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1 Introduction

The present paper was inspired by [12], where compact symlectic quadrangles were charac-
terized by their derivations, and by [11], where the notion of regular points in generalized
hexagons was introduced. We discuss the notion of half regular and regular points in
compact generalized polygons. Regularity and half regularity enables one to define de-
rived structures. The point is that, even though every regular point is by definition also
a regular point, the derived structure in a half regular point is defined differently as in
a regular point and in general yields also different geometries. However, in generalized
quadrangles half regular points are also regular and the derived structures are isomorphic.
Section 3 is devoted to the investigation of half regular points and the properties of the
derived structure in a half regular point. In section 4 we treat regular points and study
the derived structure in a regular point. Besides an extension of the main theorem of [12]
we proof the following

(1.1) Theorem: For a compact connected generalized hexagon S where pointrows and
linepencils are manifolds the following properties are equivalent:
1) S is the split Cayley hexagon over R or C considered as topological fields.
2) S is the split Cayley hexagon over a topological commutative field.
3) S is the split Cayley hexagon over a commutative field.
4) S is regular.
5) S is half regular.
6) For every point p the derivation Ap is a topological projective plane.
7) For every point p the derivation Ap is a projective plane.
8) For every point p the derivation Sp is a topological quadrangle.
9) For every point p the derivation Sp is a quadrangle.

2 Preliminaries

Let S = (P,L,F) be an incidence structure with a set P of points, a set L of lines
disjoint from P and a set F ⊂ P × L of flags. If (p, l) ∈ F we say that p and l are
incident. The elements of V = P ∪ L are called vertices. Two vertices x, y are said to be
collinear if there is a vertex incident with both, x and y. An s-path, s ∈ N, is a sequence
(x0, x1, . . . , xs) of s + 1 vertices such that xi is incident with xi+1 for 0 ≤ i ≤ s − 1 and
xi '= xi+2 for 0 ≤ i ≤ s− 2. We say that the s-path joins x0 to xs.

For x, y ∈ V let d(x, y) denote the smallest number s ∈ N such that there exists an
s-path joining x to y. This defines a distance function d : V2 → N on V. We define
Si(x) := {y ∈ V | d(x, y) = i} for x ∈ V and i ∈ N. The pointrows and linepencils
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S1(x), x ∈ L resp. x ∈ P, are also denoted S(x). The set of vertices collinear with a given
vertex v ∈ V is denoted v⊥. Provided that S(v) is nonvoid, the relation v⊥ = {v} ∪ S2(x)
holds.

Definition: An incidence structure S = (P,L,F) is a generalized n-gon with n ∈ N if
the following holds.

(1) If x, y ∈ V, then d(x, y) ≤ n.
(2) If x, y ∈ V are two vertices with d(x, y) = s < n, then the s-path joining x to y is

unique.
(3) For every v ∈ V the set S(v) contains at least th ree vertices.

Property (3) is sometimes referred to as thickness. Generalized polygons, which are gen-
eralized n-gons for some n, were introduced by Tits [15]. For n = 2, 3, 4, 6, 8, we call
them respectively generalized digons, (generalized) projective planes, generalized
quadrangles, generalized hexagons, generalized octagons. A generalized digon is
a trivial geometry where every point is incident with every line. Throughout this paper
we will assume n ≥ 3.

For every 1 < s < n Axiom (2) yields mappings

Fs : {(x, y) ∈ V2 | d(x, y) = s}→ Vs−1 : (x, y) *→ (x1, x2, . . . , xs−1)

where (x, x1, . . . , xs−1, y) is the unique s-path joining x to y. Furthermore, for 1 ≤ k ≤ s−1
let fk

s (x, y) denote the kth vertex of Fs(x, y). Some of these maps have also other, more
traditional notations. Let x, y be two points or two lines at distance two, then f1

2 (x, y) is
usually denoted x ∨ y or x ∧ y respectively. If n is at least 5 and x, y are two vertices at
distance 4, then f2

4 (x, y) is also denoted x ∗ y.
The points of a three dimensional projective space over a commutative field F together

with the totally isotropic lines with respect to a symplectic polarity form a generalized
quadrangle. It is called the symplectic quadrangle over F and denoted W (F ). A description
in terms of coordinates may be given as follows (see [6]): the points are all elements of the
form (∞), (a), (k, b), (a, l, a′) where∞ is some symbol not contained in F and a, k, b, l, a′ ∈
F ; the lines are all elements of the form [∞], [k], [a, l], [k, b, k′] where k, a, l, b, k′ ∈ F ;
incidence is given by the following rules, where I denotes the incidence relation:

(1) [k, b, k′] I (k, b) I [k] I (∞) I [∞] I (a) I [a, l] I (a, l, a′) for all a, a′, b, k, k′, l ∈ F

(2) [k, b, k′] I (a, b, a′) ⇐⇒

b = ak + a′ (∗)

k′ = k′a2 + l + 2aa′ (∗∗)
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(3) no other incidences occur.

The points of a (parabolic) quadric Q(6, F ) in the six dimensional projective space over a
commutative field F together with all the lines of Q(6, F ) whose Grassmann coordinates
satisfy p12 = p34, p20 = p35, p01 = p36, p03 = p56, p13 = p64 and p23 = p45 (where Q(6, f)
has the equation X0X4 + X1X5 + X2X6 = X3

2) form a generalized hexagon. We will call
this the split Cayley hexagon (because it arises from a split Cayley algebra over F ) and
denote it H(F ). There is also a description in terms of coordinates (see [1]): The points
are all elements of the form (∞), (a), (k, b), (a, l, a′), (k, b, k′, b′), (a, l, a′, l′, a′′) where ∞
is some symbol not contained in F and all other parameters are from F ; the lines are
all elements of the form [∞], [k], [a, l], [k, b, k′], [a, l, a′, l′] [k, b, k′, b′, k′′] where again all
parameters exept ∞ are from F ; incidence is given by

(1) [k, b, k′, b′, k′′] I (k, b, k′, b′) I [k, b, k′] I (k, b) I [k] I (∞) I [∞] I (a) I [a, l] I (a, l, a′) I
[a, l, a′, l′] I (a, l, a′, l′, a′′) for all a, a′, a′′, b, b′, k, k′, k′′, l, l′ ∈ F

(2) [k, b, k′, b′, k′′] I (a, b, a′, l′, a′′) ⇐⇒

a′′ = ak + b (∗∗∗)

a′ = a2k + b′ + 2ab (∗∗∗∗)

k′′ = ka3 + l − 3a′′a2 + 3aa′

k′ = k2a3 + l′ − kl − 3a2a′′k − 3a′a′′ + 3aa′′
2

(3) no other incidences occur.

Definition: A generalized n-gon is called a compact n-gon, if P and L carry compact
topologies such that F is closed in P × L.

In a compact n-gon the maps Fs and fk
s are continuous [4], thus compact n-gons are

topological n-gons in the sence of [4]. If x, y are any two points or any two lines, then
the spaces S(x) and S(y) are homeomorphic (cf. [15]: p.56). We will frequently use the
following fact shown in [4]: (2.1.b):

(2.1) Lemma: In a topological n-gon the distance function d : V2 → {0, 1, · · · , n} is lower
semi-continuous. In particular if (xi, yi), i ∈ N, is a sequence converging to (x, y) in V2

such that d(xi, yi) = k for every i ∈ N, then d(x, y) ≤ k.

(2.2) Lemma: Suppose p, q are two vertices of a topological n-gon at maximal distance.
Then for every 1 ≤ k ≤ n− 1 the set Sk(p) ∩ Sn−k(q) is homeomorphic to S1(p).
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Proof: The map α := fn−k
n−1 (q, ·) : S1(p) → Sk(p)∩Sn−k(q) : v *→ fn−k

n−1 (q, v) is continuous
and the inverse map is α−1 := f1

k (p, ·) : Sk(p) ∩ Sn−k(q) → S1(p) : w *→ f1
k (p, w). Thus α

is a homeomorphism.

If F is a locally compact topological field, then the topology on F induces topologies on the
point- and lineset of the symplectic quadrangle (resp. spit Cayley hexagon) over F such
that it becomes a compact quadrangle (resp. hexagon). We will call it the symplectic
quadrangle (resp. spit Cayley hexagon) over the topological field F . For more
details we refere to [12] and [4].

In this note we will mainly consider compact n-gons whose pointrows and linepencils are
topological manifolds. For then there are parameters s, t ∈ N such that all pointrows are
homeomorphic to the s-sphere and all linepencils to the t-sphere ([7]). We say the polygon
is of order (s, t). By a theorem of Knarr [7], compact topological n-gons exist only for
n = 2, 3, 4, 6.

The pointspace P of a compact n-gon, where pointrows and linepencils are manifolds
is a compact manifold ([7]: 2.7) thus also metrizable and we therefore can endow the set
of all nonempty closed subsets of P with the topology induced by the Hausdorff metric
([9]: Section 0). In this topology a sequence of closed sets Ai ⊂ P converges to a closed
set A ⊂ P if A consists precisely of those points a ∈ P for which there is a sequence of
points ai ∈ Ai converging to a ([9]: (0.6)). To avoid cumbersome notation and since we
have only defined a topology on closed sets the term ‘closed’ is often omitted.

With regard to this topology we can show that the sets introduced in Lemma 2.2 depend
continuously on the pair (p, q):

(2.3) Lemma: Suppose p and q are two vertices of maximal distance in a metrizable
compact n-gon and that (pi, qi) ∈ V2, i ∈ N, is a sequence converging to (p, q), then for
every 0 ≤ k ≤ n the sets Sk(pi) ∩ Sn−k(qi), i ∈ N, converge to Sk(p) ∩ Sn−k(q).

Proof: Let Wi = Sk(pi) ∩ Sn−k(qi), i ∈ N, and W = Sk(p) ∩ Sn−k(q). By Lemma 2.1 we
may assume d(pi, qi) = n for every i ∈ N.

Let wi ∈ Wi, i ∈ N. Then d(pi, wi) = k and d(qi, wi) = n − k for every i ∈ N,
thus d(p, w) ≤ k and d(q, w) ≤ n − k by Lemma 2.1. On the other hand n = d(p, y) ≤
d(p, w) + d(q, w) ≤ k + n− k = n. This is only possible if d(p, w) = k and d(q, w) = n− k,
i.e. if w ∈ W . Thus limi→∞Wi ⊂ W .

To see the converse inclusion let w ∈ W and g := f1
k (p, w). Choose v ∈ V such that

d(p, v) = d(pi, v) = n for every i ∈ N and let h := f1
n−1(v, g). Then the vertices gi :=

f1
n−1(pi, h), i ∈ N, converge to g = f1

n−1(p, h). Therefore the vertices wi := fk−1
n−1(gi, qi) ∈
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Wi, i ∈ N, converge to w = fk−1
n−1(g, q) ∈ Wi. Thus with the above we get limi→∞Wi =

W .

If we identify every line l ∈ L with the closed set S(l) ∈ P of points incident with l,
then the Hausdorff metric induces a new topology on L. However, using Lemma 2.3 and
continuity of joining one readily obtains

(4.3) Corollary: The topology on L induced by the Hausdorff metric is equivalent to
the original topology.

If p, q are two vertices of a generalized n-gon at maximal distance, let pq denote the set
S2(p) ∩ Sn−2(q). So in particular Lemma 2.2 and Lemma 2.3 imply

(2.4) Corollary: In a compact n-gon the map that sends every pair of vertices (p, q) of
maximal distance to the set pq is continuous. Furthermore the set pq is homeomorphic to
S1(p).
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3 Half regular points and derivations of generalized polygons

We call a point p of a generalized n-gon half regular if for all pairs x, y in S2(p) with
x ∨ p '= y ∨ p, the set pz is independent of the choice of z ∈ Sn−2(p) ∩ Sn−2(q) ∩ Sn(p),
in which case the set pz is called an ideal line. A half regular generalized polygon is
a generalized polygon where every point is half regular. In a generalized 3-gon, i.e. a
projective plane, every point is half regular.

If p is a half regular point of a generalized n-gon S, then every pair x, y of points
collinear to p is contained in either a line or an ideal line of S. We denote that line,
considered as a subset of P by <x, y>. We now define the following derived incidence
geometry Ap: The points are the points collinear to p, the lines are the sets pq with
q ∈ Sn(p) together with all customary lines through p considered as subsets of P and
incidence is the natural one.

As an immediate consequence of the definition of half regular points we get the fol-
lowing characterization:

(3.1) Lemma: A point p of a generalized n-gon S is half regular if and only if the derived
structure Ap is a linear space, i.e. an incidence structure where any two points can be
joined by a unique line.

If S is a projective plane, then Ap is isomorphic to S. Together with some additional
condition, half-regularity is a rather strong condition as will reveal the following

(3.2) Theorem: Let p be a half regular point of a compact n-gon S of order (s, t). Then
s ≥ t and Ap is a projective plane if and only if t = s.

Proof: Since in a topological projective plane pointrows and linepencils are homeomor-
phic, as can be deduced from Lemma 2.3, the result holds rather trivially for n = 3.
Therefore we will assume n ≥ 4 for the rest of the proof.

Let q ∈ Sn(p) and g ∈ Sn−1(p) such that f2
n−1(p, g)∩ pq = ∅. Then d(x, g) = n− 1 for

every x ∈ pq. Since p is half regular, the continuos map µ : pq → S1(g) : x *→ f1
n−1(g, x)

is injective. For otherwise let x1 and x2 be two points such that µ(x1) = µ(x2) =: z,
then f2

n−1(p, g) ∈ pz \ pq therefore pz and pq are different lines of Ap joining x1 to x2, a
contradiction to Lemma 3.1. Since pq is compact, µ is an immmersion and the dimension
of S1(g) has to be greater or equal to the dimension of pq. However S1(g) ∼= Ss and
pq ∼= S1(p) ∼= St.

If the dimension of pointrows is greater than the dimension of linepencils the map µ

is not surjective. Thus for any point z ∈ S1(g) \ µ(pq) the sets pq and pz do not intersect.
Hence Ap is not a projective plane.
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If pointrows and linepencils have the same dimension, then the theorem on the invari-
ance of domain ([8]) ensures that µ(pq) is not only a closed, but also an open subset of the
connected space S1(g), hence the whole. So for every z ∈ S1(g)\{f1

n−1(g, p)} the preimage
µ−1(z) lies in pz ∩ pq. If y ∈ Sn(p), then either f2

n−1(p, l) ∈ pq for every l ∈ S1(y) and thus
py = pq or there is a vertex g ∈ S1(y) such that f2

n−1(p, g) '∈ pq and µ−1(y) ∈ py∩pq by the
above. This shows that any two lines of the derivation of type pq with q ∈ Sn(p) intersect.
That any other pair of lines of Ap intersect is a trivial consequence of the definition of a
generalized n-gon and needs no topological argument.

Remark: An analogous result holds for finite generalized n-gons, namely, if p is a half
regular point then the number of lines incident with a point is less or equal to the number
of points incident with a line and Ap is a projective plane if and only if the number of lines
incident with a point is the same as the number of points incident with a line. This can be
proved much along the same lines replacing topological arguments by counting arguments.

Next we want to show that for a half regular point p of a compact n-gon of order (s, t) the
derivation Ap can be made a topological linear space, i.e. a linear space were joining and
intersecting are continuous operations. We define the topologies on Ap as follows: The
pointset of Ap inherits its topology from the pointset of S and a sequence Li, i ∈ N, of lines
of Ap converges to a line L of Ap if and only if, with respect to the topology induced by
the Haussdorf metric, every convergent subsequence of the given sequence converges to a
subset of L. If the polygon is of order (s, s), we endow the lineset of Ap with the topology
induced by the Haussdorf metric. This makes sense since the ordinary lines considered
as subsets of P as well as the ideal lines are closed in P. The following theorem is an
extension of [12]: Corollary 2 and the proof runs much along the same lines.

(3.3) Theorem: If p is a half regular point of a compact n-gon S of order (s, t), then Ap

is a topological linear space.

Proof: We use sequences to prove our result. First we show that joining is continuous.
So we have to prove that the map that sends every pair (a, b) of different points to <a, b>

is continuous. Suppose (ai, bi) ∈ p⊥ × p⊥, i ∈ N, is a sequence converging to a pair
(a, b) ∈ S2(p) × p⊥ wit a '= b. We may assume p '= ai '= bi for every i ∈ N. Take
g ∈ Sn−1(p) ∩ Sn−1(a) ∩ Sn−1(b). We my assume that also d(g, ai) = d(g, bi) = n − 1 for
every i ∈ N. The line f2

n−1(g, ai) is at distance n − 1 to bi for every i ∈ N, so the point
xi := f1

n−1(f2
n−1(g, ai), bi) is welldefined and limi→∞ xi = x := f1

n−1(f2
n−1(g, a), b).

If a∨ p '= b∨ p, then, by continuity of joining in S, we may assume ai ∨ p '= bi ∨ p for
every i ∈ N. But then <ai, bi> = pxi , hence limi→∞<ai, bi> = limi→∞ pxi = px = <a, b>

by Corollary 2.4.
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If a∨p = b∨p and if moreover ai∨p = bi∨p for every i ∈ N, then <ai, bi> = S(p∨ai).
Thus limi→∞<ai, bi> = limi→∞ S(p ∨ ai) = S(p ∨ a) = <a, b> by continuity of joining in
S and by Corollary 4.3.

In the remaining case we may assume a ∨ p = b ∨ p but ai ∨ p '= bi ∨ p for ev-
ery i ∈ N. To see that limi→∞<ai, bi> is a subset of <a, b> = S(a ∨ p) suppose that
there is some y ∈ limi→∞<ai, bi> \ <a, b>. Then a is not collinear to y and there is
a sequence yi ∈ <ai, bi>, i ∈ N, converging to y. However, then <ai, bi> = <ai, yi>

and limi→∞<ai, bi> = limi→∞<ai, yi> = <a, y> by the above. This is impossible since
on the one hand a ∨ p = b ∨ p and on the other hand b = limi→∞ bi ∈ <a, y> and
<a, y> ∩ S(a ∨ p) = {a} '= {b}. Thus limi→∞<ai, bi> ⊂ <a, b>.

If S is a polygon of order (s, s) we also have to prove the converse implication. So
let z ∈ <a, b> and choose w ∈ S2(p) \ <a, b>. We may assume w /∈ <ai, bi> for every
i ∈ N, thus <z,w> meets <ai, bi> in exactly one point, denoted yi. Since <z,w> is
compact we may assume that the points yi converge to some point y ∈ <z,w>. But then
y ∈ <z,w> ∩<a, b> = {z}. Therefore limi→∞<ai, bi> = <a, b> as claimed.

To see that intersecting is continuous as well suppose that (gi, hi), i ∈ N, is a sequence
of pairs of lines of Ap such that for every iN the lines gi and hi intersect in a point xi

converging to a pair (g, h) of different lines. We may assume that there is some point x

with limi→∞ xi = x. However, by the definition of the topology on the lineset, x ∈ g ∩ h

hence g ∩ h = {x}.

Remark: The above proof also shows that if s '= t the space of pairs of lines which
intersect is closed. Also the topology on the lineset of Ap is almost the one induced by the
Haussdorf metric. Only if lines not incident with p converge to a line through p we have
to use the above definition of the topology.
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4 Regular points and derivations of generalized polygons

Definition: A point p is called regular if it is half regular and if for every u ∈ S4(p) the
set yz is independent of the choice of y ∈ S2(p)∩S2(u) and z ∈ Sn−2(p)∩Sn−2(u)∩Sn(y),
in which case the set yz is again called an ideal line. Note that these ideal lines contain
p. It is easily checked that for n = 4 every half regular point is also regular. If n > 4,
then the set S2(p) ∩ S2(u) contains only the point p ∗ u. A regular generalized polygon is
a generalized polygon where every point is regular.

Remark: One is tempted to define a even stronger regularity for octagons. However, the
Moufang octagons do not have half regular points or lines and hence neither regular ones.

Our next goal is to define the notion of a derivation in a regular point. Therefore, we need
some preparations. So let S be a generalized polygon with a regular point p. Again every
pair x, y of points collinear to p is contained in either a line or an ideal line of S which
we denote by <x, y>. Similarly, we denote an ideal line through p containing some other
point u at distance 4 from p by <p, u> or <u, p>. The focus of an ideal line <x, y> is
the set S2(x) ∩ S2(y). So for generalized quadrangles the focus of an ideal line is again
an ideal line and for generalized n-gons with n > 4 the focus of an ideal line <x, y> is
identified with the point x ∗ y.

For n = 6 we can also define ideal planes. So, let x, y be points collinear to p deter-
mining an ideal line <x, y> and let z be a point collinear to x but not on <x, p>. Then z

determines a unique ideal line tz for all t ∈ <x, y> \ {x} and we put Π<x,y>
z equal to the

union of <z, p> and all these ideal lines tz as t ranges over <x, y> \ {x}.

(4.1) Lemma: If <x, y> is an ideal line with focus p, and z is a point collinear to x and
at distance 4 from p, then Π<x,y>

z = Π<x,y>
u for all u ∈ Π<x,y>

z .

Proof: First suppose u ∈ <z, p>, u '= z, p. So <z, p> = <u, p>. Let w ∈ tz for some
t ∈ <x, y> \ {x}. Since xw contains p and z, it is by definition of regular point equal to
<p, z>. So d(w, u) = 4 and w ∈ tu, hence tu = tz implying Π<x,y>

u = Π<x,y>
z .

Next, suppose u ∈ tz for some t ∈ <x, y> \ {x}. As in the first part, <z, p> = xu and
<u, p> = tz. Without loss of generality, we can assume y '= t. Now p(z∗u) contains x and
t and hence it equals <x, t> = <x, y>. So d(y, z ∗ u) = 4. But this implies that both yz

and yu contain p and y ∗ (z ∗ u). So yz = yu. Since y was arbitrary on <x, t>, this shows
the result.

So the set Π<x,y>
z is determined by <x, y> and any of its points distinct from p. But if we

take a point u of Π<x,y>
z such that u ∗ p '= z ∗ p, then <x, y> = <u ∗ p, z ∗ p> and hence
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Π<x,y>
z is determined by u and z. The set {p, u, z} forms a triad of points at distance

4 with no common point at distance 2 and we call such a triad a triangle. Also, we
denote the set Π<x,y>

z by 4p, u, z5 and call it an ideal plane through p with focusline
<u ∗ p, z ∗ p>. Clearly any two different points on an ideal plane are at distance 4.

(4.2) Lemma: Any three different points z1, z2, z3 ∈ S4(p) with d(zi, zj) = 4 and zi ∗
zj /∈ S2(p), i '= j, are contained in a unique ideal plane 4z1, z2, z35 through p, i.e.
4z1, z2, z35 = 4p, zi, zj5, i '= j.

Proof: Since any two of the points are contained in precisely one ideal plane, we only
have to show that these planes coincide. If any two of the points z1 ∗ z2, z1 ∗ z3, z3 ∗ z2

are collinear, then they all coincide, for otherwise there would be a pentagon in S. Thus
pz1∗z2 = <zi ∗ p, zj ∗ p> and 4p, z1, z25 = Π<z1∗p,z2∗p>

z1
= Π<z1∗p,z3∗p>

z1
= 4p, z1, z35 =

Π<z1∗p,z3∗p>
z3

= Π<z2∗p,z3∗p>
z3

= 4p, z2, z35.
If the three points z1 ∗ z2, z1 ∗ z3, z3 ∗ z2 are mutually non-collinear, then the line

h := f1
4 (z1, z2) is at distance 5 to z3 ∗ p. Let z′3 := f2

5 (p ∗ z3, h). Then z′3 ∗ p = z3 ∗ p, hence
4p, zi, z35 = Π<zi∗p,z3∗p>

zi
= Π<zi∗p,z′

3∗p>
zi = 4p, zi, z′35, i ∈ {1, 2}. Thus d(zi, z′3) = 4

for i = 1, 2 and z1 ∗ z′3 is collinear to z1 ∗ z2, therefore by the above considerations the
result holds.

Now suppose p is a regular point of a generalized n-gon S where n ≥ 4. We define the
following incidence geometry Sp: the points are the ideal planes through p together with
the sets x⊥ for x collinear to p (including p). The lines are all ideal lines containing p

together with all customary lines through p. The incidence relation is the natural one
(symmetrized inclusion). Let Pp denote the pointset, Lp the lineset, and Fp ⊂ Pp × Lp

the set of incident point-line pairs of Sp. We call Sp the derivation of S in p.
If p is a regular point of a generalized quadrangle, then Sp is isomorphic to Ap via the

map that leaves every customary line through p fixed and that sends every ideal line to its
focus and every set x⊥ with x ∈ p⊥ to x. Using Lemma 2.3 and the fact that the sets x⊥ are
closed ([2]: 2.2) one can verify readily that this map is also a topological isomorphism. Since
locally compact connected quadrangles are compact ([3]: 3.4) Lemma 3.1, Theorem 3.2
and Theorem 3.3 imply the following results.

(4.3) Lemma: A point p of a generalized quadrangle S is regular if and only if the derived
structure Sp is a linear space.

(4.4) Theorem: Let p be a regular point of a locally compact quadrangle S of order (s, t)
with 0 < s, t. Then s ≥ t and Sp is a projective plane if and only if t = s.

10



The main theorem of [12] extends to the following characterization of compact topological
quadrangles.

(4.5) Theorem: For a locally compact connected generalized quadrangle S of order (s, t)
where 0 < s, t the following properties are equivalent:
1) S is the symplectic quadrangle over R or C considered as topological fields.
2) S is the symplectic quadrangle over a topological commutative field.
3) S is the symplectic quadrangle over a commutative field.
4) S is regular and t = s.
5) S is half regular and t = s.
6) For every point p the derivation Ap is a topological projective plane.
7) For every point p the derivation Ap is a projective plane.
8) For every point p the derivation Sp is a topological projective plane.
9) For every point p the derivation Sp is a projective plane.

Remark: In fact we might look at a symplectic quadrangle S as being embedded in the
projective three space PG(3, F ), i.e. a geometry with Buekenhout diagramm

◦ ◦ ◦
points lines planes

If we fix a point p of PG(3, F ), then the procedure to obtain Ap amounts to the recon-
struction of the polar space of p with regard to the symplectic polarity. Knowlege of all
such planes allowes one to reconstruct the whole space PG(3, F ) via all its subplanes. On
the other hand, the procedure to obtain Sp amounts to the reconstruction of the residue in
p of PG(3, F ). Knowledge of all such residues allows one, dually, to reconstruct the whole
space PG(3, F ). We may picture this information in the diagram

◦ Ap ◦ Sp ◦
points lines planes

and the isomorphism between Ap and Sp is induced by the symplectic polarity belonging
to the underlying projective space.

Algebraically, these projective planes Ap and Sp appear in the coordinatization of
W (F ) in the ternary operation (∗) b = ak + a′ (coordinatization method of Hall [5]).

We now restrict our attention to compact hexagons. Since compact n-gons exist only for
n = 2, 3, 4, 6 ([7]) this is the only interesting case left. So suppose p is a regular point
of a compact hexagon S. As for compact quadrangles we want to define topologies on
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the point- and lineset of the derivation Sp using the Hausdorff metric on the set of closed
subsets of P. In order to do so, we have to check, that the sets in question are closed in P.

If x is a point or a line, then the set S1(x) is closed in L or P respectively by the
definition of compact n-gons and x⊥ is closed in P or L respectively, since the distance
function is lower semi-continuous. Also, if p and q are two points at maximal distance,
then pq = p⊥ ∩ {x ∈ P | d(x, q) ≤ n − 2} is closed. So ideal lines are closed subsets
of P. Suppose Q = 4p, z1, z25 is an ideal plane. Let V1 and V2 be two closed hence
compact subsets of S1(p) such that zi ∗ p /∈ Vi, i ∈ {1, 2}, and V1 ∪ V2 = S1(p). Then
Qi := {f1

5 (f1
5 (f1

5 (l, z1 ∗ z2), g), zi) | l ∈ Vi, g ∈ S1(zi)}, i ∈ {1, 2}, are compact thus closed
subsets of P, hence Q = Q1 ∪Q2 is compact and closed in P.

Suppose p is a regular point of a compact hexagon. Let Γ1(p) := {S1(g) | g ∈ S1(p)},
let Γ2(p) := {x⊥ |x ∈ S2(p)}, let Γ3(p) denote the space of ideal lines containing p and
let Γ4(p) denote the space of ideal planes through p, always equipped with the topology
induced by the Hausdorff metric on the space of closed subsets of P. For g ∈ Γ1(p) let
Γ′1(g) := {x⊥ |x ∈ S1(g) \ {p}} ⊂ Γ2(p) and for g ∈ Γ3(p) let Γ′1(g) ⊂ Γ4(p) denote the
space of ideal planes which contain g. One checks easily that the maps S1 : S1(p) → Γ1(p) :
g *→ S1(g) and ⊥ : S2(p) → Γ2(p) : x *→ x⊥ are homeomorphisms. Thus for g ∈ Γ1(p) the
set Γ′1(g) is homeomorphic to S1(g) \ {p}.

We now investigate the topology on Γ4(p):

(4.6) Lemma: The ideal plane Π<z∗p,t>
z depends continuously on (z, t).

Proof: Suppose (zi, ti) ∈ S4(p) × S2(p) with f1
4 (p, zi) '= ti ∨ p, i ∈ N, is a sequence

converging to (z, t) ∈ S4(p) × S2(p) with f1
4 (p, z) '= t ∨ p. Fix h ∈ S1(z) \ {f2

4 (z, p)}, let
vi := f2

5 (zi, f1
5 (ti, h)), i ∈ N, and v := f2

5 (z, f1
5 (t, h)) = f2

5 (z, h). Then limi→∞ vi = v.
Moreover, pvi is the focusline of Qi := Π<zi∗p,ti>

zi
and pv is the focusline of Q := Π<z∗p,t>

z .
Thus the focuslines of Qi, i ∈ N, converge to the focusline of Q. Now let z1

i := zi and
z2
i := ti ∗ vi. Then limi→∞ z1

i = z1 := z and limi→∞ z2
i = z2 := v ∗ t. As in the proof of

the compactness of Q, let V1 and V2 be two closed hence compact subsets of S1(p) such
that zj /∈ Vj , j ∈ {1, 2}, and V1 ∪ V2 = S1(p).

We may assume zj
i /∈ Vj , for j ∈ {1, 2} and every i ∈ N. Then for j ∈ {1, 2} the

closed sets Qj
i := {f1

5 (f1
5 (f1

5 (l, vi), f1
5 (zj

i , g)), zj
i ) | l ∈ Vj , g ∈ S1(z1−j ∗ p)}, i ∈ N, converge

to Qj := {f1
5 (f1

5 (f1
5 (l, v), f1

5 (zj , g)), zj) | l ∈ V, g ∈ S1(z1−j ∗ p)}, therefore the sequence
Qi = Q1

i ∪Q2
i , i ∈ N, converges to Q = Q1 ∪Q2.

(4.7) Corollary: A sequence Qi ∈ Γ4(p), i ∈ N, converges to Q ∈ Γ4(p) if and only if
one of the following conditions holds:
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a) There exists a sequence of triangles (p, zi, ui), i ∈ N, with {zi, ui} ∈ Qi converging to
a triangle (p, z, u) with {z, u} ∈ Q.

b) There exists a sequence of points zi ∈ Qi\{p}, i ∈ N, converging to a point z ∈ Q\{p}
and the focuslines of Qi converge to the focusline of Q.

Proof: The first condition is a trivial consequence of the assumption. Conversely, suppose
that (p, zi, ui), i ∈ N, with {zi, ui} ∈ Qi is a sequence of triangles converging to a triangle
(p, z, u), with {z, u} ∈ Q. Then Qi = 4p, ui, zi5 = Π<zi∗p,ui∗p>

zi
, i ∈ N, converges to

Q = 4p, u, z5 = Π<z∗p,u∗p>
z by Lemma 4.6.

That the second condition implies the assumption follows directly from Lemma 4.6.
Conversely, if Qi, i ∈ N, is a sequence of ideal planes converging to an ideal plane Q, then,
by the above, there is a sequence of triangles (p, zi, ui) with Qi = 4p, zi, ui5, i ∈ N,
converging to a triangle (p, z, u) spanning Q. Since the focusline of Qi is the set pui∗zi ,
the result follows from Corollary 2.4.

As an immediate consequence of Corollary 4.7 we get

(4.8) Corollary: The map that sends every triangle (p, z, u) to the ideal plane4p, z, u5
is continuous, i.e. depends continuously on (z, u).

Lemma 4.6 also enables us to determine the topological structure of the space Γ′1(g) when
g is an ideal line containing p.

(4.9) Corollary: For g ∈ Γ3(p) the set Γ′1(g) is homeomorphic to a pointrow minus a
point and closed in Γ4(p).

Proof: Fix z ∈ g \ {p} and h ∈ S1(p) such that z ∗ p /∈ S1(h). The map τ : S1(h) \ {p}→
Γ′1(g) : t *→ Π<z∗p,t>

z is bijective by the construction of ideal planes and continuous by
Lemma 4.6.

Now suppose that Qi ∈ Γ′1(g), i ∈ N, is a sequence of ideal planes converging to some
Q ∈ Γ4(g). Since g ⊂ Qi for every i ∈ N we get g ⊂ Q, thus Q ∈ Γ′1(g) and Γ′1(g) is closed
in Γ4(g).

Let u ∈ Q \ {p}, such that u ∗ p '= z ∗ p. Then, by the definition of the topology on
Γ′1(g), there are points ui ∈ Qi \ {p}, i ∈ N, with ui ∗ p '= z ∗ p and limi→∞ ui = u. Thus
the sequence τ−1(Qi) = f1

5 (h, ui ∗ z), i ∈ N, converges to τ−1(Q) = f1
5 (h, u ∗ z). Therefore

τ is a homeomorphism.

Remark: Since the sets S1(x) are doubly homogeneous, the above corollary fully deter-
mines the topology of Γ′1(g).
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Next we investigate the topology on Γ3(p):

(4.10) Lemma: The map that sends y ∈ S4(p) to the ideal line <y, p> ∈ Γ3(p) and the
map that sends every ideal line through p to its focus are continuous.

Proof: Suppose y ∈ S4(p). Let t ∈ S2(p) with d(y, t) = 6, let h ∈ S1(t) \ {t ∨ p} and
let U denote a neighbourhood of y in S4(p) such that x ∗ p is not collinear to t for every
x ∈ U . Then <x, p> = (p ∗ x)f4

5 (x,h) for x ∈ U , thus <x, p> depends continousely on x by
Corollary 2.4.

Suppose li, i ∈ N, is a sequence of ideal lines through p converging to an ideal line l

through p then there exist points yi ∈ li \ {p} converging to some point y ∈ l \ {p}. Thus
li = <yi, p>, l = <y, p> and the foci yi ∗ p of li converge to the focus y ∗ p of l.

Corollary 4.9 allows us to define another topology on the set of ideal lines containing p.
Namely, let Γ′3(p) denote the set {Γ′1(g) | g ∈ Γ3(p)} equipped with the topology induced by
the Hausdorff metric on the space of closed subsets of Γ4(p). Fortunately, this construction
does not yield anything essentially new.

(4.11) Lemma: The map Γ′1 : Γ3(p) → Γ′3(p) : g *→ Γ′1(g) is continuous.

Proof: Clearly the map is a bijection. To show that Γ′1 is continuous suppose that
gi ∈ Γ3(p), i ∈ N, is a sequence of ideal lines converging to some ideal line g ∈ Γ3(p). By
the definition of the topology on Γ3(p) there exist a sequence of points yi ∈ gi \ {p}, i ∈ N,
converging to some point y ∈ g\{p}. Now suppose qi ∈ Γ′1(gi), i ∈ N, is a sequence of ideal
points converging to some ideal plane q ∈ Γ4(p). Then there is a sequence zi ∈ qi \ {p},
i ∈ N, converging to some z ∈ q \ {p} such that z ∗ p '= y ∗ p and zi ∗ p '= yi ∗ p for all i ∈ N.
Since qi = 4p, zi, ui5 we get q = 4p, z, u5 ∈ Γ′1(g). Conversely, if q ∈ Γ′1(g) choose a
point u ∈ q \ {p} such that u ∗ p is not collinear to y ∗ p. Then we may assume that also
yi ∗ p is not collinear to u ∗ p for every i ∈ N. Then the ideal planes 4p, yi, ui5 ∈ Γ′1(gi),
i ∈ N, converge to q = 4p, y, u5.

To show that the inverse map is continuous as well suppose that the sequence Γ′1(gi) ∈
Γ′3(p), i ∈ N, converges to Γ′1(g) ∈ Γ′3(p). Let qi ∈ Γ′1(gi), i ∈ N, be a sequence of ideal
planes converging to some ideal plane q ∈ Γ′1(gi) and let ti denote the focus of gi, i ∈ N.
We may assume that the sequence ti, i ∈ N converges to some point t in the focusline of
q. Furthermore there exist points zi ∈ qi \ {p} with zi ∗ p '= ti for every i ∈ N converging
to some z ∈ q \ {p} with z ∗ p '= t. Then gi = tzi

i converges to tz, thus there are points
yi ∈ gi \ {p} converging to some y ∈ tz \ {p}. Hence gi = <p, yi> converges to <p, y>.
But then <p, y> ⊂ v for every v ∈ Γ′1(g), hence <p, y> = g.
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Notation: If q is a point of the derivation Sp, let Γ1(q) denote the set of lines of Sp incident
with q. If q = p, then Γ1(q) is already defined as a topological space and Γ1(p) ∼= S1(p). If
q ∈ Γ4(p), then Γ1(q) inherits a topology as a subset of Γ3(p). If q ∈ Γ2(p) we define the
topology on Γ1(q) as follows. The space Γ1(q) \ {q ∨ p} inherits the topology as a subset
of Γ3(p). Let g ∈ S1(q) \ {q ∨ p}. Then µ : S1(g) \ {q} → Γ1(q) \ {q ∨ p} : y *→ <y, p>

is a homeomorphism by Lemma 4.10 and the definition of the topology on Γ3(p), thus
Γ1(q) \ {q ∨ p} is locally compact. Finally we define the topology on Γ1(q) to be the
one-point-compactification of Γ1(q) \ {q ∨ p}.

(4.12) Lemma: If q is an ideal plane, then Γ1(q) is homeomorphic to the focusline of q,
hence to Γ1(p) ∼= S1(p).

Proof: The map that sends every line of Γ1(p) to its focus is bijective by the construction
of ideal planes and continuous by Lemma 4.10, thus a homeomorphism. The focusline of
q is homeomorphic to Sp by Corollary 2.4.

(4.13) Lemma: Let q ∈ Γ2(p). A sequence Li ∈ Γ1(q) \ {q ∨ p}, i ∈ N, converges to q ∨ p

if and only if there is a subset A ⊂ S1(q ∨ p) such that with respect to the topology induced
by the Hausdorff metric the lines Li converge to A.

Proof: Suppose limi→∞ Li = q ∨ p. Let yi ∈ Li \ {p}, i ∈ N. We may assume that
there is a point y such that limi→∞ yi = y. Since d(yi, p) = 4 for every i ∈ N we know
d(y, p) ≤ 4 by Lemma 2.1. Suppose d(y, p) = 4. Then limi→∞ Li = limi→∞<yi, p> =
<limi→∞ yi, p> = <y, p> which contradicts our assumption. Thus y ∈ p⊥. Also by
Lemma 2.1 we get y ∈ q⊥. Hence y ∈ p⊥ ∩ q⊥ = S1(q ∨ p). Since the converse implication
holds trivially this proves the Lemma.

Remark: It is not clear whether in the above lemma the set A is the whole of S1(a∨p) or
not. Therefore we can not simply define the topology on Γ1(q) to be the topology induced
by the Hausdorff metric, since then Γ1(q) need not be compact.

We now summarize the topological results which we obtained so far and which we will use
later:

(4.14) Corollary: Let p be a regular point of a compact hexagon of order (s, t). Then
Γ1(p) ∼= St and for g ∈ Γ1(p) or g ∈ Γ3(p) the space Γ′1(g) is homeomorphic to Rs and
closed in Γ2(p) or Γ4(p) respectively.

Now we will determine the geometrical structure of Sp.
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Suppose p is a regular point of a compact hexagon S and Q = 4p, u, z5 is an ideal plane.
Let x := p ∗ z and let F := <p ∗ z, p ∗ u> be the focusline of Q. Take h ∈ S1(z) \ {z ∨ x},
a ∈ x ∨ p \ {p, x} and g ∈ S1(a) \ {a ∨ p}. If t ∈ F is a point different from x and if r, s

are two points of tz, then, by regularity using arguments as in the proof of Lemma 4.1,
ar = as, in particular f1

5 (g, r) = f1
5 (g, s).

(4.15) Lemma: In the above situation the map

τ : <p ∗ z, p ∗ u> → S1(g) : t *→
{

f1
5 (g, f2

5 (t, h)) t '= x
a t = x

is injective and continuous.

Proof: We first prove that τ is injective. Let t ∈ F \ {x}. Then d(a, f2
5 (t, h)) = 6

for otherwise the points t, p, a, a ∗ f2
5 (t, h), f2

5 (t, h) would form a pentagon. Therefore
τ(t) '= a = τ(x).

Suppose t1, t2 ∈ F \ {x} such that τ(t1) = τ(t2). Then the points s1 := f2
5 (t1, h),

s2 := f2
5 (t2, h) and s3 := τ(t1) = τ(t2) satisfy d(sj , si) = 4 and sj ∗ si /∈ S2(p), i '= j, hence

by Lemma 4.2 they define an ideal plane 4s1, s2, s35 which coincides with the ideal plane
4p, s1, s25. However, by construction s1, s2 ∈ Q, thus 4p, s1, s25 = Q and therefore
{a} = (a∨ p)∩F = (x∨ p)∩F = {x}, contradicting our assumptions. Thus τ is injective.

We now show that τ is continuous. The restriction of τ to F \ {x} is continuous by
construction. To prove continuity at x let ti, i ∈ N, be a sequence in F \ {x} converging
to x, let s ∈ Q such that s ∗ p /∈ {ti | i ∈ N} ∪ {x} and let k ∈ S1(s) \ {f1

4 (s, p)}. Then
d(x, k) = 5 and the point w := f2

5 (x, k) is at distance 5 to g and at distance 4 to a. Thus
f1
5 (g, w) = a. Furthermore tiz = tis implying τ(ti) = f1

5 (g, f2
5 (ti, h)) = f1

5 (g, f2
5 (ti, k))

for every i ∈ N. Hence limi→∞ τ(ti) = limi→∞ f1
5 (g, f2

5 (ti, k)) = f1
5 (g, f2

5 (limi→∞ ti, k)) =
f1
5 (g, f2

5 (x, k)) = f1
5 (g, w) = a = τ(x).

(4.16) Corollary: Suppose that in the above situation linepencils are homeomorphic to
St and pointrows are homeomorphic to Ss. Then t ≤ s and τ is bijective and hence a
homeomorphism if and only if t = s.

Proof: The focusline F is homeomorphic to S1(p) (Corollary 2.4), hence to St. Thus
τ : F → S1(g) is equivalent to a continuous and injective map τ ′ : St → Ss. But then
t ≤ s and τ is surjective if and only if t = s. However, a continuous bijection between two
compact Hausdorff spaces is a homeomorphism.

¿From Lemma 4.10 and Corollary 4.16 we deduce readily
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(4.17) Corollary: Suppose q ∈ Γ4(p) is an ideal plane and a ∈ S2(p) is a point not
incident with the focusline F of q. Let x denote the point of the intersection a∨ p∩F and
l ∈ Γ1(q) the ideal line whose focus is x. Then the map

σ : Γ1(q) → Γ1(a) : g *→
{

am where m ∈ g \ {p} g '= l
a ∨ p g = l

is injective and continuous. It is a homeomorphism if and only if pointrows and linepencils
are of the same dimension.

(4.18) Theorem: Suppose p is a regular point of a compact hexagon S = (P,L,F) of
order (s, t). Then t ≤ s and the derivation Sp of S at p is a quadrangle if and only if t = s.
Moreover if t = s, then p is a (half-) regular point of the derived quadrangle and there are
topologies on Pp and Lp extending the topology on the spaces Γi(p), i ∈ {1, 2, 3, 4}, such
that Sp becomes a compact quadrangle of order (s, s).

Proof: By Corollary 4.16 we have t ≤ s. Let q ∈ Γi(p), i ∈ {0, 2, 4}, be a point and
l ∈ Γj(p), i ∈ {1, 3}, a line of Sp not incident with q. We will show that there is at most
one point πi,j(q, l) on l collinear to q and one line λi,j(q, l) through q intersecting l. Several
cases have to be considered:
q ∈ Γ0(p), i.e. q = p⊥: Then l ∈ Γ3(p), i.e. l is some ideal line <y, p>, y ∈ S4(p). Thus

π0,3(q, l) = (p ∗ y)⊥ and λ0,3(q, l) = p ∨ (p ∗ y) = f1
4 (p, y) always exist.

q ∈ Γ2(p), l ∈ Γ1(p): In this case q = x⊥, x ∈ S2(p) and l = p ∨ y, y ∈ S2(p), where x is
not collinear to y. Thus π2,1(q, l) = p⊥ and λ2,1(q, l) = p ∨ x always exist.

q ∈ Γ2(p), l ∈ Γ3(p): Then q = x⊥, x ∈ S2(p) and l = <y, p>, y ∈ S4(p), with x '= p ∗ y. If
p∗y is collinear to x, then π2,3(q, l) = (p∗y)⊥ = (x∗y)⊥ and λ2,3(q, l) = x∨(x∗y) = x∨p

always exist. If p∗y is not collinear to x, then π2,3(q, l) = Π<y∗p,x>
y and λ2,3(q, l) = xy

always exist.
q ∈ Γ4(p), l ∈ Γ1(p): Thus q = 4p, u, z5, (p, u, z) a triangle and l = p∨ y, y ∈ S2(p). The

focusline of q intersects the line l in precisely one point s. We may assume s '= u ∗ p.
Then π4,1(q, l) = s⊥ and λ4,1(q, l) = su always exist.

q ∈ Γ4(p), l ∈ Γ3(p): Then q = 4p, u, z5, (p, u, z) a triangle and l = <y, p>, y ∈ S4(p).
If the focus p ∗ y of l is contained in the focusline of q, then π4,3(q, l) = (p ∗ y)⊥ and
λ4,3(q, l) = su, u ∈ q ∩ S6(y ∗ p), always exist.
If p∗y is not an element of the focusline of q, then consider the map σ : Γ1(q) → Γ1(p∗y)
as defined in Corollary 4.17. A line g ∈ Γ1(q) meets l if and only if σ(g) = l. Thus by
injectivity there is at most one line through q meeting l, hence at most one point on l

collinear to q. If t < s, then σ is not surjective and we can find a line l′ ∈ Γ1(p∗y) not
in the image of σ. But then there is no line through q meeting l′, hence no point on l′
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is collinear to q, implying that Sp is not a quadrangle. However, if t = s, then σ is a
homeomorphism, thus λ4,3(q, l) = σ−1(l) and π4,3(q, l) = 4p, y, v5, v ∈ σ−1(l) \ {p},
always exist.

This proves that Sp is a quadrangle if and only if t = s. It should be noted that only in
the very last case the topological requirements were needed.

We will assume t = s for the rest of the proof. That p is a regular point of Sp follows
immediately from the fact that p is a halfregular point of S.

We now will show that the maps πi,j and λi,j are continuous.
Continuity of the maps π0,3 : Γ3(p) → Γ2(p), λ0,3 : Γ3(p) → Γ1(p) and λ2,1 : Γ2(p) →

Γ1(p) : x⊥ *→ x ∨ p follows from Lemma 4.6 and Lemma 4.2.
Lemma 4.6, Lemma 4.2 and Corollary 2.4 imply that the restrictions π2,3 : Γ2(p) ×

Γ3(p) \ X → Γ4(p) and λ2,3 : Γ2(p)× Γ3(p) \ X → Γ3(p), where X := Fp ∪ π2,3
−1(Γ2(p))

consisits of those (x⊥, l) ∈ Γ2(p)×Γ3(p) where the focus of l is collinear to x, are continuous.
That the maps π4,1 : Γ4(p) × Γ1(p) → Γ2(p) and λ4,1 : Γ4(p) × Γ1(p) → Γ3(p) are

continuous is essentialy a consequence of Corollary 4.7.b.
To prove that the maps π4,3 : Γ4(p)×Γ3(p)\Y → Γ4(p) and λ4,3 : Γ4(p)×Γ3(p)\Y →

Γ3(p), where Y := Fp ∪ π4,3
−1(Γ2(p)) consisits of those (q, l) ∈ Γ4(p) × Γ3(p) where the

focus of l is not contained in the focusline of q, are continuous, suppose that (qi, li) ∈
Γ4(p)×Γ3(p) \Y , i ∈ N, is a sequence converging to some (q, l) ∈ Γ4(p)×Γ3(p) \Y . Thus
gi := λ4,3(qi, li) is a welldefined ideal line for every i ∈ N. Let ti denote the focus of li, si

the focus of gi, i ∈ N, and t the focus of l . Then si is not collinear to ti and we may assume
that the points si, i ∈ N, converge to some point s contained in the focusline of q. Let
zi ∈ li \{p}, i ∈ N, be a sequence converging to some z ∈ l\{p} and let yi ∈ qi \{p}, i ∈ N,
be a sequence converging to some y ∈ q \ {p} such that y ∗ p '= s '= z ∗ p. We may assume
yi ∗ p '= si, thus gi = szi

i = syi
i for every i ∈ N and the lines gi, i ∈ N, converge to g := sy.

We can find a sequence of points ui ∈ gi \ {p}, i ∈ N, converging to some u ∈ g \ {p}.
Since d(ui, zi) = 4 for every i ∈ N, the distance from u to z is at most 4. If d(u, z) < 4,
then u ∗ p = z ∗ p, which contradicts the assumption that z ∗ p = t is not contained in the
focusline of q. Thus d(u, z) = 4 hence g = sz and the sequence π4,3(qi, li) = 4p, zi, ui5
converges to4p, z, u5. However, 4p, z, u5 contains <p, z> = l and <p, u> = g ∈ Γ1(q).
Thus 4p, z, u5 = π4,3(q, l) and g = <p, u> = λ4,3(q, l).

Since the above maps are continuous and since the properties listed in Corollary 4.14
hold, there are topologies on Pp and Lp such that on Γ2(p) and Γ4(p) the given topologies
are respected and such that Sp becomes a compact quadrangle of order (s, s) by [14]:?????.
The topologies on Γ1(p) and Γ3(p) are induced then by the Hausdorff metric on the set
of closed subsets of Pp. However, because of Lemma 4.11 and since the map ⊥ : p⊥ →
Γ2(p)∪ {p⊥} ⊂ Pp : x *→ x⊥ is a homeomorphism these topologies on Γ1(p) and Γ3(p) are
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equivalent to the topologies induced by the Hausdorff metric on the set of closed subsets
of P.

This proves our assertions.

Remark: Even though for every i ∈ {1, 2, 3, 4} the topology on Γi(p) is the topology
induced by the Haussdorf metric an the set of closed subsets of P, it is not clear, whether
the topologies on Pp and Lp are induced by the Hausdorff metric an the set of closed
subsets of P. So e.g. if gi ∈ Γ3(p) is a sequence converging to some g ∈ Γ1(g) with respect
to the topology on Lp, it is not clear, whether limi→∞ gi = g with respect to the topology
induced by the Hausdorff metric. However, if every point of the hexagon S is regular, then
one can show with very little effort, that these topologies coincide. In the general case we
think that using results of [13] and algebraic topology, one can prove that both topologies
coincide as well.

The above proof shows also that even if t < s the maps πi,j and λi,j are defined
unless (i, j) = (4, 3). The maps π4,3 and λ4,3 are in general only defined on a subset of
Γ4(p)× Γ3(p) \ Fp. However, all of these maps are still continuous.

The last step towards our goul is to prove that every regular hexagon of order (s, s) is a
split Cayley hexagon. Our proof relies heavily on results of Ronan ([11]).

(4.19) Lemma: If S is a regular compact connected hexagon of order (s,s), then S is the
split Cayley hexagon over R or C.

Proof: Our first aim is to construct the underlying polar space. So consider the following
geometry ∆: the points of ∆ are the points of S, the lines of ∆ are all lines and ideal lines
of S and the planes of ∆ are all sets of points of S collinear to a point of S and all ideal
planes of S. One checks easily that ∆ is a polar space of rank 3. To see that ∆ is the
classical polar space over a commutative field, we define a subgeometry Γ of ∆ as follows:
Let Q be an ideal plane of S and Q′ its twin, i.e. the ideal plane consisiting of the points
u ∗ v with u, v ∈ Q andu '= v. The points of Γ are all the points on lines of S having
at least (and hence exactly) two points in common with Q and Q′, the lines of Γ are all
lines of ∆ induced and the planes of Γ are all planes of ∆ induced. Again it is straight
forward to check that this is a D3 polar space (see also [11]: 8.16). Thus it follows from
[11]: 4.9 that ∆ is classical. It has diagram C3, so S is embedded in C3(F ), where F is
some commutative field. By [11]: 8.19, it is the split Cayley hexagon over F . Now the
topology on the pointset of S induces a topology on the field F , such that it becomes a
locally connected topological commutative field, thus F is either R or C by Pontrjagin’s
classification ([10]). Since the topology on lines fully determines the topology of S, the
topology on S induced by the topology of F is equivalent to the given one.
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Proof of Theorem 1.1: The implications 1) → 2) → 3) → 4) → 5) are trivial and that
every half regular hexagon is regular is almost obvious. By [7] the dimensions of pointrows
and linepencils coincide. Thus Theorem 3.2 and Theorem 3.3 imply the equivalence of 5),
6) and 7) and Theorem 4.18 implies the equivalence of 4), 8) and 9). Finally, Lemma 4.19
proves the implication 5) → 1) which closes the last gap.

Remark: Again one can look at the split Cayley hexagon as being embedded in the
quadric Q(6, F ), i.e. a geometry with Buekenhout diagramm

◦ ◦ ◦
points lines planes

If we fix a point p of Q(6, F ), then the procedure to obtainAp amounts to the reconstruction
of the unique projective plane through p all of whose lines containing p belong to the
hexagon. This way one constructs all lines of Q(6, F ) and this allowes one to reconstruct
the whole space Q(6, F ). On the other hand, the procedure to obtain Sp amounts to the
reconstruction of the residue in p of Q(6, F ). Knowledge of all such residues allows one,
dually, to reconstruct Q(6, F ) as well (After all, the ideal planes in H(F ) are the usual
projective planes on Q(6, F )). We can picture this information in the diagram

◦ Ap ◦ Sp ◦
points lines planes

Algebraically, the general quadrangle Sp appear in the coordinatization of H(F ) via
the operations (∗∗∗) and (∗∗∗∗).
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