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Abstract

We show that the only point-transitive representations of the groups
displayed in the Atlas [2] on a finite generalized hexagon or octagon
are the natural ones.

1. Introduction.

Let Γ be a thick, finite generalized hexagon (resp. octagon) of order (s, t) and
G a group of automorphisms of Γ acting transitively on the points. Assume
furthermore that G is almost simple, so there is a nonabelian simple group S
with

S ! G ≤ AutS.

We want to show that “small” G are ruled out, in particular that S cannot
be a sporadic group. As a matter of fact, we consider all groups displayed in
the main section of the Atlas [2]. Let us call these groups “Atlas-groups”,
then we can formulate our main results as follows:

Theorem 1.1 If an Atlas-group acts transitively on the points of a gener-
alized hexagon, then it is has socle G2(q) (q = 2, 3, 4, 5) or 3D4(2) and it acts
in the natural way on a ‘classical’ generalized hexagon or its dual.

Theorem 1.2 If an Atlas-group acts transitively on the points of a gener-
alized octagon, then it is has socle 2F4(2)′ and it acts in the natural way on
the ‘classical’ generalized octagon of order (2, 4) or its dual.

Theorem 1.1 will be proved in section 3 and theorem 1.2 will be proved
in section 4.

∗This author is supported by the National Fund for Scientific research (Belgium).
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2. Some known facts.

2.1. Generalized Hexagons.

Let Γ be a generalized hexagon of v points and order (s, t). Then v = (s +
1)(1+ st+ s2t2), st is a perfect square (Feit & Higman [3]) and s ≤ t3 ≤ s9

(Haemers & Roos [4]). Also, the rational number

st(s + 1)(t + 1)(1 + st + s2t2)

2[s2t + t2s− st + s + t ± (s− 1)(t− 1)
√

st]
(1)

is an integer (Higman [5]).

2.2. Generalized Octagons.

Let Γ be a generalized octagon of v points and order (s, t). Then v = (s +
1)(1 + st)(1 + s2t2), 2st is a perfect square (Feit & Higman [3]) and s ≤
t2 ≤ s4 (Higman [5]). Also, the rational number

st(s + 1)(t + 1)(1 + st)(1 + s2t2)

4[s2t + t2s− 2st + s + t ± (s− 1)(t− 1)
√

2st]
(2)

is an integer (Higman [5]).

3. Generalized hexagons.

In this section, we prove theorem 1.1.

We use the notation above and put u =
√

st and w = s + t. Rewriting
condition (1) we have that

u2(1 + w + u2)(1 ± u + u2)

2(w − u)
(3)

must be an integer for both choices of signs.

Suppose that G acts transitively on the v points of a thick generalized
hexagon Γ of order (s, t) and G is a one of the simple groups listed in the
Atlas [2], see also tables 2 and 3 below. Since v = (1 + s)(1 + st + s2t2), the
latter expression divides |G|. Let p be a prime dividing 1 + st + s2t2. Then
1 + st + s2t2 ≡ 0 (mod p), hence s3t3 ≡ 1 (mod p). If st ≡ 1 (mod p), then
clearly 1+ st+ s2t2 ≡ 3 (mod p) and so p = 3. In the other case, 1 must have
three distinct third roots in GF (p), so p−1 is divisible by 3 or in other words,
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p ≡ 1 (mod 3). Note that for any integer n, 1 + n + n2 is never divisible by
9. Put a(G), or simply a, for the largest integer divisible by 3, but not by 9,
all of whose other prime divisors are congruent to 1 (mod 3) and such that
a(G) divides |G|. We now distinguish between “small” groups and “larger”
ones, the larger ones being E7(2), M and E8(2).

3.1. Small Groups.

Given G, it turns out that a(G) only depends on its “socle” S except for
S ∼= Sz(8) in which case we consider a(AutSz(8)). Obviously, un upper
bound U for u is given by the fourth root of a(G). We can then look at table
1; it contains all values for (1 + st + s2t2) for given u, 2 ≤ u ≤ 136. We
consider the largest number U∗ ≤ U such that 1 + (U∗)2 + (U∗)4 divides |G|.
This is clearly a new upper bound for u. Hence st ≤ (U∗)2 and since s ≤ t3,
this implies

s ≤ 4
√

(st)3 ≤
√

(U∗)3.

So
v ≤ '(

√
(U∗)3 + 1)((1 + (U∗)2 + (U∗)4)

and we denote the latter by h(G). If a(G) > 3 (that means, if U > 1), then
we list the values for a(G), U , U∗ and h(G) (if U∗ ≥ 2) in table 2, in which
we also include the number P (G) defined as the smallest permutation degree
of S. The value for P (G) follows from Liebeck & Saxl [6] for 2E6(2) and
E6(2); from Mazurov [7] for the sporadic groups and from the Atlas [2] for
the other groups. The “Atlas-groups” with a(G) ≤ 3 are A5, A6, L2(11),
L2(17), L2(16), L2(23), M11, U4(2), M12, S4(4) and U5(2).

In a lot of cases, we have h(G) < P (G) which is a contradiction. If
U∗ = 2, then s = t = 2 and by Tits [8], Γ is the unique classical generalized
hexagon H(2) arising from the classical group U3(3) ∼= G2(2)′. Only one
simple group is a proper subgroup of U3(3), namely L3(2). But this group
does not act transitively on the 63 points of H(2) because 63 does not divide
|L3(2)| = 168. Of course if S ∼= U3(3), then G acts transitively on exactly
two generalized hexagons, namely H(2) and its dual. The only remaining
sporadic group is Suz. The largest possible value for s or t is 8 (when u=4;
in general the largest value for s or t is

√
u3, see above). Now Suz contains

an element θ of order 11. Since 11 ≡ 2 (mod 3) and 11 > s + 1, t + 1, θ fixes
at least one point x, all lines through x, all points on all lines through x, etc.
So θ fixes everything, a contradiction. In the sequel, we shall refer to this
argument by the expression: a group element of order 11 cannot live in Γ. We
consider the other groups in turn. Note that u > 2 (by the argument above),
so (s, t) *= (2, 2). A similar argument kills (s, t) = (2, 8) and (s, t) = (8, 2).
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u 1 + u2 + u4 u 1 + u2 + u4 u 1 + u2 + u4 u 1 + u2 + u4

2 3.7 36 13.31.43.97 70 3.1657.4831 104 3.67.163.3571
3 7.13 37 3.7.31.43.67 71 3.1657.5113 105 67.163.11131
4 3.7.13 38 3.7.67.1483 72 7.751.5113 106 3.19.199.11131
5 3.7.31 39 7.223.1483 73 3.7.751.1801 107 3.7.13.19.127.199
6 31.43 40 3.7.223.547 74 3.7.13.61.1801 108 7.13.61.127.193
7 3.19.43 41 3.547.1723 75 7.13.61.5701 109 3.7.61.193.571
8 3.19.73 42 13.139.1723 76 3.1951.5701 110 3.7.571.12211
9 7.13.73 43 3.13.139.631 77 3.1951.6007 111 12211.12433
10 3.7.13.37 44 3.7.283.631 78 6007.6163 112 3.4219.12433
11 3.7.19.37 45 7.19.109.283 79 3.72.43.6163 113 3.13.991.4219
12 7.19.157 46 3.7.19.103.109 80 3.72.43.6481 114 7.13.991.1873
13 3.61.157 47 3.7.37.61.103 81 7.13.73.6481 115 3.7.1873.4447
14 3.61.211 48 13.37.61.181 82 3.7.13.73.2269 116 3.72.277.4447
15 211.241 49 3.13.19.43.181 83 3.19.367.2269 117 72.277.13807
16 3.7.13.241 50 3.19.43.2551 84 19.37.193.367 118 3.31.151.13807
17 3.7.13.307 51 7.379.2551 85 3.37.193.2437 119 3.31.151.14281
18 73.307 52 3.7.379.919 86 3.7.1069.2437 120 13.1117.14281
19 3.73.127 53 3.7.409.919 87 7.13.19.31.1069 121 3.7.13.19.37.1117
20 3.127.421 54 7.409.2971 88 3.7.13.19.31.373 122 3.7.19.37.43.349
21 421.463 55 3.13.79.2971 89 3.7.373.8011 123 7.43.349.2179
22 3.132.463 56 3.13.31.79.103 90 8011.8191 124 3.7.2179.5167
23 3.7.132.79 57 31.103.3307 91 3.2791.8191 125 3.19.829.5167
24 7.79.601 58 3.7.163.3307 92 3.43.199.2791 126 13.19.829.1231
25 3.7.31.601 59 3.7.163.3541 93 7.43.199.1249 127 3.13.1231.5419
26 3.7.19.31.37 60 7.523.3541 94 3.7.13.229.1249 128 3.72.337.5419
27 19.37.757 61 3.7.13.97.523 95 3.7.13.229.1303 129 72.31.337.541
28 3.271.757 62 3.13.97.3907 96 7.67.139.1303 130 3.7.31.541.811
29 3.13.67.271 63 37.109.3907 97 3.67.139.3169 131 3.7.811.17293
30 72.13.19.67 64 3.19.37.73.109 98 3.31.313.3169 132 97.181.17293
31 3.72.19.331 65 3.7.19.73.613 99 31.313.9901 133 3.13.97.181.457
32 3.7.151.331 66 7.613.4423 100 3.7.13.37.9901 134 3.13.79.229.457
33 7.151.1123 67 3.72.31.4423 101 3.7.13.37.10303 135 7.43.61.79.229
34 3.397.1123 68 3.72.13.192.31 102 7.19.79.10303 136 3.7.43.61.6211
35 3.13.97.397 69 13.192.4831 103 3.7.19.79.3571 137 3.7.37.73.6211

Table 1.

4



BUEKENHOUT ET AL. : HEXAGONS AND OCTAGONS

S a U U∗ h(S) P (G) S a U U∗ h(G) P (G)

L3(2) 3.7 2 2 63 7 HS 3.7 2 2 63 100
L2(8) 3.7 2 2 63 9 J3 3.19 2 1 6156
L2(13) 3.7.13 4 4 2457 14 U3(11) 3.37 3 1 1332

A7 3.7 2 2 63 7 O+
8 (2) 3.7 2 2 63 120

L2(19) 3.19 2 1 20 O+
8 (2) 3.7 2 2 63 119

L3(3) 3.13 2 1 13 3D4(2) 3.72.13 6 4 2457 819
U3(3) 3.7 2 2 63 28 L3(11) 3.7.19 4 2 63 133
L2(25) 3.13 2 1 26 A12 3.7 2 2 63 12
L2(27) 3.7.13 4 4 2457 28 M24 3.7 2 2 63 24
L2(29) 3.7 2 2 63 30 G2(4) 3.7.13 4 4 2457 416
L2(31) 3.31 3 1 32 McL 3.7 2 2 63 275

A8 3.7 2 2 63 8 A13 3.7.13 4 4 2457 13
L3(4) 3.7 2 2 63 21 He 3.72 3 2 63 2058
Sz(8) 3.7.13 4 4 2457 65 O7(3) 3.7.13 4 4 2457 351
L2(32) 3.31 3 1 33 S6(2) 3.7.13 4 4 2457 364
U3(4) 3.13 2 1 65 G2(5) 3.7.31 5 5 7929 3906
U3(5) 3.7 2 2 63 50 U6(2) 3.7 2 2 63 672

J1 3.7.19 4 2 63 266 R(27) 3.7.13.19.37 20 11 54.104 2.104

A9 3.7 2 2 63 9 S8(2) 3.7 2 2 63 120
L3(5) 3.31 3 1 31 Ru 3.7 2 2 63 4060
M22 3.7 2 2 63 22 Suz 3.7.13 4 4 2457 1782
J2 3.7 2 2 63 100 O′N 3.73.19.31 27 5 7929 122760

S6(2) 3.7 2 2 63 28 Co3 3.7 2 2 63 276
A10 3.7 2 2 63 10 O+

8 (3) 3.7.13 4 4 2457 1080
L3(7) 3.73.19 11 2 63 57 O−

8 (3) 3.7.13 4 4 2457 1066
U4(3) 3.7 2 2 63 112 O+

10(2) 3.7.31 5 5 7929 496
G2(3) 3.7.13 4 4 2457 351 O−

10(2) 3.7 2 2 63 495
S4(5) 3.13 2 1 156 Co2 3.7 2 2 63 2300
U3(8) 3.7.19 4 2 63 513 Fi22 3.7.13 4 4 2457 3510
U3(7) 3.73.43 14 2 63 344 HN 3.7.19 4 2 63 1140000
L4(3) 3.13 3 1 40 F4(2) 3.73.13 6 4 2457 69615
L5(2) 3.7.31 5 5 7929 31 Ly 3.7.31.37.67 136 5 7929 8835156
M23 3.7 2 2 63 23 Th 3.72.13.19.31 32 5 7929 > 108

L3(8) 3.72.73 10 2 63 73 Fi23 3.7.13 4 4 2457 31671
2F4(2)′ 3.13 2 1 1600 Co1 3.72.13 6 4 2357 98280

A11 3.7 2 2 63 11 J4 3.7.31.37.43 31 6 19995 > 108

Sz(32) 31 2 0 1025 2E6(2) 3.72.13.19 13 4 2457 3968055
L3(9) 3.7.13 4 4 2457 91 E6(2) 3.73.13.31.73 74 9 186004 139503
U3(9) 3.73 3 1 730 Fi′24 3.73.13 10 4 2457 306936

B 3.72.13.19.31 32 5 7929 > 1010

Table 2.
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Indeed, the generalized hexagons with these orders are unique by Cohen &
Tits [1] and the related simple group is 3D4(2). Its proper simple subgroups
are L3(2), L2(8) and U3(3) (Atlas [2]). None of these groups has a divisible
by 13, which shows our assertion.

L2(13) Here u ≤ 4 and so (s, t) = (3, 3) or (s, t) = (4, 4). In the latter

case, v = 1365 and this does not divide |Aut(L2(13)| = 2184. In the former
case, the stabilizer Gx of a point x contains an element θ of order 3. In G,
there are exactly 91 Sylow 3-subgroups. Hence θ must fix exactly 4 points of
Γ. These 4 points form a set of imprimitivity. Since there are 4 lines through
x, θ must fix one of these lines, say l. If y is another fixed point for θ, then θ
also fixes the point on l nearest to y. Consequently, θ fixes l pointwise. The
91 lines thus obtained form a partition of the point set and G acts transitively
on the set L of such lines. Hence G acts primitively on that set and since the
stabilizer Gl of l normalizes θ, Gl is isomorphic to D12 or D24 (see the Atlas
[2]). So we can identify the 91 lines in L with the 91 pairs of points of the
projective line over GF (13).

Suppose first G ∼= L2(13). Then |Gx| = 3, so no involution can fix a
point in Γ. Every involution fixes exactly 7 lines of L (that is the number
of pairs it stabilizes on the projective line PG(1, 13)). These seven lines are
mutually opposite (on maximal distance) since otherwise a point is fixed.
Identify an arbitrary line l ∈ L with the pair {(0), (∞)}. All pairs {(r), (s)},
r, s ∈ GF (13)†, with r/s a square in GF (13) can be stabilized under a certain
involution also stabilizing {(0), (∞)}, and the others cannot. There are 30
such pairs and by the preceding argument they are all opposite l. Left are
five orbits of length 12 under the stabilizer of {(0), (∞)}. Two of these orbits
contain all pairs of the form {(0), (r)} and {(∞), (r)} with r a square, resp. a
non-square, denote them by O!, resp. O #!. The other three orbits contain pairs
{(s), (2s)}, resp. {(s), (5s)}, {(s), (6s)} and we denote them by Oi, i = 2, 5, 6
respectively. Since there are 36 elements of L at distance 4 from l, at least
one of the sets Oi, i = 2, 5, 6, must have all its elements at distance 4 from
l. Suppose {(r), (s)} ∈ O2 ∪ O5 is a line at distance 4 from l. Let yr,s (resp.
l′r,s) be the unique point (resp. line) of Γ at distance 1 (resp. 2) from l and at
distance 3 (resp. 2) from {(r), (s)}. Applying θ, we see that also {(3r), (3s)} is
at distance 4 from l. Define y3r,3s and l′3r,3s as above. Obviously yr,s = y3r,3s.
One can verify that {(r), (s)} and {(3r), (3s)} lie at distance 6 from each
other, so l′r,s *= l′3r,3s. Hence θ acts transitively on the lines distinct from l
through each point of l. This implies that G acts transitively on the pairs of
lines (m, m′), with m ∈ L and m′ *∈ L. So G acts transitively on the lines not
in L, but this action is imprimitive with sets of imprimitivity of order 3. The
stabilizer of such a set is A4 (see Atlas [2]). So A4 acts regularly on the 12
points of the three lines of a set of imprimitivity. This implies the existence of
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an involution swapping any two points on a line not in L, or in other words,
swapping two lines of L at distance 4. But the pairs {(0), (∞)} and {(r), (s)}
are swapped by an element of PGL2(13) \ L2(13). Hence the lines of L at
distance 4 from l are precisely all elements of O6, O! and O #! and θ fixes
all lines meeting l. Therefore, the sets L = {{(∞), (r)}||r ∈ {0, 1, 3, 9}} and
L′ = {{(∞), (r)}||r ∈ {0, 2, 5, 6}} consist of 4 lines meeting a common line.
But the automorphism determined by adding 12 to each coordinate maps
{(∞), (1)} to l and {(∞), (3)} to {(∞), (2)}, hence L should be mapped to
L′, but it is not, as one can verify immediately.

Next suppose G ∼= PGL2(13). Then |Gx| = 6 and so there is an involution
θ fixing x. Also, θ fixes exactly 7 lines of L, among them the unique line l of
L incident with x. If all other fixed lines of L have distance 4 from l, then θ
fixes at least two points on each of these lines and so θ fixes points at distance
5 from l and from other fixed lines, hence θ fixes an ordinary hexagon. In the
other case, this is trivially true. Hence θ fixes a subhexagon of order (1, 3) or
(3, 1) (since θ fixes at least 7 lines from L, any other possible configuration of
fixed structure contains at most 5 elements of L). So theta fixes either 26 or
52 points. Since there are no involutions in Gx other than θ, this implies that
θ has exactly 14, resp. 7 conjugates in G, which means that θ is normalized
by a group of order at least 2.3.13, contradicting the information on L2(13)
given in the Atlas [2].

L2(27) As in the previous case, (s, t) = (3, 3) or (s, t) = (4, 4). Also

(s, t) = (4, 4) is eliminated the same way. If (s, t) = (3, 3), then the stabilizer
of a point x has order 33.[G : L2(27)] and it follows from the Atlas [2] that
it normalizes an elementary abelian subgroup of order 33. There are 28 such
groups (two by two disjoint) and therefore any element of such group fixes
exactly 13 points of Γ. As before, these 13 points form a set Ω of imprimitivity
containing the points of some line l through x (considering an element of order
3 in Gx). Any other point of Ω defines a point nearest to l which must also
be in Ω. Hence we can assume that there is another line l′ through x all of
whose points are in Ω. By transitivity, every point of Ω is incident with two
lines all of whose points are in Ω. This is impossible in view of |Ω| = 13.

Sz(8) Again (s, t) = (3, 3) or (s, t) = (4, 4). In the former case, a group
element of order 5 cannot live in Γ. In the latter case, we deduce as above
that every of the 65 Sylow 2-groups fixes 21 points, which form a set of
imprimitivity. As before, such a set cannot exist.

G2(3) Again (s, t) = (3, 3) or (s, t) = (4, 4). In the latter case, v does not

divide |G|. In the former case, Γ must be the classical generalized hexagon
since G essentially has only one transitive representation on 364 points.
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L5(2) In view of a = 3.7.31, only (s, t) = 5 is possible. Consider a point

x. The stabilizer Gx contains a group H of order 29. A line through x is in
an orbit of length 1,2 or 4 under H. If it is in an orbit of length 4, then some
other line through x is in an orbit of length 2. Hence a group H∗ of order
28 fixes a line l through x. Since s = t = 5, this group must fix another line
through x and another point on l, etc. So at least an ordinary hexagon is
fixed by H∗. A point y on one of the sides has an orbit of size at most 4, the
stabilizer of y fixes also another point on the same side and there are only 2
points left on that side. Hence a group of order at least 25 fixes a hexagon
and all points on one of its sides. Similarly, a group of order at least 22 fixes a
hexagon, all points on one of its sides and all lines through one of its vertices.
But then all elements of Γ are fixed (since this generates a subhexagon of
order (5, 5)), a contradiction.

L3(9) Here (s, t) = (3, 3) or (s, t) = (4, 4). In the former case, a group
element of order 5 cannot live in G. In the latter case, the stabilizer Gx of
a point x contains a group of order 35. As above, this group fixes a hexagon
and a subgroup of order 33 fixes everything, a contradiction.

3D4(2) We have to rule out (s, t) = (3, 3) and (s, t) = (4, 4). In both
cases, the stabilizer Gx of a point x contains an element of order 7 and such
an element cannot live in Γ.

G2(4) Order (3, 3) is ruled out by the presence of an element of order
5 in G. The representation on 1365 points is essentially unique, hence the
“classical” generalized hexagon of order (4, 4) and its dual arise.

A13 Every order is ruled out by the presence of an element of order 13,
which cannot live in Γ.

O7(3) If (s, t) = (3, 3), then a group element of order 5 cannot live in G.

If (s, t) = (4, 4), then, as in the case of L3(9) ! G, the presence of a group of
order 38 in the stabilizer of a point leads to a contradiction.

S6(3) See O7(3) ! G; both groups have the same order.

G2(5) Here, only (s, t) = (5, 5) is possible, it occurs and it is unique up

to duality (by the information in the Atlas [2]).

R(27) Here, u = 11, 10, 4, 3, 2. But u ≤ 4 is impossible in view of P (G).
If u = 11, then s = t = 11 and a group element of order 13 cannot live in Γ. If
u = 10, then s = 4, 5, 10, 20 or 25. But s = 4, 10, 20 or 25 implies v does not
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divide |G| (s = 4 and s = 25 are also ruled out by the fact that (3) is not an
integer in these cases). Hence (s, t) = (5, 20). The order of the stabilizer of a
point is 22.3b.19, with b = 8 or 9 depending on G ∼= R(27) or G ∼= R(27) : 3.
So Gx properly contains the normalizer of a Sylow 19-subgroup, which is a
maximal subgroup, a contradiction.

O+
8 (3) In view of P (S) = 1080, the only possibility here is s = t = 4. The

order of the stabilizer of a point of Γ is divisible by 212.311.5. The presence
of a Sylow 3-subgroup of Gx of order at least 311 leads to a contradiction as
in the case S ∼= L3(9) or S ∼= O7(3).

O−
8 (3) Whatever the order of Γ, a group element of order 41 cannot live

in G.

O+
10(2) Whatever the order of Γ, a group element of order 17 cannot live

in Γ.

E6(2) In view of table 1, u = 9 or u ≤ 5. In the latter case, v would be

smaller than P (G); in the former case, a group element of order 31 cannot
live in Γ (because s, t ≤ 27).

This completes the case of small groups.

3.2. Larger Groups.

In this case, we can still compute U as above, but it is too large to use table 1
to find U∗. But we can use U to compute h(G) as in the previous paragraph.
For G ∼= M , we obtain

a(G) = 3.76.133.19.31
h(G) ≈ 107.1014

P (G) ≈ 927.1017

This rules out G ∼= M . In general, there is obviously a minimal value U∗ for
u such that the derived number h(G) is larger then P (G). So U∗ ≤ u ≤ U .
We now develop a method to reduce the bound U until it is below U∗ without
having to calculate all values for 1 + u2 + u4. Consider a divisor d of a(G),
preferably larger than or just a little bit smaller than U . The number of u
such that d divides 1 + u2 + u4 is limited and usually none of these values
for u (except maybe very small ones which are in conflict with U∗ anyway)
give a 1 + u2 + u4 dividing a(G). Hence we can recalculate U starting from
a(G)/p, where P is the smallest prime dividing d. We refer to this procedure
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as “reduction modulo d”. We usually take for d a prime or a prime power, so
that we can do this reduction a few times and end up with no value of u left.
Let us illustrate this in the case of G ∼= E7(2). We have here

a(G) = 3.73.13.19.31.43.73.127
P (G) = 277347807

U = 1331
U∗ = 35

It is easy to calculate by hand that only u = 1250 gives rise to 1 + u2 + u4

divisible by 73.127. Indeed, every u giving 1 + u2 + u4 divisible by 73 is
congruent to 8,9,64 or 65 modulo 73, similarly, every suitable u must also
be congruent to 19,20, 107 or 108 modulo 127. Only 1250 satisfies these
conditions and is smaller 1331. But in the same way, we see that 43 does not
divide 1 + u2 + u4 in that case, so d = 43.73.127 gives us no solutions and
the new upper bound is U ′ = 519. We now see that 1250 > 519, so the new
upper bound becomes 455. Putting d = 127, the possible values for u are 19,
107, 146, 234, 273, 361 and 400. This gives us:

u 1 + u2 + u4 u 1 + u2 + u4

19 3.73.127 20 3.127.421
107 3.7.13.19.127.199 108 7.13.61.127.193
146 3.132.127.7057 147 132.127.21757
234 7.127.433.7789 235 3.7.19.127.139.433
273 19.31.127.74257 274 3.19.31.127.25117
361 3.73.132.127.769 362 3.73.127.331.397

Hence only u = 19 would do, but it is smaller than U∗. The new upper bound
now becomes 396. A reduction modulo 43.73 (with no possible u smaller than
396) gives the new upper bound 154. Reduction modulo 73 yields u = 19 or
20 (too small) and the new upper bound 95. Table 1 now shows that u < 35,
ruling out G ∼= E7(2).

The group E8(2) is much harder to handle because it is much larger. We
have:

a(G) = 3.74.132.19.312.43.73.127.151.241.331
P (G) ≈ 293.1015

U = 571575
U∗ = 1500

Using reductions again, we have ruled out E8(2) by computer using CAYLEY.

We will apply this method of reduction again in the next section. We will
not have to use the computer again.

This completes the proof of theorem 1.1.

10



BUEKENHOUT ET AL. : HEXAGONS AND OCTAGONS

4. Generalized octagons.

In this section, we prove theorem 1.2.

We use the notation of subsection 2.2. Put u =
√

st
2 and w = s + t. We

rewrite the rational number (2) of section 2.2 as

u2(1 + w + 2u2)(1 + 2u2)(1 ± 2u + 2u2)

2(w ± 2u)
. (4)

This must be an integer for both choices of signs.

Suppose that G acts transitively on the v points of a thick generalized
octagon Γ of order (s, t) and G is again one of the simple groups listed in
the Atlas [2]. Obviously v = (1 + s)(1 + st)(1 + s2t2) divides |G|. Let p
be a prime dividing 1 + s2t2. Then 1 + s2t2 ≡ 0 (mod p), hence s2t2 ≡ −1
(mod p) and −1 is a square in GF (p) which implies p = 2 or p ≡ 1 (mod 4).
Since st is even, p *= 2. So we put a(G), or simply a, for the largest integer all
of whose other prime divisors are congruent to 1 (mod 4) and such that a(G)
divides |G|. We now again distinguish between “small” groups and “larger”
ones, this time, the larger ones being only M and E8(2).

4.1. Small Groups.

As before, a(G) only depends on the socle S of G except in the cases S ∼=
Sz(32) and S ∼= L2(32) in which case we consider the respective automor-
phism groups. We can copy the arguments of subsection 3.1 almost word
by word. An upper bound U for u is given by the fourth root of a(G)/2.
We can then look at table 4; it contains all values for (1 + s2t2) for given u,
2 ≤ u ≤ 31. We consider the largest number U∗ ≤ U such that 1 + 4(U∗)4

divides |G|. This is clearly a new upper bound for u. By inspection of the
orders of the small Atlas-groups, it turns out that only for 24 among them
U∗ > 1. We list them is table 5 together with their order, the order d of their
outer automorphism group, a, U and U∗.

Note that, if u = 3, then 1 + st = 19, hence |G| must be divisible by 19.
For the groups in table 5 with U∗ ≥ 3, this is only true for Th, 2E6(2), B and
E7(2). In this case however, {s, t} = {3, 6} and no group element of prime
31 nor 17 can live in Γ contradicting the fact that one of these primes divides
the order of the four groups mentioned. So we may assume u *= 3. There
is only one case where U∗ > 3 and that is if S ∼= Sz(32). Here u = 4 and
{s, t} = {4, 8}, so a group element of order 31 cannot live in Γ. Hence, for the
rest of the proof, we have u = 2 and hence (s, t) = (2, 4) or (s, t) = (4, 2). So

11
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u 1 + 4u4 u 1 + 4u4 u 1 + 4u4

2 5.13 12 5.53.313 22 52.37.1013
3 52.13 13 5.73.313 23 5.13.17.1013
4 52.41 14 5.73.421 24 5.13.17.1201
5 41.61 15 13.37.421 25 1201.1301
6 5.17.61 16 5.13.37.109 26 5.281.1301
7 5.17.113 17 5.109.613 27 5.17.89.281
8 5.29.113 18 5.137.613 28 53.13.17.89
9 5.29.181 19 5.137.761 29 53.13.1741
10 13.17.181 20 292.761 30 1741.1861
11 5.13.17.53 21 52.292.37 31 5.397.1861

Table 3.

S |S| d a U U∗

L2(25) 23.3.52.13 22 52.13 3 3
U3(4) 26.3.52.13 22 52.13 3 3
S4(5) 26.32.54.13 2 54.13 6 3
L4(3) 27.36.5.13 22 5.13 2 2

2F4(2)′ 211.33.52.13 2 52.13 3 3
Sz(32) 210.52.31.41 5 53.41 5 4
L3(9) 27.36.5.7.13 22 5.13 2 2
G2(4) 212.33.52.7.13 2 52.13 3 3
A13 29.35.52.7.11.13 2 52.13 3 3

O7(3) 29.39.5.7.13 2 5.13 2 2
S6(3) 29.39.5.7.13 2 5.13 2 2
Ru 214.33.53.7.13.29 1 53.13.29 10 3
Suz 213.37.52.7.11.13 2 52.13 3 3

O+
8 (3) 212.312.52.7.13 23.3 52.13 3 3

O−
8 (3) 210.312.5.7.13.41 22 5.13.41 5 2

Fi22 217.39.52.7.11.13 2 52.13 3 3
F4(2) 224.36.52.72.13.17 2 52.13.17 6 3
Th 215.310.53.72.13.19.31 1 53.13 4 3
Fi23 218.313.52.7.11.13.17.23 1 52.13.17 6 3
Co1 221.39.54.72.11.13.23 1 54.13 6 3

2E6(2) 236.39.52.72.11.13.17.19 2.3 52.13.17 6 3
E6(2) 236.36.52.73.13.17.31.73 2 52.13.17.73 17 3
Fi′24 221.316.52.73.11.13.17.23.29 2 52.13.17.29 14 3
B 241.313.56.72.11.13.17.19.23.31.47 1 56.13.17 30 3

E7(2) 263.311.52.73.11.13.17.19.31.43.73.127 1 52.13.17.73 17 3

Table 4.
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if |G| contains a prime p distinct from 13 and greater then 6, then we obtain
a contradiction since a group element of order p could not live in Γ. Only
for the first five groups of table 5 we have that p = 7 does not divide |G|.
Moreover, the orders of the first two groups are not divisible by 32 = 1 + st,
a contradiction. We consider the other groups in turn.

S4(5) Note that necessarily s = 4 because otherwise 33 = (1 + s)(1 + st)

and this does not divide |G|. The order of the stabilizer Gx of a point x of Γ
is divisible by 5, so consider an element θ of order 5 in Gx. It has to fix all
three lines through x and all points other than x on these lines, etc. So θ is
the identity, a contradiction.

L4(3) Here, s = 2 since 52 does not divide |G|. The stabilizer Gx of a

point x contains a Sylow 3-subgroup H of order 33. The latter fixes at least
two lines through x, all points on these lines, at least one other line through
those points, etc. This is enough to conclude that H fixes a suboctagon Γ′ of
order (2, 1) and H has all orbits of length 27 on the points and lines not in
Γ′ (otherwise a group element fixes the “geometric closure” of Γ′ and a fixed
element not in Γ′, which is Γ itself). But the number of points outside Γ′ in
Γ is 1710 and this is not divisible by 27.

2F4(2)′ Every transitive action on 1755 or 2304 points is primitive by the

information in the Atlas [2], hence Γ is the usual generalized octagon or its
dual.

This completes the case of small groups.

4.2. Larger Groups.

We first deal with G ∼= M . We have

a(G) = 59.133.17.29.41
P (G) ≈ 927.1017

U = 2158
U∗ = 373

The lower bound U∗ is achieved as in subsection 3.2. We do a reduction
modulo 55 (cp. subsection 3.2). Suppose 55|1 + s2t2. This means that s2t2 =
4u4 ≡ −1 (mod 55) or u4 ≡ 781 (mod 55). This has only four solutions
not larger than 2158, namely 1028, 1029, 2096 and 2097. But for none of
these values (1 + st)(1 + s2t2) is a divisor of |M |. Hence

1 + s2t2|54.133.17.29.41 ≈ 2775.107,

13
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giving us the new upper bound U ′ = 298 < 375 = U∗.

Similarly, we deal with G ∼= E8(2). Here

a(G) = 55.132.172.41.73.241
P (G) ≈ 293.1015

U = 2290
U∗ = 170

Reduction modulo 55 gives the new bound 1531. Reduction modulo 54 gives
the new bound (possibilities for u are 221, 222, 403, 404, 846, 847, 1471, 1472)
gives the new bound 1024. Reduction modulo 73.241 (u = 570) gives the new
bound 350. Reduction modulo 241 (u = 88, 89, 152, 153, 329, 330) gives the
new bound 259. Reduction modulo 172 (u = 125, 126, 163, 164) gives finally
the upper bound 128, contradicting U∗ = 170.

This completes the proof of theorem 1.2.
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