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Abstract

In this paper, we prove some geometric properties of traces of perfect
Ree octagons. It is shown, for instance, that a derived geometry can be
defined and that it is isomorphic to the generalized quadrangle T3(O) of
Tits-type, where O is a Suzuki-Tits ovoid.

1 Introduction

Generalized polygons were introduced by Tits [6] and have since then been
studied by several authors. The main examples arise from groups of Lie type
or their twisted analogues. A great deal of research concerning polygons is de-
voted to characterizing these Lie polygons in a geometric fashion. One of the
most beautiful and complete results in this direction is Ronan’s [4] characteri-
zation of all Moufang hexagons by ideal lines. Also various classes of “classical”
generalized quadrangles, mainly finite ones, are characterized by the same idea
of looking at intersections of traces. No such characterization of the Moufang
octagons is known. From a geometric point of view however, it is already an
interesting question to ask what kind of properties traces have in the Moufang
octagons. We will answer this question in the present paper for a large subclass
of Moufang octagons, thus establishing the geometric foundation necessary to re-
construct the ambient metasymplectic space for these geometries, which should
eventually lead to a geometric characterization of all such octagons. We will
briefly sketch at the end of the paper how to do this.
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2 Notation

We will assume that the reader is familiar with the definition of a generalized
polygon, in particular a generalized octagon. Also, we will use some common
building terminology such as opposite elements for 2 points or 2 lines at maximal
distance; the projection of an element x onto a non-opposite element y for the
unique element incident with y closest to x (see e.g. Tits [8]). Also, for any
point x, we will denote by x⊥ the set of points collinear to x.

One important class of thick generalized octagons arises from the Ree group of
type 2F4, see Tits [10], and we call the members of this class the Ree octagons.
For every field K of characteristic 2 and every endomorphism σ in K whose
square is the Frobenius endomorphism, there exists such a Ree octagon, which
we will denote by OR(K, σ). In the infinite case, we also have some other
examples arising from some ‘free’ constructions, see Tits [9].

It is known that the Ree octagon OR(K, σ) can be viewed as the set of absolute
points and lines of a certain polarity in the metasymplectic space over K, see e.g.
Sarli [5]. In the present paper, we want to clear the way for reconstructing this
metasymplectic space entirely in terms of the geometry of the Ree octagon. This
will establish the foundation for a geometric characterization of these octagons,
which will be done elsewhere. However, in order not to drown in notation and
technicalities, we restrict ourselves to the perfect case, i. e. the case where σ is
an automorphism. The non-perfect case is – geometrically – very much more
complicated and so, in this paper, we do not want to spend twice as much space
for objects only half as important (as a figure of speech).

3 The Ree octagon OR(K, σ).

The following description of OR(K, σ), K and σ as in the previous section, is
due to Joswig & Van Maldeghem [2].

Let K(2)
σ be the group on the set of all pairs (k0, k1) ∈ K×K with operation law

(k0, k1)⊕(l0, l1) = (k0+l0, k1+l1+l0kσ
0 ). For k = (k0, k1), set tr(k) = kσ+1

0 +k1

(the trace of k) and set N(k) = kσ+2
0 + k0k1 + kσ

1 (the norm of k). Define a
multiplication a ⊗ k = a ⊗ (k0, k1) = (ak0, aσ+1k1). Also write (k0, k1)σ for
(kσ

0 , kσ
1 ). Then the points of OR(K, σ) are the elements of {(∞)} ∪K ∪K(2)

σ ×
K∪ . . .∪K(2)

σ ×K×K(2)
σ ×K×K(2)

σ ×K∪K×K(2)
σ ×K×K(2)

σ ×K×K(2)
σ ×K

(and these are all denoted by round parantheses); the lines of OR(K, σ) are the
elements of {[∞]}∪K(2)

σ ∪K ×K(2)
σ ∪ . . .∪K ×K(2)

σ ×K ×K(2)
σ ×K ×K(2)

σ ∪
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K(2)
σ × K × K(2)

σ × K × K(2)
σ × K × K(2)

σ (and denoted by square brackets);
incidence is given by the sequence

(a, l, a′, l′, a′′, l′′, a′′′) I [a, l, a′, l′, a′′, l′′] I (a, l, a′, l′, a′′) I . . .

. . . (a) I [∞] I (∞) I [k] I (k, b) I . . .

. . . [k, b, k′, b′, k′′] I (k, b, k′, b′, k′′, b′′) I [k, b, k′, b′, k′′, b′′, k′′′],

and the rule : (a, l, a′, l′, a′′, l′′, a′′′) is incident with [k, b, k′, b′, k′′, b′′, k′′′] if and
only if the following six equations hold:

(k′′′0 , k′′′1 ) = (l0, l1) ⊕ a⊗ (k0, k1) ⊕ (0, al′0 + aσl′′0 ) (I1)

b′′ = a′ + aσ+1N(k) + k0(al′0 + aσl′′0 + tr(l))
+aσ(a′′′ + l0k1) + al′′σ0 + l0l′0 (I2)

(k′′0 , k′′1 ) = aσ ⊗ (k1, tr(k)N(k)) ⊕ k0 ⊗ (l0, l1)σ

⊕ (0, tr(k)N(l) + aσ+1l0N(k)σ + tr(k)(aa′ + aσl0l′′0 + aσ+1a′′′)
+tr(l)(kσ

1 a + a′′′) + kσ
1 aσ+1l′′0 + kσ+1

0 a2l′′σ0

+k0(a′ + al′′σ0 + k1aσl0 + aσa′′′)σ

+kσ
0 l0(a′ + al′′σ0 + k1aσl0 + aσa′′′)

+a(l′′1 + a′′′σl0 + a′′′l′0) + l′′0 (a′ + aσa′′′) + a′′l0 + l0l′0l
′′
0 )

⊕ (l′0, l′1) (I3)

b′ = a′′ + aσ+1N(k)σ + a(k0l′′0 + l0k1 + a′′′)σ + tr(k)(l1 + aσl′′0 )
+kσ

0 (a′ + aσa′′′) + l′0l
′′
0 + lσ0 a′′′ (I4)

(k′0, k′1) = (l′′0 , l′′1 ) ⊕ a⊗ (tr(k), k0N(k)σ) ⊕ l0 ⊗ (k0, k1)σ

⊕ (0, N(k)(aσl′′0 + l1) + k0(a′′ + l′0l
′′
0 + aa′′′σ + lσ0 a′′′)

+k1(k1l0aσ + a′ + al′′σ0 + aσa′′′) + k0kσ
1 alσ0 + a′′′σl0 + a′′′l′0) (I5)

b = a′′′ + aN(k) + l0k1 + k0l′′0 (I6)

where a, a′, a′′, a′′′, b, b′, b′′ ∈ K and k, k′, k′′, k′′′, l, l′, l′′ ∈ K(2)
σ and k = (k0, k1),

etc. These elements are called the coordinates.

This description is also valid in the non-perfect case. From now on however,
we assume that K is perfect. This includes every finite field GF (22e+1). In the
latter case, the corresponding generalized octagon is denoted by OR(22e+1).
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Note that every Ree octagon has a lot of automorphisms (it has the Moufang
property and it is characterized in this way, see Tits [10]). In particular, the
twisted Chevalley group 2F4(K, σ) is an automorphism group of OR(K, σ). It
acts transitively on the set of opposite pairs of points, and also dually, on the
set of pairs of opposite lines. The stabilizer of a pair of opposite points acts on
the set of lines incident with either one of these points as a doubly transitive
automorphism group of a Suzuki-Tits ovoid (see next section) and the stabilizer
of a pair of opposite lines acts on the set of points of either one of these lines
as PGL2(K). We will use these properties in order to choose certain arbitrary
elements in a suitable way “without loss of generality”.

4 Geometric properties of OR(K, σ)

4.1 Properties of the Suzuki-Tits ovoids

Let W (K) be the symplectic generalized quadrangle over K, i. e. the generalized
quadrangle arising from a symplectic polarity τ in PG(3,K). Let ρ be a polarity
in W (K), then it is known that the set of absolute points (resp. lines) of W (K)
(i. e. the points (resp. lines) incident with their image under ρ) forms an ovoid
OST (resp. spread SL) in W (K), called the Suzuki-Tits ovoid (resp. Lüneburg
spread), see Tits [7]. Let π be a plane of PG(3,K). It is easily seen that the
intersection of π with OST is exactly the set of points of OST collinear in W (K)
to the point πτ . We call such a set a circle. Now, every three points of OST
determine a unique plane, and hence a unique circle. So we obtain an inversive
plane. But the Lüneburg spread puts an extra structure on this inversive plane,
indeed, given a circle C lying in the plane π, the point πτ is incident with a
unique element M of SL. And M is incident with a unique point x of OST ,
which belongs to C. Hence every circle C contains a special element x which we
will call the corner of the circle and denote by ∂C. We list now some immediate
properties.

LEMMA 4.1 Let OST be a Suzuki-Tits ovoid and let x ∈ OST . Let C§ be the
set of circles C with ∂C = x. Then the C \ {x} partitions OST \ {§}. In other
words, any circle is uniquely determined by its corner and a second point, and,
conversely, every pair of points (x, y) in OST defines a unique circle C such
that y ∈ C and ∂C = x.

LEMMA 4.2 Let OST be a Suzuki-Tits ovoid and let x ∈ OST be the corner
of a circle C. Let DC be the set of circles C ′ with ∂C = y ∈ C \{x} and x ∈ C ′.
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Then the C ′ \ {x} partitions OST \ {§}.

PROOFS. Every circle is determined by a point u in W (K), u '∈ OST . For the
first lemma, let u vary along the line xρ of SL; for the second lemma, let u vary
along the line yρ, where y is the point of W (K) defining C. !"

REMARK. Lemmas 4.1 and 4.2 allow one to reconstruct W (K) in a more
axiomatized setting.

Following Tits [7], we can describe OST by the set K(2)
σ ∪ {∞}. Using, e.g.,

the coordinates in Hanssens & Van Maldeghem [1], one calculates that the
circle containing ∞, (0, 0) and (k0, k1), k0, k1 ∈ K, contains, besides ∞, all
points (tk0, tk1), t ∈ K. The circle containing (0, 0) with corner ∞ contains,
besides ∞, the points (0, k1), k1 ∈ K. By the action of the Suzuki group, one
obtains the other circles. But we will need no explicite description of them.

Now let L1 and L2 be two elements of the Lüneburg spread SL and let xi I Li,
i = 1, 2, be the corresponding points of the Suzuki-Tits ovoid OST . The set of
lines in the quadrangle W (K) meeting all lines which meet both L1 and L2 is
a regulus R and each element of R is incident with one point of OST . The set
T of these points will be called a transversal with extremeties x1 and x2. It is
completely determined by x1 and x2. Now consider the set {x1, x2}⊥⊥ of points
colinear to all points collinear to both x1 and x2 (this is the span of x1 and
x2, see Payne & Thas [3],p.2) and let y ∈ {x1, x2}⊥⊥ \ {x1, x2}. The circle
C defined by y (via intersection with yτ ) has as corner a point incident with
yρ; but yρ ∈ R, hence the corner of C lies in T . Now note that the plane yτ

contains all points of the hyperbolic line H consisting of all points collinear to
both x1 and x2 and H does not meet the ovoid. Hence the set of circles defined
by the elements of {x1, x2}⊥⊥ \ {x1, x2} partitions OST \ {x1, x2} and the set
of corners of the circles is the transversal T . We logically call this partition the
transversal partition with extremities x1 and x2.

Following Hanssens & Van Maldeghem [1], we can take for the symplectic
polarity ρ the bilinear form

x0y1 + x1y0 + x2y3 + x3y2.

We choose x1 = (1, 0, 0, 0) and x2 = (0, 1, 0, 0). The line H is determined by
(0, 0, 1, 0) and (0, 0, 0, 1). The Suzuki-Tits ovoid can be chosen to contain the
points (see [1],5.6)

{(N(k), 1, k1, k2)|k = (k0, k1) ∈ K(2)
σ } ∪ {(1, 0, 0, 0)}.
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It is then clear that a circle of the transversal partition described above contains
the points

{(N(k), 1, k1, k0)|N(k) = Constant}.

Since every line of PG(3,K) which is not a line of W (K) meets OST in either
two or zero points, the following lemma is readily verified.

LEMMA 4.3 Let x be a point of the Suzuki-Tits ovoid OST and let C be a
circle of OST not containing x. Then there exists a unique transversal partition
containing C and having x as one of its extremities.

A Suzuki-Tits ovoid with the additional structure of the inversive plane, corners
for all circles and transversal partitions for each pair of points will be called a
Suzuki-Tits inversive plane, or briefly, an STi-plane.

4.2 Properties of OR(K, σ)

Let OR(K, σ) be the perfect Ree Octagon described in section 3 (i.e. K is a
perfect field). The lines through the point (∞) are parametrized by the set
K(2)

σ ∪ {∞}. By the preceding paragraph, we can give this set the structure
of an STi-plane P(∞) (in an algebraic fashion). We will now reconstruct P(∞)

geometrically. Note that, by transitivity, all points p define an STi-plane P√.

Let p be a point of OR(K, σ) opposite (∞). Clearly p has seven coordinates.
The trace of p, denoted by (∞)p, (with respect to (∞)) is the set of projections
of p onto the lines incident with (∞). Let o be the point with coordinates
(0, 0, 0, 0, 0, 0, 0) and suppose p has coordinates (a, l, a′, l′, a′′, l′′, a′′′). The set of
lines incident with (∞) and with one of the points of the intersection (∞)o∩(∞)p

will be called the support of that intersection and, by (I6), it consists, besides
possibly [∞], of all lines [k], k ∈ K(2)

σ , such that

f(k) =: a′′′ + aN(k) + l0k1 + k0l
′′
0 = 0. (∗)

If a = 0, then [∞] belongs to the support. So assume a '= 0. Put L = (L0, L1) =
( l0

a , l′′0
a ), then we have f(k ⊕ L) = aN(k) + f(L). We deduce from this that

k = (L0, L1 +
(

f(L)
a

)σ−1

) is a solution of (∗). Hence we have shown that every
two traces meet in at least one point. Without loss of generality we can take
this point to be (0), i. e. p = (0, l, a′, l′, a′′, l′′, a′′′). For any further points in the
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intersection, the equation (∗) reduces to

a′′′ + l0k1 + l′′0k0 = 0. (∗∗)

If l0 = l′′0 = a′′′ = 0, then the two traces coincide; if l0 = l′′0 = 0 and a′′′ '= 0,
then the two traces meet only in (0); if (l0, l′′0 ) '= (0, 0), then clearly, the set of
lines through (∞) incident with a point of (∞)o∩(∞)p is a circle C in P(∞) and
by the transitivity of the stabilizer of (∞), all circles of P(∞) arise in this way.
So without loss of generality, let us consider the circle C = {[∞]}∪{[(0, k1)]|k1 ∈
K}. The set of points p such that the support of (∞)p ∩ (∞)o contains C is, by
(I6), equal to

{(0, (0, l1), a′, l′, a′′, l′′, 0)|l1, a′, a′′ ∈ K, l′, l′′ ∈ K(2)
σ }.

The projection of the point q = (0, (0, l1), a′, l′, a′′, l′′, 0) onto the line [0] is the
line [0, 0, l′′], hence every line through (0, 0) (except for [0] of course) arises in
this way. This remains true for all points ((0, k1), 0), by transitivity. However,
the projection of q onto [∞] is the line [0, (0, l1)], and here, not all lines arise.
In fact, only lines of a circle in P(′) with corner [∞] arise. This characterizes
the corner of C in a geometric fashion. It also follows that the corner, defined
in this geometric way, is independent of the chosen intersection of traces with C
as support. We will call the intersection of two traces trivial if it contains only
one element, or if the two traces are equal. Let X be a non-trivial intersection
of two traces. We shall refer to the set of lines M through x ∈ X such that M
is the projection of a point p whose trace contains X the gate set with respect
to Xthrough x. We say such a gate set is trivial if it contains all lines through
x except its support. Then we can summarize the above results as follows:

LEMMA 4.4 Let x be any point of a perfect Ree octagon. Consider traces
with respect to x. Then two traces always meet. If two traces X and Y meet
non-trivially, then there exists a unique point u in X ∩ Y such that the gate set
of u with respect to X ∩ Y is non-trivial. The line xu thus obtained from the
support C of X ∩ Y is independent of the choice of X ∩ Y . If we define ux to
be the corner of C, then the set of all such supports, together with their corners
define an STi-plane over the set of lines through x (the transversal partitions
will follow from Lemma 4.7).

Now consider again traces with respect to (∞). Suppose we are given 4 pairwise
non-collinear points collinear to (∞) and such that the 4 respective projections
onto (∞) do not lie on one circle of P(∞) (this defines a general position for 4
points collinear to one fixed point). We can take without loss of generality the
points (0), (0, 0), (k, b) and (k∗, b∗), k, k∗ ∈ K(2)

σ , b, b∗ ∈ K, with k = (k0, k1)
not proportional to k∗ = (k∗0 , k∗1). If p = (a, l, a′, l′, a′′, l′′, a′′′) defines a trace
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containing these 4 points, then its coordinates must satisfy a = a′′′ = 0, b =
l0k1 + l′′0k0 and b∗ = l0k∗1 + l′′0k∗0 . It is clear that under the given assumptions
these equations define uniquely a pair (l0, l′′0 ), and hence we have shown:

LEMMA 4.5 Let x be any point of a perfect Ree octagon, then there is a unique
trace containing 4 points in general position collinear to x.

Suppose now two traces (with respect to (∞)) meet in exactly one point, say
(0). Using (I6), one can check that, if one trace is defined by o, then the other
must be defined by a point p with coordinates (0, (0, l1), a′, l′, a′′, (0, l′′1 ), a′′′)
with a′′′ '= 0 and consequently it consists of the points (k, a′′′), k ∈ K(2)

σ . So the
set of traces meeting (∞)o in only (0) is a set of traces with trivial intersection.
We call such a set a pencil of traces based at (0). We have shown:

LEMMA 4.6 Let x be any point of a perfect Ree octagon and let X be a trace
with respect to x. For every point y ∈ X, there exists a unique pencil of traces
based at y and containing X.

Next, we look at intersections of pencils. Let E∞ and E′ be two pencils of
traces based at respectively (0) and (0, 0), both containing the trace (∞)o. Put
u = (0, 0, 0, 0, 0, 0, a′′′) and v = (a, 0, 0, 0, 0, 0, 0). Then (∞)u and (∞)v are
arbitrary elements of E∞ and E′. They meet on the line [k], k ∈ K(2)

σ , if and
only if a′′′ = aN(k) (by (I6) again). Hence their intersection is non-trivial and
the support is a circle defined by N(k) = a′′′/a =constant. This shows that the
set of supports of the intersections is the transversal partition with extremities
the lines [∞] and [0]. Hence the lemma:

LEMMA 4.7 Let x be any point of a perfect Ree octagon and consider, with
respect to x, two pencils (based at resp. y1 and y2) sharing a common trace
Y . Then the set of supports of all intersections of elements of one pencil with
elements of the other pencil (excluding Y ) is the transversal partition in P§ with
extremities xy1 and xy2.

As a consequence we have:

COROLLARY 4.8 There do not exist three distinct traces (with respect to a
fixed point) in OR(K, σ) with pairwise trivial intersection and not contained in
a pencil.
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Now we can define the following geometry OR(K, σ)x for any point x of OR(K, σ).
The points are of two types :

(i) the traces with respect to x,

(ii) the points collinear to x in OR(K, σ), including x itself.

The lines are also of two types :

(a) the pencils of traces (with respect to x),

(b) the lines of OR(K, σ) through x.

The incidence between points of type (i) (resp. type (ii)) and lines of type (a)
(resp. type (b)) is containment (resp. the incidence in OR(K, σ)). No point of
type (i) is incident with a line of type (b). A point of type (ii) is incident with
a line of type (a) if the pencil in question is based at the point in question.
Incidence in OR(K, σ)x will be denoted by Ix.

PROPOSITION 4.9 The geometry OR(K, σ)x as defined above is the gener-
alized quadrangle of Tits-type T3(OST ).

PROOF. We give a geometric proof using the lemmas above. A group-theoretic
proof or another algebraic one is also possible. For instance, one can coordinatize
OR(K, σ)x to identify it. Or one could determine the automorphism group of
this geometry inside the stabilizer of a point of the automorphism group of
OR(K, σ). One would find an affine group with a Suzuki group acting.

We first show that OR(K, σ)x is a generalized quadrangle. Let Π and Λ be a
point and a line of OR(K, σ)x which are not incident. We have to show that there
is a unique point Π′ Ix Λ, and a unique line Λ′ Ix Π such that Π′ Ix Λ′. Suppose
first that Π is of type (ii) and Λ is of type (b). Then Π Ix M Ix x Ix Λ, where
M is the line in OR(K, σ) joining Π and x, and this path is unique. Suppose
now Π is of type (i) and Λ is of type (b). Then there is a unique point p in
OR(K, σ) incident with the line Λ and contained in the trace Π. There is also a
unique pencil Λ′ of traces based at p and containing Π, by Lemma 4.6. Again
we have Π Ix Λ′ Ix p Ix Λ and no other such path exists. Next, let Π be of type
(ii) and Λ of type (a). Let Λ be based at p. If Π = x, then Π Ix xp Ix p Ix Λ.
Suppose now Π = y is distinct from x. If y is collinear to p in OR(K, σ),
then clearly Π Ix xy Ix p Ix Λ; if not, then Π Ix Λ∗ Ix X Ix Λ, where X is the
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member of the pencil Λ containing y, and Λ∗ is the pencil of traces based at y
and containing X. Finally, suppose Π is of type (i) and Λ is of type (a). Let Λ
be based at y. If y ∈ Π, then Π Ix Λ∗ Ix y Ix Λ, where Λ∗ is the pencil of traces
based at y and containing Π. If y '∈ Π, then by Corollary 4.8, there exists at
most one member of the pencil Λ meeting the trace Π trivially. We now show
that there exists at least one such element of Λ. Let X be any member of Λ.
Suppose that X meets Π non-trivially (otherwise we are done) and let C be
the support of the intersection C. So C is a circle in P§. By Lemma 4.3, there
exists a unique transversal partition of P§ containing C and having xy as one
of its extremities. Let M (a line in OR(K, σ) through x) be the other extremity
and let p be the unique point incident with M and lying on the trace Π. Let
Λ∗ be the pencil of traces containing Π and based at p, and Y be the unique
member of Λ∗ containing y. let Λ∗∗ be the pencil of traces containing Y and
based at y. Then by Lemma 4.7, there exists a trace Z ∈ Λ∗∗ meeting Π in C,
hence Λ∗∗ = Λ, Y ∈ Λ and Y ∩ Π = {p}. So Π Ix λ∗ Ix Y Ix Λ. We leave it
to the reader to check that no other such paths exist and hence OR(K, σ) is a
generalized quadrangle.

We still have to show that OR(K, σ)x is isomorphic to T3(OST ). If K is a finite
field of order 22e+1, it follows from Payne & Thas [3],5.3.1 that OR(22e+1)x

is isomorphic to some T3(O), O an ovoid in PG(3, q) since the point x of
OR(22e+1)x is a 3-regular point (this can be verified easily). From the first
part of the proof of 5.3.1 of loc.cit., it follows that O is the Suzuki-Tits ovoid
OST . In the infinite case, one has essentially the same proof, replacing some
counting arguments in 5.3.1 of loc.cit. by arguments using the lemma’s of this
section. Alternatively, an algebraic proof goes as follows. The map

x⊥ → x⊥ : (k, b) +→ (k, b + A′′′ + AN(k) + L0k1 + L′′0k0)

defines an automorphism of P(∞) (this follows from (I6)). The group Ω of
all such maps is isomorphic to K × K × K × K, +, where the above element
corresponds to (A′′′, A, L0, L′′0). But Ω acts regularly on the set of traces (this
is immediately verified), hence we can put the structure of the affine space
AG(4,K) on the set of traces in (∞)⊥ (induced by Ω). One can easily check
that the set of lines of OR(K, σ)x of type (a) are all lines of that affine space of
certain parallel classes, and these parallel classes determine exactly a Suzuki-
Tits ovoid at infinity. !"

REMARK. In the finite case, the above proof simplifies. Indeed, a counting
argument replaces the use of Lemma 4.3, Lemma 4.7 and Corollary 4.8.
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5 The metasymplectic space M(K)

Dual traces.
One can also ask what the geometry of the dual traces look like (defined dually).
From the relation (I1), we can deduce the following. Let L be a line of OR(K, σ),
x1 and x2 two different points on L and L1, L2 two lines incident with x1 resp.
x2, not equal to L. Let Ci, i = 1, 2, be the circle in P§〉 with corner L and
containing Li. If M is a line, varying over the set of all lines whose (dual) trace
with respect to L contains an element of Ci for i = 1, 2, then the set of lines
contained in the trace of M and incident with any point x of L varies over a
circle C in P§ with corner L. We call the set of lines of traces with respect to
L of all such lines M a Suzuki regulus. These sets will play an important role
in the reconstruction of the ambient metasymplectic space for OR(K, σ).

One further property of traces.
Let x be any point in OR(K, σ) and let p be any point opposite x. Let G be the
set of points y opposite x such that xy = xp. We define a graph on G by the
rule: two points of G are adjacent if they are not opposite each other. One can
show that two such points have distance 6 in the octagon and the unique middle
element of the shortest path joining them has distance 5 to x. The graph G is
not connected, in fact, it has exactly |K| connected components. A connected
component of G will be called a trace direction.

The reconstruction.
We briefly sketch how one can now reconstruct the ambient metasymplectic
space M(K). The points of M(K) are of three types. Type (I) consist of the
points of the octagon OR(K, σ) itself. The points of type (II) are the Suzuki
reguli. A point of type (III) is a trace direction. The lines and planes must then
be defined using the properties of traces listed in this paper. The hyperlines
then follow rather easily, as well as the polarity. This will be proved in detail
elsewhere.
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