
all subspaces of the Freudenthal-Tits polar spaces. We prove the following result in Section 3.

2



Main Result 1. A proper subspace of a Freudenthal-Tits polar space is one of the following.

(1) An arbitrary set of noncollinear points.
(2) The union of an arbitrary set of noncoplanar lines through a given point.
(3) The union of an arbitrary set of planes through a given line.
(4) The set of all points collinear to a given point.
(5) The set of all points collinear to two given noncollinear points.

This entails a shortcut in some arguments in [11], but more importantly, it triggered the next
property, which really came as a surprise.

Generating rank. Usually, the generating rank of a geometry is investigated together with the
embedding rank, because of the intimate connection between those. Nonembeddable geometries,
however, have no embedding rank, and so the generating rank provides, so to speak, the moral
embedding rank. For the Freudenthal-Tits polar spaces, it was long thought that their ‘moral’
embedding rank is 6, since 6 is the embedding rank of their siblings—the rank 3 polar spaces
over quadratic associative division algebras with trivial anisotropic kernel, and since embeddable
polar spaces of rank n have generating rank at least 2n. However, we will show in Section 4 that

Main Result 2. The generating rank of any nonembeddable polar space of rank 3 is 5.

For our third main result, we go back to one of Freudenthal’s axioms in [8]. With modern
terminology (see below), the said axiom states that every self-projectivity of the generators of
length 3 is a polarity.

Self-projectivities of length 3. Consider two opposite generators G1, G2 of a polar space.
The projection map (see [13]) defines an anti-isomorphism G1 → G2, mapping points to sub-
generators, preserving incidence. For an ordered triple of opposite generators (G1, G2, G3) of a
polar space, the mapping G1 → G2 → G3 → G1 is a duality of G1, called a self-projectivity
of length 3. Freudenthal’s axiom states that every self-projectivity of length 3 is a polarity.
One might wonder whether this axiom characterizes the Freudenthals-Tits polar spaces, or at
least its siblings. However, Lemma 6.2 of [7] implies that this is also true for all polar spaces of
hyperbolic type and even rank (where the polarity is always a symplectic one). We will show
that every self-projectivity of length 3 in a polar space of rank n ≥ 3 is a polarity if and only if
the polar space either admits an embedding in (2n−1)-dimensional space, or is nonembeddable.
Note that this includes the case where there are no triples of pairwise opposite generators. This
allows us to prove our third main result.

Main Result 3. The orbits in the full collineation group of a Freudenthal-Tits polar space of
triples of pairwise opposite generators are in natural correspondence with the conjugacy classes
of self-projectivities of length 3, which are polarities, with respect to the induced collineation
group of a given generator.

In fact the same holds for every polar space related to the third row of the Freudenthal-Tits
Magic Square. See below for an explicit enumeration.
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2 Preliminaries

The main mathematical notion of this paper is that of a polar space ∆ of finite rank r, which
we here introduce.

2.1 Abstract point-line geometries

A pair ∆ = (P,L ), with L a nonempty set of subsets of P , each one of size at least 2, is a(n
abstract) point-line geometry (P is the set of points, L the set of lines).

Points x, y ∈ X contained in a common line are called collinear, denoted x ⊥ y; the set of all
points collinear to x is denoted by x⊥; the set of all points collinear to all points of a set X ⊆ P
is denoted by X⊥. We will always deal with situations where every point is contained in at least
one line, so x ∈ x⊥.

We say that ∆ is connected if every pair of points can be joined with a finite sequence of
consecutively nondisjoint lines. The point-line geometry Γ is called a partial linear space if each
pair of distinct points is contained in at most one line.

A subspace of ∆ is a subset S of P such that, if x, y ∈ S are collinear and distinct, then all
lines containing both x and y are contained in S. We will often treat a subspace as a point-line
geometry, with naturally induced line set. A subspace S is singular if every pair of points in it
is collinear. If A is a set of points, then 〈A〉 denotes the subspace generated by A (that is, the
intersection of all subspaces containing A); if A consists of two distinct collinear points p and
q, then, if 〈A〉 is a unique line, it is sometimes briefly denoted by pq. A proper subspace H is
called a geometric hyperplane if each line of ∆ has either one or all its points contained in H. A
subgeometry ∆′ of ∆ = (P,L ) is a point-line geometry (P ′,L ′) where P ′ ⊆ P and the members
of L ′ are intersections of members of L with P ′. A subgeometry ∆′ = (P ′,L ′) is called full
if L ′ is a subfamily of L ; it is called complete if it is full and no member of L \L ′ is fully
contained in P ′; it is called ideal at the point p ∈ P ′ if no line of ∆ through p intersects P ′ in only
p (and p is called a deep point of ∆′); it is called ideal if it is ideal at all its points. A standard
argument shows that an ideal and full subgeometry of a connected geometry ∆ coincides with
∆ itself.

2.2 Polar spaces

In what follows, a projective space PG(V ) of dimension d ≥ 3 is the poset of subspaces of a
vector space V of dimension d + 1. The 1-dimensional subspaces of V are called the points of
PG(V ), and the 2-dimensional subspaces the lines. These form the natural point-line geometry
associated to PG(V ). A projective space of dimension 2 is an axiomatic projective plane, and
a projective space of dimension 1 is a set of size at least 3. We will usually make no distinction
between a projective space, its point-line geometry, or even its point set, when it is clear from
the context what is meant.

A polar space ∆ = (P,L ) is a point-line geometry satisfying the following four axioms, due to
Buekenhout and Shult [2], which simplify the axiom system in [13].
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(PS1) Every line contains at least three points, i.e., every line is thick.
(PS2) No point is collinear to every other point.
(PS3) Every nested sequence of singular subspaces is finite.
(PS4) The set of points incident with a given arbitrary line L and collinear to a given arbitrary

point p is either a singleton or coincides with L.

We will assume that the reader is familiar with the basic theory of polar spaces, see for instance
[1]. Let us recall that every polar space, as defined above, is a partial linear space and has a
unique rank, given by the length of the longest nested sequence of singular subspaces (including
the empty set); the rank is always assumed to be finite (by (PS3)) and at least 2 since we always
have a sequence ∅ ⊆ {p} ⊆ L, for a line L ∈ L and a point p ∈ L. A maximal singular subspace
of a polar polar space is also called a generator

Now let ∆ = (P,L ) be a polar space of rank r ≥ 2. It is well known that the generators
are mutually isomorphic projective spaces of dimension r − 1 (and so two arbitrary points of
∆ are contained in at most one line). Moreover, there is a (not necessarily finite) constant
t such that every singular subspace of dimension r − 2 (which we will call a subgenerator) is
contained in exactly t+ 1 generators. If t = 1, then we say that ∆ is of hyperbolic type, or is a
hyperbolic polar space. For each point p ∈ P , the set p⊥ is a geometric hyperplane with deep
point p. It is called a singular hyperplane, slightly confusing terminology since it is not singular
as a subspace, but we let historical reasons overrule this objection. Axioms (PS2) and (PS4)
together are equivalent to saying that for each point p, p⊥ is a geometric hyperplane. A Shult
space is a point-line geometry satisfying (PS4). If all singular subspaces are projective spaces,
and the Shult space satisfies (PS3), then the rank rk(∆) of the Shult space ∆ is the (projective)
dimension of a maximal singular subspace minus one. A Shult space is degenerate if (PS2) is
violated for some point.

A partial ovoid of a polar space ∆ is a set of mutually noncollinear points. A partial ovoid is
an ovoid if every generator intersects it in a unique point.

We will use some notions of the theory of buildings in polar spaces. For instance, two subspaces
are called opposite if no point of their union is collinear to every point of this union; in particular
two points are opposite if, and only if, they are not collinear and two maximal singular subspaces
are opposite if, and only if, they are disjoint. Opposite subspaces necessarily have the same
dimension. Also, the residue ∆p of a point p in a polar space ∆ of rank at least 3 is the point-
line geometry (Lp,Pp) with point set the set of lines containing p and line set the line pencils
with vertex p in planes of ∆ (planes are the 2-dimensional singular subspaces and are projective
planes). The residue ∆p is isomorphic (with the usual and obvious notion of isomorphism
between geometries, using the usual symbol ∼=) to the (point-line geometry induced by the)
subspace {p, q}⊥ = p⊥ ∩ q⊥, for any point q opposite p.

Finally, the dual of a point-line geometry ∆ = (P,L ) is the point-line geometry ∆∗ = (L ,P∗),
where a generic element of P∗ is the set of all lines of ∆ through a given point of ∆. If ∆ is a
polar space of rank 2 not of hyperbolic type, then the dual is again a polar space of rank 2, not
of hyperbolic type. Polar spaces of rank 2 and their duals are nontrivial examples of generalized
quadrangles (which are Shult spaces satisfying (PS2) and such that lines are the generators).
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2.3 Some specific polar spaces

As noted in the introduction, any polar space of rank at least 3 either arises from a form on a
vector space, or belongs to one of two classes of nonembeddable polar spaces. The ones arising
from a form in a vector space V admit an embedding (or representation) in the projective space
PG(V ) in that they are full subgeometries of the point-line geometry associated to PG(V ). We
give a few examples that are relevant for the sequel. We use notation borrowed from the theory
of Lie incidence geometries.

1. The symplectic polar space Cn,1(K) over a field K arises from a nondegenerate alternat-
ing form in a vector space of dimension 2n. Hence its point set is PG(2n − 1,K). A
generic line is the line spanned by the points with coordinates (x−n, . . . , x−1, x1, . . . , xn)
and (y−n, . . . , y−1, y1, . . . , yn) with x1y−1 − x−1y1 + · · ·+ xny−n − x−nyn = 0.

2. For a field K of characteristic 2 and a proper subfield K′ containing all squares of elements
of K, the complete subgeometry of PG(2n − 1,K) defined in coordinates by the points
satisfying x1x−1 + x2x−2 + · · · + xnx−n ∈ K′ is a subspace of Cn,1(K) defined above and
denoted by Cn,1(K,K′). Usually one also denotes Cn,1(K) by Cn,1(K,K).

3. Let A be either a separable quadratic extension of K, or a quaternion division algebra
over K. Let x 7→ x̄ be the standard involution in A as a quadratic algebra over K. Then
Cn,1(A,K) is the complete subgeometry of PG(2n − 1,A) defined by all points whose
coordinates satisfy x̄1x−1 + x̄2x−2 + · · ·+ x̄nx−n ∈ K. When A is commutative, or K has
characteristic different from 2, this point set coincides with the Hermitian variety with
equation x̄1x−1 − x̄−1x1 + · · ·+ x̄nx−n − x̄−nxn = 0.

4. Let A be either a separable extension of K, a quaternion division algebra over K, or an
octonion division algebra over K. Set d = dimKA. Let q(x) be the (anisotropic) norm of
x ∈ A as a quadratic division algebra. Set V = K×K×K×K×A, considered in the natural
way as a vector space over K, and define the complete subgeometry of PG(d+3,K) by the
equation x2x−2 +x1x−1 = q(x0), where (x−2, x−1, x1, x2) are coordinates in K×K×K×K
and x0 ∈ A. Then this defines a polar space B2,1(K,A) of rank 2. We will denote the
dual by C2,1(A,K), which is consistent with the previous example if A is associative by
Propositions 3.4.9, 3.4.11 and 3.4.13 of [14].

5. For every skew field K, the line Grassmannian of PG(3,K), denoted by A3,2(K), is a polar
space of rank 3, nonembeddabe in projective space if K is noncommutative. Its point set
is the set of lines of PG(3,K), whereas its line set is the set of all planar line pencils. If
K is commutative, then A3,2(K) is isomorphic to the hyperbolic polar space given by the
Klein quadric in PG(5,K).

6. For every octonion division algebra O there exists a unique polar space C3,1(O,K) of rank
3 whose planes are the nondesarguesian projective planes over O. A concrete description
is given in Subsection 6.1. The residue at each point is the polar space C2,1(O,K), and
witnesses consistency of the notation despite the separate definition of C3,1(A,K) for A = O
(however, the description in Subsection 6.1 holds for all quadratic alternative division
algebras A explaining the notational consistency). We will call C3,1(O,K) a Freudenthal-
Tits polar space (over O). If K ≤ L ≤ H ≤ O, with L a separable quadratic extension of
K and H a quaternion algebra over K, then we have the following natural inclusions, also
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denoted with the symbol ≤, of geometries

C3,1(K) ≤ C3,1(L,K) ≤ C3,1(H,K) ≤ C3,1(O,K).

2.4 Hyperbolic lines

Let ∆ = (P,L ) be a polar space, and let x, y be two opposite points. Then the hyperbolic line
through x and y is the set ({x, y}⊥)⊥ = {x, y}⊥⊥. A hyperbolic line is said to be nontrivial
if its size is at least 3. The hyperbolic lines of Cn,1(K) are nontrivial and are just the lines of
the ambient projective space that are not lines of the polar space. Also, the hyperbolic lines of
C3,1(A,K), with A either a separable extension of K, a quaternion division algebra over K, or an
octonion division algebra over K, are exactly the hyperbolic lines in all subgeometries C3,1(K)
naturally included (that is, by restricting A to K with respect to the descriptions we gave); these
inclusions have the property that each plane of the large polar space through a line of the small
polar space contains a unique plane of the small polar space.

3 Subspaces

Throughout this section ∆ = C3,1(O,K) = (P,L ) is a Freudenthal-Tits polar space for some
octonion division algebra over the field K. It is known that all hyperplanes of ∆ are singular
(Cohen and Shult [5]). Turning to arbitrary subspaces of ∆, we shall prove the following:

Theorem 3.1 Let X be a proper subspace of ∆. Then X is one of the following:

(1) a set of mutually opposite points;
(2) the union of a set of mutually noncoplanar lines through a given point of ∆;
(3) the union of a set of planes through a given line of ∆;
(4) a singular hyperplane a⊥ of ∆;
(5) the common perp {a, b}⊥ of two opposite points a, b of ∆.

The next lemma, proved in [11], is the first step in the proof of Theorem 3.1.

Lemma 3.2 Let X be a proper subspace of ∆. Then X is either as in cases (1)–(4) of The-
orem 3.1 or the induced geometry is a generalized quadrangle, closed under taking hyperbolic
lines.

Proof. This statement is indeed Lemma 2.16 of [11]. The following is a simplified version of the
proof we gave in [11] for that lemma. Let X be a proper subspace of ∆. So, X is a Shult space
or a partial ovoid. Suppose that X is not a partial ovoid, then its rank is at least 2. The residue
of a point of ∆ admits no proper full subquadrangle [14, Proposition 5.9.4]. Consequently, if
X is degenerate then it falls into one of the cases (2), (3) or (4) of Theorem 3.1. Suppose now
that X is nondegenerate and 2 ≤ rk(X) ≤ 3. If rk(X) = 3 then the fact that, as said above, the
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point-residues of ∆ admit no proper full subquadrangles, implies that X is an ideal subspace of
∆. Hence X = P . However X ⊂ P by assumption. Therefore rk(X) = 2. We shall now show
that if a, b are two opposite points of X then X ⊇ {a, b}⊥⊥.

Given two opposite points a, b of X, let x1, x2 be opposite points in {a, b}⊥ ∩X and let L1, L2

be opposite lines in {a, b}⊥ containing x1 and x2 respectively. Clearly, Li ∩ X = {xi}, since
rk(X) = 2. Put yi = x⊥j ∩ Li for {i, j} = {1, 2}. Then y1 and y2 are opposite and neither of

them belongs to X. The intersection {y1, y2}⊥ ∩X contains the points a, b, x1, x2, which form
an ordinary quadrangle. Hence {y1, y2}⊥ ∩ X is a full subquadrangle of {y1, y2}⊥. However
{y1, y2}⊥ admits no proper full subquadrangles by [14, Proposition 5.9.4]. Hence {y1, y2}⊥ ⊆ X.
In particular, {a, b}⊥⊥ ⊂ X, as claimed. 2

In view of Lemma 3.2, proving Theorem 3.1 amounts to proving the following:

Lemma 3.3 Let Q be a polar subspace of ∆ of rank 2, closed under taking hyperbolic lines.
Then Q = {a, b}⊥ for two noncollinear points a, b ∈ P .

3.1 Proof of Lemma 3.3

With Q as in the hypotheses of Lemma 3.3, let a be a point of ∆ exterior to Q. If a⊥ ⊇ Q
then we say that a is bright (with respect to Q), otherwise we say that a is faint. If a is faint
then the intersection a⊥ ∩ Q is a (geometric) hyperplane of Q, hence it is either a proper full
subquadrangle of Q, or the perp c⊥ ∩ Q in Q of a point c ∈ Q, or an ovoid of Q. We say that
a is of quadrangular, singular or ovoidal type according to whether the first, the second or the
third one of these three cases occurs.

Note that, as the residue ∆a at a point a ∈ P admits no proper full subquadrangles [14,
Proposition 5.9.4], we have {a, b}⊥ = 〈L,L′〉 for any two opposite lines L,L′ of {a, b}⊥.

Lemma 3.4 Let a 6∈ Q be either bright or faint of quadrangular type. Then every line through
a meets Q in a point, every plane through a meets Q in a line and we have a⊥ ∩Q ∼= ∆a.

Proof. As a⊥ ∩ Q is a full subquadrange of Q, possibly equal to Q, the lines of a which
meet Q nontrivially form a full subquadrangle of ∆a. Since, however, ∆a admits no proper full
subquadrangles, the assertions follow. 2

Corollary 3.5 If a bright point exists then Lemma 3.3 holds true.

Proof. Let a 6∈ Q be bright. Then Q ∼= ∆a by Lemma 3.4. We know that any two opposite
lines of ∆a span ∆a. Hence the same is true for Q. Let L,L′ be two opposite lines of Q. A point
b 6⊥ a exists such that L∪L′ ⊆ b⊥ (choose a plane α on L not containing a and put b := α∩L′⊥).
So, L ∪ L′ ⊆ {a, b}⊥. However {a, b}⊥ = 〈L,L′〉, as we know. Hence Q = {a, b}⊥. 2

Lemma 3.6 If there exist a faint point of singular type, then a bright point also exists.
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Proof. Let b 6∈ Q be such that b⊥ ∩ Q = c⊥ ∩ Q for some c ∈ Q. Let d ∈ Q be not collinear
with c. Let a be the unique point on 〈b, c〉 collinear to d. Then a⊥∩Q contains b⊥∩Q = c⊥∩Q
and the additional point d. Hence a⊥ ∩Q is a subquadrangle of Q, it is ideal at c, and since it
is also full, it coincides with Q by Propositions 1.8.1 and 1.8.2 of [14]. 2

In view of Lemma 3.6 and Corollary 3.5, we can focus on the following situation:

(∗) all points exterior to Q are faint and none of them has singular type.

If we show that this is impossible, then Lemma 3.3 is proved.

Lemma 3.7 Assume (∗) and let a be a faint point of quadrangular type. Then all points exterior
to Q and collinear with a are faint of quadrangular type.

Proof. If b ⊥ a then all planes through 〈a, b〉 meet Q in a line, by Lemma 3.4. Hence b cannot
be of ovoidal type. As no points of singular type exist, b is of quadrangular type. 2

Corollary 3.8 Assume (∗). Then all points exterior to Q are faint of quadrangular type.

Proof. Pick a point a of quadrangular type. Such a point always exists. Indeed, given any two
opposite lines L,L′ of Q, every point a ∈ (L∪L′)⊥ is (faint because of (∗) and) of quadrangular
type. By Lemma 3.7, all points in the same connected component of ∆ \ Q as a are faint
of quadrangular type. If ∆ \ Q is connected then we are done. Assuming that ∆ \ Q is not
connected, let b ∈ ∆ \Q belong to a connected component different from the one containing a.
Then {a, b}⊥ ⊆ Q. Therefore b⊥ ∩Q contains {a, b}⊥. Hence b is of quadrangular type. 2

End of the proof. Assume (∗). By Corollary 3.8, all points exterior to Q are faint of quadran-
gular type. Hence every line either is contained in Q or all of its points but at most one are faint
of quadrangular type. However, by Lemma 3.4, every line through a faint point of quadrangular
type meets Q in a point. So, every line meets Q nontrivially. It follows that Q is a hyperplane.
However we know from [5] that all hyperplanes of ∆ are singular. This contradiction shows that
the situation described in (∗) is impossible. 2

3.2 Comments on the nonembeddable hyperbolic case

As proved in [11] (Lemma 2.15), the statement of Theorem 3.1 also holds true if ∆ ∼= A3,2(K),
with K noncommutative. The proof we offered in [11] for that statement is fairly different from
the one we have given here for the Freudenthal-Tits polar spaces. However the present proof
suits that hyperbolic case as well, even word-by-word. The following is the unique difference
between these two cases: while in the Freudenthal-Tits case, for a full subquadrangle of ∆, being
closed under taking hyperbolic lines is a significant property, in the hyperbolic case this property
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comes down to a triviality. Apart from this, all the rest is the same. In particular, the proof
we have exposed here pivots on the following two facts: all hyperplanes are singular and the
residue of a point admits no proper full subquadrangles. Both these properties also hold true in
the hyperbolic case: the first one is proved by Cohen and Shult [5] for all nonembeddable polar
spaces, while the latter is trivial in the hyperbolic case.

4 Generating rank

We recall that the generating rank of a point-line geometry Γ is the minimum size of a set of
points of Γ which generates Γ. Obviously, the generating rank of an embeddable polar space of
rank n is at least 2n and every generalized quadrangle has generating rank at least 4. Thus, one
would quite naturally conjecture that a nonembeddable polar space of rank 3 has generating
rank at least 6. In this section we disprove this conjecture. Indeed, with the help of Theorem
3.1 and its hyperbolic analogue we shall prove the following:

Theorem 4.1 The generating rank of a nonembeddable polar space of rank 3 is equal to 5.

Before turning to the proof of Theorem 4.1, we mention a characterization of symplectic polar
spaces. Of course, nonembeddable polar spaces do not satisfy the hypothesis. The proof of
Theorem 4.1 will pivot on this remark.

Given a polar space ∆ = (P,L ), let H be the set of hyperbolic lines of ∆ and let L(∆) =
(P,L ∪H ) be the point-line geometry with the same points as ∆ but L ∪H as the family
of lines. It is folklore that this geometry is a linear space (any two distinct points are joined by
a unique line) and the polar space ∆ is symplectic if and only if L(∆) is a projective space. If
this is the case then we can choose L(∆) as Σ. The symplectic polarity of Σ = L(∆) associated
to ∆ maps every point x ∈ P onto the hyperplane x⊥ of ∆, which turns out to be a hyperplane
of L(∆) too. The property that x⊥ is geometric hyperplane of the point-line geometry L(∆) for
every x ∈ P is in turn equivalent to ∆ being symplectic. Indeed, as proved in [4] we have:

Proposition 4.2 The linear space L(∆) is projective if and only if x⊥ ∩ h 6= ∅ for every point
x ∈ P and every hyperbolic line h ∈H .

Proof of Theorem 4.1. Let ∆ be a nonembeddable polar space of rank 3. Let c1, c2, c3, c4
be four points of ∆ forming an ordinary quadrangle, say c1 ⊥ c2 ⊥ c3 ⊥ c4 ⊥ c1, c1 6⊥ c3 and
c2 6⊥ c4. We can also assume to have chosen these points in such a way that the lines 〈c1, c2〉 and
〈c3, c4〉 are mutually opposite. With c1, c2, c3 and c4 chosen in this way, we have 〈c1, c2, c3, c4〉 =
{a, b}⊥ for two opposite points a and b of ∆ by Theorem 3.1 (if ∆ is Freudenthal-Tits) or its
hyperbolic analogue (when ∆ ∼= A3,2(K), K not commutative). As ∆ is not a symplectic polar
space, Proposition 4.2 implies that there exists a point c0 such that c⊥0 ∩ {a, b}⊥⊥ = ∅. Let
X := 〈c0, c1, c2, c3, c4〉. Then X properly contains {a, b}⊥. By Theorem 3.1 (or its hyperbolic
analogue) either X = x⊥ for a point x ∈ P or X = P , which would prove the theorem. So we
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can assume that X = x⊥ and {a, b}⊥ ⊆ x⊥. This inclusion forces x ∈ {a, b}⊥⊥. However x ∈ c⊥0 ,
since c0 ∈ x⊥. Hence c⊥0 meets {a, b}⊥⊥ in a point, namely x. This contradicts the choice of c0.
Therefore X = P .

So, five points are enough to generate ∆. Clearly, four points cannot do the job: this is trivial
if the four points are pairwise non-collinear; if two of them are collinear, say they generate the
line L, then the other two points are collinear to at least one common point x of an arbitrary
plane through L and so the span of the four points is contained in the singular hyperplane x⊥.
Hence 5 is indeed the generating rank of ∆. 2

5 Self-projectivities of length 3

5.1 Some terminology and notation for dualities of projective spaces

We recall that a duality of a finite-dimensional projective space Σ is an anti-automorphism of
the poset of all subspaces of Σ, namely a bijection of that poset which reverses the inclusion
relation. A duality θ of Σ is a polarity precisely when θ = θ−1 (equivalently, θ2 is the identity
mapping).

A subspace X of Σ is absolute for a duality θ if {X, θ(X)} is a flag (possibly X = θ(X)). We
denote by A(θ) the set of subspaces which are absolute for θ. Clearly, A(θ) = A(θ−1) and
θ(A(θ)) = A(θ).

We say that a subspace X of Σ is θ-stable (also stable, for short, when the reference to θ is
clear from the context) when θ2(X) = X (equivalently, θ(X) = θ−1(X)). Let S(θ) be the set
of θ-stable subspaces of Σ. Then S(θ) = S(θ−1) and θ(S(θ)) = S(θ). Moreover, S(θ) is closed
under taking arbitrary intersections and spans.

Obviously, θ is a polarity if and only if all subspaces of Σ are stable; equivalently all points of
Σ are stable (equivalently, all hyperplanes of Σ are stable).

5.2 Dualities from self-projectivities of length 3

We recall that when ∆ is not hyperbolic, then for any pair of opposite generators of ∆ a third
generator always exists which is opposite both of them. The same holds true if ∆ is hyperbolic
but rk(∆) is even. When ∆ is hyperbolic of odd rank, then ∆ admits no triple of mutually
opposite generators.

For the rest of this subsection ∆ is a polar space of rank n ≥ 2, with n even when ∆ is
hyperbolic, and M1,M2,M3 are three pairwise opposite generators of ∆. For i 6= j let θji be the
projection from Mi onto Mj , which maps every projective subspace X of Mi onto X⊥∩Mj . For

{i, j, k} = {1, 2, 3} put θi,j,k = θik ◦ θkj ◦ θ
j
i . Note that θi,k,j = θ−1i,j,k. So, θi,j,k is a polarity if and

only if θi,j,k = θi,k,j .

Set θ := θ1,2,3. According to the notation introduced in the previous subsection, A(θ) and S(θ)
are the families of subspaces of M1 which are absolute for θ and θ-stable, respectively.
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Proposition 5.1 Let X be a projective subspace of M1 and let d = dim(X) be its dimension.

(1) Let d ≤ n/2−1. Then X ∈ A(θ) if and only if ∆ admits a singular subspace Y of dimension
dim(Y ) = 2d+ 1 such that Y contains X and meets each of M2 and M3 in a d-dimensional
subspace. Moreover, if X ∈ A(θ) then just one singular subspace Y exists which satisfies
these properties and, if Y is that subspace, then θ(X) = Y ⊥ ∩M1 and θ32(θ21(X)) = Y ∩M3.

(2) Let d ≥ n/2−1. Then X ∈ A(θ) if and only if ∆ admits a singular subspace Y of dimension
dim(Y ) = 2(n − d) − 3 such that Y is contained in X⊥ and meets each of X, M2 and M3

in a (n− d− 2)-dimensional subspace. If X ∈ A(θ) then just one singular subspace Y exists
with these properties and we have θ(X) = Y ∩M1 and θ21(X) = Y ∩M2.

Proof. Put X2 := θ21(X) and X3 := θ32(X2), for ease of notation. Let d ≤ n/2 − 1 and
suppose that X ∈ A(θ), so θ(X) ⊇ X. Then θ(X) = X⊥3 ∩M1 and X ⊥ X3, since X ⊆ θ(X)
by assumption. However X3 ⊥ X2. Hence X3 is contained in the generator M := 〈X,X2〉.
Accordingly, Y := 〈X,X3〉 is a (2d + 1)-dimensional subspace of M (recall that dim(X3) =
dim(X) = d and X3 ∩X = ∅). As dim(X2) = n− d− 2, the Grassmann formula for dimensions
yields dim(Y ∩X2) = d. So, Y enjoys the properties required in (1). In particular, θ(X) ⊥ Y
because Y = 〈X,X3〉 and θ(X) ⊥ X3. Hence θ(X) = X⊥3 ∩M1 = Y ⊥ ∩M1.

Conversely, suppose that a singular subspace Y as in (1) exists. Then Y = 〈X,Y ∩M2〉, X2 ⊇
Y ∩M2 and X2 ⊥ Y . Accordingly, X3 = Y ∩M3. Hence θ(X) = θ13(X3) = (Y ∩M3)

⊥∩M1 ⊇ X.
Note also that Y = 〈XX3〉. The uniqueness of Y is also proved.

Let now d ≥ n/2− 1 and put X ′ := θ(X). Then dim(X ′) = d′ := n− d− 2 ≤ n/2− 1. We have
X ∈ A(θ) if and only if X ′ ∈ A(θ). Claim (2) on X follows from claim (1) on X ′. 2

Corollary 5.2 We have A(θ) ⊆ S(θ).

Proof. The conditions which characterize Y in (1) and (2) of Proposition 5.1 are symmetric
with respect to M2 and M3. Moreover, θ(X) = Y ⊥ ∩M1 in case (1) and θ(X) = Y ∩M1 in case
(2) of Proposition 5.1. The inclusion A(θ) ⊆ S(θ) follows. 2

Proposition 5.1 also implies the following:

Corollary 5.3 A subspace X of M1 with dim(X) ≤ n/2 − 1 belongs to A(θ) only if X ⊆
〈M2,M3〉. In particular, all absolute points of θ belong to 〈M2,M3〉. Accordingly, they span M1

only if M1 ⊆ 〈M2,M3〉.

Example 5.4 Let ∆ be hyperbolic of even rank n. Then for any three mutually opposite
generators M1,M2,M3 of ∆, the duality θ1,2,3 is a symplectic polarity (the identity when n = 2).
The special case n = 6 of this claim is a step of the proof of Lemma 6.2 of [7] but the argument
used in [7] to prove that claim can easily be generalized to any even n, as follows. For x ∈M1,
put y = θ32θ

2
1(x). Then 〈x, θ21(x)〉 and 〈y, θ21(x)〉 coincide, as both of them meet M2 in θ21(x)

and the latter is a hyperplane of M1. Therefore y ⊥ x, namely x ∈ θ13(y). In other words,
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x ∈ θ1,2,3(x). It follows that all points of M1 are absolute for θ1,2,3. Hence θ1,2,3 is a symplectic
polarity.

The converse also holds true: if θ1,2,3 is a symplectic polarity for any choice of mutually opposite
generators M1,M2 and M3 then ∆ is hyperbolic and n is even; but we are not going to prove
this here.

5.3 Regularity

Henceforth ∆ is a polar space of rank n ≥ 2. We say that a pair {a, b} of noncollinear points
is regular precisely when (N ∪N ′)⊥ = {a, b}⊥⊥ for any pair of opposite subgenerators N,N ′ ⊆
{a, b}⊥. We say that ∆ is regular if every pair of noncollinear points of ∆ is regular.

Lemma 5.5 A pair {a, b} of noncollinear points of ∆ is regular if and only if

(R) for every generator M of ∆, the equality a⊥ ∩M = b⊥ ∩M implies M ∩ {a, b}⊥⊥ 6= ∅.

Proof. Let {a, b} be regular. Given M as in the hypotheses of (R), let N = a⊥ ∩M = b⊥ ∩M
and let N ′ be a subgenerator of ∆ contained in {a, b}⊥ and opposite N . Put c = N ′⊥ ∩M .
Then c ∈ N⊥ ∩ N ′⊥. Hence c ∈ {a, b}⊥⊥, since {a, b} is regular. So, M meets {a, b}⊥⊥ in a
point (namely c), as claimed in (R).

Conversely, suppose that (R) holds. Let N and N ′ be opposite subgenerators of ∆ contained
in {a, b}⊥. Let x ∈ (N ∪ N ′)⊥ and put M := 〈N, x〉 and M ′ := 〈N ′, x〉. Then M and M ′ are
generators of ∆ and M ∩M ′ = {x}. Moreover M ∩ {a, b}⊥ = N . Hence M contains a point
c ∈ {a, b}⊥⊥, by (R). We have c ⊥ N ∪N ′ because c ∈ {a, b}⊥⊥. Moreover c ⊥ x, as c, x ∈ M .
Therefore c ⊥ M ′. This forces c ∈ M ′. Hence c = x. So, x ∈ {a, b}⊥⊥. Thus we have proved
that N⊥ ∩N ′⊥ ⊆ {a, b}⊥⊥, consequently {a, b} is regular. 2

Corollary 5.6 If ∆ is hyperbolic, then it is regular.

Proof. The hypotheses of property (R) of Lemma 5.5 are vacuous when ∆ is hyperbolic. Hence
(R) trivially holds true in this case. 2

Lemma 5.7 Suppose that n > 2 and let a, c, b, d be four distinct points forming an ordinary
quadrangle in ∆, more exactly a ⊥ c ⊥ b ⊥ d ⊥ a, a 6⊥ b and c 6⊥ d. Then

{a, b}⊥⊥ = {a, b, c, d}⊥⊥ ∩ {c, d}⊥.

In other words, the hyperbolic line of {c, d}⊥ through a and b is just the same as {a, b}⊥⊥.

Proof. Clearly, {a, b}⊥⊥ ⊆ {a, b, c, d}⊥⊥∩{c, d}⊥. We shall prove that the reverse inclusion also
holds. Let x ∈ {a, b, c, d}⊥⊥ ∩ {c, d}⊥. Then x⊥ contains both 〈{a, b, c, d}⊥ ∪ {c}〉 = {c, a, b}⊥
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and 〈{a, b, c, d}⊥ ∪ {d}〉 = {d, a, b}⊥. However {c, a, b}⊥ and {d, a, b}⊥ are distinct singular hy-
perplanes of {a, b}⊥ and the latter is a polar space of rank n − 1 ≥ 2. Therefore {a, b}⊥ is
spanned by {c, a, b}⊥ ∪ {d, a, b}⊥. Consequently x⊥ ⊇ {a, b}⊥, that is x ∈ {a, b}⊥⊥. 2

Recall that ∆p stands for the residue of ∆ at a point p of ∆. We extend this notation to singular
subspaces: for a singular subspace X of ∆ of dimension m < n−1 we denote by ∆X the star of ∆
at X, that is the residue of a flag F = {Xi}mi=0 of ∆, where X0 ⊂ X1 ⊂ ... ⊂ Xm−1 ⊂ Xm = X.

Proposition 5.8 Let n > 2. Then ∆ is regular if and only if ∆p is regular for every point p.

Proof. Suppose that ∆ is regular and let p be a point of ∆. Then ∆p
∼= {p, q}⊥ for any

point q 6⊥ p. So, we can switch from ∆p to {p, q}⊥. We shall prove that property (R) holds
in {p, q}⊥. For two noncollinear points a, b ∈ {p, q}⊥ let N be a generator of {p, q}⊥ such that
a⊥ ∩N = b⊥ ∩N . Let h be the hyperbolic line of {p, q}⊥ through a and b. We must prove that
N meets h in a point. However, {a, b}⊥⊥ ⊆ h (in fact {a, b}⊥⊥ = h, as proved in Lemma 5.7,
but we do not need this fact here). By (R), which holds in ∆ by assumption, {a, b}⊥⊥ meets
M = 〈N, p〉 in a point, say c, which necessarily belongs to h as {a, b}⊥⊥ ⊆ h. The ‘only if’ part
is proved.

Turning to the ‘if’ part, suppose that ∆p is regular for every point p of ∆. For a generator M and
two noncollinear points a, b of ∆, suppose that M ∩a⊥ = M ∩ b⊥. So, X := M ∩a⊥ = M ∩ b⊥ is
a subgenerator of ∆. Choose a point p ∈ {a, b}⊥ \X⊥, a point q ∈ X \ p⊥ and let N := p⊥ ∩M .
Then a, b ∈ {p, q}⊥, N is a generator of {p, q}⊥ and N ∩ a⊥ = N ∩ b⊥ = N ∩X. Let h be the
hyperbolic line of {p, q}⊥ through a and b. By property (R), which holds in {p, q}⊥ ∼= ∆p by
assumption, N meets h in a point. However h = {a, b}⊥⊥ by Lemma 5.7. Hence N∩{a, b}⊥⊥ 6= ∅
and, therefore, M ∩ {a, b}⊥⊥ 6= ∅. 2

Corollary 5.9 Let n > 2. Then all the following are equivalent:

(1) ∆ is regular;
(2) ∆X is regular for every singular subspace X of dimension dim(X) ≤ n− 3;
(3) ∆X is regular for every d-dimensional singular subspace X, for some d ∈ {0, 1, ..., n− 3};
(4) ∆X is regular for some d-dimensional singular subspace X, for some d ∈ {0, 1, ..., n− 3}.

Proof. Obviously (2) implies (3), and (3) implies (4). If ∆ is regular then ∆p is regular for
every point p of ∆, by Proposition 5.8. If ∆p is regular for every point p then, for every line
L = 〈p, q〉, the star ∆L

∼= (∆p)q is regular, by Proposition 5.8 applied to ∆p. Claim (2) follows
by iterating this argument as many times as we can. So, (1) implies (2). By reversing the
above argument we can prove that (3) implies (1). For instance, if ∆L is regular for every line
L = 〈p, q〉, then ∆p is regular for every point p by Proposition 5.8; therefore ∆ is regular, again
by Proposition 5.8. Finally, it is well known that all point residues of a polar space of rank at
least 3 are mutually isomorphic; an obvious inductive argument then shows that (4) implies (3).
2

The following is also worth a mention. We refer to [10] for the proof.
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Theorem 5.10 Let ∆ be embeddable. Then ∆ is regular if and only if it admits a (2n − 1)-
dimensional embedding.

Proposition 5.11 Let n = 3 and suppose that ∆ is nonembeddable. Then ∆ is regular.

Proof. We have already noticed that ∆ is regular whenever it is hyperbolic (Corollary 5.6). If
∆ is a Freudenthal-Tits polar space, Proposition 5.9.4 of [14] yields the conclusion. 2

5.4 Regularity and the Three Generators Property

Given three mutually opposite generators M1,M2 and M3 of a polar space ∆, let θM1,M2,M3 be
the duality called θ1,2,3 in Section 5.2, now keeping track of M1,M2 and M3 in our notation.
Consider the following property of a polar space ∆:

(3G) (Three Generators Property) The self-projectivity θM1,M2,M3 of length 3 is a polarity,
for any choice of mutually opposite generators M1,M2 and M3 of ∆.

This is Freudenthal’s ‘Axiom C’ in Section 17 of [8] (stated in the real context there). After
Corollary 5.13 below, we discuss in a bit more detail its role in Freudenthal’s approach.

The following is a rather unexpected connection.

Theorem 5.12 The polar space ∆ is regular if and only if (3G) holds in it.

Proof. Suppose first that ∆ is hyperbolic. Then ∆ is regular (Corollary 5.6). Turning to
(3G), when n is odd then ∆ admits no triple of mutually opposite generators. In this case the
assumption on the generators in property (3G) is vacuous, hence (3G) trivially holds. If n is
even then (3G) holds true, as shown in Example 5.4. So, when ∆ is hyperbolic, both terms of
the equivalence we want to prove are true; hence the equivalence as well holds true.

For the rest of this proof we assume that ∆ is not hyperbolic. Let ∆ be regular and let
θ = θM1,M2,M3 , for three pairwise opposite generators M1,M2,M3. Recall that θ−1 = θM1,M3,M2 .
By contradiction, suppose that θ 6= θ−1 and let N1 be a subgenerator contained in M1 such
that θ(N1) 6= θ−1(N1) (hence N1 cannot be absolute, by Corollary 5.2). For {i, j} = {2, 3}
set pi := N⊥1 ∩ Mi and Nj := p⊥i ∩ Mj , {i, j} = {1, 2}. So p1 := θ(N1) = N⊥3 ∩ M1 and
p′1 := θ−1(N1) = N⊥2 ∩M1 are assumed to be distinct. Moreover, neither of them belongs to
N1. Accordingly, p3 6∈ N3 and p2 6∈ N2. Hence p2 6⊥ p3. Moreover, {p2, p3}⊥ ∩M1 = N1. By
property (R), M1 meets {p2, p3}⊥⊥ in a point, say p0. Note that N2 ∪ N3 ⊆ {p2, p3}⊥. Hence
N2 ∪N3 ⊆ p⊥0 . Consequently, since p0, p

′
1 ∈ N⊥2 and p0, p1 ∈ N⊥3 , and both N⊥2 and N⊥3 meet

M1 only in a point, we conclude p′1 = p0 = p1. This contradiction shows that θ = θ−1, as
claimed in (3G).

Conversely, assume property (3G). Let M1 be a generator of ∆ and let a, b be noncollinear points
such that M1∩a⊥ = M1∩b⊥ =: N1, as in the hypotheses of (R). Select a generator M2 containing
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a and opposite M1, let N2 = b⊥∩M2 and p := M1∩N⊥2 . So, p = θM1,M3,M2(N1) = θ−1M1,M2,M3
(N1)

for any choice of a generator M3 opposite both M1 and M2 and containing b. According to (3G),
we also have p = θM1,M2,M3(N1) for every choice of M3 as above. On the other hand, every point
x ∈ {a, b}⊥ \ (N1 ∪ N2) belongs to at least one such generator M3 (consider the residue ∆b to
see this), hence it also belongs to N3 := a⊥ ∩M3. However p ⊥ N3, as p = θM1,M2,M3(N1).
Therefore x ⊥ p. Consequently p⊥ ⊇ {a, b}⊥, that is, p ∈ {a, b}⊥⊥. So, M1 ∩ {a, b}⊥⊥ 6= ∅, as
claimed in (R). 2

By Theorem 5.12, Proposition 5.8, Theorem 5.10 and Corollary 5.9 we get the following:

Corollary 5.13 Let ∆ be any polar space of rank n > 2. Then the following are equivalent:

(1) Property (3G) holds in ∆;
(2) Property (3G) holds in ∆X for every singular subspace X of dimension dim(X) ≤ n− 3;
(3) for some nonnegative integer d ≤ n − 3 and every d-dimensional singular subspace X,

property (3G) holds in ∆X ;
(4) for some nonnegative integer d ≤ n − 3 and some d-dimensional singular subspace X,

property (3G) holds in ∆X ;
(5) either ∆ is nonembeddable, or ∆ admits a (2n− 1)-dimensional embedding.

Digression on the role of Freudenthal’s Axiom C. In [8], Freudenthal states three axioms,
called A, B and C, satisfied by the polar spaces C3,1(R), C3,1(C,R), C3,1(H,R) and C3,1(O,R)
(with H the real quaternion and O the real octonion division rings). Briefly, the first two axioms
A and B boil down to the axioms of a polar space of rank 3 with planes PG(2,R), PG(2,C),
PG(2,H) and PG(2,O), respectively, and his Axiom C is equivalent to (3G). In view of (5) of
Corollary 5.13, the latter axiom is necessary for the first three polar spaces, but not sufficient.
This is best illustrated by the fact that Freudenthal needs the octonions to show that the
polar space is not of hyperbolic type (and indeed, in the other cases polar spaces of hyperbolic
type exist). For C3,1(O,R), the axiom (3G) is of course not necessary, as we know from Tits’
classification [13]. Nevertheless, it may be considered a tour-de-force that Freudenthal succeeds
in showing that his axioms with the octonions characterize the real Freudenthal-Tits polar space.
Note also that Freudenthal, although not stating it explicitly in an axiom, uses the assumption
that there are disjoint planes, which is a non-degeneracy condition equivalent to (PS2).

However, Freudenthal was slightly too optimistic in stating a consequence of his axiom C, here
called (3G). Indeed, in Paragraph 16.22 of [8], it is claimed that (3G) implies that every self-
projectivity of length 3 of a line is an involution. But this is not true. The purpose of the next
subsection is to show this and to propose an alternative (given by (3S1) below).

5.5 Controlled self-projectivities of length 3 of subspaces

Let ∆ be a polar space of rank n > 2. Given three mutually opposite singular subspaces X1, X2

and X3 of ∆, of (the same) positive dimension d < n, let θX1,X2,X3 be, with self-explaining
notation, the self-projectivity X1 → X2 → X3 → X1 of length 3. The following property is
analogous to and a generalisation of the Three Generators Property.
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(3Sd) The duality θX1,X2,X3 is a polarity for any choice of mutually opposite d-dimensional
singular subspaces X1, X2, X3 such that X1 ∪X2 ∪X3 ⊆ Y ⊥ for at least one (n− d− 2)-
dimensional singular subspace Y .

Here, we might say that Y controls {X1, X2, X3}. Also, clearly, (3Sn−1) is the same as (3G).

Proposition 5.14 The following are equivalent:

(1) Property (3G) holds in ∆;
(2) Property (3Sd) holds in ∆ for any d ∈ {1, 2, ..., n− 1};
(3) Property (3Sd) holds in ∆ for some d ∈ {1, 2, ..., n− 2}.

Proof. Clearly (2) implies (3). Assume (3). Let Y and Y ′ be two mutually opposite (n−d−2)-
dimensional singular subspaces. Then (Y ∪Y ′)⊥ ∼= ∆Y . Property (3Sd) implies that (3G) holds
in ∆Y . By Corollary 5.13, property (3G) holds in ∆. So, (3) implies (1). We shall now prove
that (1) implies (2).

Assume (3G). Let Y be an (n− d− 2)-dimensional singular subspace and X1, X2, X3 three mu-
tually opposite d-dimensional singular subspaces contained in Y ⊥. As X1, X2, X3 are mutually
opposite, we have Xi ∩ Y = ∅ for i = 1, 2, 3 (equivalently, 〈Xi, Y 〉 is a generator of ∆) and
〈Xi, Y 〉∩〈Xj , Y 〉 = Y for 1 ≤ i < j ≤ 3. Choose an (n−d−2)-dimensional singular subspace Y ′

opposite Y . If Z is a singular subspace contained in Y ⊥ \ Y then the intersection 〈Z, Y 〉 ∩ Y ′⊥
is a singular subspace, it is still contained in Y ⊥ \ Y and has the same dimension as Z. In
particular, if x is a point of Y ⊥ \ Y then Y ′⊥ meets 〈x, Y 〉 in a point. In the sequel, for a
singular subspace Z ⊆ Y ⊥ \Y we put Z ′ := 〈Z, Y 〉∩Y ′⊥. In particular, if x is a point of Y ⊥ \Y
then x′ := 〈x, Y 〉 ∩ Y ′⊥.

With this notation, X ′1, X
′
2, X

′
j are mutually opposite d-dimensional singular subspaces in (Y ∪

Y ′)⊥. Moreover, for x ∈ Xi, we have x′⊥ ∩X ′j = 〈x⊥ ∩Xj , Y 〉 ∩ Y ′⊥. Therefore θX′
1,X

′
1,X

′
2
(x′) =

〈θX1,X2,X3(x), Y 〉∩Y ′⊥ for every point x ∈ X1. However θX′
1,X

′
2,X

′
3

is a polarity, since (3G) holds

in (Y ∪Y ′)⊥ ∼= ∆Y by Corollary 5.13 (recall that (3G) holds in ∆ by assumption). Accordingly,
θX1,X2,X3 is also a polarity. Thus, we have proved that (1) implies (2). 2

5.6 Free self-projectivities of length 3 for lines

For three mutually opposite lines L1, L2 and L3 of ∆, let θL1,L2,L3 be the permutation of L1

defined as in Section 5.5. If ∆ is regular and (L1 ∪ L2 ∪ L3)
⊥ contains an (n − 3)-dimensional

singular subspace then θL1,L2,L3 is an involution, by Theorem 5.12 and Proposition 5.14. When
n = 2 the hypothesis that the triple {L1, L2, L3} is controlled by an (n−3)-dimensional singular
subspace is vacuous. In contrast, when n > 2 that hypothesis severely restricts the class of
triples to be considered and it cannot be removed. Indeed:

Theorem 5.15 Let ∆ be a polar space of rank n > 2. When n = 3, suppose moreover that
∆ 6∼= A3,2(F2). Then a triple of mutually opposite lines L1, L2, L3 always exists such that θL1,L2,L3

is not an involution.
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Proof. By contradiction, suppose that

(3L) the permutation θL1,L2,L3 is an involution for any choice of mutually opposite lines L1, L2, L3.

Given two opposite lines L2, L3 and a point x2 ∈ L2, let x3 := x⊥2 ∩ L3. Choose a point
x1 ∈ x⊥2 \ x⊥3 in such a way that x⊥1 ∩ L2 = {x1} and put y3 := x⊥1 ∩ L3 and y2 := y⊥3 ∩ L2.
We have y3 6= x3 and y2 6= x2 by the choice of x1. Choose any line X through x3 different from
both L3 and 〈x2, x3〉 and let y1 = x⊥1 ∩X. Put L1 := 〈x1, y1〉. Assume that L1 is opposite both
L2 and L3. Then (3L) forces y2 ⊥ y1. In other words, if y1 ∈ {x1, x3}⊥ and L1 = 〈x1, y1〉 is
opposite both L2 and L3, then y1 ∈ y⊥2 . We shall prove that this forces y2 ∈ {x1, x3}⊥⊥, but
before to come to that we must consider the case where L1 is opposite either L2 or L3.

Suppose first that L2 ⊆ z⊥ for a point z ∈ L1. Then x2 ⊥ z. Also z 6= x1 by the choice of x1.
Hence x⊥2 ⊇ L1. In particular, x2 ⊥ y1. On the other hand, let L1 contain a point z such that
z⊥ ⊇ L3. Then z ⊥ y3. However, y3 ⊥ x1 6= z (recall that x1 6⊥ x3 by the choice of x1). Hence
y⊥3 ⊇ L1. In particular, y3 ⊥ y1.

Thus, we have proved that y2 ⊥ x for every point x ∈ {x1, x3}⊥ \ (x⊥2 ∪ y⊥3 ). However, as
∆ 6∼= A3,2(F2), the set {x1, x3}⊥ \ (x⊥2 ∪ y⊥3 ) is large enough to generate the whole of {x1, x3}⊥.
Therefore y⊥2 ⊇ {x1, x3}⊥, that is, y2 ∈ {x1, x3}⊥⊥, as claimed.

We have obtained this conclusion only exploiting the fact that y⊥2 contains two points of
{x1, x3}⊥, namely x2 and y3. It follows that, for any choice of three noncollinear points a, b
and c, if |c⊥ ∩ {a, b}⊥| > 1 then c ∈ {a, b}⊥⊥. However this is impossible, since n > 2. A final
contradiction has been reached. 2

Remark 1 The case ∆ ∼= A3,2(F2) is a true exception to the conclusion of Theorem 5.15,
because it is easy to see that, for any skew field K, three pairwise opposite lines in A3,2(K)
intersect at least one common generator of each kind.

6 Orbits on triples of opposite singular planes

Throughout this section ∆ = (P,L ) is the Freudenthal-Tits polar space over the octonion
division ring O, with standard involution x 7→ x̄.

6.1 A description of ∆ by means of coordinates

We introduce the explicit description of ∆ as given in [6]. First we define six kind of points.
Then the point set P is the union of these six sets.

(A) We denote by (∞) a unique point of ∆ and call it the point of Type A.

(B) For each x ∈ O define the point (x) and call it a point of Type B.

(C) For each x1, x2 ∈ O, we define the point (x1, x2) and call it a point of Type C.
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(D) For each x1, x2 ∈ O and each k ∈ K, we define the point (x1, x2; k) and call it a point of
Type D.

(E) For each x1, x2, x3 ∈ O and each k ∈ K, we define the point (x1, x2, x3; k) and call it a
point of Type E.

(F) For each x1, x2, x3, x4 ∈ O and each k ∈ K, we define the point (x1, x2, x3, x4; k) and call
it a point of type F.

We now define eight families of subsets of P which we call planes.

(I) We denote by [∞] the set consisting of the points

p1(a, b) := (a, b),

p2(s) := (s),

p∗3 := (∞),

where a, b, s ∈ O. We call [∞] the plane of Type I.

(II) For every k ∈ K, we denote by [k] the set consisting of the points

p1(a, b) := (a, b; k),

p2(s) := (s),

p∗3 := (∞),

where a, b, s ∈ O. We call [k] a plane of Type II.

(III) For every x ∈ O and every k ∈ K, we denote by [x; k] the set consisting of the points

p1(a, b) := (x, a, b; k),

p2(s) := (−x̄, s),
p∗3 := (∞),

where a, b, s ∈ O. We call [x; k] a plane of Type III.

(IV) For every x ∈ O and all k, ` ∈ K, we denote by [x; k, `] the set consisting of the points

p1(a, b) := (a, x+ `a, b; k + x̄a+ āx+ `aā),

p2(s) := (x̄, s; `),

p∗3 := (∞),

where a, b, s ∈ O. We call [x; k, `] a plane of Type IV.
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(V) For all x1, x2 ∈ O and every k ∈ K, we denote by [x1, x2; k] the set consisting of the points

p1(a, b) := (−x̄2,−x̄1, a, b; k),

p2(s) := (s, x1 + x2s),

p∗3 := (x2),

where a, b, s ∈ O. We call [x1, x2; k] a plane of Type V.

(VI) For all x1, x2 ∈ O and all k, ` ∈ K, we denote by [x1, x2; k, `] the set consisting of the
points

p1(a, b) := (−x̄2, a, x̄1 + ka, b; `+ x1a+ āx̄1 + kaā),

p2(s) := (s, x1 + x2s; k),

p∗3 := (x2),

where a, b, s ∈ O. We call [x1, x2; k, `] a plane of Type VI.

(VII) For all x1, x2, x3 ∈ O and all k, ` ∈ K, we denote by [x1, x2, x3; k, `] the set consisting of
the points

p1(a, b) := (a,−x̄3 + x1a, b, x̄2 + ka− x̄1b; `+ x2a+ āx̄2 + kaā),

p2(s) := (x1, s, x2 + x3s; k),

p∗3 := (−x̄1, x3),

where a, b, s ∈ O. We call [x1, x2, x3; k, `] a plane of Type VII.

(VIII) For all x1, x2, x3 ∈ O and all k, `,m ∈ K, we denote by [x1, x2, x3; k, `,m] the set
consisting of the points

p1(a, b) := (a, b, x̄3 + `b+ x1a, x̄2 + ka+ x̄1b;

m+ x2a+ āx̄2 + x3b+ b̄x̄3 + kaā+ `bb̄+ (āx̄1)b+ b̄(x1a)),

p2(s) := (s, x1 + `s, x2 + x3s; k + x̄1s+ s̄x1 + `ss̄),

p∗3 := (x̄1, x3; `),

where a, b, s ∈ O. We call [x1, x2, x3; k, l,m] a plane of Type VIII.

Now, by definition, the set L of lines of ∆ consists of the intersection of two distinct planes
sharing at least two points. Alternatively, for each plane in the list above, the lines are given by
the sets 

{p∗3} ∪ {p2(s) | s ∈ O},
{p∗3} ∪ {(p1(a, b) | b ∈ O}, for all a ∈ O,
{(s)} ∪ {a, sa+ k) | a ∈ O}, for all s, k ∈ O.
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6.2 Explicit calculation of a self-projectivity of length 3 in ∆

Let πi, i = 1, 2, 3, be three pairwise opposite planes of ∆. We may choose coordinates so that
π1 = [∞] and π2 = [0, 0, 0; 0, 0, 0]. Let θ = θ1,2,3 be the duality of π1 defined as in Section 5.2.
We recall that θ is obtained by projecting π1 onto π2, π2 in turn onto π3 and finally π3 onto π1.
We know from Proposition 5.11 and Theorem 5.12 that θ is a polarity. By well known properties
of plane polarities (which the readers can easily check for themselves), there exists a triangle
p1, p2, p3 in π1 such that θ(p1) = 〈p2, p3〉 and θ(p2) = 〈p1, p3〉.

With p1, p2 and p3 as above, we can assume to have chosen coordinates in such a way that
p1 = (∞), p2 = (0) and p3 = (0, 0). So, θ((∞)) = 〈(0), (0, 0)〉 and θ((0)) = 〈(∞), (0, 0)〉.

As in Section 5.2, let θ21 be the projection of π1 onto π2. Then θ21((∞)) = 〈(0, 0; 0), (0, 0, 0; 0)〉
and θ21((0)) = 〈(0, 0; 0), (0, 0, 0, 0; 0)〉 (the latter can be seen inside the plane [0, 0; 0, 0] of Type
VI; the former inside the plane [0; 0, 0] of Type IV). Hence π3 contains a point collinear to (0),
(0, 0), (0, 0; 0) and (0, 0, 0; 0), and also a point collinear to (∞), (0, 0), (0, 0; 0) and (0, 0, 0, 0; 0).

An arbitrary plane through (0) and (0, 0) distinct from π1 is of Type V and has coordinates
[0, 0; k], for some k ∈ K, as can readily be deduced. Likewise, an arbitrary plane through
(0, 0; 0) and (0, 0, 0; 0) is either of Type IV and coincides with [0; 0, 0], or is of Type VIII and
has coordinates [0, 0, 0; 0, 0, `], for some ` ∈ K. Type IV and Type V planes are disjoint, and
so are Type I and Type VIII planes; Type V and Type VIII planes only have Type F points
in common. The points of Type F of [0, 0; k] are (0, 0, a, b; k), and those of [0, 0, 0; 0, 0, `] are
(c, d, 0, 0; `), a, b, c, d ∈ O. Type I and Type IV planes only have (∞) in common. Hence we
conclude {(0), (0, 0)}⊥ ∩ {(0, 0; 0), (0, 0, 0; 0)}⊥ = {(0, 0, 0, 0;m) | m ∈ K} ∪ {(∞)}.

An arbitrary plane through (∞) and (0, 0) distinct from π1 is of Type III and has coordinates
[0; k], for some k ∈ K, as can readily be deduced. Likewise, an arbitrary plane through (0, 0; 0)
and (0, 0, 0, 0; 0) is either of Type VI and coincides with [0, 0; 0, 0], or is of Type VIII and has
coordinates [0, 0, 0; `, 0, 0], for some ` ∈ K. Type III and Type VI planes are disjoint, and so
are Type I and Type VIII planes; Type III and Type VIII planes only have Type E points in
common. The points of Type E of [0; k] are (0, a, b; k), and those of [0, 0, 0; `, 0, 0] are (c, 0, 0; `),
a, b, c ∈ O. The Type I plane π and Type VI planes only have (0) in common. Hence we
conclude {(∞), (0, 0)}⊥ ∩ {(0, 0; 0), (0, 0, 0, 0; 0)}⊥ = {(0, 0, 0; k) | k ∈ K} ∪ {(0)}.

Now it is easy to check that the only planes of Type VIII (other types are not opposite π1)
containing the points (0, 0, 0; k) and (0, 0, 0, 0;m) are αk,`,m := [0, 0, 0; k, `,m], k, `,m ∈ K.
Moreover, α0,`,m has (0, 0, 0; 0) in common with π2; αk,0,m has (0, 0; 0) in common with π2 and
αk,`,0 has (0, 0, 0, 0; 0) in common with π2. Hence k, `,m ∈ K×.

Similarly we now calculate that θ((0, 0)) = 〈(∞), (0)〉. We now calculate the image of an
arbitrary point (x, y) ∈ π1 under the action of θ. That point lies in the plane [−x̄, 0, y; 0, 0],
which intersects π2 in the line {(a,−ȳ − x̄a, 0, 0; 0) | a ∈ O} ∪ {(−x̄, 0, 0; 0)}. This line is
contained in the planes π`′ of Type VIII with coordinates [`′x̄, `′yx̄, `′y; `′xx̄, `′, `′yȳ], ` ∈ K.
Since we are looking at a generic point, we find the points of Type F which are the intersection
of π`′ and π3 = [0, 0, 0; k, `,m]. Such a point has coordinates (a, b, ∗, ∗; ∗), and comparing the
entries blanked out by ∗ in the expressions of the points belonging to both planes, we obtain
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the following equalities.

`b = `′ȳ + `′b+ `′x̄a, (1)

ka = `′xȳ + `′xx̄a+ `′xb, (2)

m+ kaā+ `bb̄ = `′yȳ + `′(yx̄)a+ `′ā(xȳ) + `′yb+ `′b̄ȳ

+`′xx̄aā+ `′bb̄+ `′(āx)b+ `′b̄(x̄a). (3)

Note that `′ 6= 0 otherwise (1) and (2) force a = b = 0, hence m = 0 from (3), while m ∈ K×.
Equations (1) and (2) yield `xb = ka. This in particular implies that b belongs to the skew field
generated by x and a, and, substituting xb by `−1ka in (2), a is a K-multiple of xȳ. Hence the
four triple products in (3) are associative. Multiplying (1) at the left with b̄, and (2) at the left
with ā, and substituting this in (3), we obtain

m = `′yȳ + k−1``′xx̄yb+ `′yb.

This implies

(yȳ)b = k(m− `′yȳ)(``′xx̄+ k`′)−1ȳ. (4)

We can safely assume that `xx̄+ k 6= 0. Indeed we aim at a description of θ(p) for p = (x, y) a
generic point of π1 of type C. So, we may freely assume that whatever we need to be nonzero
is indeed such, even if we will miss a tiny set of points because of this. In fact, we will miss
precisely the absolute points of type C but once we know how θ acts on nonabsolute points, we
also know its action on the absolute ones too.

On the other hand, substituting a = k−1`xb in (1), we obtain

(k`− k`′ − ``′xx̄)b = k`′ȳ. (5)

Comparing (4) and (5), we calculate

`′−1 = `−1 + k−1xx̄+m−1yȳ, (6)

and substituting this back in (5) we finally obtain

b = m`−1y−1 and a = mk−1xy−1.

As above, we can safely assume that mk + `(mxx̄ + kyȳ) 6= 0. Hence the sought intersection
point is

(mk−1xy−1,m`−1y−1,mxy−1,my−1;m2(yȳ)−1(`−1 + k−1xx̄+m−1yȳ)).

From the formulae of planes of Type V follows that the line of [∞] containing all points collinear
to that point has equation Y = −m`−1ȳ−1 − mk−1(ȳ−1x̄)X. Its slope (point at infinity) is
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(−mk−1ȳ−1x̄). If we denote by [[∞]] the line at infinity of π1 (we use double brackets to avoid
confusion with the planes of ∆), by [[a, b]] the line with equation Y = aX + b and by [[a]] the
line with equation X = a, then with a standard method we can now determine all images under
θ:

(∞) 7→ [[0, 0]],

(0) 7→ [[0]],

(x) 7→ [[−mk−1x̄−1, 0]], x 6= 0,

(0, 0) 7→ [[∞]],

(x, 0) 7→ [[−k`−1x̄−1]], x 6= 0,

(x, y) 7→ [[−mk−1ȳ−1x̄,−m`−1ȳ−1]], y 6= 0,

[[∞]] 7→ (0, 0),

[[0]] 7→ (0),

[[a]] 7→ (−k`−1ā−1, 0), a 6= 0,

[[0, 0]] 7→ (∞),

[[a, 0]] 7→ (−mk−1ā−1), a 6= 0,

[[a, b]] 7→ (k`−1āb̄−1,−m`−1b̄−1), b 6= 0.

The set of absolute points for θ is given by

{(x, y) | k−1xx̄+m−1yȳ + `−1 = 0} ∪ {(x) | m−1xx̄+ k−1 = 0}.

We can now state the main theorem of this section. Recall that two polarities θ and θ′ of a
projective plane π are said to be equivalent, in symbols θ ∼ θ′, if θ′ = γ−1θγ for a collineation
γ of π.

Theorem 6.1 Given two opposite planes π1 and π2 of ∆, let π3 and π′3 be planes of ∆ opposite
both π1 and π2 and let θ := θπ1,π2,π3 and θ′ := θπ1,π2,π′

3
be the polarities of π1 defined by the

self-projectivities of length 3 associated with {π1, π2, π3} and {π1, π2, π′3} respectively. Let Gπ1,π2
be the stabilizer of π1 and π2 in G := Aut(∆). Then θ ∼ θ′ if and only if π3 and π′3 belong to
the same orbit of Gπ1,π2.

Proof. It follows from the definition of θ and θ′ that, if π′3 = τ(π3) for some τ ∈ Gπ1,π2 and γτ is
the type-preserving automorphism (namely collineation) of π1 induced by γ, then θ′ = γ−1τ θγτ .
The ‘if’ part of the theorem is proved. Turning to the ‘only if’ part, recall first that Gπ1,π2
induces on π1 its full collineation group. Accordingly, we only need to prove that, if θ′ = θ, then
π′3 = τ(π3) for a suitable τ ∈ Gπ1,π2 .

Suppose that θ′ = θ. Assuming as above that π1 = [∞] and π2 = [0, 0, 0; 0, 0, 0], we have π3 =
[0, 0, 0; k, `,m] and π′3 = [0, 0, 0; k′, `′,m′] for k,m, `, k′,m′, `′ ∈ K×. The previous description
of θ shows that θ′ = θ if and only if (k′, `′,m′) = (tk, t`, tm) for some t ∈ K×. The following
automorphism of ∆ indeed maps π1 = [0, 0, 0; k, `,m] onto π′3 = [0, 0, 0; k′, `′,m′].
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(∞) 7→ (∞),
(x) 7→ (x),

(x1, x2) 7→ (x1, x2),
(x1, x2; k) 7→ (tx1, tx2; tk),

(x1, x2, x3; k) 7→ (x1, tx2, tx3; tk),
(x1, x2, x3, x4; k) 7→ (x1, x2, tx3, tx4; tk),

[x1, x2, x3; k, `,m] 7→ [tx1, tx2, tx3; tk, t`, tm],
[x1, x2, x3; k, `] 7→ [x1, tx2, x3; tk, t`],

[x1, x2; k, `] 7→ [tx1, x2; tk, t`],
[x1, x2; k] 7→ [x1, x2; tk],

[x; k, `] 7→ [tx; tk, t`],
[x; k] 7→ [x; tk],

[k] 7→ [tk],
[∞] 7→ [∞].

The fixed point set of τ is exactly the union of the planes π1 = [∞] and π2 = [0, 0, 0; 0, 0, 0].
Consequently, τ belongs to the kernel of the action of Gπ1,π2 on π1 (and π2 accordingly). 2

Example 6.2 Over the reals, there are essentially two kinds of polarities (involving the standard
involution): one without absolute points (this happens if all of k, `,m have the same sign), and
one with absolute points. Clearly, when there are absolute points we can arrange it so that [[∞]]
and [[0]] contain absolute points. This happens if m` < 0 and mk < 0. All such polarities are
clearly conjugate (recoordinatize by absorbing

√
|k−1`| and

√
−m−1` in x and y, respectively).

Hence over the reals, there are two orbits on triples of opposite planes.

Recall that, in view of Proposition 5.1, the set of absolute points is precisely the set of points of
π1 through which a line exists that intersects both π2 and π3. So over the reals, the triples that
admit such “transversals” and the triples that don’t just make up for the two orbits. A quite
neat situation.

Remark 2 The above computations and consequences are valid in any polar space of rank 3
involving a quadratic alternative division ring, that is, in the polar space C3,1(A,K), with A
a quadric alternative division algebra over the field K. Accordingly, Theorem 6.1 holds for all
these polar spaces, and most certainly also for their higher rank analogous. In the finite case, as
there only exists one conjugacy class of semi-linear polarities (related to the Hermitian curves),
and also only one class of linear polarities, this implies that the automorphism group of C3,1(Fq)
and the one of C3,1(Fq2 ,Fq), act transitively on ordered triples of pairwise opposite planes, for
every prime power q.
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