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1 INTRODUCTION.

1.1 History and Motivation.

Efforts in order to classify rank 2 geometries (bipartite graphs) with large automorphism
groups have been made in various contents such as the Moufang polygons (see Tits
[85, 86, 87, 88, 89], Weiss [94], Thas, Payne & Van Maldeghem [82]), distance
transitive graphs (Brouwer, Cohen & Neumaier [10]), distance transitive generalized
polygons (Buekenhout & Van Maldeghem [15, 16]) flag-transitive designs (Kantor
[58], Buekenhout, De Landtsheer, Doyen, Kleidman, Liebeck & Saxl [14]). A
synthesis and further deepening of these efforts seems suitable and possible. The present
paper takes this direction. In particular, we want to generalized the results of [15, 16] on
generalized polygons to a larger class of geometries. We consider a rank 2 geometry Γ
which is a (g, dp, dl)-gon with 2 ≤ g ≤ dp ≤ dl ≤ g + 1 (see 1.2.1). That situation includes
the generalized polygons, the linear spaces, the partial geometries, the Moore geometries
and the symmetric 2-designs. Some very interesting geometries escape to it, such as par-
tial geometries. We assume that Γ is finite and that it is equipped with an automorphism
group acting transitively on the ordered maximal geodesics of each possible type. This is a
weakening of the Moufang condition and so we get somewhat better results in that direc-
tion (our proof however uses the classification of the finite simple groups). On the other
hand, our condition is much stronger than the flag-transitivity condition used successfully
in some of the earlier work. We get a complete classification. This provides an objective
basis for classes of geometries enlarging the class of classical generalized polygons. It may
be useful for extensions to geometries of rank greater than or equal to three.

1.2 Definitions and Notation.

1.2.1 Regular (g, dp, dl)-gons.

A rank 2 point-line incidence geometry Γ consists of a triple (P ,L, I), where P is the set
of points, L is the set of lines and I ⊆ (P × L) ∪ (L × P) is a symmetric incidence
relation. The elements of P and L are also called varieties and the type typ(x) of
a variety is its name (the appropriate “point” or “line”). The elements of I are usually
called flags. Two points incident with some line are called collinear and two lines incident
with some point are concurrent. A path γ of length n based at a variety x is a sequence
(x = x0, x1, x2, . . . , xn) of n + 1 varieties with xi−1Ixi for 1 ≤ i ≤ n. If x0 = xn and if
xi &= xi+2 (for all i to be taken modulo n), then n is even and γ is called a circuit of
diameter n/2. We call Γ connected if every two varieties can be joined by a path. The
distance d(x, y) between two varieties x and y is the length of the shortest path joining x
to y (well defined by connectedness). A geodesic (based at) x is a path γ based at x such
that the length of γ is equal to the distance between the extremeties of γ. A maximal
geodesic is a geodesic that is not properly contained in another one. The gonality g of Γ
is the diameter of the smallest circuit (i.e. a circuit of minimal diameter) in Γ. The local
diameter d(x) of some variety x is the length of the longest geodesic based at x. The
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maximal value of d(x) for x a point (resp. a line) is the point- (resp. line-) diameter and
it is denoted by dp (resp. dl). With this notation, Γ is called a (g, dp, dl)-gon. The dual
ΓD = (L,P , I) of Γ is obviously a (g, dl, dp)-gon (see Buekenhout [12], where this notion
is introduced).

Let x be any variety of Γ. Then we denote by Γi(x) the set of varieties at distance i
from x. We call the geometry Γ regular if |Γi(x)∩ Γj(y)| = |Γi(z)∩ Γj(u)| for all positive
integers i, j and all varieties x, y, z, u whenever d(x, y) = d(z, u) and typ(x) =typ(z) (and
hence typ(y) =typ(u)). In particular putting i = 1, j = 2 and d(x, y) = 1 (i.e. x and y are
incident), we see that in a regular geometry Γ the number of points (resp. lines) incident
with a given line (resp. point) is a constant, say s+1 (resp. t+1). In that case, we call (s, t)
the order of Γ. If s > 1 and t > 1, then we say that Γ is thick (terminology of buildings,
see e.g. Tits [84]). Also, it is straightforward to see that in a regular point-line geometry
Γ the length of a maximal geodesic only depends on the types of its extremeties, in other
words, the local diameter in every point (resp. line) x is equal to the point-diameter (resp.
line-diameter). Note that if dp = dl and this is even, then there are two types of maximal
geodesics: one kind has points as extremeties and the other kind has lines. In any case
we trivially have the inequality |dp − dl| ≤ 1 and by point-line duality, we may assume
g ≤ dp ≤ dl, in other words we assume that the diameter (which is in general the larger
value among dp, dl) is equal to dl. Note that if dl is odd, then dp = dl (this is obvious, see
also Buekenhout [12]).

Finally, a graph is a geometry in which every line is incident with exactly 2 points.
In this case, the points are called vertices (adjacent if they are collinear) and the lines
edges. The incidence graph of an arbitrary geometry Γ = (P ,L, I) is the graph whose
set of vertices is P ∪L and in which two vertices form an edge if they form a flag in Γ. We
denote the incidence graph of Γ by ΓI .

In this paper, we will always assume that Γ is finite, connected and regular.

1.2.2 Some classical examples.

The following particular cases provide the main motivation for (g, dp, dl)-gons. In most
cases that we mention g ≤ dp ≤ dl ≤ g + 1.

A generalized n-gon is a regular (n, n, n)-gon and conversely. These were introduced
by Tits [83]. If n = 3, they are projective planes. For n = 4, 6, 8, they are called
generalized quadrangles, respectively generalized hexagons,generalized octagons.
A generalized 2-gon (or generalized digon) is a trivial incidence geometry (every point
is incident with every line). By a theorem of Feit & Higman [33], a generalized n-gon of
order (s, t) with s, t ≥ 2 can only exist if n ∈ {2, 3, 4, 6, 8}.

A linear space is any geometry with gonality 3 and point-diameter 3, hence in a
linear space, two points determine uniquely a line. So a linear space is either a generalized
projective plane (i.e. a (3, 3, 3)-gon) or a (3, 3, 4)-gon.

A partial geometry with parameters (s, t, a), as introduced by Bose [6], is a point-
line geometry Γ = (P ,L, I) of order (s, t) (defined as above) having the properties that (1)
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every point x is collinear to exactly a + 1 points incident with any given line not incident
with x and (2) two points determine at most one line. Hence the diameter is at most 4
and we have the following possibilities:

1. Γ is a regular (3, 3, 3)-gon, i.e. a projective plane, so Γ has parameters (s, s, s) for
some positive integer s.

2. Γ is a regular (3, 3, 4)-gon or a regular (3, 4, 3)-gon, i.e. Γ is a regular proper linear
space or a regular proper dual linear space.

3. Γ is a regular (3, 4, 4)-gon. Among these, we have the nets and the dual nets (see
later). The other members in this class are called the proper partial geometries.

4. Γ is a generalized quadrangle and has parameters (s, t, 0) for some positive integers
s, t.

A net of order a and degree b is a partial geometry with parameters (a−1, b−1, b−2).
If a = b, then it has been called a helicopter plane in Van Maldeghem [93]; it is an
affine plane with one parallel class of lines removed.

A partial quadrangle, as introduced by Cameron [17], with parameters (s, t, a) is a
point-line geometry Γ = (P ,L, I) of gonality g ≥ 4 such that every two non-collinear points
are collinear with exactly a + 1 points. In general, this is a (4, 5, 6)-gon, but if a = t, then
we have a generalized quadrangle; if a = 0, then we have a (5, 5, 6) or (5, 5, 5)-gon; if Γ is
also a dual partial quadrangle, then it is a regular (4, 5, 5)-gon. Partial quadrangles which
are not generalized quadrangles are also known as near pentagons, see e.g. Brouwer,
Cohen & Neumaier [10].

A Moore geometry is a (g, g, g+1)-gon for g ≥ 3 and g odd (see Buekenhout [12]).
As for generalized polygons, there is here a restriction on g, see subsection 4.3.3. A Moore
geometry was originally defined as a point-line geometry of order (s, t) such that every two
points are joined by a unique geodesic, see Bose & Dowling [7].

A symmetric design or square design with parameters (v, k,λ) is an incidence
structure Γ = (P ,L, I) of order (k − 1, k − 1) such that 2 blocks intersect in λ points and
2 distinct points determine exactly λ blocks. The positive integer v is the total number of
points. Γ is also called a 2− (v, k,λ)-design. If 1 < λ < k, then Γ is a regular (2, 3, 3)-gon.
If λ = k, it is a generalized digon and if λ = 1, then Γ is a projective plane, hence a regular
(3, 3, 3)-gon. The complementary design of a symmetric design Γ is the symmetric design
ΓC obtained from Γ by replacing each block by its complement.

1.2.3 Automorphisms, collineations and correlations.

A collineation of the geometry Γ = (P ,L, I) is a permutation on P ∪ L preserving P , L
and I. A correlation is a permutation on P ∪L preserving I and interchanging P and L.
An automorphism is either a collineation or a correlation.
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In the same way one defines isomorphisms and anti-isomorphisms between geome-
tries and of course we are only interested in the isomorphism class of a geometry. If Γ is
anti-isomorphic to itself, i.e. there is a correlation of Γ, then we call Γ self-dual. The group
of all collineations, resp. automorphisms of Γ will be denoted by Col(Γ), resp. Aut(Γ).

Now let G be an automorphism group of the geometry Γ and suppose Γ is a (g, dp, dl)-
gon. We shall use the following terminology.

1. Suppose G acts transitively on the set of pairs (x, y) of points at distance i from each
other, for all even positive integers i, then we call (Γ, G) a point distance transitive
(g, dp, dl)-pair, dually a line distance transitive (g, dp, dl)-pair. If (Γ, G) is both
point distance transitive and line distance transitive, then we call (Γ, G) a weakly
distance transitive (g, dp, dl)-pair. If G acts transitively on each set of pairs of
varieties at distance j from each other and having fixed type, for all positive integers
j, then (Γ, G) is called a distance transitive (g, dp, dl)-pair. Moreover if G contains
moreover a correlation, then (Γ, G) is a full distance transitive (g, dp, dl)-pair.

2. Suppose G acts transitively on each set of geodesics based at some point x of Γ and
ending in a point y at maximal distance, for all points x ∈ P , then we call (Γ, G)
a point geodesic transitive (g, dp, dl)-pair. Similarly as for distance transitive
(g, dp, dl)-pairs, we can define line geodesic transitive (g, dp, dl)-pairs, respectively
weakly geodesic transitive, geodesic transitive and full geodesic transitive
(g, dp, dl)-pairs.

3. If G acts transitively on each set of geodesics of length i based at some fixed variety
x, for all varieties x, then (Γ, G) is called a locally i-arc transitive (g, dp, dl)-pair.
If G acts transitively on the full set of geodesics of length i, then (Γ, G) is called
i-arc transitive. This generalizes a similar notion for graphs, see e.g. Weiss [95],
as it was first introduced by Tutte [91].

It is easy to see that, if Γ is a (g, dp, dl)-gon and if 2 ≤ g ≤ dp ≤ dl ≤ g + 1, then each
of the above assumptions on G implies that Γ is regular. Hence from now on we assume
that all geometries are finite and regular unless the contrary is explicitly mentioned.

1.3 Main Results.

Now we are ready to formulate our main results and some immediate corollaries. For a
description of the geometries and groups under consideration, we refer to section 2, in
particular, we write appropriate automorphism group in order not to overload the formula-
tion, but all these groups are described in section 2. The proof of theorem 1 follows from
propositions 1 up to 8 of section 4.

The symbol q will always denote a prime power. For the notation of groups, we follow
the Atlas [22].

THEOREM 1. Let (Γ, G) be a finite geodesic transitive (g, dp, dl)-pair, 2 ≤ g ≤ dp ≤
dl ≤ g + 1, then one of the following holds:

5



1. Γ is a thick generalized polygon related to an irreducible finite adjoint or twisted
adjoint Chevalley group Xn(q) of relative rank 2 and Xn(q) ≤ G ≤ Aut(Xn(q)), or Γ
is the flag complex of the self-dual thick generalized polygon related to L3(q), S4(2e)
or G2(3e) and G is as above with the additional condition that it contains a graph
automorphism, or G ∼= A6 and Γ is the unique generalized quadrangle of order (2, 2),
or Γ is an ordinary polygon and G is the corresponding dihedral group;

2. Γ can be identified with the Petersen graph on 10 points, resp. Hoffman-Singleton
graph on 50 points; the lines are the edges of the graph and G ∼= S5, resp. U3(5)!G ≤
U3(5) : 2. Here, Γ can be considered as a Moore geometry, in particular as a (5, 5, 6)-
gon of order (1, 2), resp. (1, 6);

3. Γ is a (3, 4, 4)-gon. The following cases occur:

3.1. Γ is the helicopter plane HG(2, q) obtained from the Desarguesian projective
plane PG(2, q) by deleting a flag (x, l) and all varieties incident with one of x, l
and G contains the stabilizer in PGL3(q) of the flag (x, l) in PG(2, q);

3.2. Γ is the net (Hn+1
q )D of order qn and degree q + 1 and G contains a group

isomorphic to the semi-direct product of an elementary abelian group q2n with a
group isomorphic to

(a) (SL2(q)× SLn(q))/Z(SL2(q)× SLn(q)) if n > 2, or

(b) (SL2(q)×GL2(q))/Z(SL2(q)×GL2(q)) if n = 2, or

(c) SL2(2)× A7 if (n, q) = (4, 2).

3.3. Γ is the dual of 3.2.;

3.4. Γ is the net Ne(28): its points can be identified with the points of an affine
space AG(8, 2) and its lines are the affine 4-subspaces whose 3-spaces at infinity
constitute a 2-transitive spread of a hyperbolic quadric in PG(7, 2); G contains
the full translation group of AG(8, 2) and its kernel “at infinity” is A9;

3.5. Γ is the dual of 3.4.

4. Γ is a (3, 3, 4)-gon. Three cases occur:

4.1. Γ is the linear space consisting of the points and lines of PG(d, q), q ≥ 3 and
Ld+1(q) ! G ≤ PΓLd+1(q);

4.2. Γ is the affine Desarguesian plane AG(2, q), G contains all translations and
induces at the line at infinity a group containing L2(q).

4.3. G is a group acting 4-transitively on the set of points of Γ and the lines of Γ
can be identified with the pairs of points;

5. Γ is a (2, 3, 3)-gon. Here, Γ is a symmetric 2-design with λ > 1 and four cases occur:
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5.1. Γ can be identified with PG(d, q), d ≥ 3, the blocks are either the hyperplanes
or their complements and Ld+1(q) ! G ≤ PΓLd+1(q) : 2 or G ∼= A7, S7 (if
(d, q) = (3, 2) and blocks are the hyperplanes);

5.2. Γ is the Paley (or Hadamard) design on 11 points and L2(11)!G ≤ L2(11) : 2;

5.3. Γ is isomorphic to one of Kantor’s designs S±(n) and G ∼= 22n : Sp2n(2);

5.4. G acts 3-transitively on the set of points of Γ and the blocks are the complements
of the points;

6. Γ is a generalized quadrangle of order (1, s) or (s, 1) and G is appropriate;

7. Γ is a generalized digon.

An immediate corollary is the following:

COROLLARY 1. Let (Γ, G) be a full geodesic transitive (g, dp, dl)-pair, 2 ≤ g ≤ dp ≤
dl ≤ g + 1, then one of the following holds:

1.1. Γ is the generalized quadrangle of order (q, q) appearing in conclusion 1 of theorem 1
for every even q and G is the appropriate group containing a correlation;

1.2. Γ is the generalized hexagon of order (q, q) appearing in conclusion 1 of theorem 1
for every q divisible by 3 and G is the appropriate group containing a correlation;

2 Γ is the helicopter plane HG(2, q) as in conclusion 3 of theorem 1 and G is appropriate
but containing a correlation;

3 (Γ, G) is as in conclusion 5 of theorem 1 (case of symmetric 2-designs) with the only
restriction that G contains a correlation;

4 Γ is generalized digon.

For various sub-classes of geometries, we obtain more general results by weakening the
hypothesis on G. We refer to section 4 for the precise statements.

As a byproduct of our proof, we obtain a result on partial quadrangles (and they do
not necessarily satisfy dl ≤ g + 1, so they are not covered by theorem 1), see also section
4, proposition 4 for a more detailed statement and the proof.

THEOREM 2. Let (Γ, G) be a point geodesic transitive (g, dp, dl)-pair with Γ a partial
quadrangle of order (s, t). Then one of the following possibilities occur:

1. Γ is a generalized quadrangle (and (Γ, G) is one of the examples in the conclusion of
theorem 2);
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2. s = 1 and Γ is one of the following graphs: the pentagon, Petersen, Clebsch, Hoffman-
Singleton, Higman-Sims on 100 (resp. 77) vertices, Gewirtz. The group G is an
appropriate automorphism group containing respectively D10, A5, 24 : (5 : 4), U3(5),
HS, M22, L3(4);

3. Γ is a partial quadrangle with parameters (2, 10, 1) constructed in AG(5, 3) and G is
appropriate;

4. Γ is isomorphic to the partial quadrangle T ∗
3 (O) with O an elliptic quadric or the

Suzuki-Tits ovoid in PG(3, q) and G is appropriate.

In cases 3 and 4, G acts on an affine space, contains all translations and the stabilizer
of a point contains a normal subgroup isomorphic to one of M11, L2(q2), Sz(q).
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2 THE EXAMPLES.

In this section, we give all the examples mentioned in theorems 1 and 2 and proposition 1
below and we briefly comment the properties of their automorphism group.

2.1 Generalized Polygons.

2.1.1 The Moufang generalized polygons.

The classical examples (i.e. those which have the Moufang property, see above and section
5) of generalized polygons, due to Tits [83], arise from Chevalley groups. We give a brief
description. Let G = Xn(q) be a Chevalley group, q = ph where p is a prime and let B be
the normalizer of a Sylow p-group in G (B is called a Borel-subgroup). If G is one of the
groups of table 1, there are exactly two maximal subgroups containing B, denote them by
P1 and P2; they are called the maximal parabolic subgroups of the pair (G, B). We define a
geometry Γ = (P ,B, I) as follows: the points are the left cosets of P1 in G and the lines are
the left cosets of P2 in G, a point and a line being incident exactly when the corresponding
cosets are not disjoint. The geometry Γ thus obtained is a thick generalized n-gon of order
(s, t) as listed in table 1 (where the set of points is chosen in the usual “classical” way).

In every case the pair (Γ, G) has both the Moufang and the Tits property and every
group G∗ ≤ Aut(Γ) acting point distance transitively on Γ contains G (for the “right”
choice of the points in the above construction), except if G is not simple, i.e. if (1)
G ∼= S4(2) ∼= O5(2) , (2) G ∼= G2(2) and (3) G ∼= 2F4(2) ∼= R(2); in these cases also
the derived group G′ acts point distance transitively on Γ. In case (1), G′ acts distance
transitively on Γ, but (Γ, G′) does not have the Tits property nor the Moufang property,
it is not even half Moufang. In cases (2) and (3), G′ does not act line distance transitively
and consequently it does not induce the Tits nor the Moufang property; but it does induce
the half Moufang property.

Note that for a generalized n-gon Γ, n even, the pair (Γ, G) is distance transitive if and
only if it is special distance transitive. This is an immediate consequence of the definition.

G n (s, t) Remarks

(GP1) L3(q) 3 (q, q) Self-dual
(GP2) S4(q) 4 (q, q) Self-dual iff q is even
(GP3) O5(q) 4 (q, q) Dual to (GP2)
(GP4) O−

6 (q) 4 (q, q2)
(GP5) U4(q) 4 (q2, q) Dual to (GP4)
(GP6) U5(q) 4 (q2, q3)
(GP7) G2(q) 6 (q, q) Self-dual iff q is a power of 3
(GP8) 3D4(q) 6 (q, q3)
(GP9) 2F4(q) 8 (q, q2) q is an odd power of 2

Table 1: Finite Thick Moufang Generalized n-gons.
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The incidence graph ΓI of a generalized n-gon Γ of order (q, q) is a generalized 2n-gon
of order (1, q). If Γ is Moufang, then also ΓI is Moufang, but ΓI has the Tits property,
respectively is distance transitive, geodesic transitive only if Γ has the Tits property and
is self-dual, respectively is full distance transitive, full geodesic transitive.

2.1.2 The unique generalized quadrangle of order (3, 5).

This example is one out of a class of generalized quadrangles of order (s, s + 2) due to
Ahrens & Szekeres [1].

Consider the projective plane PG(2, 4) and a complete oval O in it, i.e. a conic together
with its kernel. Embed PG(2, 4) as a hyperplane in PG(3, 4) and define the following
geometry Γ = (P ,L, I): the elements of P are the points of PG(3, 4) not in PG(2, 4);
the elements of L are the lines in PG(3, 4) meeting O in exactly 1 point; incidence is the
natural one. Then Γ is a generalized quadrangle of order (3, 5) and it is usually denoted
by T ∗

2 (O). For more information on this interesting quadrangle we refer to a recent paper
of Payne [73]. We just mention that the full collineation group of T ∗

2 (O) contains all
translations and homologies of PG(3, 4) leaving PG(2, 4) pointwise invariant and its kernel
on PG(2, 4) is the full automorphism group of O which is S6, the full symmetric group
acting in its standard representation on the six points of O. So Col(T ∗

2 (O)) acts point
distance transitively on T ∗

2 (O), but obviously not line distance transitively.

2.1.3 Non-Thick Generalized Quadrangles.

Consider a generalized quadrangle Γ = (P ,L, I) of order (s, 1). This is actually just an
(s + 1) × (s + 1)-grid. Consider a group G acting transitively on that grid and such that
the stabilizer Gx of any point x acts transitively on both Γ2(x) and Γ4(x). Then G acts
geodesic transitively on Γ. So point distance transitivity implies geodesic transitivity. This
case, and the dual one, corresponds to case 6 of theorem 1. The corresponding groups are
described in subsection 3.2, class III of the permutation rank 3 groups.

2.2 Partial Quadrangles.

2.2.1 Thick partial quadrangles.

Consider the projective 3-space PG(3, q) and an ovoid O in it (an ovoid in PG(3, q) is a
set of q2 + 1 points no three of which are collinear). Embed PG(3, q) as a hyperplane in
PG(4, q) and define the following geometry T ∗

3 (O): the points are the points of PG(4, q)
not in PG(3, q) and the lines are the lines of PG(4, q) meeting PG(3, q) in a single point
x of O. Then T ∗

3 (O) is a partial quadrangle with parameters (q − 1, q2, q2 − q − 1). There
are two cases for which the collineation group of T ∗

3 (O) acts point distance transitively on
T ∗

3 (O):

1. The first case is when O is a non-ruled quadric (an elliptic quadric), i.e. a set of points
satisfying the equation X0X1 = f(X2, X3), where f(x, y) is an irreducible quadratic
form over the field GF (q).
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2. The second case is when O is the Suzuki-Tits ovoid for spaces over GF (q) with
q = 22e+1. The points of O can be described in coordinates as {(x, y, xy + xs+2 +
ys, 1)} ∪ {(0, 0, 1, 0)}, s = 2e+1.

The case where O is a quadric can also be constructed from the generalized quadrangle
(GP4) by deleting all points collinear with one fixed point and deleting all lines through
that point (see Cameron [17]). In fact, every partial quadrangle with parameters (q −
1, q2, q2−q−1) can be constructed that way as proved by Ivanov & Shpectorov [53]. In
subsection 4.2, we show that the two examples above are in fact point geodesic transitive.

Consider now PG(4, 3), there is a cap C in PG(4, 3) consisting of 11 points and the
Mathieu group M11 acts on C in its standard 4-transitive action (a cap is a set of points
no three of which are collinear). Repeating the construction from the previous paragraph
(substituting C for O, PG(4, 3) for PG(3, q), etc . . . ), one obtains a partial quadrangle with
parameters (2, 10, 1) which we shall denote by Hi(243), see Hill [47] and Berlekamp,
van Lint & Seidel [4].

The above examples are constructed as linear representations, i.e. the points of the
geometry Γ are all points of a certain affine space A and the set of lines of Γ is a union of
parallel classes of lines of A.

2.2.2 Strongly regular graphs with λ = 0.

A graph is called regular if every vertex has a constant number k of adjacent vertices
(adjacent vertices are vertices on one edge). A regular graph is called strongly regular
if every two adjacent vertices are both adjacent to a constant number λ of vertices and if
every two non-adjacent vertices are both adjacent to a constant number µ of vertices. In
this case the strongly regular graph is said to have parameters (v, k,λ, µ), where v is the
total number of vertices.

Note that, if Γ is a strongly regular graph with parameters (v, k,λ, µ), then the graph
obtained by interchanging edges with “non-edges” is again a strongly regular graph, called
the complementary strongly regular graph. If we denote its parameters by (v, l,λ, µ),
then we have the relations:

k + l = v; λ = l − k + µ− 1; µ = l − k + λ + 1;

and
µl = k(k − λ− 1).

For any strongly regular graph, we will use this standard notation without further com-
ments (see Hubaut [48]).

If Γ is a strongly regular graph with λ = 0, i.e. Γ does not contain triangles, then it is
a partial quadrangle with parameters (1, k − 1, µ− 1).

Now suppose a group G has a rank 3 permutation representation on a set Γ (for the
definition see section 3 below) and let Gx be the stabilizer of an element x of Γ. Let xi,
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i = 1, 2, be an element in the orbit i of Gx (where we assume that the three orbits are
numbered 0,1,2 and orbit 0 is the trivial one). Then we define edges in Γ by letting G act
on {x, xi}. If |G| is even, then this defines two mutually complementary strongly regular
graphs (see Higman [45]).

Table 2 contains a list, taken from Hubaut [48], of some strongly regular graphs
without triangles constructed in this way, where G is a simple group. The table contains
the label for future reference, the group G, the subgroup Gx, the notation for γ (and we
make the convention that we choose xi in the smallest suborbit, with the above notation),
the parameters of Γ as a strongly regular graph and the name in the literature.

G Gx Γ (v, k,λ, µ) Name

(PQ0) D10 2 Pn(5) (5,2,0,1) Pentagon
(PQ1) A5 S3 Pe(10) (10,3,0,1) Petersen
(PQ2) U3(5) A7 HS(50) (50,7,0,1) Hoffman-Singleton
(PQ3) L3(4) A6 Ge(56) (56,10,0,2) Gewirtz
(PQ4) M22 24 : A6 HS(77) (77,16,0,4) Higman-Sims
(PQ5) HS M22 HS(100) (100,22,0,6) Higman-Sims

Table 2: Rank 3 Graphs with λ = 0 related to Simple Groups.

We need one further non-trivial strongly regular graph without triangles underlying a
rank 3 group, namely the Clebsch graph Cl(16). There are several descriptions of it and
here is a less usual one: the vertices of Cl(16) are the elements of the field GF (16) of
16 elements and two vertices form an edge if their difference in GF (16) is a third power.
The collineation group of Cl(16) is isomorphic to 24 : S5, but we already have a rank
3 representation if we take the subgroup 24 : D10, where Gx

∼= D10 is generated by the
multiplication with third powers in GF (16) and the involutory automorphism of GF (16),
taking x = 0. The parameters of Cl(16) are (16, 5, 0, 2) and we label this example (PQ6).

In subsection 4.2, we determine the transitivity properties of the above mentioned
strongly regular graphs (see table 20).

2.3 Some Nets.

2.3.1 Helicopter planes.

Consider an affine plane of order q (i.e. there are q points on each line; with our convention,
it has order (q− 1, q)) and delete one entire class of parallel lines. The incidence geometry
Γ thus obtained is a net of order q and degree q. Suppose the original affine plane was
the Desarguesian plane AG(2, q) and consider the subgroup G of PGL(2, q) stabilizing Γ.
Then (Γ, G) is a geodesic transitive (3, 4, 4)-pair (for q ≥ 3).

12



2.3.2 The net (Hn
q )D.

Consider the following geometry Hn
q : the points are the points of the projective space

PG(n, q) which are not contained in a fixed subspace PG(n − 2, q) of PG(n, q); the lines
are the lines of PG(n, q) disjoint from PG(n−2, q); incidence is the natural one. This yields
a dual net with parameters (q, qn−1 − 1, q − 1). The corresponding net can be constructed
in another way as follows: Consider a vector space V2 resp. Wn−1 of dimension 2 resp.
n−1 over GF (q). The points of (Hn

q )D are the elements of the tensor product vector space
V2

⊗
Wn−1 and the lines are the sets of the form v ⊗Wn−1 and its translates, where v is

an arbitrary vector in V2. By De Clerck & Johnson [27], theorem 4, this constitutes
indeed the dual of Hn

q . If a group G acts geodesic transitive on (Hn
q )D, then it is clear

that the group induced on Wn−1 by the stabilizer Go of the zero vector in V2
⊗

Wn−1

acts 2-transitively on the vector lines of Wn−1 (for the definition of 2-transitive group see
subsection 3.1) and hence is known (see again subsection 3.1, in particular table 4).

2.3.3 The net Ne(28).

Consider the hyperbolic quadric in PG(7, 2) and a 2-transitive ovoid (see e.g. Kleidman
[60]) in it. Apply triality to obtain a 2-transitive spread S. Embed PG(7, 2) as a hyperplane
in PG(8, 2). Define as the point set of Ne(28) the set of points in PG(8, 2) \ PG(7, 2). A
line is a 4-subspace of PG(8, 2) meeting PG(7, 2) in a member of S. This constitutes a
net Ne(28) with parameters (15, 8, 7). The automorphism group of Ne(28) is isomorphic
to 28 : A9, where A9 is the group acting 2-transitively on the elements of the spread.

2.4 Linear Spaces.

Here, we simply list in table 3 all linear spaces which admit a flag-transitive collineation
group (and have s, t ≥ 1). This result is due to Buekenhout, De Landtsheer, Doyen,
Kleidman, Liebeck & Saxl [14]. We will give more information in the proof (paragraph
4.3.2). In the table, a c-geometry is a geometry in which the lines are all pairs of points.

Linear space s t

(LS1) PG(n, q), n ≥ 2 q (qn−q)
(q−1)

(LS2) Hermitian unital in PG(2, q2) q q2 − 1
(LS3) Ree unital arising from R(q), q = 3h, h odd q q2 − 1

(LS4) Witt-Bose-Shrikhande space (defined for q even) (q−2)
2 q

(LS5) AG(n, q), n ≥ 2 q − 1 (qn−q)
(q−1)

(LS6) Some non-Desarguesian translation affine planes q − 1 q
(LS7) Hering spaces 8 90
(LS8) Affine line spaces
(LS9) c-geometry on v points 1 v − 2

Table 3: Linear Spaces Admitting a Flag-transitive Group.
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Note that any set S defines a unique c-geometry in the obvious way. We denote that
linear space by Γ(S).

2.5 Symmetric 2-designs.

We mention some symmetric 2-designs for which the collineation group acts 2-transitively
on the points; the classification of all such designs is due to Kantor [58].

(SD1) Desarguesian projective spaces. The blocks are the hyperplanes or the comple-
ment of the hyperplanes. The collineation groups are the linear or semi-linear groups or
A7 for PG(3, 2);

(SD2) The Paley (or Hadamard) design on 11 points, denoted by Ha(11), is a 2-(11,6,2)
design. The points are the elements of Z (mod 11) and the lines are the translates of
{1, 3, 4, 5, 9}. Its collineation group is L2(11). The complementary design is a 2-(11,6,3)
design;

(SD3) The “geometry” of Higman on 176 points. This is a 2-(176,50,14) design
with collineation group HS, the sporadic Higman-Sims group. We denote this design
by Hi(176). The complementary design is a 2-(176,126,90) design;

(SD4) A 2-(22n, 2n−1(2n−1), 2n−1(2n−1−1))-design S+(n) of which there is exactly one
for each n ≥ 2, see Kantor [55]. The complementary design is denoted by S−(n). The
collineation group of both these designs is a group isomorphic to 22n : S2n(2);

(SD5) Any set Ω with a 2-transitive group acting on it can be turned into a 2-transitive
symmetric 2-design by declaring the blocks to be the complements of the points. This can
be defined for any set Ω without a 2-transitive group and we denote the corresponding
design by Γ(.Ω).
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3 PRELIMINARIES.

The proofs of our main results are basically geometric in nature. But we make use of
some major group-theoretical results such as the classification of all doubly transitive
finite groups (Cameron [18] and Hering [44], the determination of all primitive rank
3 representations of finite groups (Kantor & Liebler [59], Bannai [3], Liebeck &
Saxl [67] and Liebeck [65]), the classification of various classes of distance transitive
graphs (Ivanov [52], Liebeck, Praeger & Saxl [66], Praeger, Saxl & van Bon
[75] and Praeger & Soicher [76]), the determination of all ‘large’ maximal subgroups
of the exceptional groups (Liebeck [68]) and the enumeration of all primitive rank 4 and
5 representations of the Chevalley groups (Cuypers [23]). We now list these results (and
some other) for future reference.

We use the classification of the finite simple groups. They fall into five distinct (though
non-disjoint) classes:

1. The cyclic groups of prime order;

2. The alternating groups An for n ≥ 5;

3. The classical Chevalley groups, i.e. the linear, symplectic, orthogonal and unitary
(simple) groups;

4. The exceptional Chevalley groups (including the Tits group here);

5. The 26 sporadic groups.

The first chapters of the Atlas [22] contain an introduction to this subject.

3.1 Permutation Groups.

Let Ω be a set and G a group acting faithfully on Ω. Then the pair (Ω, G) is said to have
permutation rank n, n > 1, if G is transitive on Ω and if the stabilizer Gx of some
element x of Ω has exactly n orbits in Ω. A rank 2 group is also called a 2-transitive
group. The group G acts n-transitively, n > 2 on Ω if G acts transitively on Ω and Gx

acts (n− 1)-transitively on Ω \ {x}, for some x ∈ Ω.
If Ω is an affine space and G contains the full translation group of Ω and is itself

contained in the full automorphism group of Ω as an affine space, then we say that (Ω, G)
is of affine type. If there is a non-abelian simple group S such that S !G ≤ Aut(G), then
we say that G is almost simple and (Ω, G) is of almost simple type. In this case the
group S is the socle of G, denoted by Soc(G) (special case of a more general definition:
Soc(G) is the subgroup of G generated by all minimal normal subgroups of G).

A subset A ⊆ Ω is a set of imprimitivity for (Ω, G) if Aθ ∩ A is either empty or A
itself, for all θ ∈ G. Note that we use exponential notation for the action of G on Ω. The
action of G on Ω is called primitive if the only sets of imprimitivity are the trivial ones,
i.e. the singletons and Ω itself. If (Ω, G) is 2-transitive, then it is automatically primitive
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(this is easy to see). As a result of the classification of the finite simple groups, all finite
2-transitive groups are known. They are divided into two classes: the almost simple and
the affine type. In table 4, we list all 2-transitive groups of almost simple type acting on
a set Ω (see e.g. Cameron [18]) and label them for future reference. We list the minimal
group; all other groups are obtained by adjoining group automorphisms.

G Ω Restrictions and Remarks

(TS1) An n symbols n ≥ 5

(TS2) Ln(q) (qn−1)
(q−1) points of PG(n− 1, q) (d, q) &= (2, 2), (2, 3),

3-transitive if PGL2(q) ≤ G
(TS3) U3(q) q3 + 1 points of a Hermitian unital q ≥ 3
(TS4) R(q) q3 + 1 points of the Ree unital q = 3h, h ≥ 1 odd
(TS5) Sz(q) q2 + 1 points of The Suzuki Ovoid q = 2h, h ≥ 3 odd
(TS6) S2d(2) 22d−1 ± 2d−1 non-degenerate quadrics d ≥ 3
(TS7) L2(11) 11 points of Ha(11)
(TS8) A7 15 points of PG(3, 2)
(TS9) M11 11 points of a Steiner system 4-transitive
(TS10) M11 12 points of a 3-design
(TS11) M12 12 points of a Steiner system 5-transitive
(TS12) M22 22 points of a Steiner system 3-transitive
(TS13) M23 23 points of a Steiner system 4-transitive
(TS14) M24 24 points of a Steiner system 5-transitive
(TS15) HS 176 points of Hi(176)
(TS16) Co3 276 points in the Leech lattice

Table 4: 2-Transitive Representations of Almost Simple Groups.

We will not need an explicit list of the affine 2-transitive groups.

Also, all primitive rank 3 groups are classified (again using the classification of the finite
simple groups). They fall into three classes: the almost simple case, the affine case and
the “grid case”. We briefly describe the results in each of the three cases.

CLASS I. The Almost Simple Case.
First, in order not to mention the same permutation representation twice, we make

the four classes of finite simple groups two by two disjoint by deleting those groups in a
class that already appeared in a previous class, e.g. we remove L2(4) ∼= L2(5) from class 2
because this is isomorphic to A5 in class 1.

The classification has been achieved by various people for the respective classes of
simple groups: Bannai [3] for the alternating groups (table 5), Kantor & Liebler
[59] for the classical Chevalley groups (tables 6 and 7), Liebeck & Saxl [67] for the
exceptional Chevalley groups and the sporadic groups (tables 6,8 and 9). So tables 5 to 9
contain all the rank 3 representations of almost simple type. As a general rule, we always
list the smallest possible group G; other groups are obtained by adjoining automorphisms
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of G (provided this larger group still acts on Ω). For some classes, we also list the point-
stabilizer (denoted by Gx). If not, we list the set Ω by writing a typical element, the full
set is obtained by taking the orbit of the typical element under G.

G Ω v k;l λ;µ

(AL1) An pair in n-set n(n−1)
2 2(n− 2); (n−2)(n−3)

2 n− 2;4
(AL2) A8 line in PG(3, 2) 35 16;18 6;8
(AL3) A9 PG(1, 8) in 9-set 120 56;63 28;24
(AL4) A10 5|5 splitting of 10 points 126 25;100 8;4

Table 5: Rank 3 Representations of Alternating Groups.

In order to decide whether an element σ in Aut(G) extends the rank 3 representation,
simply let it act on a typical element; if this is possible and the result is inside Ω, then
{σ, G} generates a larger rank 3 group on the same set Ω. We illustrate this with an
example that we will need anyway later on: consider example (AL3) (of table 5). There
are in total 240 PG(1, 8)’s in a set of 9 elements and A9 acts in two orbits twice on 120 of
them. So an element of S9 \A9 interchanges these two orbits and hence S9 does not act as
a rank 3 group on 120 points. But in example (AL1), Sn does act on the set of duads and
hence this gives us a rank 3 representation.

In some of the tables, we also list the parameters (v, k, l, λ, µ) of the corresponding
strongly regular graphs (see subsection 2.2 for the definitions). These will play a crucial
role in our proof. The parameters of the complementary strongly regular graph can be
computed easily (see also subsection 2.2) and are not always included in the tables. In
the proof of the main result, we will however use these values without further reference.
However, the parameters of the strongly regular graphs related to the groups of table 6
can be found in subsection 4.2.

CLASS II. The Affine Case.
The complete classification of this class is due to Liebeck [65]. He subdivides this

class into three subclasses. We give a very brief description in all of these cases.
Let us fix our notation: here Ω is an affine space Vn(q) of dimension n over GF (q). We

denote by Go the stabilizer in G of the zero-vector and we choose n minimal with respect
to the property Go ≤ ΓLn(q) (as in Liebeck [65].

(A) INFINITE CLASSES.

There are 11 infinite classes and we list them in table 10, where we emphasize the
geometric properties of Go; the exact shape of Go (as a group) will be given later if
necessary. In most of the cases though, the geometric description suffices (since our proof
is using rather geometric arguments).

(B) EXTRASPECIAL CLASS.
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G Ω v remark

(CH1) Ln(q) lines in PG(n− 1, q) (qn+1−1)(qn−1)
(q+1)(q−1)2 n ≥ 4

(CH2) S2n(q) (isotropic) points of PG(2n− 1, q) q2n−1
q−1 n ≥ 2

(CH3) O2n+1(q) singular points in PG(2n, q) q2n−1
q−1 n ≥ 2

(CH4) O+
2n(q) singular points in PG(2n− 1, q) (qn−1)(qn−1+1)

q−1 n ≥ 3

(CH5) O−
2n(q) singular points in PG(2n− 1, q) (qn+1)(qn−1−1)

q−1 n ≥ 3

(CH6) O+
10(q) singular 4-spaces in PG(9, q) (q8−1)(q3+1)

q−1

(CH7) O+
2n(2) non-singular points in PG(2n− 1, 2) 22n−1 + 2n−1 n ≥ 3

(CH8) O−
2n(2) non-singular points in PG(2n− 1, 2) 22n−1 − 2n−1 n ≥ 3

(CH9) O2n+1(3) points inside a quadric in PG(2n, 3) 3n(3n+1)
2 n ≥ 2

(CH10) O2n+1(3) points outside a quadric in PG(2n, 3) 3n(3n−1)
2 n ≥ 2

(CH11) O+
2n(3) non-singular points PG(2n− 1, 3) 3n−1(3n−1)

2 n ≥ 3

(CH12) O−
2n(3) non-singular points PG(2n− 1, 3) 3n−1(3n+1)

2 n ≥ 3
(CH13) O2n+1(4) non-singular hyperplanes on PG(2n, 4) 22n−1(22n − 1) n ≥ 2

(one orbit)
(CH14) O2n+1(4) non-singular hyperplanes on PG(2n, 4) 22n−1(22n + 1) n ≥ 2

(other orbit)
(CH15) O2n+1(8) : 3 non-singular hyperplanes on PG(2n, 8) 23n−1(23n − 1) n ≥ 2

(one orbit)
(CH16) O2n+1(8) : 3 non-singular hyperplanes on PG(2n, 8) 23n−1(23n + 1) n ≥ 2

(other orbit)

(CH17) U2n+1(q) singular points in PG(2n, q2) (q2n−1)(q2n+1+1)
q2−1 n ≥ 1

(CH18) U2n(q) singular points in PG(2n− 1, q2) (q2n−1)(q2n−1+1)
q2−1 n ≥ 2

(CH19) U5(q) singular lines in PG(4, q2) (q5 + 1)(q3 + 1)

(CH20) U2n+1(2) non-singular points in PG(2n, 4) 22n(22n+1+1)
3 n ≥ 2

(CH21) U2n(2) non-singular points in PG(2n− 1, 4) 22n−1(22n−1)
3 n ≥ 2

(CH22) E6(q) points of a building (q12−1)(q9−1)
q4−1)(q−1)

Table 6: Rank 3 Representations of Chevalley Groups: Infinite Classes.
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G Gx v k;l λ;µ λ;µ

(CG1) L2(8) : 3 7 : 6 36 14;21 7;4 10;15
(CG2) L3(4) A6 56 10;45 0;2 36;36
(CG3) S6(2) G2(2) 120 56;63 28;24 30;36
(CG4) O7(3) G2(3) 1080 351;728 126;108 484;504
(CG5) U3(3) : 2 L3(2) : 2 36 14;21 4;6 12;12
(CG6) U3(5) A7 50 7;42 0;1 35;36
(CG7) U4(3) L3(4) 162 56;105 10;24 72;60
(CG8) U6(2) U4(3) : 2 1408 567;840 246;216 488;520

Table 7: Rank 3 Representations of Classical Groups: Exceptional Classes.

G Gx v k;l λ;µ λ;µ

(EG1) G2(3) G2(2) 351 126;224 45;45 142;144
(EG2) G2(4) J2 416 100;315 36;20 234;252
(EG3) G2(4) U3(4) : 2 2016 975;1040 462;480 544;528
(EG4) G2(8) : 3 ΓU3(8) : 2 130816 32319;98496 7742;8064 74240;73920

Table 8: Rank 3 Representations of Exceptional Groups: Exceptional Classes.

G Gx v k;l λ;µ λ;µ

(SP1) M11 M9.2 55 18;36 9;4 21;28
(SP2) M12 M10.2 66 20;45 10;4 28;36
(SP3) M22 24.A6 77 16;60 0;4 47;45
(SP4) M22 A7 176 70;105 18;34 68;54
(SP5) M23 M21.2 253 42;210 21;4 171;190
(SP6) M23 24.A7 253 112;140 36;60 87;65
(SP7) M24 M22.2 276 44;231 22;4 190;210
(SP8) M24 M12.2 1288 495;792 206;180 476;504
(SP9) J2 U3(3) 100 36;63 14;12 38;42
(SP10) HS M22 100 22;77 0;6 60;56
(SP11) McL U4(3) 275 112;162 30;56 105;81
(SP12) Suz G2(4) 1782 416;1365 100;96 1044;1050
(SP13) Co2 U6(2).2 2300 891;1408 378;324 840;896
(SP14) Ru 2F4(2) 4060 1755;2304 730;780 1328;1280
(SP15) Fi22 2.U6(2) 3510 693;2816 180;126 2248;2304
(SP16) Fi22 Ω7(3) 14080 3159;10920 918;648 8408;8680
(SP17) Fi23 2.F i22 31671 3510;28160 693;351 25000;25344
(SP18) Fi23 PΩ+

8 (3).S3 137632 28431;109200 6030;5832 86600;86800
(SP19) Fi′24 Fi23 306936 31671;275264 3510;3240 246832;247104

Table 9: Rank 3 Representations of Sporadic Groups.
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n Go

(AI1) 1
(AI2) 2m stabilizes direct sum V2m(q) = Vm(q)

⊕
V ′

m(q).
(AI3) 2m stabilizes tensor product V2m(q) = Vm(q)

⊗
V2(q).

(AI4) n stabilizes a subspace over GF (
√

q).
(AI5) 2 stabilizes a subspace over GF ( 3

√
q).

(AI6) n stabilizes a non-degenerate Hermitian form in AG(n, q2).
(AI7) 2m stabilizes a non-degenerate quadratic form of type Oε

2m, ε = +1 or −1.
(AI8) 10 stabilizes a wedge-product

∧2(V5(q)).
(AI9) 8 Ω7(q).(2, q − 1) ! Go/Z(Go) (spin representation).
(AI10) 16 PΩ+

10(q) ! Go/Z(Go) (spin representation).
(AI11) 4 stabilizes the Suzuki-Tits ovoid, q = 22h+1.

Table 10: Affine Rank 3 Groups: Infinite Classes.

n q k;l λ;µ comments

(AE1) 2 p p = 7, 13, 17, 19, 23, 29, 31, 47.
(AE2) 3 22 27;36 10;12 |Go| = 24.34.
(AE3) 2 32 32;48 13;12 |Go| = 24.33.
(AE4) 2 33 104;624 31;12 |Go| = 24.32.13.
(AE5) 4 3 16;64 7;2 Go ≤ Sp4(3) ; l = 4× 16.
(AE6) 4 3 32;48 13;12 Go ≤ Sp4(3) ; k = 2× 16, l = 3× 16.
(AE7) 4 5 240;384 95;90 k = 15× 16, l = 6× 64.
(AE8) 4 7 480;1920 119;90
(AE9) 8 3 1440;5120 351;306 |Go| = 213.34.5 ; k = 45× 32, l = 40× 128.

(AE10) 4 3 32;48 13;12 either |Go|
|Z(Go)| = 27.32

or |Go| < 28.32 and Go ≤ GL2(3)
⊗

GL2(3).

Table 11: Affine Rank 3 Groups: Extraspecial Class.

Here, Go is the normalizer of an extraspecial group. We deduce the possibilities in
table 11 from Liebeck [65] and Foulser [36]. The comment “k = a× b” means that the
suborbit of size k consists of a blocks of imprimitivity of size b.

(C) EXCEPTIONAL CASES.

Here, the group Go/Z(Go) is always an almost simple group and again, a list is available.
We deduce the information we need from Liebeck [65] and Foulser & Kallaher [37]
and list it in table 12. Some parameters are also obtained from Brouwer [9].

CLASS III. The Grid Case.
Here, we have a simple group S with S × S ! G ≤ Sowr2, where S ! So ≤ Aut(S) and

So acts 2-transitively on a set of n points. So So is one of the groups in table 4. Here,
|Ω| = n2. The notation “wr” means Wreath product. In our case, H wr 2 is isomorphic
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Go/Z(Go) n q k;l λ;µ

(AF1) A5 2 q = 31, 41, 71, 79 or 89
(AF2) A5 2 32 40;40 19;20
(AF3) A5 2 72 960;1440 389;380
(AF4) A6 3 22 18;45 2;6
(AF5) S6 4 5 144;480 43;30
(AF6) A7 4 22 45;210 16;6
(AF7) A7 4 7 720;1680 229;220
(AF8) A9 8 2 120;135 56;56
(AF9) A10 8 2 45;210 16;6
(AF10) L2(17) 8 2 102;153 38;42
(AF11) L3(4).22 6 3 224;504 61;72
(AF12) U4(2) 4 7 240;2160 59;20
(AF13) G2(4) 12 3 65520;465920 8559;8010
(AF14) M11 5 3 22;220 1;2
(AF15) M11 5 3 110;132 37;60
(AF16) M24 11 2 276;1771 44;36
(AF17) M24 11 2 759;1288 310;264
(AF18) J2 6 4 1575;2520 614;600
(AF19) J2 6 5 7560;8064 3655;3660
(AF20) Suz 12 3 65520;465920 8559;8010

Table 12: The Affine Rank 3 Groups: Exceptional cases.
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to (H × H) : 2; if H acts on a set V , then H wr 2 acts on V × V as follows: H × H in
the natural way and the outer 2 by switching the two V ’s. We refer to such a group G as
“GRID”.

3.2 Distance Transitive Graphs.

Let Γ be a graph and suppose Γ is regular as a (g, dp, dl)-gon. Then Γ is called a distance
regular graph. If (Γ, G) is moreover a point distance transitive (g, dp, dl)-pair, then (Γ, G),
or briefly Γ is called a distance transitive graph.

The point graph or collinearity graph of a geometry Γ is the graph obtained from Γ
by taking as vertices the points of Γ and as edges the pairs of adjacent points. Similarly for
the line graph. There are obvious connections between the point (resp. line) transitivity
properties of a geometry and the transitivity properties of its point (resp. line) graph and
there are equally obvious connections between the transitivity properties of a geometry
and its incidence graph.

Now note that the point graph, the line graph and the incidence graph of a regular
(g, dp, dl)-gon is a distance regular graph (almost by definition). So, in view of the assump-
tions on the geometries we consider, distance transitive graphs will play an important role
in this paper. Actually, a complete classification (which seems within reach, see Brouwer,
Cohen & Neumaier [10]) would make our proof much easier. But the classification is not
yet complete and so we must handle some cases by methods depending on the properties of
the “underlying” geometry. But several classes of distance transitive graphs are classified
and we will take advantage of such results, except at some places where we can prove a
stronger result using geometric properties.

We now summarize the results on distance transitive graphs. So let Γ be a distance
transitive graph with corresponding group G. Some standard parameters are defined: fix
vertices x and y at distance i from each other, then

1. ai = |Γi(x)
⋂

Γ1(y)|;

2. bi = |Γi+1(x)
⋂

Γ1(y)|;

3. ci = |Γi−1(x)
⋂

Γ1(y)|;

4. ki = |Γi(x)|.

We have the obvious relations:

ai + bi + ci = k1; ci+1ki+1 = kibi.

If we put dp = d, then an intersection array of Γ is defined as

(b0, b1, . . . , bd−1; c1, c2, . . . , cd).
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G d v intersection array

(DC1) U3(3) 3 63 (6,4,4;1,1,3)
(DC2) U3(3) : 2 3 63 (6,4,4;1,1,3)
(DC3) U3(5) 3 175 (12,6,5;1,1,4)
(DC4) U3(4) : 2 3 208 (12,10,5;1,1,8)

Table 13: The Admissible Distance Transitive Graphs related to Classical Groups.

For reasons that will become clear later, we are not interested in distance transitive
graphs of diameter d ≥ 3 with c2 ≥ 2 or a1 = 0. Neither are we interested in distance
transitive graphs for which the group G acts imprimitively on the set of vertices of Γ.
Finally, we assume d ≥ 3, since d = 2 corresponds to strongly regular graphs and rank
3 groups. We will call an element of the class of remaining distance transitive graphs an
admissible distance transitive graph.

Suppose G is a group acting distance transitively and primitively on a distance regular
graph Γ. By a theorem of Praeger, Saxl & Yokayama [74] (see also van Bon [92]),
there are three possibilities:

1. Γ is a Hamming graph, but then c2 ≥ 2, see e.g. Brouwer, Cohen & Neumaier
[10].

2. G is of affine type. Again c2 ≥ 2.

3. G is almost simple.

So if we restrict to admissible distance transitive graphs, then the only groups that can
occur are almost simple groups.

Suppose now G is almost simple and G acts primitively and distance transitively on a
distance regular graph Γ. Then the following cases occur:

CASE I. The Alternating Case.

Here, G is of alternating type. A complete classification has been achieved by Ivanov
[52] and Liebeck, Praeger & Saxl [66]. If we restrict to admissible distance transitive
graphs, then no examples survive.

CASE II. The Classical Case.

Here, G is a classical Chevalley group. Again, a complete classification has been
achieved recently by Praeger, Saxl & van Bon [75], see also Inglis, Liebeck &
Saxl [51]. Their result is basically that there are no surprises compared with [10], con-
sidering some additional low-dimensional examples listed in Cohen & van Bon [21]. If
we restrict to admissible distance transitive graphs then we find the four examples of table
13.
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G Gx Restrictions.

(CU1) G2(q) SU3(q) : 2 q = 2, 3, 4, 5, 7, 8, 9, 16, 32
(CU2) G2(q) SL3(q) : 2 q = 2, 3, 4, 5, 8
(CU3) G2(4) J2

(CU4) 2F4(2) L3(3) : 2
(CU5) F4(2) O9(2)
(CU6) 2E6(2) F4(2)
(CU7) E6(2) : 2 F4(2) : 2 G contains a graph automorphism

Table 14: Rank ≤ 5 representations of exceptional groups.

CASE III. The Exceptional Case.

No complete classification has been achieved yet. In order to deal with this situation we
use a result of Liebeck [68]. Note that Cuypers [23] has determined all representations of
the Chevalley groups of rank ≤ 5. His result, restricted to the exceptional Chevalley groups
is summarized in table 14 omitting the case where the corresponding maximal subgroup is
a maximal parabolic.

Liebeck [68] has classified all “large” subgroups of the exceptional groups of Lie type
and to have an idea of what “large” means here, it follows that all non-parabolic maximal
subgroups H of any almost simple group G with exceptional socle such that |H|2 ≥ |G|
are known. We present that part of the list in table 15. We only mention the simple
exceptional group (G) and the corresponding subgroup (H) inside this simple group.

It is also worth noting that inside Aut(G) each maximal subgroup H in table 15 gives
rise to only one conjugacy class, this follows from a personal communication of Cohen to
Cuypers [23] for (ME15) and by Liebeck [68] for the other cases.

CASE IV. The Sporadic Groups.
Here, the situation is completely known for diameter ≤ 4 by work of Praeger &

Soicher [76]. The result is, apart from the rank 3 examples given earlier, that there are
precisely 6 distance transitive graphs. All of them appear already in Brouwer, Cohen
& Neumaier [10]. When restricting to the admissible ones, only one example survives
and it is listed in table 16.

In order to handle the sporadic groups in our proof, we will make use of the classification
of their maximal subgroups (we will not list them all, but we will give the appropriate
references later on) except for M and B, for which this classification is not yet completed.

An important tool will also be the minimum number P (G) of objects on which a
given sporadic group G can act non-trivially. We tabulate these values in table 17. The
corresponding maximal subgroup is denoted by H. The value for P (G) follows in each case
from the classification of the maximal subgroups except if G ∼= M or G ∼= B. In all cases
the number P (G) was computed independent from the knowledge of all maximal subgroups
by Mazurov [71]. As far as we know, it is not yet proved that 2.B is, up to congucacy,
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G H restrictions

(ME1) SL3(q) : 2
(ME2) SU3(q) : 2
(ME3) 2G2(q) q = 32h+1

(ME4) G2(q) G2(
√

q) q square
(ME5) G2(2) q = 3
(ME6) J2 q = 4
(ME7) 3D4(q) G2(q)
(ME8) 3D4(

√
q) q square

(ME9) 2F4(2)′ L3(3) : 2
(ME10) L2(25)
(ME11) (2, q − 1).O9(q)
(ME12) ((2, q − 1)2.O+

8 (q)).S3

(ME13) F4(q) 3D4(q).3
(ME14) F4(

√
q) q square

(ME15) 2F4(q) q = 22h+1

(ME16) F4(q)
(ME17) (((4, q5 + 1).O−

10(q)).(q + 1)/(3, q + 1)).(4, q + 1)
(ME18) 2E6(q) (SL2(q).U6(q)).(2, q − 1) |Z(H)| = (2, q − 1)
(ME19) Fi22 q = 2
(ME20) F4(q)
(ME21) (((4, q5 − 1).O+

10(q)).(q − 1)/(3, q − 1)).(4, q − 1) G contains a graph-
automorphism

(ME22) E6(q) (SL2(q).L6(q)).(2, q − 1) |Z(H)| = (2, q − 1)
(ME23) E6(

√
q) q square

(ME24) 2E6(
√

q) q square
(ME25) ((3, q − 1).E6(q)).(q − 1)/(2, q − 1)).(3, q − 1).2
(ME26) ((3, q + 1). 2E6(q)).(q + 1)/(2, q − 1)).(3, q + 1).2
(ME27) E7(q) (SL2(q).O

+
12(q)).2 |Z(H)| = (2, q − 1)

(ME28) E7(
√

q) q square
(ME29) (SL2(q).E7(q)).(2, q − 1) |Z(H)| = (2, q − 1)
(ME30) E8(q) O+

16(q).2 |Z(H)| = (2, q − 1)
(ME31) E8(

√
q) q square

Table 15: Large Non-Parabolic Maximal Subgroups of Exceptional Groups.

G d v intersection array

(DS1) J2 4 315 (10,8,8,2;1,1,4,5)

Table 16: Admissible Distance Transitive Graphs related to Sporadic Groups.
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G |Out(G)| |G| H P (G)

M 1 246.320.59.76.112.133.17.19.23.29. [2.B] 927.1017

31.41.47.59.71
B 1 241.313.56.72.11.13.17.19.23.31.47 (2. 2E6(2)) : 2 135.108

Fi′24 2 221.316.52.73.11.13.17.23.29 Fi23 306,936
J4 1 221335.7.113.23.29.31.37.43 211.M24 173,067,389

CO1 1 221.39.54.72.11.13.23 CO2 98,280
Fi23 1 218.313.52.7.11.13.17.23 2.F i22 31,671
Th 1 215.310.53.72.13.19.31 3D4(2) : 3 143,127,000
Ly 1 28.37.56.7.11.31.37.63 G2(5) 8,835,156
HN 2 214.36.56.7.11.19 A12 1,140,000
Fi22 2 217.39.52.7.11.13 2.U6(2) 3,510
Co2 1 218.36.53.7.11.23 U6(2) : 2 2,300
Co3 1 210.37.53.7.11.23 McL : 2 276
O′N 2 29.34.5.73.11.19.31 L3(7) : 2 122,760
Suz 2 213.37.52.7.11.13 G2(4) 1,782
Ru 1 214.33.53.7.13.29 2F4(2) 4,060
He 2 210.33.52.73.17 S4(4) : 2 2,058

McL 2 27.36.53.7.11 U4(3) 275
M24 1 210.33.5.7.11.23 M23 24
J3 2 27.35.5.17.19 L2(16) : 2 6,156
HS 2 29.32.53.7.11 M22 100
M23 1 27.32.5.7.11.23 M22 23
J2 2 27.33.52.7 U3(3) 100

M22 2 27.32.5.7.11 L3(4) 22
J1 1 23.3.5.7.11.19 L2(11) 266

M12 2 26.33.5.11 M11 12
M11 1 24.32.5.11 A6

.2 11

Table 17: Sporadic Groups: Orders and Largest Maximal Subgroups.

the unique subgroup of M with index P (M). This is made clear by the brackets in table
17. The fact that (2.2E6(2)) : 2 is the unique maximal subgroup of B with minimal index
follows from Wilson [97].

In the tables, we also list the order of the simple group and the index |Out(G)| of it in
its full automorphism group (see Atlas [22]).

This completes the list of known results that we will use in our proofs.
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4 PROOF OF THE MAIN RESULTS.

4.1 Generalized Polygons.

For generalized polygons, our main result follows from Buekenhout & Van Maldeghem
[16]. For completeness’ sake we state it here as a proposition:

PROPOSITION 1. Suppose (Γ, G) is a point distance transitive (g, g, g)-pair, where
Γ is a finite generalized g-gon, g ≥ 3, and G is type-preserving. Then (Γ, G) is one of
the examples of table 18 below (where q denotes an arbitrary prime power). If G is not
necessarily type-preserving, then in the cases where Γ is self-dual (see table 1), one can
adjoin a graph automorphism.

4.2 Rank 3 groups.

In this section, we deal with all geometries of theorems 1 and 3 satisfying 4 ≤ dp ≤
5. This means that, under the hypothesis of the existence of a point distance transitive
automorphism group G, G has rank 3 on the points and the point set is a strongly regular
graph. More exactly, we will establish the following results.

PROPOSITION 2. Let Γ be a proper partial geometry and suppose G ≤ Col(Γ) acts
weakly distance transitively on Γ. Then the points of Γ can be identified with the points of
an affine line AG(1, q) and G ≤ AΓL1(q).

PROPOSITION 3. Let Γ be a proper partial geometry or a net and suppose G ≤
Col(Γ) acts weakly geodesic transitively. Then Γ is a net and one of the following holds:

(NE1) Γ is the helicopter plane HG(2, q) obtained from the Desarguesian projective plane
PG(2, q) by deleting a flag (x, l) and all varieties incident with one of x, l and G
contains the stabilizer in PGL3(q) of the flag (x, l) in PG(2, q);

(NE2) Γ is the net (Hn+1
q )D of order qn and degree q +1 and G contains a group isomorphic

to the semi-direct product of an elementary abelian group q2n with a group isomorphic
to

(a) (SL2(q)× SLn(q))/Z(SL2(q)× SLn(q)) if n > 2, or

(b) (SL2(q)×GL2(q))/Z(SL2(q)×GL2(q)) if n = 2, or

(c) SL2(2)× A7 if (n, q) = (4, 2).

(NE3) Γ is the net Ne(28) and G ∼= 28 : A9.
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g Γ G Restrictions

(GP1) 3 PG(2, q) L3(q) ! G ≤ PΓL3(q)
(GP2) 4 W (q) S4(q) ! G ≤ PΓSp4(q)
(GP3) 4 Q(4, q) O5(q) ! G ≤ PΓO5(q)
(GP4) 4 Q(5, q) O−

6 (q) ! G ≤ PΓO−
6 (q)

(GP5) 4 H(3, q2) U4(q) ! G ≤ PΓU4(q)
(GP6) 4 H(4, q2) U5(q) ! G ≤ PΓU5(q)
(GP7) 6 H(q) G2(q) ! G ≤ Aut(G2(q)) G contains no

graph automorphism
(GP8) 6 H(q, q3) 3D4(q) ! G ≤ Aut(3D4(q))
(GP9) 8 2F4(q) 2F4(q) ! G ≤ Aut(2F4(q) q odd power of 2

(GP10) 4 H(4, q2)D U5(q) ! G ≤ PΓU5(q)
(GP11) 4 W (2) A6

(GP12) 4 T ∗
2 (O) 26 : 3 : A6 ≤ G ≤ 26 : 3 : S6 O a complete oval

in PG(2, 4)
(GP13) 4 (s + 1)× (s + 1)-grid GRID
(GP14) 4 dual grid
(GP15) 6 H(q)D G2(q) ! G ≤ Aut(G2(q)) G contains no

graph automorphism
(GP16) 6 H(q, q3)D 3D4(q) ! G ≤ Aut(3D4(q))
(GP17) 6 H(2) U3(3) ∼= G2(2)′

(GP18) 6 PG(2, q)I L3(q) : 2 ≤ G ≤ PΓL3(q) : 2 G contains a
graph automorphism

(GP19) 6 (PG(2, q)I)D L3(q) : 2 ≤ G ≤ PΓL3(q) : 2 G contains a
graph automorphism

(GP20) 8 2F4(q)D 2F4(q) ! G ≤ Aut(2F4(q) q odd power of 2
(GP21) 8 2F4(2) T ∼= R(2) ∼=2 F4(2)′

(GP22) 8 W (q)I S4(q).2 ≤ G ≤ PΓSp4(q).2 q even
G contains a
graph automorphism

(GP23) 8 (W (q)I)D S4(q).2 ≤ G ≤ PΓSp4(q).2 q even
G contains a
graph automorphism

(GP24) 8 W (2)I A6 : 2 G contains a
graph automorphism

(GP25) 12 H(q)I G2(q).2 ≤ G ≤ Aut(G2(q)) q is a power of 3
G contains a
graph automorphism

(GP26) 12 (H(q)I)D G2(q).2 ≤ G ≤ Aut(G2(q)) q is a power of 3
G contains a
graph automorphism

Table 18: Point Distance Transitive Generalized Polygons.
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Γ G (s, t, α) Remarks

(PQ0) Pn(5) D10 (1, 1, 0) G is geodesic transitive;
G : 2 is full geodesic transitive

(PQ1) Pe(10) A5 ! G ≤ S5 (1, 2, 0) G is point geodesic transitive;
S5 is geodesic transitive

(PQ2) HS(50) U3(5) ! G ≤ U3(5) : 2 (1, 6, 0) G is point geodesic transitive
and geodesic transitive

(PQ3) Ge(56) L3(4) ! G ≤ L3(4) : 22 (1, 9, 1) G is point geodesic transitive
but not geodesic transitive

(PQ4) HS(77) M22 ! G ≤ M22 : 2 (1, 15, 3) G is point geodisic transitive
but not geodesic transitive

(PQ5) HS(100) HS ! G ≤ HS : 2 (1, 21, 5) G is point geodesic transitive
and geodesic transitive

(PQ6) Cl(16) 24 : D10 ≤ G ≤ 24 : S5 (1, 4, 1) 24 : (5 : 4) is point geodesic
transitive;

24 : A5 is geodesic transitive

Table 19: Point Distance Transitive Partial Quadrangles with s = 1.

Γ AG(n, q) S Restrictions.

(PQ7) T ∗
3 (Q) AG(4, q) L2(q2) Q an elliptic quadric in PG(3, q)

(PQ8) T ∗
3 (O) AG(4, q) Sz(q) O the Suzuki-Tits ovoid in PG(3, q), q = 22e+1

(PQ9) Hi(243) AG(5, 3) M11

Table 20: Point Geodesic Transitive Partial Quadrangles with s > 1.

PROPOSITION 4. Let Γ be a partial quadrangle which is not a generalized quad-
rangle and let G ≤ Col(Γ) act point distance transitively on Γ. Then either the pointset of
Γ can be identified with the affine line AG(1, q) and G ≤ AΓL1(q), or Col(Γ) acts point
geodesic transitively and one of the following possibilities occurs:

1. s = 1 and Γ is a rank 3 strongly regular graph. The possibilities for Γ, G are listed in
table 19;

2. Γ has a linear representation in the affine space AG(n, q), G acts point geodesic tran-
sitively, it contains the full translation group of AG(n, q) and modulo its center, the
stabilizer of a point is an almost simple group S, where the possibilities for Γ, n, q, S
are given in table 20.

PROOF OF PROPOSITIONS 2,3 AND 4 STARTED.

So suppose Γ = (P ,L, I) is a proper partial geometry, a net or a dual net (PG) or a
partial (PQ) quadrangle with a collineation group G satisfying the respective conditions
of propositions 1, 2 and 3.
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First suppose that G acts imprimitively on P . Suppose Γ is a PQ and let A be a non-
trivial set of imprimitivity. If A contains two collinear points, then by connectedness, we
obtain a contradiction. So let x, y ∈ A with x and y non-collinear. Let Γ have parameters
(s, t, α). Then there are s(t− α) points z collinear to y and not collinear to x. But t > α,
otherwise Γ is a GQ and A must be trivial. By the transitivity of G, we can fix x and map
y to such a point z. But now A contains two collinear points.

Suppose now Γ is a PG with parameters (s, t, a). Again, let A be a set of imprimitivity
with x, y ∈ A. As earlier, x and y are non-collinear. If we can find an element z collinear
to y but not collinear to x, then we obtain a contradiction as above. The number of such
points z is (t + 1)(s− a− 1). So we may assume s = a + 1. Since the assumptions for PG
are self-dual, we can consider the dual ΓD and if this has a non-trivial set of imprimitivity,
then t = s + 1. Hence, the only case to consider here is the case where Γ is both a net and
a dual net, hence a helicopter plane. A similar argument as in lemma 6 below shows that
the corresponding projective plane P is a translation plane and a dual translation plane
with respect to the special line resp. point (for which all elements incident with it do not
belong to Γ). From the transitivity follows that the autotopism group has a unique orbit
on the set of points off the autotopism triangle (see e.g. Hughes & Piper [50] for the
definitions). But in this case, Kallaher [54] shows that P must be Desarguesian and it
is an elementary excercise to verify that the group G is as claimed in proposition 2. This
gives us example (NE1).

So from now on, we may assume that G acts primitively on P . Throughout, x will
denote an arbitrary point of Γ. The parameters of Γ will be denoted by (s, t, α), resp.
(s, t, a) for a PQ, resp. a PG. The parameters of the strongly regular point-graph are
(v, k,λ, µ). Note that Γ2(x) is exactly the set of vertices of the point-graph adjacent to
x. Proving the propositions amounts to check whether the rank 3 graphs mentioned in
section 3.1 are the point graph of a PG or a PQ. Usually a number-theoretical argument
or an easy geometric one suffices to kill a given case. Let us summarize the most common
arguments:

(PQ) In the case of PQ, we have s ≤ t and |Γ2(x)| < |Γ4(x)|, i.e. k ≤ l. Here, λ + 1 = s,

µ = α + 1, k = s(t + 1) and l = s2t(t+1)
α+1 . So (s, t, α) is determined:

(s, t, α) = (λ + 1,
k − λ− 1

λ + 1
, µ− 1).

The restrictions here are (1) λ + 1 divides l, (2) µ− 1 ≤ k−λ−1
λ+1 and in case Γ is not a

GQ, (3) λ+1 ≤ k−λ−1
λ+1 (the last two inequalities because α ≤ t and s ≤ t respectively).

When one of these conditions is not satisfied for a certain strongly regular graph, we
say that its parameters do not fit a PQ. A geometric argument which will often be
used is the fact that two points y and z which are collinear determine a unique line:
indeed, the (shadow of the) line yz is the set Γ2(y)∩Γ2(z). This can be used to verify
that Γ does not contain triangles. When it does, we say that the strongly regular
graph induces triangles. Or in some cases, Γ2(y)∩Γ2(z) contains non-collinear points.
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In this case, we say that lines cannot be well-defined. Other arguments will make use
of the group G.

(PG) In this case, one can also calculate the parameters of Γ as a function of the parameters
of its point-graph. If no contradiction arises, then the graph is called pseudo-
geometric. But for a given graph, we have also to consider its complementary
graph here, since |Γ2(x)| can be larger or smaller than |Γ4(x)|. The calculations first
show that D = (µ− λ)2 + 4(k − µ) must be a perfect square. Furthermore:

t =
1

2
(µ− λ− 2 +

√
D);

s =
k

t + 1
;

a = s− 1

2
(λ− µ + 2 +

√
D).

From now on we adopt D as a standard notation.

Note that lines are maximal cliques of the point-graph, but it is not the case that
every maximal clique is a line. Note also that s, t > 1, otherwise we have either a
linear or dual linear space, or a non-thick GQ.

Another useful argument will be the fact that Gx acts 2-transitively on the set of
lines through x and dually, the stabilizer GL of a line acts 2-transitively on the set
of points on L (follows easily from our assumptions).

Since a generalized quadrangle is a partial quadrangle, we will find the examples of table
18 for g = 4 back along our way when dealing with partial quadrangles. This provides a
more detailed version of the proof in Buekenhout & Van Maldeghem [16].

We are now ready to go through the list of all primitive rank three representations of
finite groups (see 3.1).

CLASS I. The Almost Simple Case.

CASE Ia. The Alternating Groups.
We refer to table 5 and treat the different cases (PG, PQ) separately.

(AL1).

(PQ). For n ≥ 7, |Γ2(x)| = 2(n − 2) and the graph induces triangles. For n = 6, we

obtain example (GP11) of table 18 and for n = 5, we get example (PQ1).

(PG). If adjacent vertices are intersecting pairs, then the parameters imply t = 1, a

contradiction. In the other case, s + 1 = n/2 and the points on a line are certain n/2-sets
of disjoint pairs. We may suppose that n ≥ 8 (otherwise we have a GQ). The stabilizer of
two collinear points (so two disjoint pairs) obviously acts transitively on the set of points
collinear to both, never preserving the line through the points.
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(AL2).
By the isomorphism A8

∼= L4(2), this is a special case of (CH1).

(AL3).

(PQ). Here, λ + 1 does not divide l.

(PG). If |Γ2(x)| = 63, then A9 acts on 120 PG(1, 8)’s. These form indeed a par-

tial geometry with parameters (7, 8, 3) denoted by PQ+(7, 2) in De Clerck & Van
Maldeghem [28] and first discovered by Cohen [19], and independently by Haemers &
van Lint [43] and De Clerck, Dye & Thas [26]. It was shown by Kantor [57] that
A9 is indeed the full automorphism group of this PG. But there are 135 lines and A9 does
not act as a rank 3 group on any set of that size.

If |Γ2(x)| = 56, then the parameters imply t = 3 and a = 5, a contradiction.

(AL4).

(PQ). Again, λ + 1 does not divide l.

(PG). The parameters do not fit any PG here.

CASE Ib. The Chevalley Groups: Infinite Classes.
We refer to table 6 for this case.

(CH1).

(PQ). Collinearity of points is always “intersecting” for the corresponding lines in

PG(n − 1, q), except for n = 4 and q = 2. But in both cases, lines of Γ cannot be
well-defined.

(PG). If collinearity of points is “intersecting” for the corresponding lines in PG(n−
1, q), then the parameters imply t = q = a, hence we have a dual linear space. So
collinearity is being “skew”. Here the parameters imply s− a = q + 1, so the lines of Γ are
sets of lines of PG(n − 1, q) forming a spread of PG(n − 1, q). But the stabilizer of two
skew lines in PG(n− 1, q) never fixes a full spread.

(CH2)-(CH3)-(CH4)-(CH5)-(CH17)-(CH18).

(PQ). If the rank of the corresponding building is larger than 2, then lines cannot be

well-defined (since Γ2(y) ∩ Γ2(z) is a building of one rank less, for y and z non-collinear
points). Hence the rank is 2 and we obtain the examples (GP2) up to (GP6).

(PG). If collinear points in Γ are collinear points in the graph, then obviously we

obtain lines meeting in more then just one point (since the lines of Γ must be the maximal
isotropic or maximal singular subspaces), except if the rank of the building is 2, in which
case we have a GQ. Suppose now that Γ arises from the complementary graph. We can
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calculate the parameters of Γ and obtain:

s t a
S2n(q) qn qn−1 − 1 qn − qn−1 − 1

O2n+1(q) qn qn−1 − 1 qn − qn−1 − 1
O−

2n(q) qn qn−2 − 1 qn − qn−1 − 1
O+

2n(q) qn−1 qn−1 − 1 qn−1 − qn−2 − 1
U2n+1(q) q2n+1 q2n−2 − 1 q2n+1 − q2n−1 − 1
U2n(q) q2n+1 q2n−1 − 1 q2n+1 − q2n−1 − 1

In all but one case, a > t, a contradiction. The exceptional case is O+
2n(q). Here,

s = qn−1 and so the lines of Γ are ovoids on the hyperbolic quadric. Since G must induce a
doubly transitive permutation group on the set of points on a line, we must only consider
2-transitive ovoids. These were classified by Kleidman [60]. But comparing the order of
the group GL stabilizing a line in Γ computed by |G|

|L| with the order of the corresponding

group in Kleidman’s list, no example survives. Alternatively, one can argue as in (CH1),
namely, the group fixing two non-collinear points never fixes an ovoid.

(CH19).

(PQ). Here example (GP10) arises.

(PG). Collinear points of Γ must be non-intersecting lines of the generalized quadran-

gle H(4, q), otherwise we obtain the generalized quadrangle itself. The parameters imply
a = q5 − q2 − 1 > q3 − 1 = t.

(CH6).
The parameters of the graph are (taken from Hubaut [48]):

k =
q(q5 − 1)(q2 + 1)

q − 1
;

l =
q6(q5 − 1)

q − 1
;

λ =
q2(q3 − 1)(q + 1)

q − 1
+ q − 1;

µ =
(q3 − 1)(q2 + 1)

q − 1
.

(PQ). Here, λ + 1 never divides k. A geometric argument goes as follows. Consider

four points p1, p2, p3, p4 on the quadric O+
8 (q) such that p1 resp. p2 is collinear to the other

three and p3 is not collinear to p4. Apply triality and embed this in O+
10(q) to obtain a

subgraph on four vertices with five edges, clearly impossible for the point-graph of a PQ
(it would induce triangles).
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k l λ µ

(CH7) 22n−2 − 1 22n−2 + 2n−1 22n−3 − 2 22n−3 − 2n−2

(CH8) 22n−2 − 1 22n−2 − 2n−1 22n−3 − 2 22n−3 + 2n−2

(CH9) 3n−1.3
n−1
2 32n−1 + 2.3n−1 − 1 3n−1.3

n−1−1
2 3n−1.3

n−1−1
2

(CH10) 3n−1.3
n+1
2 32n−1 − 2.3n−1 − 1 3n−1.3

n−1+1
2 3n−1.3

n−1+1
2

(CH11) 3n−1.3
n−1−1

2 32n−2 − 1 3n−2.3
n−1+1

2 3n−1

(CH12) 3n−1.3
n−1+1

2 32n−2 − 1 3n−2.3
n−1−1

2 3n−1

(CH20) (22n − 1)(22n−1 + 1) 22n−1.2
2n−1
3 3.24n−3 + 22n−1 − 2 3.22n−2(22n−1 + 1)

(CH21) (22n−1 + 1)(22n−2 − 1) 22n−2.2
2n−1+1

3 3.24n−5 − 22n−2 − 2 3.22n−3(22n−2 − 1)

Table 21: Parameters of Some Rank 3 Graphs Related to Classical Groups.

(PG). The parameters of the graph imply a = q2 + q > q2 = t; the parameters of the

complementary graph imply s = q3(q4+q3+q2+q+1)
q2+q+1 which is never an integer.

(CH7)-(CH8)-(CH9)-(CH10)-(CH11)-(CH12)-(CH20)-(CH21).

In table 21, we list the parameters k, l, λ, µ of the strongly regular graphs corresponding
to these cases, see Hubaut [48].

(PQ). We check the condition λ + 1|k (observe that l ≤ k occurs in table 22; so

sometimes one must consider the complementary graph!). As an example, consider (CH21).
Here, k > l and so we have to use the parameters of the complementary graph, i.e. we
must check l − k + µ|l. This gives us the condition

24n−5 − 22n−3 + 3|22n−2(22n−1 + 1),

and since the left hand side is always odd, this implies

24n−5 − 22n−3 + 3|(22n−1 + 1),

which is clearly only possible when n = 2. But in this case we indeed obtain the generalized
quadrangle W (3) in view of the isomorphism U4(2) ∼= S4(3) and in the Atlas [22], one
can see that the action of U4(2) on non-singular points is the same as S4(3) on (isotropic)
points.

There is only one further case in which the condition λ + 1|k is satisfied and that is in
case (CH9), n = 2. Here too, we obtain an example, namely the generalized quadrangle
H(3, 4), in view of the isomorphism O5(3) ∼= U4(2) (atlas [22]).

So we have found special cases of (GP2) and (GP5). Since these examples were already
found, we could have assumed n ≥ 3 in table 6 for (CH9) and (CH21).

(PG). Consider the stabilizer Gx of a point of Γ. This is (a “small” cover of) an

almost simple group with socle Xm(q) if G ∼= Xm+1(q). But Gx should have a 2-transitive
representation on t + 1 elements. Comparing this with table 4, we obtain the following
possibilities.
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k l λ µ

(CH13) (22n + 1)(22n−2 − 1) 22n−2(22n + 1) 24n−3 − 3.22n−2 − 2 22n−1(22n−2 − 1)
(CH14) (22n − 1)(22n−2 + 1) 22n−2(22n − 1) 24n−3 + 3.22n−2 − 2 22n−1(22n−2 + 1)
(CH15) (23n−3 + 1)(23n − 1) 3.23n−3(23n − 1) 26n−5 − 23n−3 + 23n − 2 23n−2(23n−3 + 1)
(CH16) (23n−3 − 1)(23n + 1) 3.23n−3(23n + 1) 26n−5 + 23n−3 − 23n − 2 23n−2(23n−3 − 1)

Table 22: Parameters of the Graphs (CH13) up to (CH16).

1. G ∼= O+
2n(2) and Gx

∼= O2n−1(2) ∼= S2n−2(2). By the information on table 4, t + 1 =
2n−2(2n−1 + 1) or t + 1 = 2n−2(2n−1 − 1). But the parameters of the graph imply
either t = 2n−1 − 2 or t = 2n−2 + 1. This is, for n ≥ 3, never compatible.

2. G ∼= O−
2n(2) and Gx

∼= O2n−1(2) ∼= S2n−2(2). This is ruled out as the preceding case.

3. G ∼= O5(3). In the case (CH9), we either obtain a generalized quadrangle (see above)
or the parameters imply a = 5 > 3 = t. In the case (CH10), Gx

∼= S6 and this has a
2-transitive action on 6 or 10 points. But the parameters here imply t = 2 or t = 3.

4. G ∼= 07(3) and Gx
∼= L4(3) ∼= O+

6 (3). So Gx has a 2-transitive action on 40 points
(hence t = 39), but the parameters imply t = 8 or t = 9.

5. G ∼= U4(2). This produces W (3) for the complementary graph (see above) and the
parameters of the graph itself imply a = 5 > 2 = t, a contradiction.

(CH13)-(CH14)-(CH15)-(CH16).

In table 22 we list the parameters of the strongly regular graphs in these classes. We
obtain this information from Hubaut & Metz [49].

(PQ). One can see immediately that λ + 1 never divides k (considering the comple-

mentary graph for (CH14)).

(PG). As in the previous case, there are only a few possibilities where Gx has indeed

a 2-transitive action (n = 2 in all cases, n = 3 in cases (CH14) and (CH16)). But again,
this is never compatible with the parameter t obtained from the parameters of the graph.

(CH22).

The parameters of the graph are:

k =
q(q8 − 1)(q3 + 1)

q − 1
;

l =
q8(q5 − 1)(q4 + 1)

q − 1
;

λ =
q9 + q7 − q4 − 2q + 1

q − 1
;
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µ =
(q3 + 1)(q4 − 1)

q − 1
.

(PQ). Collinearity in Γ is the same as collinearity in the building, hence lines cannot
be well-defined.

(PG). Suppose first that collinearity in Γ is collinearity in the building. If a point y is
collinear to all points of a certain set A contained in a maximal subspace of the building,
then y is collinear to all points of the subspace generated by A. So an induction argument
shows that the lines of Γ are the maximal subspaces of the building. But they sometimes
meet in more than one single point.

Hence collinearity in Γ arises from the complementary graph. The parameters here
imply s = q8 + q4, t = q8 + q7 + q6 + q5 + q4 − 1 and a = q8 + q4 − q3 − 1. Hence lines of Γ
are “ovoids” of the building (see the remark below). The number of lines of Γ is

q4(q9 − 1)(q5 − 1)

(q − 1)2
.

So the stabilizer of a line in Γ would certainly have order greater than q58, but from table
15 follows that only the maximal parabolics qualify for this. Now only the D5-parabolic
has a rank 3 representation, implying s = t, a contradiction.

REMARK. Define an ovoid in a (finite) building of type E6 over GF (q) as a set of
q8+q4+1 mutually non-collinear points. An interesting problem would be the investigation
of the existence and construction of such ovoids.

This completes the proof for case Ib.

CASE Ic. The Chevalley Groups: Exceptional Classes.
Here we refer back to tables 7 and 8.

(PQ). It is readily verified that λ + 1|k only in the cases (CG2) and (CG6), implying

the examples (PQ3) resp. (PQ2).

(PG). If we calculate the possible parameters for Γ, then only a few cases can occur

(the other ones giving either non-integer values, or non-proper partial geometries which
are neither nets nor dual nets):

(CG3) The complement of the graph implies the parameters (s, t, a) = (7, 8, 3). Actually,
the strongly regular graph is isomorphic to the one in case (AL4) (but with a larger
group). Anyway, Gx

∼= G2(2) cannot act transitively on 9 objects.

(CG4) Here, the complement of the graph implies (s, t, a) = (26, 27, 17) , but Gx
∼= G2(3)

cannot act transitively on 28 objects.

(CG8) The complement of the graph implies (s, t, a) = (21, 39, 12), but Gx
∼= U4(3) : 2

cannot act transitively on 40 objects.
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G Gx (s,t,a) |L|
(SP2)C M12 M10 : 2 (5, 8, 3) 88
(SP7)C M24 M22 : 2 (11, 20, 9) 483
(SP8)C M24 M12 : 2 (22, 35, 13) 2016
(SP9) J2 U3(3) (9, 3, 2) 30
(SP9)C J2 U3(3) (9, 6, 5) 70
(SP11) McL U4(3) (4, 27, 1) 1540
(SP12) Suz G2(4) (26, 15, 5) 1056
(SP13)C Co2 U6(2) : 2 (22, 63, 13) 6400
(SP14) Ru 2F4(2) (27, 64, 11) 9425
(SP15)C Fi22 2.U6(2) (44, 63, 35) 4992
(SP16)C Fi22 Ω7(3) (39, 279, 30) 98560
(SP17)C Fi23 2 · Fi22 (80, 351, 71) 137632
(SP18) Fi23 PΩ+

8 (3).S3 (351, 80, 71) 31671
(SP19) Fi′24 Fi23 (391, 80, 39) 63423

Table 23: Pseudo-geometric Graphs Related to Rank 3 Sporadic Groups

(EG1) Here the graph itself implies (s, t, a) = (14, 8, 4), but the number of lines would be
351×9

15 , which is not an integer.

(EG2) The complement of the graph implies (s, t, a) = (15, 20, 11), but there is no transitive
action of J2 on 21 objects.

The claims above on the transitive actions of the group Gx follow from the orders of the
maximal subgroups given in the Atlas [22]. This completes the case of Chevalley groups.

CASE Id. The Sporadic Groups.
We refer to table 9 here.

(PQ). Only in cases (SP3) and (SP10), λ + 1|k and this gives rise to examples (PQ4)

and (PQ5).

(PG). Here 14 different parameter sets could arise from the graphs. We list them in
table 23. A superscript “C” in the label means that the parameters are obtained from the
complement of the graph given in table 9.

From the information on maximal subgroups in the Atlas [22], we readily see that
in the cases (SP2)C , (SP7)C , (SP9), (SP9)C , (SP11), (SP12), (SP13)C , (SP14), (SP15)C

and (SP19) the group G cannot act transitively on a set of size |L|. In case (SP8)C , M24

acts on 2016 lines in 24 sets of imprimitivity of size 84. The stabilizer of such a set is
M23, but this has no transitive action on 84 objects, a contradiction. In case (SP16)C the
group Gx

∼= ω7(3) ∼= O7(3) must act transitively on 280 lines through x, contradicting the
information in the Atlas [22]. Consider now the case (SP17)C . The group Gx

∼= 2 · Fi22
can act transitively in two ways on a set of n elements: either the involution σ of the
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normal subgroup fixes everything and the kernel of the action is Fi22, or σ has orbits of
length 2 and Fi22 acts on the n/2 corresponding pairs. Since t = 351 we get n = 352.
But Fi22 cannot act transitively on a set of 352 or 176 elements. Finally, consider case
(SP18). The group Fi23 acts on 31671 lines and by the Atlas [22], the stabilizer of such a
line is 2 · Fi22, which must act transitively on the 352 points on that line, a contradiction
as above. We remark here that Soicher [80] has shown on a computer that the graph
(SP18) does not have cliques of size 352, so no group action argument is in fact needed to
kill this case. At the other hand, the graph (SP17)C does have maximal cliques of size 81.
Further investigation is needed here to determine if this graph (without the group action)
gives rise to a PG.

This completes the proof in the case of an almost simple group. Before turning to the
cases in class II (the affine representations), we make the following remark: the proof above
can be adapted for point distance transitive groups (using the minimal number P (G) of
objects a simple group can act on, see e.g. Kleidman & Liebeck [61]) and the only
example coming out is the A9-partial geometry of Cohen [19]. We have not taken this
more general point of view because it makes the matter more difficult (though feasible) in
the affine case. We conjecture that there are no further examples in this situation.

CLASS II. The Affine Case.

First we prove some lemma’s and make some observations. The assumptions are the
same as in the statements of propositions 2, 3 and 4 (the weakest assumption for PG, i.e.
the one of proposition 2). We assume also that the set of points of Γ is identified with the
set of points of an n-dimensional affine space AG(n, q). The projective space PG(n − 1)
(and its elements) completing the affine space AG(n, q) to a projective space PG(n, q) will
briefly be referred to as “at infinity”.

LEMMA 1. If Γ is a PQ, then the lines of Γ are affine subspaces of AG(n, q), except
possibly in case (AI1).

PROOF. If Gx has only one orbit at infinity, then by inspection of the list (only one
such case appears: case (AF2)) k = l, a contradiction. So suppose Gx has two orbits at
infinity. Let x and y be collinear in Γ and let L be the set of points of AG(n, q) on the line
through x and y. Denote by l the line in Γ incident with x and y. Clearly all points of L
are collinear to both x and y, so all of them are incident with l in Γ. Hence l must be an
affine subspace.!

LEMMA 2. If Γ is a proper PG, then case (AI1) arises.

PROOF. Denote by T the translation group of AG(n, q) and suppose n > 1. Since
T ! G, the orbits in L under the action of T are sets of imprimitivity, hence since Γ is
not trivial, T must act transitive on L. Clearly, no non-trivial element of T can fix every
line, so T acts faithfully and hence regular on L. So s = t. But now s(s + 1) = k and
this gives us a value for s. Also, the parameters of the strongly regular graph determine
s and t. By inspection of the list, this is never compatible except possibly in case (AI1)
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(this computation is trivial for the cases of tables 11 and 12; for the cases of table 10, we
will provide the parameters below). Note that in almost all cases, the parameters imply
that Γ is a net, see below for each single case.!

In fact, this shows proposition 2. So from now on, we may assume that in case of (PG),
we have a net. But then clearly |P| =

√
qn. Moreover, we can prove the following lemma.

LEMMA 3. If Γ is a net, then either cases (AI1) or (AF2) arise or the lines of Γ are
affine subspaces of dimension n/2.

PROOF. Let x ,y, L and l be as in the proof of lemma 1. We again have to show that
all elements of L are incident with l. Suppose the contrary and let z be any element of
L not incident with l. Choose x as the origin on L and y as the point with coordinate
1. Fixing x, we can map y to any other point of L (by the rank 3 property of the group
G). But no group in tables 10, 11 or 12 must contain field automorphisms in order to act
with rank 3, hence restricting to L, we have here a homology. So the stabilizer in G of
L with the action restricted to L contains all homologies. Another consequence of that
argument is that every line l′ of Γ incident with x either “meets” L in one (x) point or in
a constant number of points, say c > 1. But by the transitivity on geodesics, one can map
every line l′ through x to any other line l′′ through x, (provided l′, l′′ &= l) fixing x, y and
l. So every line l′ through x meets L in c points. Now identify every element of L with its
coordinate in GF (q). If we fix 0 and 1, then we can only use field automorphisms. These
fix all elements of the prime field GF (p) q = pα for some prime p and integer α, hence
GF (p) ⊆ l, l viewed as the set of points incident with l. Suppose a, b ∈ L ∩ l. Consider
the homology with center 0 and factor 2. It maps 0 to 0 and 1 to 2, so it preserves l ∩ L,
hence 2a ∈ l. Consider now the translation x −→ x + a. It maps 0 to a and a to 2a, hence
also preserves l ∩ L. So a + b ∈ l. Similarly a − b ∈ l, a.b ∈ l and a.b−1 ∈ l, hence l ∩ L
is a subfield GF (q′) of GF (q). Suppose q = q′h. By the above mentioned argument, there
are still q−1

q′−1 other lines through x and they all meet L in c = q′ points. Fixing 0 and a
primitive element r of GF (q′), there must be a transitive group acting on the set of lines
through x distinct from l. But clearly such a collineation fixes every element of GF (q′),
hence there is at most a cyclic group of order h available. This implies

h ≥ q′h − 1

q′ − 1
− 1,

and this is only possible for q′ = h = 2 (note h > 1 otherwise t = 0). But this means t = 1,
a contradiction. Hence the assertion.!

PROOF OF PROPOSITIONS 3 AND 4 CONTINUED.

We start the inspection of the distinct cases.

CASE IIa. The Infinite Classes.

Here we refer to table 10.

(AI1).
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(PQ). Let q = pd, p prime. Here we may suppose that G acts point geodesic transitive.

That means that the stabilizer of two collinear points acts transitively on st points, so st|d.
Hence

pd = |P| = 1 + st + s + s2t2+s2t
α+1

≥ 1 +
√

d + d + d
√

d + d2,

only giving us solutions when p ≤ 5 and then also d ≤ 5. Suppose first s = t = 1, then
|P| = 5, so p = 5 and we obtain example (PQ0). Next, suppose s = 1 < t. Note that t ≤ 5,
but in view of the fact that (s−α)2 +4st is a perfect square (because (λ−µ)2 +4(k−µ) is
a perfect square for strongly regular graphs which are no conference graphs, but the latter
one have k = l, impossible for proper non-trivial partial quadrangles, see e.g. Brouwer,
Cohen & Neumaier [10] or Hubaut [48]), the only possible sets of parameters for a PQ
are (1, 2, 0) and (1, 4, 1). The first one gives us the Petersen graph, but here v = 10 &= pd for
any prime p and integer d; the second one gives us the unique strongly regular graph with
parameters (16, 5, 0, 2), the Clebsch graph Cl(16). This can indeed be realized in AG(1, 16),
giving us the construction as explained in subsection 2.2.2 and we obtain example (PQ6).

If s ≥ 2, then s = t = 2, but no α < 2 gives us possible parameters for a PQ.

(PG). As above, we have t(s− a)|d. Stabilizing two non-collinear points, we obtain in

the same way (t + 1)(a + 1)|d, so since t > a ≥ 1, we have d ≥ 6. Using these conditions,
we obtain

pd = |P| = 1 + s(t + 1) + st(s−a)
a+1

≤ 1 + sd
a+1 + sd

a+1

≤ 1 + 2 sd
a+1

< 1 + 2d(d+a)
a+1 ,

hence, since d ≥ 6 and consequently pd − 1− 2d > 0,

a ≤ 2d2 + 1− pd

pd − 1− 2d
.

Now since a ≥ 1, this implies finally

pd ≤ 1 + d + d2

and this can never happen for d ≥ 6.

For the cases (AI2) up to (AI11), we first list the parameters of the corresponding
strongly regular graphs, see table 24. We derive these from the proof of the classification
in Liebeck [65].

(PQ). Since the lines of Γ are subspaces of the affine space AG(n, q), and since λ+2 =
s + 1, this number must be a power of q. By inspection of the list, this is only possible
for (AI2), (AI7) (case O−

4 (q)) and (AI11) (beware of the fact that for some small values
of q and n, one has k > l and hence one must consider the complementary graph). In
case (AI2), we clearly obtain a grid (t = 1), contradicting our assumptions; for cases
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k l

(AI2) 2(qm − 1) (qm − 1)2

(AI3) (q + 1)(qm − 1) q(qm − 1)(qm−1 − 1)
(AI4) (

√
q + 1)(

√
qn − 1)

√
q(
√

qn − 1)(
√

qn−1 − 1)
(AI5) ( 3

√
q + 1)(q − 1) 3

√
q( 3
√

q2 − 1)(q − 1)
(AI6) (qn − (−1)n)(qn−1 + (−1)n) qn−1(q − 1)(qn − (−1)n)
(AI7) (qm − ε)(qm−1 + ε) qm−1(q − 1)(qm − ε)
(AI8) (q5 − 1)(q2 + 1) q2(q3 − 1)(q5 − 1)
(AI9) (q4 − 1)(q3 + 1) q3(q − 1)(q4 − 1)
(AI10) (q8 − 1)(q3 + 1) q3(q5 − 1)(q8 − 1)
(AI11) (q2 + 1)(q − 1) q(q − 1)(q2 + 1)

λ µ

(AI2) qm − 2 2
(AI3) qm + q2 − q − 2 q(q + 1)
(AI4)

√
qn + q −√q − 2

√
q(
√

q + 1)
(AI5) q + 3

√
q2 − 3

√
q − 2 3

√
q( 3
√

q + 1)
(AI6) q2n−2 + (−q)n + (−q)n−1 − 2 qn−1(qn−1 + (−1)n)
(AI7) q2m−2 + εqm − εqm−1 − 2 qm−1(qm−1 + ε)
(AI8) q5 + q4 − q2 − 2 q2(q2 + 1)
(AI9) q6 + q4 − q3 − 2 q3(q3 + 1)
(AI10) q8 + q6 − q3 − 2 q3(q3 + 1)
(AI11) q − 2 q(q − 1)

Table 24: Parameters of the Infinite Classes of Affine Rank 3 Graphs.
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(AI7) and (AI11), partial quadrangles arise, namely examples (PQ7) and (PQ8). Since
the (pointwise) stabilizer in Gx of a pair of points a, b on the corresponding ovoid (elliptic
quadric for Gx " Ω−

4 (q).2; Suzuki-Tits ovoid for Gx " Sz(q)) acts transitively on the other
points of the line ab (in PG(3, q)), the group G acts point geodesic transitively on Γ.

So we can assume from now on that Γ is a net.

(PG). The dimension n = 2m is even and s = qm − 1. The parameters can now be
easily deduced in each case.

(AI2).

The parameters imply here either t = 1 or s = qm − 1, t = qm − 2 and a = qm − 3. So
we have here a net obtained from an affine plane by deleting two parallel classes of lines
(indeed, the two parallel classes are the translates of Vm(q) and V ′

m(q)). We refer to lemma
9 where we treat this case in full generality (see below).

(AI3).

If |Γ2(x)| = k, then we obtain example (NE2) (see 2.3.2). Consider the model Hn+1
q . Fix

a line L of Hn+1
q and two points P1 and P2 on L. A line L′ through P1 determines a unique

point in the chosen subspace PG(n−1, q) (see 2.3.2). So point geodesic transitivity implies
a 2-transitive group on PG(n− 1, q). Fixing L, the group GL is the direct product of two
2-transitive groups, one acting on the points of L, the other on the points of PG(n− 1, q).
Using the matrix form for the elements, computations show that for n > 2 this is enough
to have point geodesic transitivity. If n = 2, then one needs to have GL2(q) acting on
PG(1, q). Hence the result.

Now suppose |Γ2(x)| = l. If this would constitute a net, then the subspaces of dimension
n− 1 at infinity of a line of Γ together with the ones from the net (NE2) would make up
a spread of PG(2n − 1, q) and so Γ would be embedded in a translation affine plane T .
Coordinatizing this plane by the method of Hughes & Piper [50] such that the parallel
classes (point at infinity) labeled (∞), (0) and (1) do not yield lines of Γ, we obtain a
quasifield Q and GF (q) is clearly a subfield of the nucleus. Hence we can consider Q as
a vectorspace over GF (q). It is also clear from the definition of the lines in (Hn+1

q )D that
GF (q) itself corresponds to the non-lines of Γ. By the transitivity assumption of G, we can
now fix (∞), stabilize GF (q) and still act 2-transitively on the other vectors of Q. This is
certainly impossible if the dimension of Q over GF (q) is larger than 2. If this dimension m
is equal to 2, then if q > 2, one cannot map two vectors whose difference is inside GF (q)
to two vectors whose difference is outside GF (q). But if q = 2 and m = 2, then it follows
that a = 0, a contradiction.

(AI4).

Suppose first that |Γ2(x)| = k. The dimension of the maximal subspaces is here 1 (a
Baer subspace at infinity does not contain full lines), hence s = q − 1 and n = 2. This
gives us actually a rank 3 net, but if this were a point geodesic transitive net, then we
must be able to fix (∞) and (O) (at infinity), stabilize GF (

√
q) and map any element of

GF (q) \ GF (
√

q) to any other such. The group doing this (multiplication with elements
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of GF (
√

q) and field automorphisms is clearly to small for such a transitive action except
when q = 4. But this corresponds to example (NE2) for q = 2 and n = 2.

Now suppose |Γ2(x)| = l. Maximal cliques here have dimension n/2 and this is precisely
what we want. Now, a point P at infinity not in the Baer subspace lies on exactly 1
Baersubline L. The transitivity on maximal geodesics implies that we can fix P and act
transitively on the points of the Baer subspace. But clearly the points of L form an orbit,
hence there are no other points, so n = 2. But except if we have a grid (q = 4), we rule
this case out similarly as above (we must be able to fix (∞), stabilize GF (

√
q) and act

2-transitively on the points of GF (q) \ GF (
√

q)). Note that from a result of Blokhuis
& Metsch [5] follows that for n = 4 (and presumely for every n), these graphs are not
geometric.

(AI5).

This is entirely similar to case (AI4) for n = 2. No examples survive here, even not
q = 8.

(AI6).

First suppose that |Γ2(x)| = k. Note that n still must be even. But in this case,
the group acts transitively on the maximal singular subspaces of the Hermitian variety at
infinity and these subspaces can meet in at least one point if n > 2. Hence for n > 2, lines
of Γ would meet in more than just one point (an affine liine of AG(n, q2)), a contradiction.
But if n = 2, then we have the case of a Baer subline again, see (AI4), n = 2.

Now suppose |Γ2(x)| = l. At infinity, all lines meet the Hermitian variety, hence no
planes forming a clique can be found in AG(n, q2). Consequently n = 2, but this is again
case (AI4) for n = 2.

(AI7).

Note that here we must have the case of O+
2m(q), otherwise qm − 1 does not divide k

nor l. Note also that the case n = 2 (or equivalently m = 1) corresponds to case (AI2),
n = 2. But now we have the same arguments as in case (AI6), except that, if |Γ2(x)| = l,
all planes meet the quadric, hence n = 4 could still occur. But we should be able to fix at
infinity a non-singular point P and act transitively on the points at infinity on a tangent
or secant through P (indeed, fix the origin o in AG(4, q) and let a be a point such that the
point at infinity of oa is exactly P . Let P ′ be any point on a secant or tangent through
P at infinity. Let a′ be the affine point on the line through o with direction P ′ and such
that the point at infinity of aa′ is a point of the quadric, then a and a′ are not collinear
in Γ, but a and o are, as well as a′ and o, so one could stabilize o and a and hence act
transitively on all such a′’s), but this would not preserve tangent lines, nor secant lines.

(AI8).

First suppose |Γ2(x)| = k. Maximal cliques here have dimension 3 (a set {v ∧w|v, w ∈
V3(q)}, where V3(q) is a fixed 3-dimensional subspace of V5(q)) or 4 (a set {v∧w|v is fixed,
w ∈ V5(q)}) and they should have dimension 5, a contradiction.
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Now suppose |Γ2(x)| = l. Let v1, v2, v3, v4, v5 span V5(q) and denote by o the origin.
Then in Γ, the following pairs of points are collinear:

o and v1 ∧ v2 + v3 ∧ v4,
v1 ∧ v4 and v1 ∧ v2 + v3 ∧ v4,
v1 ∧ v5 and v1 ∧ v2 + v3 ∧ v4,

while o is not collinear with v1 ∧ v4 nor with v1 ∧ v5. Hence there must exist a collineation
of Γ fixing o and v1 ∧ v2 + v3 ∧ v4 and mapping v1 ∧ v4 to v1 ∧ v5. This collineation clearly
must preserve v1 ∧ v2 and hence also v3 ∧ v4 and so it can never map v1 ∧ v4 to v1 ∧ v5.

(AI9)-(AI10).

Here Gx has no (suitable) 2-transitive representation.

(AI11).

Here neither k nor l is divisible by q2 − 1.

CASE IIb. The Extraspecial Class.

Here we refer to table 11.

(PQ). The only case where n > 2 (otherwise we have triangles) and λ + 2 is a power

of q is (AE5) and in this case s = 8. But k = 16, hence t = 1, a contradiction.

(PG). We consider each case in turn.

(AE1).

Here n = 2 and q is a prime. We show that this can never happen. Clearly, though,
we have rank 3 nets, but let us assume that the group G is geodesic transitive. Denote
by K the set of points at infinity of lines in AG(2, q) which are also lines of Γ and let L
be the set of points at infinity of lines in AG(2, q) which are not lines in Γ (but they are
lines in the net obtained from the complementary graph). Expressing geodesic transitivity
(as in (AI7) above for example), we obtain a group of collineation fixing two points of K
and acting transitively on L. Since no field automorphisms are involved here, L is an orbit
of a subgroup of a homology group (which is isomorphic to the multiplicative group of
GF (q)), |L| divides p− 1 and since we exclude the case t = 1 (corresponds to a non-thick
GQ), |L| is at most p−1

2 . On the other hand, there must be a collineation group fixing one
point of K and one point of L and acting transitively on the remaining points of K. So
as before, |K| − 1 ≤ p−1

2 (we exclude here the case of a helicopter plane already treated
before). Hence |K| + |L| ≤ p+1

2 + p−1
2 = p < p + 1, a contradiction. Note that this also

rules out case (AF1) as we shall remark later.

(AE2).

Here n is odd, a contradiction.

(AE3). The possible parameters arising here are (8, 3, 2) and (8, 5, 4). The number of
maximal geodesics based at the fixed point x is equal to st(t + 1)(s− a). Here this is 26.32

resp. 26.3.5. But this never divides |Gx| as given in table 11.
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(AE4).

Similarly as above, the parameters are (26, 3, 2) or (26, 23, 22) and the number of max-
imal geodesics based at x never divides |Gx|.

(AE5)-(AE6).

As indicated in table 11, the blocks of imprimitivity of Gx all have size 16. But that
means that either 16|s or t+1 = 16/(q− 1) (indeed, a block must be contained in a line of
Γ or meet it in q − 1 points otherwise we have smaller blocks). But s = 32 − 1 = 8, hence
t = 7 and a = 6. But in this case t does not divide the order of Gx

∼= Sp4(3).

(AE7)-(AE8)-(AE10).

The argument we present here also covers the sporadic cases (AF7) and (AF12) and
partially (AF5). Lines of Γ are planes of AG(4, q). We call the line at infinity of such
planes good lines and the other lines of PG(3, q) bad lines. Points on good, resp. bad
lines will be called likewise. We stabilize a good point P and a good line L not through
P . By the geodesic transitivity, there is a transitive action on the bad points in the plane
< P,L > generated by P and L. Note that there is at least one bad point Q in < P,L >
since by transitivity, otherwise there would be no bad point at all. On the line PQ, we
can repeat the argument used in (AE1) to obtain 2 possibilities (since q is a prime here):
(a) there is exactly one bad point on PQ; (b) there are q − 1 bad points on PQ. But by
the transitivity again, the number of bad points on every line through P is either 0 or a
constant. Hence the possibilities are:

1. Every line through P contains either 0 or exactly one bad point. By transitivity, this
is through for every bad line containing at least two good points and one bad. Joining
two bad points, we see that all points on this line must be bad points except for the
intersection with L. So the number of bad points in < P,L > is q. By transitivity
(vary the plane through L), l = q(q + 1)(q − 1) and this is never the case in the
examples (do not forget the complementary graph!).

2. Every line through P contains either 0 or q − 1 bad points. If there were only
one line through P in < P, L > containing q − 1 bad points, then as above, l =
(q − 1)(q + 1)(q − 1), never occuring in the examples. So there are at least two
such lines and it easy to see that this implies either l = (q2 − q)(q + 1)(q − 1) or
l = (q2− 1)(q + 1)(q− 1). Only the first case actually occurs: for q = 3, case (AE10)
and q = 5, case (AF5). The parameters of the first case are (8,3,2). The number
of maximal geodesics based at x is 26.32 = |L2(3)|2, hence, if |Gx| < 28.32, then
Gx = L2(3)

⊗
L2(3) and this is case (AI3) for q = 3. So suppose |Gx|

|Z(Gx)| = 27.32.
Fixing the four lines in Γ through x, there remains a group whose order is divisible
by 27.32/|S4| = 24.3. Moreover fixing the four blocks of imprimitivity (the lines in
AG(4, 3)) on one of these lines, we have left a group containing an involution σ. Now
look at the action of σ on the projective 3-space at infinity of AG(4, 3). It fixes
a line L pointwise and three (mutually skew) other lines L1, L2, L3 not necessarily
pointwise. This forces σ to be the identity. Indeed, consider the residue in a point
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P of L (for this terminology, see Buekenhout [11]). This is a projective plane and
σ fixes three non-concurrent lines and one point not on that line, hence it induces
the identity. Hence every line through P is fixed, so also all points on L1, L2, L3 are
fixed, a contradiction. We handle case (AF5) later (see below). Note that here we
only have to consider the graph and not the complement anymore. So the only set
of parameters for Γ is (24, 5, 4).

(AE9).

Here the parameters of Γ are either (80, 17, 16) or (80, 63, 62) and in both cases t does
not divide |Gx|.

CASE IIc. The Exceptional Cases.

Here we refer to table 12.

(PQ). The only cases where n > 2 and λ + 2 is a power of q are (AF4) and (AF14).

The first one provides us example (GP12). The second one gives us the construction of
example (PQ9) (see Hill [47]).

(PG). We first eleminate some immediate cases and consider afterwards each other
remaining case in turn.

(AF1)-(AF4)-(AF7)-(AF10)-(AF11)-(AF12)-(AF14)-(AF15)-(AF16)-(AF17)-
(AF19).

Case (AF1) is ruled out similarly as (AE1) noting q is a prime here. Cases (AF7) and
(AF12) are ruled out above together with (AE7),(AE8) and (AE10). In cases (AF10),
(AF11) and (AF19), k nor l is divisible by qn/2 − 1. In the other cases, n is odd.

(AF2).

This is the only case where Go has only one orbit at infinity. The parameters of Γ are
(8, 4, 3). Consider three points x, y, z on a line in AG(2, 9) such that x and y are collinear
in Γ as well as y and z, but x and z are not. We claim that such points. Indeed, every affine
line through x contains 4 points collinear to x in Γ and also 4 points not collinear to x in
Γ; applying the translation group fixing that affine line and noting that every translation
has order 3, this group cannot preserve this 5|4 splitting, hence the claim. But fixing x
and z, there must be a transitive action on the 20 points collinear to both. But the orbit
of y has size at most 4 because it must be a subset of the affine line through x and z, a
contradiction.

(AF3).

Consider the affine line AG(1, 72) and the automorphism H group fixing the zerovector
0. The only subgroup of H which could have an orbit on the non-zero vectors of size
> q−1

2 = 24 is the group generated by a homology h with factor θ3 (where θ is a primitive
element of GF (72)) and some automorphism involving the field automorphism. But the
field automorphism preserves the orbits of h, hence either all orbits collapse or no orbit
collapses and so all subgroups of H have orbits of size either q − 1 = 48 or ≤ q−1

2 = 24
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and hence the argument of (AE1) kills also this case. Alternatively, Foulser [36] shows
that |Gx| = 27.32.5 and the parameters imply t = 19 ot t = 29; so t cannot divide |Gx| and
consequantly Gx cannot act transitively on the maxial geodesics based at x.

(AF5).

By the argument in (AE7)-(AE8)-(AE10), the parameters here are (24, 5, 4). But in
this case the number of maximal geodesics based at x is 26.32.52 and this does not divide
|Gx|.

(AF6).

The possibilities here are t = 14 or t = 34. Since A7 is 2-transitive only on 7 or 15
elements, we must have t = 14 and the parameters of Γ are (48, 14, 13). Hence st(t+1)(s−a)
contains a factor 52 and this does not divide |Gx|.

(AF8).

Since A9 is 2-transitive on 9 objects, the parameters here are (15, 8, 7). Since A9 ≤
O+

8 (2), it fixes a spread of the hyperbolic quadric at infinity of AG(8, 2). Since this is the
unique spread it fixes, the lines of Γ are the 4-spaces of AG(8, 2) whose plane at infinity is
a member of that spread. In Γ, the stabilizer of an ordered pair of lines (l1, l2) through x
in Γ is a group isomorphic to A7 and this should act transitively on the 15 points on both
these lines except x. If we stabilize a further point y on l1, then this group L3(2) can only
act in two different ways on l2. One possibility is that it also fixes a point u on l2 and is
transitive on the other points of l2. But this is impossible since the points collinear to y
must be a union of orbits. The second possibility is that it stabilizes a “plane”, i.e. 7 points
and acts transitively on the remaining 8. The latter are the points on l2 not collinear with
y and hence example (NE3) arises.

(AF9).

In this case, we deduce from the information in the Atlas [22] that Gx
∼= A10 acts prim-

itively on Γ2(x) (in both cases: the graph and its complement), so since the lines through
x always induce blocks of imprimitivity of size s, we have here s = 1, a contradiction.

(AF18)-(AF20).

Here Gx has no 2-transitive representation.

This completes the affine case. We now consider the last class of primitive rank 3
groups: the grid case.

CLASS III. The Grid Case.

(PQ). In this case, the geometry is clearly a grid itself (t = 1) and so we obtain

example (GP13).

(PG). If Γ is not a grid, then |P| = n2, |Γ2(x)| = (n − 1)2 and |Γ4(x)| = 2(n − 1).
This implies s = n − 1, t = n − 2 and a = n − 3. Adding the lines of the grid, we obtain
an affine plane which can be further completed to a projective plane. We will call such a
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net a cogrid plane of order n. In lemma 4 we classify all geodesic transitive cogrid planes
without the assumptions on the rank 3 group of the Grid Case.

LEMMA 4. If Γ is a connected cogrid plane of order n ≥ 3, and G is a geodesic
transitive automorphism group, then either Γ has order 3 and hence is a grid, or Γ has
order 4 and (Γ, G) is as in example (NE2), q = 2, i.e. Γ is isomorphic to (H2

2 )D.

PROOF. The cases where Γ has order 3 or 4 are easy verifications. So we assume that
n ≥ 5. Denote by A the corresponding affine plane. Let P1 and P2 denote the directions
of the lines in A (or the points at infinity) which do not belong to Γ. Let x, y, z ∈ P ,
l,m ∈ L and xIlIyImIz be a maximal geodesic. Suppose |Gx,l,y,m,z| = k, then we have

|Gx,l,y,m| = 2k,

|Gx,l,y| = 2(n− 2)k,

|Gx,l,y,P1| = (n− 2)k,

|Gx,l| = 2(n− 1)(n− 2)k,

|Gx,l,P1| = (n− 1)(n− 2)k,

|Gx| = 2(n− 1)2(n− 2)k,

|Gl| = 2n(n− 1)(n− 2)k,

|Gl,y,m| = 2(n− 1)k,

|G| = 2n2(n− 1)2(n− 2)k,

|GP1,P2| = n2(n− 1)2(n− 2)k.

We first show that A is a translation affine plane. The proof goes along the same lines as
the proof of Wagner’s theorem in Hughes & Piper [50]. We adapt the same notation:
pv‖s if pv divides s and pv+1 does not.

(1). First suppose n is even. Let G2 be a Sylow 2-subgroup of G, then |G2| = 21+2u+u′+v,
where 2u‖n, 2u′‖n− 2 and 2v‖k. Let λ be a non-trivial element in the center of G2. Then
either λ is a translation, an elation with affine axis or a Baer involution. In the latter two
cases, the number of (affine) fixed points is n. Note that G2 acts on this set, so let f be
the length of any orbit of G2 on the set of fixed points of λ. There holds |G2| = f |(G2)a|,
where a is a point in the orbit of length f . Since (G2)a ≤ Ga, |(G2)a| divides 21+u′+v, so
22u|f . Hence 22n|n, a contradiction. Hence λ is a translation. Let P be its center (P is
a point at infinity). By the transitivity of the group G (which can fix a point x and map
any other point y on the line joining x to P to any other such point), P is the center of n
translations. But the orbit of P under G contains either n− 1 elements (if P1 &= P &= P2)
or exactly 2 (if P = P1 or P = P2), hence by Hughes & Piper [50], A is a translation
plane.

(2). Suppose now n is odd. By Dembowski [29], it suffices to show that every point
of A is the center of an involutory homology, and by our transitivity of G, it suffices to
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show this for one point x. Let l be any line through x in Γ. Let G2 be a Sylow 2-subgroup
of Gx,l,P1 , then |G2| = 2u+v, where 2u‖n − 1 and 2v‖k. Let again λ be an element of the
center of G2 and suppose λ is a Baer involution. Then it fixes exactly

√
n− 1 affine points

other than x on l. Let y be one of them and let f again be the length of the orbit of y
under G2. Clearly (G2)y ≤ Gx,l,y,P1 and hence |(G2)y| divides 2v. But |G2| = f |(G2)y|,
hence 2u|t and so 2u|

√
n− 1. But since n− 1 = (

√
n− 1)(

√
n + 1), this implies 2u+1|n− 1,

a contradiction. So λ is an involutory homology. Since it stabilizes at least three lines
through x (namely l and the lines through x with directions P1 and P2), x is the center.
So A is a translation plane.

Now we coordinatize A in such a way that the directions of the Y -axis and X-axis are
exactly P1 and P2. The transitivity of G on maximal geodesics implies that the group
fixing the points at infinity with coordinates (0), (∞) and (1, 1) acts transitively on the
other points at infinity. Hence in the corresponding quasifield Q (see Hughes & Piper
[50]), the group fixing 0 and 1 acts transitively on the other elements. If the kernel contains
more than just 0 and 1, then it contains evereything and we have a field. But no field of
order n ≥ 5 has an automorphism group acting transitively on its non-zero and non-one
elements. So the kernel of Q is just {O, 1} and n is a power of 2.

Let x, l, y be as in the beginning of this proof, then |Gx,l,y,P1| is even. Let σ be an
involution in Gx,l,y,P1 . Clearly, σ must be a Baer involution, so it fixes a Baer subplane
containing P1 and P2. In particular,n = 22e is an even power of 2. Now we invoke the
classification of the 2-transitive finite permutation groups. Let Ω be the set of points at
infinity of Γ distinct from P1 or P2. Then Gx,P1 induces a 2-transitive permutation group
on Ω of degree 22e − 1. Since 22e − 1 = (2e − 1)(2e + 1), this cannot be a prime power
and so Ω is not an affine space. Hence Ω can be identified with one of the sets of table 4.
Clearly, (TS7) and (TS9) up to (TS16) is impossible. The degrees of (TS6) and (TS4) are
even, a contradiction. If q3 + 1 or q2 + 1 is odd, then q is even, but then it cannot be equal
to 22e − 1 unless q = 2 and e = 1, but then n = 4, contradicting our earlier hypothesis.
Hence the only possibilities left are (TS1), (TS2) and (TS8). Note that n ≥ 16.

(TS1) Consider an element in Gx inducing an involution λ on Ω with n−5 fixed points. We
can assume that the points with coordinate (1) is one of them and so λ is a quasifield
automorphism. We let λ act on A by coordinates and obtain an automorphism fixing
a subplane of order n− 4 > 2e, a contradiction (the largest subplane of A has order
2e, see Hughes & Piper [50] or Dembowski [29]).

(TS2) Here, Ω can be identified with the points of PG(d, q). First let d ≥ 2. Then we
consider an elation in PG(d, q) fixing all points of a certain hyperplane. As above, this
can again be viewed as a quasi field automorphism and extended to an automorphism
of A fixing a subplane which order is too large. Now let d = 1. Then q +1 = 22e− 1,
hence q is even and so q = 2 is the only possibility, a contradiction.

(TS8) There are several arguments here. We could appeal to the classification of all trans-
lation planes of order 16 by Dempwolff & Reifart [30, 31] and observe that none
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of them has a coordinatzing quasifield with an automorphism group isomorphic to
L3(2) (which is the stabilizer of the point (1) of Ω in A7). Or we could argue as
follows: take any element g of Gx which swappes P1 and P2. If its action on Ω is
inside A7, then by composing g with a suitable element of Gx,P1 , we obtain an auto-
morphism α of A fixing 15 points at infinity and at least one affine point. By raising
α to the power half of its order, we obtain a Baer involution fixing too many points.
So A7 is a normal subgroup of index 2 of some larger group acting on PG(3, 2), and
this is a contradiction as S7 does not act type-preserving on PG(3, 2).

This completes the proof of the lemma.!

So we have proved propositions 2, 3 and 4. An immediate corollary is

COROLLARY 1. No locally 4-arc transitive (4, 5, 5)-pair exists.

PROOF. A locally 4-arc transitive (4, 5, 5)-gon is a partial quadrangle and a dual partial
quadrangle, hence s = t. It has an automorphism group acting point geodesic transitively.
But by proposition 4, no such partial quadrangle exists.!

4.3 Symmetric Designs, Linear Spaces and Moore Geometries.

4.3.1 Symmetric 2-designs.

PROPOSITION 5. If (Γ, G) is a geodesic transitive (or equivalently a locally 3-arc
transitive) (2, 3, 3)-pair with G type-preserving, then it is one of the examples (ST1) up to
(ST7) of table 25. If (Γ, G) is a weakly geodesic transitive (or equivalently a locally 2-arc
transitive) (2, 3, 3)-pair with G type preserving, then it is one of the examples (ST1) up
to (ST10) of table 25 (the notation of table 26 is the one of subsection 2.5; a “C” in the
exponent means complementary design; for PG(n, q) we take the hyperplanes as blocks).
Conversely, every example listed in table 25 is a geodesic transitive (resp. weakly geodesic
transitive) (2, 3, 3)-pair.

PROOF. Kantor [58] classified all 2-transitive symmetric 2-designs. So it is only a
matter of checking which ones have the stronger transitivity properties mentioned in the
proposition. Kantor’s list is essentially (SD1) up to (SD4) of subsection 2.5, but we have
to consider also the complementary designs and the class (SD5).

(SD1).

The result for Ld+1(q) ! G ≤ PΓLd+1(q) is obvious when Γ = PG(n, q). If Γ =
PG(n, q)C , then it is clear that G is transitive on triples (x, l, y), where x and y are
distinct points incident with a line l (so l is the complement of a hyperplane in PG(n, q),
in other words, G is transitive on triples (x, H, y), where H is a hyperplane not containing
x nor y). Now let H ′ and H ′′ be two hyperplanes through x not containing y. Consider
the unique hyperplane U spanned by the line xy and the intersection H ′ ∩H ′′. Then it is
easy to see that one can find a point z in U and a translation with center z and axis U
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Γ G Restrictions and Remarks.

(ST1) PG(d, q) Ld+1(q) ! G ≤ PΓLd+1(q) d ≥ 3
(ST2) PG(d, q)C Ld+1(q) ! G ≤ PΓLd+1(q) d ≥ 3
(ST3) PG(3, 2) A7 G is regular on maximal geodesics
(ST4) Ha(11) L2(11) G is regular on maximal geodesics
(ST5) S+(n) 22n : S2n(2) n ≥ 2
(ST6) S−(n) 22n : S2n(2) n ≥ 2
(ST7) Γ(.Ω) G G acts 3-transitively on Ω

(ST8) Ha(11)C L2(11)
(ST9) Hi(176)C HS
(ST10) PG(3, 2)C A7

Table 25: Geodesic Transitive and Weakly Geodesic Transitive Symmetric 2-designs.

mapping H ′ to H ′′ (z is just a point of U not in H ′ ∩H ′′). Hence the examples (ST1) and
(ST2).

Consider now PG(3, 2) with G ∼= A7. The stabilizer in A7 of a plane Π in PG(3, 2) acts
as L3(2) on Π, so it acts 2-transitively on the points of Π. Now fix two points y, z of Π.
Then the group GΠ,y,z is transitive on the lines in Π through z distinct from yz. Consider
such a line L. It is fixed by a unique involution σ in GΠ,y,z. This involution does not fix
the residue in z pointwise (because the stabilizer of z is a group isomorphic to L3(2) and
hence this group acts faithfully on the residue), hence it does not fix every plane through z.
Likewise, it does not fix every plane through y, but σ induces a translation in the residue
of y and it is easily seen that yz is the center, so all planes through yz are fixed by σ.
Hence σ acts transitively on the planes through L distinct from Π. This explains example
(ST3).

Consider now Γ = PG(3, 2)C with G ∼= A7. The stabilizer in A7 of a plane Π in PG(3, 2)
acts as L2(7) on the complement of Π, so it acts 2-transitively on the points off Π. So
(Γ, G) is point geodesic transitive. Let y be a point off a plane Π, then the stabilizer Gy,Π

is the Frobenius group of order 21 and acts regularly on the flags of Π. But every line of Π
determines a unique plane distinct from Π and not containing y, hence a unique line of Γ
incident with y and distinct from the complement of Π. So (Γ, G) is line geodesic transitive
(this follows also by duality). Hence it is weakly geodesic transitive and we obtain example
(ST10). The number of maximal geodesics in Γ is 15.8.7.4 = 7.6.5.4.4 and so this does not
divide |A7| which implies that (Γ, G) is not geodesic transitive.

(SD2).

Here Γ = Ha(11) and G ∼= L2(11). The stabilizer of a line l of Γ is A5 (see the Atlas
[22]) acting naturally on the five points of l. Let y, z be two distinct points on l and
suppose Gl,y,z fixes the three lines of Γ through y not containing z. Each of these lines
is determined by its intersection with l and so Gl,y,z fixes l pointwise, contradicting the
action of A5 on l. Since Gl,y,z has order three, example (ST4) arises.

Suppose now Γ = Ha(11)C . The stabilizer of a line in Γ acts on the points of l as
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L2(5) in its natural representation. So (Γ, G) is point geodesic transitive. Dually, (Γ, G)
is also line geodesic transitive, hence it is weakly geodesic transitive. Since the number
of maximal geodesics is 11.6.5.3 and since this does not divide |L2(11)|, (Γ, G) cannot be
geodesic transitive. This gives example (ST8).

(SD3).

First let Γ = Hi(176) and G ∼= HS. The stabilizer of a line is isomorphic to U3(5) : 2,
but this does not have a 2-transitive representation on 50 points, so (Γ, G) is not even
point geodesic transitive.

Now let Γ = Hi(176)C and G ∼= HS. The stabilizer of a line is again U3(5) : 2 and
this acts non-trivially on the 126 points of that line, hence we can identify these points
with the points of a Hermitian unital. Since U3(5) : 2 is 2-transitive on such a unital, this
implies that (Γ, G) is points geodesic transitive, dually line geodesic transitive and hence
weakly geodesic transitive. Since the number of maximal geodesics is 176.126.125.36 and
since this is larger then |HS|, we do not obtain a geodesic transitive (2, 3, 3)-pair. So we
have (ST9).

(SD4).

Suppose Γ = S+(n) and G ∼= 22n : S2n(2). Kantor [55] shows that the stabilizer
Gl,y of an incident point-line pair is a group isomorphic to O−

2n(2) acting on the remaining
points of l in its natural way (identifying these points with points of an elliptic quadric in
PG(2n− 1, 2)). It acts similarly on the lines through y distinct from l. These actions are
rank 3 and hence the stabilizer of a point z &= y on l in O−

2n(2) stabilizes also another line
through y and z, acts transitively on the set of other lines through both y and z and acts
also transitively on the set of lines through z not containing y. This shows that (Γ, G) is
geodesic transitive. Similarly for Γ = S−(n). This produces examples (ST5) and (ST6).

(SD5).

Let Ω be a set with a 2-transitive group G acting. Transitivity on geodesics of length
2 means that G is 3-transitive. But there is a unique line not containing a given point,
hence 2-arc transitivity implies geodesic transitivity here. Hence example (ST7).

This completes the proof of proposition 5.!

4.3.2 Linear spaces.

PROPOSITION 6. If (Γ, G) is a geodesic transitive (or equivalently a weakly geodesic
transitive) (3, 3, 4)-pair with G type-preserving, then it is one of the examples (LT1) up
to (LT3) listed in table 26. If (Γ, G) is a locally 3-arc transitive (3, 3, 4)-pair with G type
preserving, then it is one of the examples (LT1) up to (LT8) of table 27. Conversely, every
example listed in table 26 gives rise to a geodesic transitive (resp. locally 3-arc transitive)
(3, 3, 4)-pair.

PROOF. We have to check which examples of table 3 have the desired transitivity
property.

(LS1).
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Γ G Restrictions and Remarks

(LT1) PG(n, q) Ln+1(q) ! G ≤ PΓLn+1(q) n ≥ 3
(LT2) AG(2, q) L2(q) ! Go ≤ ΓL2(q) G contains all translations
(LT3) Γ(S) G G is almost simple and

acts 4-transitively on S
(LT4) PG(3, q) A7 G contains all translations
(LT5) UH(q) PGU3(q) ! G ≤ PΓU3(q) (Hermitian unital in PG(3, q2))
(LT6) AG(n, q) Ln(q) ! Go ≤ ΓLn(q) n ≥ 3 and

G contains all translations
(LT7) AG(4, 2) G ∼= 24 : A7

(LT8) Γ(S) G G is almost simple and
acts 3-transitively on S

Table 26: Geodesic Transitive and locally 3-arc transitive Linear Spaces.

Here Γ is the projective n-space PG(n, q) over GF (q). The lines of Γ are the lines of
PG(n, q). So example (LT1) is obvious. Suppose now (n, q) = (3, 2) and G ∼= A7. This
yields clearly a 3-arc transitive example, but the number of maximal geodesics is 35.3.6.2.4
and this exceeds |A7|. Hence (LT4).

(LS2).

Here Γ is the Hermitian unital UH(q) in PG(2, q2). Let G ∼= PGU3(q), then it is clear
that G acts 2-transitively on the point set of Γ. The stabilizer of a couple (y, z) of points
is a group of order q2− 1. Suppose some element σ of this group fixes a line l of Γ through
y distinct from yz. Then σ fixes three lines through y (indeed, σ also fixes the tangent
line in y), hence it fixes all lines through y. So σ is a homology with center y and axis
zu, where yz is the polar line of u. But then σ acts on q remaining points of l, and thus
fixes at least one further point w on l. Since w cannot be incident with zu because zu is
a tangent line, we obtain σ = 1. Hence Gy,z is regular on the lines of Γ through y distinct
from yz.

So PGU3(q) acts regularly on the set of geodesics of length 3. This implies that PΓU3(q)
is too small to acts transitively on the set of maximal geodesics (there are q2−q−1 maximal
geodesics through a geodesic of length 3).

This explains example (LT5).

(LS3).

Here Γ = UR(q), the Ree Unital and G ! R(q)′ ∼=2 G2(q)′. As above, the group fixing
two distinct points has order q − 1 in R(q). But there are q2 lines through any point, so
even an overgroup cannot be transitive on geodesics of length 3.

(LS4).

Witt-Bose-Shrikhande spaces have no 2-transitive collineation group.

(LS5).
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Here Γ = AG(n, q) with n ≥ 2, G contains the full translation group of the affine space
and Gx, the stabilizer of a point x, acts transitively on the points “at infinity”. If G is
locally 3-arc transitive, then clearly Gx is 2-transitive on the set of points at infinity, so
Gx contains SL(n, q) or A7 (the latter for (n, q) = (4, 2)). If n ≥ 3, this clearly produces
examples (LT6) and (LT7). These cannot be geodesic transitive because one can never
map a maximal geodesic lying in a subplane to one not lying in any subplane. On the
other hand, if n = 2, every geodesic of length 3 is contained in a unique maximal geodesic,
so here locally 3-arc transitivity is equivalent with geodesic transitivity. Hence example
(LT2).

(LS6).

There are three possibilities according to Buekenhout, De Landtsheer, Doyen,
Kleidman, Liebeck & Saxl [14].

1. The Lüneburg-Tits planes do not have a 2-transitive collineation group (on the set
of points).

2. The Hering plane of order 27 has a 2-transitive collineation group on the set of
points, but the stabilizer of a point x is isomorphic to SL2(13) and this does not act
2-transitively on the 28 lines through x. So here we have point geodesic transitivity
but not line geodesic transitivity.

3. The nearfield plane of order 9: similar to the Hering plane of order 27.

(LS8).

Here, the points of Γ can be identified with the points of an affine line over (GF (q)
(which can in turn be identified with the elements of the field GF (q)) and the collinetion
group G is a subgroup of the 1-dimensional semi-linear affine group. Consider the line l in
Γ through the points 0 and 1. Note that, if (s, t) is the order of Γ and v = q is the number
of points, then

1 + s + s2 ≤ v ≤ 1 + t + t2

and equality holds in both cases if and only if Γ is a projective plane (which we do not
consider here). This implies t ≥ √

q. So if G acts locally 3-arc transitively, then the
stabilizer of 0 and 1 must act transitively on the set of t lines through 0 distinct from l.
Hence this group, which is a subgroup of the automorphism group of GF (q), must have
order at least

√
q. This is only possible if q = 4, but then we obtain example (LT2) for

q = 2.

(LS9).

Here, every line has 2 points, so locally 3-arc transitive groups correspond to 3-transitive
groups. The case where G is of affine type is already included in examples (LT2), (LT6)
and (LT7), hence we may assume that G is almost simple. Clearly, geodesic transitive
groups correspond to 4-transitive groups.

This completes the proof of proposition 6.!
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Γ G Remarks

(PQ1) Pe(10) A5 ! G ≤ S5 S5 is geodesic transitive
(PQ2) HS(50) U3(5) ! G ≤ U3(5) : 2 G is geodesic transitive

Table 27: Point Distance Transitive Moore Geometries of Diameter d ≥ 2.

4.3.3 Moore geometries.

PROPOSITION 7. If (Γ, G) is a point distance transitive (g, g, g + 1)-pair, g ≥ 5, with
G type-preserving, then it is example (PQ1) or (PQ2) of table 27. Moreover, in example
(PQ2), G acts geodesic transitively, and in example (PQ1), G acts geodesic transitively if
and only if G ∼= S6.

PROOF. By Buekenhout [12], Γ is a Moore geometry of diameter d = g−1
2 =≥ 2. By

Fuglister [38, 39], Damerell & Georgiacodis [25] and Damerell [24], the diameter
is equal to 2, hence g = 5. By Kantor [56], s = 1 and t = 2, 6 or 56. Hence Γ is a partial
quadrangle and the result now follows directly from proposition 4. Note that Aschbacher
[2] showed that no example with t = 56 can be point distance transitive.!

COROLLARY 2. If we allow diameter 1 for Moore geometries, then a point distance
transitive (g, g, g + 1)-pair is one of the examples in tables 26 and 27 or it is one of the
following linear spaces:

(LS2) The Hermitian Unital with G ∼= U3(q);

(LS3) The Ree unital and G is an automorphism group of the corresponding Ree group;

(LS5) The affine space AF (n, q) with AL1(qn) ≤ G ≤ AΓL1(qn).

(LS6) The Hering plane of order 27 or the nearfield plane of order 9;

(LS7) A Hering space;

(LS9) A c-geometry with a 2-transitive almost simple group acting.

PROOF. The additional examples follow from the proof of proposition 6. We only have
to show that no examples arise where Γ is a linear space in the class (LS8). But as in the
proof of lemma 3, one shows that the lines of Γ in this case are translates and homological
images of a subfield, hence this produces the examples under (LS5).!

4.4 Geodesic Transitive (g, g + 1, g + 1)-pairs, g ≥ 5.

Theorem 1 will be proved if we show that no geodesic transitive (g, g +1, g +1)-pairs exist
for g ≥ 5. That is the content of this subsection.
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PROPOSITION 8. There do not exist geodesic transitive (g, g + 1, g + 1)-pairs with
g ≥ 4.

PROOF. The case g = 4 is exactly corollary 1. So suppose throughout that (Γ, G) is
a geodesic transitive (g, g + 1, g + 1)-pair of order (s, t) with g ≥ 5. By the transitivity
assumption, the number of geodesics joining two elements at distance g only depends on
the types of these elements. If g is odd, there is only one possibility since the types have
to be distinct and we denote that number by α + 1. If g is even, then we denote by α + 1
(resp. β + 1) the number of geodesics joining two points (resp. lines) at distance g. Note
that 1 ≤ α < t and 1 ≤ β < s for g even, and 1 ≤ α < s, t for g odd.

We first show some lemma’s.

LEMMA 5. If g is even, then s = t and α = β.

PROOF. We count the number of maximal geodesics joining a point x and a line l at
distance g + 1 in two ways and obtain

(s + 1)(α + 1) = (t + 1)(β + 1).

Similarly, we count the number of maximal geodesics joining a point x and a line l′ at
distance g − 1 in two different ways and obtain

s.α = t.β

from which the statement readily follows.!

LEMMA 8. The group G acts primitively on both the set of points and the set of lines
of Γ.

PROOF. Without loss of generality, we can by way of contradiction assume that G
acts imprimitively on the set P of points of Γ. Let A be a non-trivial set of imprimitivity.
Let y, z be two points in A. Let l be a line through z at distance d(y, z) − 1 from y. If
d(y, z) ≤ g or if α < s − 1, there exists a point u &= z on l with d(y, u) = d(y, z). By the
transitivity assumption on G, we easily deduce u ∈ A. So all points collinear with any
point of A are again in A. Since Γ is connected, A = P , a contradiction.

So we may assume d(y, z) = g + 1 for all points y, z ∈ A and α = s − 1 (note that
the first condition implies g odd). By transitivity, A is the full set of points at maximal
distance from y (and also containing y). Let y, z, l be as above and choose a point w on l
distinct from z. Since t > 1, there exists a line l′ through w distinct from l and at distance
g − 1 from y (because there is only one line through w at distance g − 2 from y). Now
there exists a unique point u &= w on l′ at distance g + 1 from y and we have u ∈ A. But
d(z, u) = 4 and both are in A, consequently g + 1 = 4, contradicting our hypothesis.

Note that in the case g = 3, sets of imprimitivity do occur; this is namely the case for
helicopter planes.!

LEMMA 7. The point and line graph of Γ are admissible distance transitive graphs.
Moreover, if g is even, then g ≤ 26.
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PROOF. Straightforward counting of the ai’s, bi’s and ci’s of the graph (see 3.2) shows
that these numbers are indeed constants and so the graph is distance regular. The inter-
section array is

(s(s + 1), s2, . . . , s2, s2; 1, 1, . . . , 1, α + 1),

if g is even, and

(s(t + 1), st, . . . , st, t(s− α); 1, 1, . . . , 1, (t + 1)(α + 1)),

if g is odd. If g is even, then by definition Γ is a generalized Moore geometry of type
GMg/2(s, s, α + 1) (as defined by Roos & van Zanten [77]). By Fuglister [40, 41],
g ≤ 26. Since G acts transitively on maximal geodesics, we obtain an admissible distance
transitive graph by the preceding lemma and the fact that s, t > 1 (and hence a1 > 0).!

LEMMA 8. Let x ∈ P. We have |Gx| ≥
√
|G|.

PROOF. First suppose g is odd. The number of points at distance 2i ≤ g from x equals
si.ti−1(t + 1) and the number of points at distance g + 1 from x is

(st)
g−1
2 (s− α)

α + 1
.

Put n = g−1
2 , then the total number of points is

|P| = 1 + (
n∑

i=1

siti−1(t + 1)) +
sntn(s− α)

α + 1
.

Now, Gx is transitive on the set of maximal geodesics based at x. There are precisely
sntn(t + 1)(s− α) such geodesics. Hence the latter divides |Gx|. In particular,

siti−1(t + 1) ≤ |Gx|
sn−itn−i+1(s− α)

≤ |Gx|
sn−itn−i+1

and

1 +
sntn(s− α)

α + 1
≤ 1 +

|Gx|
(t + 1)(α + 1)

<
|Gx|
2t

.

Adding up these inequalities, we obtain

|P| ≤ |Gx|
t (1 + 1

st + ( 1
st)

2 + . . . + ( 1
st

n−1
+ 1

2)

< 2 |Gx|
t .

On the other hand, |G| = |P|.|Gx|, hence |Gx| >
√

t
2 |G| and since t ≥ 2, the result

follows.
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If g is even, then one shows completely similarly

|Gx| ≥
√

(s2 − 1)(α + 1)

s2 + α
|G|

and this completes the proof of the lemma.!

LEMMA 9. The group G is almost simple and of exceptional Chevalley or sporadic
type.

PROOF. From subsection 3.2 and lemma 7 it follows that G is almost simple and not of
alternating type. Suppose G is classical, then the intersection array of the point graph of
Γ is one of (DC3) or (DC4) (since (DC1) and (DC2) correspond to generalized hexagons).
No integer parameters match these arrays.!

LEMMA 10. The geometry Γ is not self dual.

PROOF. Suppose Γ is self-dual and consider the incidence graph ΓI , which is a distance
regular graph. The group G acts on ΓI as a distance transitive collineation group. The
girth of ΓI is 2g ≥ 10, hence by a theorem of Weiss [96], ΓI is either the Foster graph on
90 vertices with intersection array

(3, 2, 2, 2, 2, 1, 1, 1; 1, 1, 1, 1, 2, 2, 2, 3)

or the incidence graph of the generalized hexagon H(q) (label (GP7)) with q a power
of 3. Clearly the Foster graph is not admissible (a1 = 0) and the incidence graph of the
generalized hexagon gives a unique solution for (s, t, α), namely (s, s, s), a contradiction.!

LEMMA 11. Let x ∈ P. Then Gx induces a 2-transitive permutation group on the
set of lines through x.

PROOF. Let Li, L′
i be two lines through x, i = 1, 2. Choose points xi, x′i resp. on

Li, L′
i, i = 1, 2, all distinct from x. All these points are at distance 4 from each other

(in the incidence graph), so by transitivity, there is an element of G mapping (x1, x′1) to
(x2, x′2). Since x is the unique point at distance 2 from both x1 and x′1, resp. x2 and x′2, it
must be fixed and the assertion follows.!

LEMMA 12. The group G is not of exceptional Chevalley type.

PROOF. Let S be the socle of G. If Gx is a parabolic subgroup, then by Brouwer,
Cohen & Neumaier [10], we obtain a generalized polygon or a non-admissible distance
transitive graph (or no distance transitive graph at all). If Gx is not a parabolic subgroup,
then by lemma 8, Gx ∩ S is one of the groups H in table 15. Let l be a line of Γ, then
also Gl ∩ S is one of these groups. Moreover, Gx is not isomorphic to Gl by lemma 10
and the fact that isomorphic subgroups appearing in table 15 are always conjugate in the
automorphism group of S. Now the only group S having two non-isomorphic subgroups
listed in table 15 having a 2-transitive representation is G2(q). Actually, G2(q) has three
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such subgroups if q is an odd power of 3. We list them together with the value of t or s
they induce (by their 2-transitive representation) and the number of points ot lines they
define (by the relation |P| = |G|/|Gx| and dually):

H tors |P|or|L|
SL3(q) : 2 q2 + q 1

2q
3(q3 + 1)

SU3(q) : 2 q3 1
2q

3(q3 − 1)
2G2(q) q3 q3(q3 − 1)(q + 1)

Counting the number of flags, we obtain

(t + 1)|P| = (s + 1)|L|,

and this can never be satisfied with any combination of the above values. In fact, alterna-
tively, the number of points compared with the value for t induced by a single subgroup
H above forces g to be too small compared with the permutation rank of H in G.

This completes the proof of the lemma.!

So we can from now on assume that G is of sporadic type. First note that the inter-
section array of the graph (DS1) of table 16 can never match the parameters of Γ. Hence
we can assume that g ≥ 9.

First we suppose that G &= M and G &= B. We explain our strategy by taking as
example Fi′24 ! G ≤ Fi24. Since g ≥ 9, we have that (st)4 divides |G|. Considering
the primes whose fourth powers divide |G|, we get an upper bound ω for st, namely
st ≤ 25.34 = 2592 =: ω (more specific st|25.34). Next, we consider all maximal subgroups

H of G such that |H| ≥
√
|G| and H has a 2-transitive representation. Checking the latter

condition is usually not trivial, but it cannot do any harm to ignore it. For example, using
the classification of all maximal subgroups of Fi′24 and Fi24 by Linton & Wilson [70],

we obtain 6 maximal subgroups H satisfying |H| ≥
√
|G| (excluding Fi′24 ≤ Fi24). Two

of them, O−
10(2) (in Fi′24, and O−

10(2) : 2 in Fi24) and Fi23 (in Fi′24, and Fi23 × 2 in Fi24),
have clearly no 2-transitive permutation representation. Let us consider the others and
label them H1, H2, H3 and H4.

inFi′24 inFi24 |G : H|
H1 2 · Fi22 : 2 (2× 2 · Fi22).2 22.37.72.17.23.29
H2 (3× 0+

8 (3) : 3) : 2 S3 ×O+
8 (3) : S3 28.32.72.11.17.23.29

H3 37 · 07(3) 37 ·O7(3) : 2 212.5.72.11.17.23.29
H4 31+10

+ : U5(2) : 2 31+10
+ : (2× U5(2) : 2) 210.5.73.13.17.23.29

First suppose s &= t. Take two of the maximal subgroups above, say Hi and Hj and
suppose Hi

∼= Gx and Hj
∼= Gl for a point x and a line l in Γ. Now the number of flags in

Γ is equal to
(t + 1)|G : Hi| = (s + 1)|G : Hj|,
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hence the smallest common multiple of |G : Hi| and |G : Hj| divides the number of flags
of Γ. Dividing by |G : Hi|, we obtain

τ :=
|G : Hj|

(|G : Hi|, |G : Hj|)
|t + 1.

Similarly

σ :=
|G : Hi|

(|G : Hi|, |G : Hj|)
|s + 1.

Hence st ≥ (σ−1)(τ−1) and this gives us a lower bound for st. The idea is to contradict
the above upper bound. Note that we can take Hi &∼= Hj otherwise Γ is self-dual. Let us
tabulate the values for σ and τ in all cases:

(Hi, Hj) τ σ (τ − 1)(σ − 1)
(H1, H2) 26.11 35 > 2592
(H1, H3) 210.5.11 37 > 2592
(H1, H4) 28.5.7.13 37 > 2592
(H2, H3) 24.5 32 720
(H2, H4) 22.5.7.13 32.11 > 2592
(H3, H4) 7.13 22.11 > 2592

So the only possibility is 80|t+1 and 9|s+1. Since st ≤ 2592, this implies (s, t) = (79, 8),
contradicting st|25.34.

Suppose s = t, then |Gx| = |Gl| and for most of the sporadic groups, this implies
Gx
∼= Gl and Gx conjugate to Gl in Aut(G), hence Γ self-dual. This contradicts lemma 10.

The only case where this argument fails is for McLaughlin’s group McL. We deal with it
later.

We apply this technique for s &= t to all the sporadic groups (except to Held’s group He
and Lyons’ group Ly since by Cohen & Cuypers [20] resp. Soicher [80], these groups
do not act distance transitively on any graph). In table 27, we list the cases where the
upper bound ω and lower bound (τ − 1)(σ− 1) are not in conflict. The classification of all
maximal subgroups of the sporadic groups we consider here can be found in Kleidman,
Parker & Wilson [62] (for Fi23), Kleidman & Wilson [63, 64] (for Fi22 and J4),
Linton [69] (for Th) and the Atlas [22] (for the remaining groups).

Five groups remain. Note that in each case t+1
s+1 = |Hi|

|Hj | . This gives us:

1. G ∼= J4 and σ = 1. Since s > 1, we have t > 96, contradicting ω = 32.

2. G ∼= Fi22 or G ∼= Fi22 : 2. Here st ≤ 144 and this leaves (s, t) = (3,6), (7,13), (3,20),
(2,8), (3,11), (4,14), (5,17), (6,20). In view of st|144, there remains (s, t) = (3, 6) or
(2, 8). In both cases (st)5 does not divide |G|, hence g = 9. If (s, t) = (2, 8), then
α = 1, implying |P| = 3(1 + 16 + 162 + 163 + 164

2 ) and this does not divide |G|.
Similarly, if (s, t) = (3, 6), then α = 1 or 2 and again |P| does not divide |G|.
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G ω (Hi;Hj) τ ;σ

J4 32 (211 : M24;210 : L5(2)) 23;1
(26 : S6(2);(2× 21+8

+ : U4(2)) : 2) 7;4
Fi22 144 (26 : S6(2);25+8 : (S3 × A6)) 21;4

((2× 21+8
+ : U4(2)) : 2;25+8 : (S3 × A6)) 3;1

Co2 48 ((21+6
+ × 24).A8;24+10.(S5 × S3)) 7;2

Co3 12 (U4(3) : (22)133;2 · S6(2)) 9;2
Suz 24 (21+6

− : U4(2);24+6 : 3A6) 3;1

Table 28: Non-conflicting Pairs of Maximal Subgroups of Sporadic Groups.

1048575 1680 360 125 64
15624 1023 342 124 63
6560 960 288 120 59
5040 840 275 119 58
4095 728 242 81 49
3480 624 175 80 48
3124 528 168 71 46
2400 512 135 70 40

Table 29: Possible Values for s, t ≥ 40 in the Case of the Monster.

3. G ∼= Co2. Since s > 1, the only possibility is (s, t) = (3, 13), but then st does not
divide 48.

4. G ∼= Co3. No value s > 1 remains here.

5. G ∼= Suz or G ∼= Suz : 2. Here (s, t) = (2, 8), but st does not divide 24.

This completes the case s &= t. As remarked above, the case s = t is only possible for
McL ! G ≤ McL : 2. Note that the upper bound ω is still well-defined and here we have
ω = 12. So since s = t, the only possibility is (s, t) = (2, 2) and α = 1. Note that in every
case, 5 divides |Gx|. But an element of order 5 fixing a point must fix everything else.

So we may finally assume G ∼= M or B. First suppose G ∼= M and g odd. We kill this
case using a little computer-programme, based on the following observations.

1. The Atlas [22] provides a list of all simple groups (possibly) involved in M . This
yields a list of the degrees of all 2-transitive almost simple groups that can act on the
set of points (resp. lines) incident with a line (resp. point). A similar list derived from
2-transitive affine groups can be obtained by considering all primes p and positive
integers n such that pn(pn − 1) divides |M |. This gives us all possible values for the
parameters s and t of Γ. We list all the values larger than 40 in table 29.
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2. The number of geodesics based at a fixed point is (st)
g−1
2 (t + 1), so this must divide

|M |. Similarly (st)
g−1
2 (s + 1) divides |M |. This defines an upper bound for g which

is in a lot of cases smaller than 9.

3. The above argumant kills s, t = 59, 58, 47 and 46. Also, no elements of order 59 or
47 appear in Gx. So if an element θ of order 59 or 47 fixes a point, then it fixes
all lines through that point, all points on these lines, etc. Hence θ fixes everything,
a contradiction. This implies that θ acts semi-regularly on P . So |P| is divisible
by 59.47. For a given pair (s, t) and a given gonality g, this determines α up to a
multiple of 59.47, because

59.47| |P|.(α + 1)

s + 1
= (α + 1)(1 + st + (st)2 + . . . + (st)

g−3
2 ) + (st)

g−1
2 .

4. Given (s, t), the gonality g is bounded below by the condition |P| ≥ P (M) (see table
17).

This suggests the following programme: Take any pair (s, t) from table 29. Determine
all possible g (using the uppser bound from 2. and the lower bound from 4. above) and
consider them in turn. Compute α (mod 59.47). There are a priori two possibilities: (1)
α ≥ s or t (and this is always the case as it turns out), a contradiction, so we move on
to the next case of (s, t, g); (2) α ≤ s, t (this never happens when G ∼= M , but it does
when G ∼= B, see below). Here a unique value for α arises (since both s, t < 59.47) and we
compute |P| and check if this divides |G|.

So suppose now g is even. Since here s = t, we can slightly change the method above
so as to be able to do the calculations by hand.

The number of geodesics of length g is sg−1(s + 1) and 10 ≤ g ≤ 26 (by lemma 7). We
again consider the degrees d of all possible 2-transitive groups involved in M and retain
those for which (d − 1)9.d divides |M |. This gives s = 120, 80, 48, 40, 30, 24, 20, 18, 16,
15, 12, 10, 9, 8, 6, 5, 4, 3 or 2. Now, from table 17, we read |P| ≥ 972.1017. Combining
this with

|P| = sg−1 − 1

s− 1
+

sg−1(s + 1)

α + 1
<

sg−1 − 1

s− 1
+ sg−1(s + 1) =

sg+1 − 1

s− 1
,

this gives us for each s a lower bound for g. If s ≤ 5, this lower bound is larger than 26 and
if s ≥ 6, then the only cases where this lower bound does not contradict the upper bound
(obtained from sg−1| |M |) are (s, g) = (120, 10), (48,12), (24,16) and (12,20). Using the
same method to determine α as in the case g odd (but now calculating with 71.59 instead
of 59.47), we obtain respectively α = 3039, 1008, 3531, 317 and these all contradict α < s.
This rules out the case G ∼= M completely.

Suppose now G ∼= B. We rule this out as above.
For g odd, we can consider the product of the primes 47.23 and we run the same

computer-programme as for the Monster above (we can use the same orders because B ≤
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M). It turns out that α is again always too big except if g = 9, s = 20 and t = 18. In this
case α = 17. But the number of points of Γ is 20578025181 = 3.7.23.47.9064817 and this
does not divide |B|.

If g is even, then an entirely similar calculation as for G ∼= M gives us the following
result. We list the possible s, g and the value for α they imply.

s g α
48 8 27682

10 27682
24 8 19019

10 27682
12 6980
14 22231

16 10 27682
12 10 24065

12 11660
14 19849

8 12 498
14 6426

6 14 2865
4 18 11862

20 13450

We woud like to thank V. De Smet for writing the above mentioned programmes. She
used CAYLEY.

This rules out B and the proof of proposition 8 is complete.!
This completes the proof of our our main result (theorem 1).
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275 – 284.

[87] J.Tits, Quadrangle de Moufang, I, preprint (1976).

[88] J.Tits, Nonexistence de certains polygones généralisés, II, Invent. Math. 51 (1979),
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