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Abstract

We show that a complete arc K in the projective plane PG(2, q) admitting a
transitive primitive group of projective transformations is either a cyclic arc of prime
order or a known arc. If the completeness assumption is dropped, then K has either
an affine primitive group, or K is contained in an explicit list. As an immediate
corollary, the list of complete arcs fixed by a 2-transitive projective group is obtained.

1 Introduction and main results.

A k-arc K of a projective plane PG(2, q), also called a plane k-arc, is a set of k points, no
3 of which are collinear. The best known example of an arc is the point set of a conic.

A point p of PG(2, q) extends a k-arc if and only if K ∪ {p} is a (k + 1)-arc. A k-arc K of
PG(2, q) is called complete if and only if it is not contained in a (k + 1)-arc of PG(2, q).
In PG(2, q), q odd, q > 3, a conic is complete, but in PG(2, q), q even, a conic is not
complete. It can be extended in a unique way to a (q + 2)-arc by its nucleus.

In the search for other examples of arcs, various methods have been used. The bibliogra-
phies of [7, 8, 9] contain a large number of articles in which arcs are constructed.

This paper continues the work of the authors in [11, 12] where arcs fixed by a large projec-
tive group are classified. In [11], all types of complete k-arcs, fixed by a cyclic projective
group of order k, were determined. This led to a new class of such arcs containing k/2
points of 2 concentric conics. In [12], a slight variation to [11] is treated. In this paper, all
complete (k + 1)-arcs fixed by a cyclic projective group of order k, were described. Here,
no new examples were found.

Now, the classification of all complete k-arcs fixed by a transitive projective group act-
ing primitively on the points of the arc, is presented. This is achieved by applying the
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classification of finite primitive permutation groups by O’Nan and Scott, in the version of
Buekenhout [2], on the list of subgroups of PSL3(q), given by Bloom [1] for q odd, and by
Suzuki [13] and Hartley [6] for q even.

In almost all cases, the completeness condition on the arc K can be dropped. The complete-
ness of K is only assumed in Section 3 where the complete k-arcs K fixed by a transitive
elementary abelian group of order k, are determined. In the following section, all classes of
primitive k-arcs, k ≥ 5, fixed by an almost simple projective group GK , are found. They
are the conic in PG(2, q), the unique 5- and 6-arc in PG(2, 4) fixed by A5 and A6, and a
unique 6- and 10-arc in PG(2, q), q ≡ ±1 (mod 10), fixed by A5.

As an immediate corollary, all complete arcs fixed by a 2-transitive projective group, are
determined.

From now on, suppose that K is an arc in PG(2, q) with automorphism group ΓK . Put
G := PGL3(q) and GK := ΓK ∩G.

2 Preliminary lemmas.

Lemma 1 If |K| ≥ 4, then GK acts faithfully on K.

Proof : The group G acts regularly on the set of all ordered 4-arcs of PG(2, q).

Lemma 2 If |K| ≥ 4 and K is complete, then ΓK acts faithfully on K.

Proof : If σ ∈ ΓK fixes every point of K, then σ must be induced by a field automorphism
and it fixes a subplane π pointwise. So K ⊆ π. Let T be a line of π skew to K and let x
be a point on T not in π. Then x extends K to a larger arc since every bisecant of K is a
line of π.

Lemma 3 Suppose K is complete.

The socle S of ΓK is either elementary abelian or simple, i.e., ΓK is either of affine type
or almost simple. Moreover, if ΓK is almost simple, then S ≤ L3(q).

Proof : Use the result of O’Nan and Scott in the version of Buekenhout [2]. According
to that result, the group ΓK is of one and only one of the following types: affine type,
biregular type, cartesian type or simple type. The definition of cartesian and biregular
type requires ΓK to have a normal subgroup H isomorphic to the direct product of two or
more isomorphic copies of a non-abelian simple group S [2]. Let H ∼= S1 × S2 × · · ·× Sn,
where each Si is isomorphic to S, 1 ≤ i ≤ n. For every i ∈ {1, 2, . . . , n}, the group Si can
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be viewed as a subgroup of H, which is on its turn a subgroup of PΓL3(q) by the previous
lemmas, and either Si ∩ L3(q) = Si or Si ∩ L3(q) = 1. Suppose the latter happens, then

Si
∼= Si/(Si ∩ L3(q)) ∼= SiL3(q)/L3(q) ≤ PΓL3(q)/L3(q).

Using the ATLAS-notation [3], the latter is isomorphic to the group 3.h or h, where
q = ph, p prime. This is impossible since in the first case, Si has a normal subgroup of
order 3 and in the other case, Si is cyclic and so abelian. Hence each Si is inside L3(q)
and so is H. But by inspection of the list of subgroups of L3(q), see Bloom [1, Theorem
1.1], for q odd, and Hartley [6, pp. 157-158], for q even, one sees that this is impossible for
n ≥ 2. The case n = 1 corresponds to H ∼= S. So H is simple, ΓK is almost simple [2] and
the above argument shows that the socle S is a subgroup of L3(q).

In Section 3 we will consider the affine case and in Section 4, we will completely classify
the simple case.

The following lemmas are elementary but turn out to be very useful.

Lemma 4 The group ΓK cannot contain a subgroup H of central collineations with common
center and common axis of order r ≥ 3, when |K| > 3.

Proof : Every non-trivial orbit of such a group H of collineations contains r points on one
line and so they cannot be points of an arc K. So K is a subset of the set of points fixed
by H, but then |K| ≤ 3.

Lemma 5 If a central projective transformation σ in GK fixes at least three points of an
arc K, |K| > 3, then it is the identity.

This holds in particular for any involution σ in GK .

Proof : One of the three points, say x, must be the center of the central projective trans-
formation σ. Any other point y of K is mapped onto a point yσ with the property that
x, y and yσ are points of K on one line, but this is impossible.

This lemma is valid for the involutions of PGL3(q) since they are central [4, p. 172].

Lemma 6 Any projective transformation of GK fixing at least four points of K is the
identity.

Proof : The group PGL3(q) acts regularly on the ordered quadrangles of PG(2, q).
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3 The affine case.

Assume that GK is of affine type. This means that K bears the structure of a vector
space V over some prime field GF(r) such that GK = H.G0 where H is the group of all
translations of V and where G0, the stabilizer of the origin o, is a subgroup of GL(V ) [2].

Using the fact that H acts regularly on K, the following proposition is obtained.

Proposition 1 Let K be a complete k-arc, k = rn with r prime, in PG(2, q). Suppose
H ≤ GK is an elementary abelian group of order rn, acting regularly on K. Then n = 1
and K is an orbit of an element of order r of a Singer group of PGL3(q), or k = 22 and K
is a conic in PG(2, 3) or a hyperoval in PG(2, 2).

Proof : Let r = 2. If q is odd, then H contains 2n − 1 involutory homologies [4, p. 172]
which commute with each other. Two homologies h1 and h2 commute if and only if they
have common center and axis or the center of one homology hi belongs to the axis of
the other homology hj, {i, j} = {1, 2}. The first possibility cannot occur since there is
a unique involutory homology with given center and given axis. The second possibility
clearly implies that |H| ≤ 4. Hence, by the completeness of K, |H| = 4, q = 3 and K is a
conic in PG(2, 3).

If q is even, then all involutions in H are elations with either common center or common
axis. If they have common center, then every non-trivial orbit of H is contained in a line
through the common center contradicting the fact that K is an arc. In fact, this shows
that no two elations of H have common center. Suppose all elations have common axis
L. Assume that a line T is tangent to K. Then all elements of TH are tangent to K and
hence the point T ∩L extends the arc K, so K is not complete, a contradiction. There are
no lines tangent to K. This implies |K| = q + 2 and this is a power of 2 only if q = 2. So
K is a hyperoval, the points of an affine plane, in PG(2, 2).

Assume now r odd. Let O be an arbitrary orbit in PG(2, q) under H. Since H is an
r-group, |O| = rm for 0 ≤ m ≤ n. If m = 0, then O = {x} and there is at least one
line T through x tangent to K since |K| is odd. Applying H to T , every line through x
meeting K is a tangent line, hence x extends K and K is not complete. If 0 < m < n,
then the kernel of H on O is non-trivial and so there is an element σ of order r fixing O
point by point. If at least three points of O are collinear, then σ is a central projective
transformation, contradicting Lemma 4. So O is an arc and hence |O| = 3. We can take
coordinates such that O = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. A projective transformation ϕ of
order 3 which is not central has necessarily a matrix of the form




1 0 0
0 a 0
0 0 a−1



 , a3 = 1, a ,= 1.
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Hence rn = 32. A projective transformation ψ of order 3 permuting cyclically the points
of O has, without loss of generality, matrix




0 0 d
1 0 0
0 b 0



 , b, d ∈ GF(q)∗ = GF(q) \ {0}.

Since ϕ, ψ ∈ H, they commute, but this implies that a = 1, a contradiction.

We have shown that every orbit of H must have rn points, so rn must divide q2 + q + 1. If
r ,= 3, then every Sylow r-subgroup of PGL3(q) must be contained in some Singer group.
Indeed, r does not divide |PGL3(q)|/(q2 + q + 1), which is shown in [11, Theorem 3.1].
This implies n = 1 since H must be cyclic and elementary abelian. The result follows. If
r = 3, since 9 , |(q2 + q + 1), k = 3, but then K is not complete, so this case need not be
considered.

Every triangle, 3 non-collinear points, and every quadrilateral, 4 points no 3 of which are
collinear, constitutes a primitive arc in a plane. From now on, assume |K| ≥ 5.

4 The simple case.

In this section, assume that GK acts primitively on K, |K| ≥ 5, and that GK is an almost
simple group with socle S, i.e., S is a non-abelian simple group and GK ≤ Aut S [2]. By
the classification of subgroups of L3(q) by Bloom [1, Theorem 1.1], see also Mitchell [10,
pp. 239-242], for q odd, and Hartley [6, pp. 157-158], for q even, there are three infinite
series for S, namely L3(q′), U3(q′) and L2(q′), for suitable q′ dividing q. We first deal with
them and afterwards with the sporadic cases.

Set q = ph, p a prime number and let K be a k-arc in PG(2, q).

4.1 Infinite classes.

4.1.1 The L3-case.

Here, PGL3(q′) ≤ PGL3(q) for every prime power q′ = ph′
such that h′ divides h.

Proposition 2 No arc K, |K| ≥ 5, exists such that

L3(q
′) ≤ GK ≤ PGL3(q

′) = Aut(L3(q
′)) ∩ PGL3(q)

and such that GK acts primitively on K.
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Proof : The group L3(q′) contains a subgroup of elations with common center and common
axis of order q′, hence by Lemma 4, q′ = 2. So there is a subplane PG(2, 2) in PG(2, q)
stabilized by GK . Clearly K ∩PG(2, 2) = Ø. If a point x ∈ K lies on a line L of PG(2, 2),
by applying an element of order 2 in L3(2) contained in the stabilizer of L, one sees that L
contains at least two points of K, but the lines of PG(2, 2) partition in this way the points
of K in blocks of imprimitivity, a contradiction. Now let x ∈ K and u ∈ PG(2, 2), then
xu is a line of PG(2, q) not in PG(2, 2). The set of elations in L3(2) with center u forms
a subgroup of order 4 acting semi-regularly on the points of xu \ {u}. So xu contains four
points of K, a contradiction.

4.1.2 The U3-case.

Here, PGU3(q′) ≤ PGL3(q), q′ = ph′
, whenever 2h′ divides h. This group stabilizes a

Hermitian curve in a subplane PG(2, q′2) of PG(2, q).

Proposition 3 No arc K, |K| ≥ 5, exists such that

U3(q
′) ≤ GK ≤ PGU3(q

′) = Aut(U3(q
′)) ∩ PGL3(q)

and such that GK acts primitively on K.

Proof : The group U3(q′) acts 2-transitively on a Hermitian curve H in some subplane
PG(2, q′2). Consider an element σ of U3(q′) fixing some point x of H and mapping another
point y to some point z on the line xy, y, z ∈ H. Then σ fixes xy and its pole u w.r.t. H.
Hence σ fixes the lines xu and xy. The order of σ can be chosen to be p. So σ fixes all
lines through x and it is easily seen that xu is the axis. By Lemma 4, p = 2. But z can be
varied to obtain a group of elations with common center x and common axis xu of order
q′. Hence q′ = 2 by Lemma 4. But U3(2) ∼= 32 : Q8 is not simple and has no non-abelian
simple socle.

4.1.3 The L2-case.

Here, PGL2(q′) ≤ PGL3(q), q′ = ph′
, whenever h′ divides h.

Proposition 4 If K is an arc in PG(2, q) such that GK , with

L2(q
′) ≤ GK ≤ PGL2(q

′) = Aut(L2(q
′)) ∩ PGL3(q),

acts primitively on K, then K is a conic in some subplane PG(2, q′) of PG(2, q).
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Proof : Let C be the conic on which GK acts naturally inside some subplane PG(2, q′).
Note that we can assume q′ > 3 since PGL2(2) and PGL2(3) have no non-abelian simple
socle. Clearly if the arc K has a point in common with PG(2, q′), then it consists of either
all internal points of C (p odd), all external points of C (p odd), the nucleus of C (p = 2),
all points not on C and distinct from the nucleus of C (p = 2) or the conic C itself. Only
the last set of points constitutes an arc. So we can assume that all points of K lie outside
PG(2, q′). If one point of K lies on a line L of PG(2, q′), then all points of K do and
the lines in the orbit of L under GK define a partition of K invariant under GK . Let
x ∈ K ∩L. If L is a bisecant of C, then the cyclic subgroup of L2(q′) fixing L has at least
order (q′ − 1)/2 and acts on L \ C in orbits of at least size (q′ − 1)/4, if L is a tangent of
C in a, the cyclic subgroup of L2(q′) fixing a and a second point b of C has again at least
order (q′−1)/2 and acts semi-regularly on L\{a} and if L is skew to C in PG(2, q′), L2(q′)
contains a cyclic subgroup of order (q′+1)/2, fixing L, and acting semi-regularly on L\C.
Hence the partition is not trivial if q′ > 5. The only problem occurs when GK = L2(5)
and L is a bisecant of C in PG(2, q′). If L contains one point of K, all bisecants of C
contain one point of K, so |K| = 15. This is impossible since GK

∼= L2(5) ∼= A5 does not
act primitively on 15 points [3].

So we may assume that no point of K lies on a line of PG(2, q′). Let x ∈ K, σ ∈ GK

and suppose that xσ = x. If σ fixes two points a, b of C, then σ fixes four points, namely
a, b, x and the pole of the line ab w.r.t. C or the nucleus of C. No three of these points are
collinear, otherwise x lies on a line of PG(2, q′), contradicting our assumption, hence σ is
the identity. Suppose now σ acts semi-regularly on C. Then σ fixes two points a, b of C in
a quadratic extension of PG(2, q′) and as above, this leads to σ being the identity. Finally,
suppose σ fixes exactly one point u of C, then it fixes the tangent line T to C through u
and it fixes also the line xu. Since σ has necessarily order p, it readily follows that it fixes
all lines through u. So σ is central, p = 2 (Lemma 4), and the axis is T . But x does not
lie on T and is fixed, hence σ is the identity.
We have shown that no non-trivial element of GK fixes a point of K. So GK acts regularly
on K and such an action can never be primitive for groups of non-prime order.

This completes the investigation of the infinite classes.

4.2 The sporadic classes.

The list of these classes is given by Bloom [1, Theorem 1.1] for q odd, and by Suzuki [13,
intoduction] for q even.

4.2.1 Case L2(7) ≤ GK ≤ PGL2(7).

In this case, q3 ≡ 1 (mod 7), q odd, see Bloom [1, Theorem 1.1]. By the ATLAS [3],
L2(7) can only act primitively on either 7 or 8 elements. If GK

∼= PGL2(7) and L2(7) as a
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subgroup of GK does not act transitively on K, then |K| = 28 or 21 [3]. If |K| = 28, then
K can be identified with the pairs of points of PG(1, 7) and every involution fixes 4 pairs,
contradicting lemma 6. If |K| = 21, then K can be identified with the pairs of conjucated
points in PG(1, 49). The involution sending x to −x fixes three such pairs, contradicting
lemma 5. We now deal with GK

∼= L2(7).

Proposition 5 The group L2(7) does not act primitively on any arc in PG(2, q), q3 ≡ 1
(mod 7).

Proof : Suppose |K| = 7. Since L2(7) ∼= L3(2), the Klein fourgroup K4 is inside GK , it
fixes three points x, y, z ∈ K and acts regularly on the remaining four points of K. This
contradicts Lemma 5.

Suppose now |K| = 8. Drop the restrictions on q for the time being. It is shown that every
orbit of L2(7) of length 8 which constitutes an arc in any finite projective plane must be a
conic in a subplane of order 7.
We can identify the points of K with the elements of GF(7) ∪ {∞} in the natural action
of L2(7). We establish this identification via the indices. So K = {x0, x1, . . . , x6, x∞}. We
coordinatize PG(2, q) and take x0 = (1, 0, 0), x∞ = (0, 1, 0) and x1 = (1, 1, 1). An element
σ in GK of order 3 fixing x0 and x∞ exists. It is multiplication by 2 or 4 in the natural
action, let us assume multiplication by 2. Since 1 + q + q2 ,≡ 2 mod 3, σ has to fix at least
one other point y of PG(2, q). By Lemma 4, σ cannot be central, hence q ≡ 1 (mod 3) and
y is not incident with the line x0x∞. Neither lies y on any other bisecant of K containing
x0 or x∞. It would imply that σ has to fix that bisecant point by point and so σ would be
central. Hence we can take y = (0, 0, 1). The matrix of σ looks like




a 0 0
0 b 0
0 0 1



 , a, b ∈ GF(q)∗.

Clearly a = b or 1 ∈ {a, b} implies that x1, xσ
1 and xσ2

1 are collinear, hence a ,= b, a, b ,= 1.
Since σ has order 3, both a and b are non-trivial third roots of unity, say a = ω and b = ω2,
ω2 + ω + 1 = 0. Hence x2 = (ω,ω2, 1) and x4 = (ω2, ω, 1). If we set x3 = (u, v, 1), then
x6 = (ωu, ω2v, 1) and x5 = (ω2u, ωv, 1). Let θ be the element of L2(7) mapping xi to xi+1

and fixing x∞. Knowing the action of θ on 8 points of PG(2, q), we can find its matrix,
namely 


1 0 b
1 a c
1 0 d



 , a, b, c, d ∈ GF(q).

Expressing xθ
1 = x2, xθ

2 = x3 and xθ
3 = x4, the elements a, b, c, d must satisfy,

(A) ω + (1 + d)ω − 1 = (ω + d)u,
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(B) ω + ω2a + (1 + d)ω2 − 1− a = (ω + d)v,

(C) u + (1 + d)ω − 1 = (u + d)ω2,

(D) u + av + (1 + d)ω2 − 1− a = (u + d)ω,

(E) b = (1 + d)ω − 1,

(F) c = (1 + d)ω2 − 1− a.

From (A) and (C), (u − 1)(u + 2) = 0. If u = 1, then d = −1 by (A), so a(v − 1) = 0 by
(D). Clearly a ,= 0, so v = 1 and x1 = x3, a contradiction. So u = −2. Noting ω ,= −2
(p ,= 3), we deduce from (A) that d = −3ω − 1 since ω2 + ω + 1 = 0. Combining (B) and
(D), gives

v2(1− ω) + v(5ω + 4) + 14ω + 4 = 0.

This implies v = −2 or v = −3ω + 1. If v = −2, then a = −3 by (B). But xθ
4 = x5 implies

(2ω + 1,−4ω − 2,−4ω − 2) = k.(2ω + 2,−2ω, 1),

for some k ∈ GF(q)∗. This implies −2ω = 1, hence p = 3 and a = 0 which is false. So
v = −3ω + 1. Then (B) implies a = 3ω + 3 and (E) and (F) imply that θ has matrix




1 0 3ω + 2
1 3ω + 3 −3ω − 7
1 0 −3ω − 1



 .

Expressing xθ
4 = x5, we obtain 7 = 0 and ω = 4. So p = 7 and all points of K satisfy

X0X1 = X2
2 , showing our assertion.

4.2.2 Case A6 ≤ GK ≤ Aut(A6).

First, assume GK
∼= A6. This can only happen for q an even power of 2 [13, intoduction]

or 5 and for q ≡ 1 or 19 (mod 30) [1, Theorem 1.1 (8) and (9)].

Proposition 6 Under the above assumptions, if A6 ≤ PGL3(q) acts primitively on an arc
K, then q is even and K is the unique hyperoval consisting of 6 points in a subplane of
order 4.

Proof : By the ATLAS [3], there are three distinct possibilities for |K|. First, suppose
|K| = 6. Select 4 points of K and give them coordinates (1, 0, 0), (0, 1, 0), (0, 0, 1) and
(1, 1, 1). There is an element σ of order 3 fixing the first three points and acting regularly
on the remaining three points of K. As in the proof of Proposition 5, σ has matrix




1 0 0
0 ω 0
0 0 ω2



 , ω ∈ GF(q), ω ,= 1, ω3 = 1.
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The group element with matrix



−1 0 1
0 −ω ω
0 0 ω2





fixes (1, 0, 0) and (0, 1, 0), maps (0, 0, 1) to (1, ω, ω2) and (1, 1, 1) to (0, 0, 1). Hence, it
should preserve K since A6 acts 4-transitively on 6 points. So the image (−1 + ω2,−ω2 +
1, ω) of (1, ω, ω2) must belong to K. This happens only if p = 2, in which case all points
of K except (1, 0, 0) lie on the conic X1X2 = X2

0 in PG(2, 4). So K is the hyperoval
mentioned in the statement of the proposition.

Next, suppose |K| = 10. Then we can think of A6 as being L2(9) acting on the elements
of GF(9) ∪ {∞}. Hence, we can label the points of K as xi, i ∈ GF(9) ∪ {∞}, and the
action of L2(9) goes via its natural action on the indices. An entirely similar argument as
for the case L2(7) shows here that q must be an even power of 3 and that K is a conic in
some subplane of order 9 of PG(2, q). This case was treated in 4.1.3.

Finally, suppose |K| = 15. Here, K can be identified with the pairs of the set {1, 2, 3, 4, 5, 6}
with the natural action of A6 [3]. The involution (1 2)(3 4) ∈ A6 fixes the pairs {1, 2},
{3, 4}, {5, 6} and acts semi-regularly on the remaining ones. This permutation induces an
involution in PG(2, q) fixing three points of K, contradicting Lemma 5.

The next case deals with groups having A6 as a socle.

Proposition 7 Under the assumptions above, if A6 ≤ GK ≤ Aut(A6) acts primitively on an
arc K in PG(2, q), then GK

∼= A6, q = 22h, h ≥ 1, and K is a hyperoval in some subplane
of order 4.

Proof : By the previous result, we may assume that A6 ,∼= GK . By the information in the
ATLAS [3], there are two possibilities: the action of GK on K is equivalent to the action
of PGL2(9) on pairs of points , O+

2 (9)’s, of PG(1, 9) or the action on K is equivalent to
the action of PGL2(9) on pairs of conjugated points in a quadratic extension, O−

2 (9)’s, of
PG(1, 9).

In the first case, any involution of L2(9) fixes five pairs of PG(1, 9) and acts semi-regularly
on the remaining 40, contradicting Lemma 6.

In the second case, the involution x .→ −x, x ∈ GF(9), belongs to L2(9) and fixes 4 pairs
of conjugated points in a quadratic extension of GF(9), contradicting Lemma 6 again.

4.2.3 Case A7 ≤ GK ≤ S7.

This occurs when p = 5 and h is even [1, Theorem 1.1 (8)].

Proposition 8 The group A7 does not act primitively on any arc in PG(2, 52h), h ≥ 1.
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Proof : The group A7 has a primitive action on 7, 15, 21 and 35 points [3]. Let S :=
{1, 2, 3, 4, 5, 6, 7}. The action of A7 on 7 points is the natural one on S and is 5-transitive
which is impossible by Lemma 6. The action on 21 points is the action of A7 on the
unordered pairs of S. The permutation (1 2 3) fixes 6 pairs and hence should be the
identity, by Lemma 6 again. The action on 35 points is the action on the triads of S. The
permutation (1 2 3) fixes five triads and hence should be the identity again.

The action on 15 points is the action of A7 on the points of PG(3, 2). Here, there is an
involution fixing three points on a line of PG(3, 2), contradicting Lemma 5.

To conclude, we deal with GK
∼= S7.

Proposition 9 The group S7 does not act primitively on any arc in PG(2, 52h), h ≥ 1.

Proof : By the previous proposition, we may assume that A7, as a subgroup of S7, does not
act primitively on K. This leaves only one possibility [3]: an action of S7 on 120 points.
The group A7 acts on these points imprimitively in blocks of size 8, the stabilizer of a block
being L2(7). The 15 blocks can be identified with the points of PG(3, 2). The stabilizer of
a point of PG(3, 2) in A7 is L3(2). This contains an element σ of order 3 and this element
σ has to fix at least 2 other points of PG(3, 2). In other words, σ stabilizes 3 blocks, and in
each one of them, it must fix 2 points. So σ fixes in total 6 points, contradicting Lemma 6.

4.2.4 Case A5
∼= GK .

In this case, q ≡ ±1 (mod 10) Bloom [1, Theorem 1.1 (6)] or q = 22h, h ≥ 1 Hartley [6,
pp. 157-158]. By the ATLAS [3], GK can only act primitively on 5,6 or 10 points. The
action of A5 in PG(2, q), q ≡ ±1 (mod 10), is uniquely determined by 2 matrices T and B
[1, Lemma 6.4].

Proposition 10 Suppose A5 fixes a 5-arc K in PG(2, q). Then q = 22h, h ≥ 1, and K is a
conic in a subplane PG(2, 4).

Proof : Let K = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), (1, x, y)} = {p1, . . . , p5} where A5 acts
naturally on the indices i, 1 ≤ i ≤ 5.

The mapping (1 2)(3 4) of A5 is defined by the matrix




0 −1 1
−1 0 1
0 0 1





and fixes (1, x, y) if and only if y = x + 1.
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The mapping (1 2 3) is defined by the matrix




0 0 1
1 0 0
0 1 0





and fixes (1, x, y) if and only if 1 + x = ρ, 1 = ρx and x = ρ(1 + x) for some ρ ,= 0. This
implies x2 + x− 1 = 0 and x2 − x− 1 = 0. So 2 = 0 and x2 + x + 1 = 0. This shows that
q = 22h, h ≥ 1, and K is a conic in a subplane PG(2, 4).

Remark 1 This conic K is contained in a unique hyperoval of PG(2, 4) fixed by A6 (Propo-
sition 6).

Proposition 11 When q ≡ ±1 (mod 10), then the sets K1 = {(1, 1, 1), (1, 1,−1), (1,−1, 1),
(1,−1,−1), (0, 4t2, 1), (0,−4t2, 1), (−4t2, 1, 0), (4t2, 1, 0), (1, 0, 4t2), (1, 0,−4t2)} and K2 =
{(1, 0, 1−2t), (1, 0, 2t−1), (1, 2t, 0), (1,−2t, 0), (0, 1, 2t), (0, 1,−2t)} constitute a 10-arc and
a 6-arc fixed by A5. The points of K1 are the 10 points of PG(2, q) on 3 bisecants of K2.

Proof : This can be verified by using the matrices T and B of [1, Lemma 6.4].

Proposition 12 The 10-arc K1 and 6-arc K2 in PG(2, q), q ≡ ±1 (mod 10), are projectively
unique.

Proof : (a) Suppose there is a second orbit O of size 10. Let p ∈ O, then p is fixed by a
subgroup H of order 6 of A5. The unique subgroup of order 3 in H must fix a point r1 of
K1. Then r1 is fixed by H. This implies that pr1 is a tangent to K1.

Since 10 is even, p belongs to a second tangent pr2 to K1, r2 ∈ K1. If an element of order
3 in H fixes r2, it fixes 4 points of K1, which is false (Lemma 6), so p belongs to at least
4 tangents pri, 1 ≤ i ≤ 4, to K1. Any involution γ in H must fix two tangents through p
since it fixes r1. It cannot fix 4 tangents (Lemma 6). Assume γ(r2) = r2 and γ(r3) = r4,
then {p, r1, r2, r3, r4} is a 5-arc fixed by γ. This contradicts Lemma 5.

(b) Suppose there is a second orbit O of size 6.

If p ∈ O, then p is fixed by a subgroup H, of order 10, of A5. Since H has a unique
subgroup of order 5 and since |K2| = 6, H must fix one point r1 of K2 and, as in (a), pr1

is tangent to K2. An element of order 5 in H acts transitively on K2 \ {r1} and fixes p, so
p extends K2 to a 7-arc.

An involution γ of H fixes p, r1 and a second point r2 of K2. Let γ(r3) = r4, r3, r4 ∈ K2,
then {p, r1, r2, r3, r4} is a 5-arc fixed by γ. This again contradicts Lemma 5.
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Remark 2 Hexagons H fixed by A5 were studied in detail by Dye [5]. These hexagons
occur when q ≡ ±1 (mod 10), q = 5h or q = 22h, h ≥ 1.

When q = 22h, h ≥ 1, then H is a hyperoval in a subplane PG(2, 4) and H is fixed by A6

(Propositions 6 and 10).

From now on, assume q odd. If q = 5h, then H is a conic in a subplane PG(2, 5) of
PG(2, q), A5

∼= L2(5), but H is not contained in a conic when q ≡ ±1 (mod 10). In both
cases, this hexagon is called the Clebsch hexagon [5]. One of its particular properties is
that it has exactly 10 Brianchon-points, i.e., points on exactly 3 bisecants to H. If q = 5h,
these Brianchon-points are the internal points of the conic H in the subplane PG(2, 5).
The 10 Brianchon-points constitute a 10-arc if q ≡ ±1 (mod 10) (Proposition 11).

With this hexagon correspond 5 triangles whose edges partition H and on which A5 acts
in a natural way. These 5 triangles are self-polar w.r.t. a unique conic C. When q = 5h,
H = C. The 10 Brianchon-points belong to C if and only if q = 32h, h ≥ 1, and in this
case, C is a conic in a subplane PG(2, 9). Equivalently, when q = 32h, h ≥ 1, the 10-arc
K1 (Proposition 11) is a conic in a subplane PG(2, 9).

This completes the proof of our main result.

5 Complete 2-transitive arcs

As an immediate consequence of the classification of primitive arcs made in Sections 3 and
4, the following list of complete 2-transitive arcs is obtained. As before, assume |K| ≥ 5.

Proposition 13 If K is a complete k-arc of PG(2, q), fixed by a 2-transitive projective group
GK , then either

(1) K is a conic in PG(2, q), q odd, q > 3;

(2) K is the unique 6-arc in PG(2, 4);

(3) K is the unique 6-arc in PG(2, 9) fixed by A5;

(4) K is the unique 10-arc in PG(2, 11) or PG(2, 19) fixed by A5.

Proof : This follows from the preceding classification.

The completeness of the 6- and 10-arc fixed by A5 in PG(2, q), q ≡ ±1 (mod 10), was
checked by computer. The 10-arc in PG(2, 9) fixed by A5 is the conic of PG(2, 9) (Remark
2), so this arc is included in case (1).
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