Primitive arcs in $P G(2, q)$

L. Storme* H. Van Maldeghem ${ }^{\dagger}$

December 14, 2010

Abstract

We show that a complete arc K in the projective plane $P G(2, q)$ admitting a transitive primitive group of projective transformations is either a cyclic arc of prime order or a known arc. If the completeness assumption is dropped, then K has either an affine primitive group, or K is contained in an explicit list. As an immediate corollary, the list of complete arcs fixed by a 2 -transitive projective group is obtained.

1 Introduction and main results.

A k-arc K of a projective plane $P G(2, q)$, also called a plane k-arc, is a set of k points, no 3 of which are collinear. The best known example of an arc is the point set of a conic.

A point p of $P G(2, q)$ extends a k-arc if and only if $K \cup\{p\}$ is a $(k+1)$-arc. A k-arc K of $P G(2, q)$ is called complete if and only if it is not contained in a $(k+1)$-arc of $P G(2, q)$. In $P G(2, q), q$ odd, $q>3$, a conic is complete, but in $P G(2, q), q$ even, a conic is not complete. It can be extended in a unique way to a $(q+2)$-arc by its nucleus.
In the search for other examples of arcs, various methods have been used. The bibliographies of $[7,8,9]$ contain a large number of articles in which arcs are constructed.

This paper continues the work of the authors in $[11,12]$ where arcs fixed by a large projective group are classified. In [11], all types of complete k-arcs, fixed by a cyclic projective group of order k, were determined. This led to a new class of such arcs containing $k / 2$ points of 2 concentric conics. In [12], a slight variation to [11] is treated. In this paper, all complete $(k+1)$-arcs fixed by a cyclic projective group of order k, were described. Here, no new examples were found.

Now, the classification of all complete k-arcs fixed by a transitive projective group acting primitively on the points of the arc, is presented. This is achieved by applying the

[^0]classification of finite primitive permutation groups by O'Nan and Scott, in the version of Buekenhout [2], on the list of subgroups of $P S L_{3}(q)$, given by Bloom [1] for q odd, and by Suzuki [13] and Hartley [6] for q even.
In almost all cases, the completeness condition on the arc K can be dropped. The completeness of K is only assumed in Section 3 where the complete k-arcs K fixed by a transitive elementary abelian group of order k, are determined. In the following section, all classes of primitive k-arcs, $k \geq 5$, fixed by an almost simple projective group G_{K}, are found. They are the conic in $P G(2, q)$, the unique 5 - and 6 -arc in $P G(2,4)$ fixed by A_{5} and A_{6}, and a unique 6 - and 10 -arc in $P G(2, q), q \equiv \pm 1(\bmod 10)$, fixed by A_{5}.
As an immediate corollary, all complete arcs fixed by a 2 -transitive projective group, are determined.

From now on, suppose that K is an arc in $P G(2, q)$ with automorphism group Γ_{K}. Put $G:=P G L_{3}(q)$ and $G_{K}:=\Gamma_{K} \cap G$.

2 Preliminary lemmas.

Lemma 1 If $|K| \geq 4$, then G_{K} acts faithfully on K.

Proof : The group G acts regularly on the set of all ordered 4 -arcs of $P G(2, q)$.

Lemma 2 If $|K| \geq 4$ and K is complete, then Γ_{K} acts faithfully on K.

Proof : If $\sigma \in \Gamma_{K}$ fixes every point of K, then σ must be induced by a field automorphism and it fixes a subplane π pointwise. So $K \subseteq \pi$. Let T be a line of π skew to K and let x be a point on T not in π. Then x extends K to a larger arc since every bisecant of K is a line of π.

Lemma 3 Suppose K is complete.
The socle S of Γ_{K} is either elementary abelian or simple, i.e., Γ_{K} is either of affine type or almost simple. Moreover, if Γ_{K} is almost simple, then $S \leq L_{3}(q)$.

Proof : Use the result of O'Nan and Scott in the version of Buekenhout [2]. According to that result, the group Γ_{K} is of one and only one of the following types: affine type, biregular type, cartesian type or simple type. The definition of cartesian and biregular type requires Γ_{K} to have a normal subgroup H isomorphic to the direct product of two or more isomorphic copies of a non-abelian simple group S [2]. Let $H \cong S_{1} \times S_{2} \times \cdots \times S_{n}$, where each S_{i} is isomorphic to $S, 1 \leq i \leq n$. For every $i \in\{1,2, \ldots, n\}$, the group S_{i} can
be viewed as a subgroup of H, which is on its turn a subgroup of $P \Gamma L_{3}(q)$ by the previous lemmas, and either $S_{i} \cap L_{3}(q)=S_{i}$ or $S_{i} \cap L_{3}(q)=1$. Suppose the latter happens, then

$$
S_{i} \cong S_{i} /\left(S_{i} \cap L_{3}(q)\right) \cong S_{i} L_{3}(q) / L_{3}(q) \leq P \Gamma L_{3}(q) / L_{3}(q) .
$$

Using the ATLAS-notation [3], the latter is isomorphic to the group 3.h or h, where $q=p^{h}, p$ prime. This is impossible since in the first case, S_{i} has a normal subgroup of order 3 and in the other case, S_{i} is cyclic and so abelian. Hence each S_{i} is inside $L_{3}(q)$ and so is H. But by inspection of the list of subgroups of $L_{3}(q)$, see Bloom [1, Theorem 1.1], for q odd, and Hartley [6, pp. 157-158], for q even, one sees that this is impossible for $n \geq 2$. The case $n=1$ corresponds to $H \cong S$. So H is simple, Γ_{K} is almost simple [2] and the above argument shows that the socle S is a subgroup of $L_{3}(q)$.
In Section 3 we will consider the affine case and in Section 4, we will completely classify the simple case.
The following lemmas are elementary but turn out to be very useful.

Lemma 4 The group Γ_{K} cannot contain a subgroup H of central collineations with common center and common axis of order $r \geq 3$, when $|K|>3$.

Proof : Every non-trivial orbit of such a group H of collineations contains r points on one line and so they cannot be points of an arc K. So K is a subset of the set of points fixed by H, but then $|K| \leq 3$.

Lemma 5 If a central projective transformation σ in G_{K} fixes at least three points of an arc $K,|K|>3$, then it is the identity.

This holds in particular for any involution σ in G_{K}.

Proof: One of the three points, say x, must be the center of the central projective transformation σ. Any other point y of K is mapped onto a point y^{σ} with the property that x, y and y^{σ} are points of K on one line, but this is impossible.
This lemma is valid for the involutions of $P G L_{3}(q)$ since they are central [4, p. 172].
Lemma 6 Any projective transformation of G_{K} fixing at least four points of K is the identity.

Proof: The group $P G L_{3}(q)$ acts regularly on the ordered quadrangles of $P G(2, q)$.

3 The affine case.

Assume that G_{K} is of affine type. This means that K bears the structure of a vector space V over some prime field $\mathrm{GF}(r)$ such that $G_{K}=H . G_{0}$ where H is the group of all translations of V and where G_{0}, the stabilizer of the origin o, is a subgroup of $G L(V)$ [2].
Using the fact that H acts regularly on K, the following proposition is obtained.

Proposition 1 Let K be a complete k-arc, $k=r^{n}$ with r prime, in $P G(2, q)$. Suppose $H \leq G_{K}$ is an elementary abelian group of order r^{n}, acting regularly on K. Then $n=1$ and K is an orbit of an element of order r of a Singer group of $P G L_{3}(q)$, or $k=2^{2}$ and K is a conic in $P G(2,3)$ or a hyperoval in $P G(2,2)$.

Proof : Let $r=2$. If q is odd, then H contains $2^{n}-1$ involutory homologies [4, p. 172] which commute with each other. Two homologies h_{1} and h_{2} commute if and only if they have common center and axis or the center of one homology h_{i} belongs to the axis of the other homology $h_{j},\{i, j\}=\{1,2\}$. The first possibility cannot occur since there is a unique involutory homology with given center and given axis. The second possibility clearly implies that $|H| \leq 4$. Hence, by the completeness of $K,|H|=4, q=3$ and K is a conic in $P G(2,3)$.
If q is even, then all involutions in H are elations with either common center or common axis. If they have common center, then every non-trivial orbit of H is contained in a line through the common center contradicting the fact that K is an arc. In fact, this shows that no two elations of H have common center. Suppose all elations have common axis L. Assume that a line T is tangent to K. Then all elements of T^{H} are tangent to K and hence the point $T \cap L$ extends the arc K, so K is not complete, a contradiction. There are no lines tangent to K. This implies $|K|=q+2$ and this is a power of 2 only if $q=2$. So K is a hyperoval, the points of an affine plane, in $P G(2,2)$.
Assume now r odd. Let O be an arbitrary orbit in $P G(2, q)$ under H. Since H is an r-group, $|O|=r^{m}$ for $0 \leq m \leq n$. If $m=0$, then $O=\{x\}$ and there is at least one line T through x tangent to K since $|K|$ is odd. Applying H to T, every line through x meeting K is a tangent line, hence x extends K and K is not complete. If $0<m<n$, then the kernel of H on O is non-trivial and so there is an element σ of order r fixing O point by point. If at least three points of O are collinear, then σ is a central projective transformation, contradicting Lemma 4. So O is an arc and hence $|O|=3$. We can take coordinates such that $O=\{(1,0,0),(0,1,0),(0,0,1)\}$. A projective transformation φ of order 3 which is not central has necessarily a matrix of the form

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & a & 0 \\
0 & 0 & a^{-1}
\end{array}\right), a^{3}=1, a \neq 1
$$

Hence $r^{n}=3^{2}$. A projective transformation ψ of order 3 permuting cyclically the points of O has, without loss of generality, matrix

$$
\left(\begin{array}{ccc}
0 & 0 & d \\
1 & 0 & 0 \\
0 & b & 0
\end{array}\right), b, d \in \mathrm{GF}(q)^{*}=\mathrm{GF}(q) \backslash\{0\} .
$$

Since $\varphi, \psi \in H$, they commute, but this implies that $a=1$, a contradiction.
We have shown that every orbit of H must have r^{n} points, so r^{n} must divide $q^{2}+q+1$. If $r \neq 3$, then every Sylow r-subgroup of $P G L_{3}(q)$ must be contained in some Singer group. Indeed, r does not divide $\left|P G L_{3}(q)\right| /\left(q^{2}+q+1\right)$, which is shown in [11, Theorem 3.1]. This implies $n=1$ since H must be cyclic and elementary abelian. The result follows. If $r=3$, since $9 X\left(q^{2}+q+1\right), k=3$, but then K is not complete, so this case need not be considered.

Every triangle, 3 non-collinear points, and every quadrilateral, 4 points no 3 of which are collinear, constitutes a primitive arc in a plane. From now on, assume $|K| \geq 5$.

4 The simple case.

In this section, assume that G_{K} acts primitively on $K,|K| \geq 5$, and that G_{K} is an almost simple group with socle S, i.e., S is a non-abelian simple group and $G_{K} \leq$ Aut S [2]. By the classification of subgroups of $L_{3}(q)$ by Bloom [1, Theorem 1.1], see also Mitchell [10, pp. 239-242], for q odd, and Hartley [6, pp. 157-158], for q even, there are three infinite series for S, namely $L_{3}\left(q^{\prime}\right), U_{3}\left(q^{\prime}\right)$ and $L_{2}\left(q^{\prime}\right)$, for suitable q^{\prime} dividing q. We first deal with them and afterwards with the sporadic cases.
Set $q=p^{h}, p$ a prime number and let K be a k-arc in $P G(2, q)$.

4.1 Infinite classes.

4.1.1 The L_{3}-case.

Here, $P G L_{3}\left(q^{\prime}\right) \leq P G L_{3}(q)$ for every prime power $q^{\prime}=p^{h^{\prime}}$ such that h^{\prime} divides h.

Proposition 2 No arc $K,|K| \geq 5$, exists such that

$$
L_{3}\left(q^{\prime}\right) \leq G_{K} \leq P G L_{3}\left(q^{\prime}\right)=\operatorname{Aut}\left(L_{3}\left(q^{\prime}\right)\right) \cap P G L_{3}(q)
$$

and such that G_{K} acts primitively on K.

Proof: The group $L_{3}\left(q^{\prime}\right)$ contains a subgroup of elations with common center and common axis of order q^{\prime}, hence by Lemma $4, q^{\prime}=2$. So there is a subplane $P G(2,2)$ in $P G(2, q)$ stabilized by G_{K}. Clearly $K \cap P G(2,2)=\emptyset$. If a point $x \in K$ lies on a line L of $P G(2,2)$, by applying an element of order 2 in $L_{3}(2)$ contained in the stabilizer of L, one sees that L contains at least two points of K, but the lines of $P G(2,2)$ partition in this way the points of K in blocks of imprimitivity, a contradiction. Now let $x \in K$ and $u \in P G(2,2)$, then $x u$ is a line of $P G(2, q)$ not in $P G(2,2)$. The set of elations in $L_{3}(2)$ with center u forms a subgroup of order 4 acting semi-regularly on the points of $x u \backslash\{u\}$. So $x u$ contains four points of K, a contradiction.

4.1.2 The U_{3}-case.

Here, $P G U_{3}\left(q^{\prime}\right) \leq P G L_{3}(q), q^{\prime}=p^{h^{\prime}}$, whenever $2 h^{\prime}$ divides h. This group stabilizes a Hermitian curve in a subplane $P G\left(2, q^{\prime 2}\right)$ of $P G(2, q)$.

Proposition 3 No arc $K,|K| \geq 5$, exists such that

$$
U_{3}\left(q^{\prime}\right) \leq G_{K} \leq P G U_{3}\left(q^{\prime}\right)=\operatorname{Aut}\left(U_{3}\left(q^{\prime}\right)\right) \cap P G L_{3}(q)
$$

and such that G_{K} acts primitively on K.

Proof : The group $U_{3}\left(q^{\prime}\right)$ acts 2-transitively on a Hermitian curve \mathcal{H} in some subplane $P G\left(2, q^{\prime 2}\right)$. Consider an element σ of $U_{3}\left(q^{\prime}\right)$ fixing some point x of \mathcal{H} and mapping another point y to some point z on the line $x y, y, z \in \mathcal{H}$. Then σ fixes $x y$ and its pole u w.r.t. \mathcal{H}. Hence σ fixes the lines $x u$ and $x y$. The order of σ can be chosen to be p. So σ fixes all lines through x and it is easily seen that $x u$ is the axis. By Lemma $4, p=2$. But z can be varied to obtain a group of elations with common center x and common axis $x u$ of order q^{\prime}. Hence $q^{\prime}=2$ by Lemma 4. But $U_{3}(2) \cong 3^{2}: Q_{8}$ is not simple and has no non-abelian simple socle.

4.1.3 The L_{2}-case.

Here, $P G L_{2}\left(q^{\prime}\right) \leq P G L_{3}(q), q^{\prime}=p^{h^{\prime}}$, whenever h^{\prime} divides h.

Proposition 4 If K is an arc in $P G(2, q)$ such that G_{K}, with

$$
L_{2}\left(q^{\prime}\right) \leq G_{K} \leq P G L_{2}\left(q^{\prime}\right)=\operatorname{Aut}\left(L_{2}\left(q^{\prime}\right)\right) \cap P G L_{3}(q)
$$

acts primitively on K, then K is a conic in some subplane $P G\left(2, q^{\prime}\right)$ of $P G(2, q)$.

Proof : Let C be the conic on which G_{K} acts naturally inside some subplane $P G\left(2, q^{\prime}\right)$. Note that we can assume $q^{\prime}>3$ since $P G L_{2}(2)$ and $P G L_{2}(3)$ have no non-abelian simple socle. Clearly if the arc K has a point in common with $P G\left(2, q^{\prime}\right)$, then it consists of either all internal points of C (p odd), all external points of C (p odd), the nucleus of $C(p=2)$, all points not on C and distinct from the nucleus of $C(p=2)$ or the conic C itself. Only the last set of points constitutes an arc. So we can assume that all points of K lie outside $P G\left(2, q^{\prime}\right)$. If one point of K lies on a line L of $P G\left(2, q^{\prime}\right)$, then all points of K do and the lines in the orbit of L under G_{K} define a partition of K invariant under G_{K}. Let $x \in K \cap L$. If L is a bisecant of C, then the cyclic subgroup of $L_{2}\left(q^{\prime}\right)$ fixing L has at least order $\left(q^{\prime}-1\right) / 2$ and acts on $L \backslash C$ in orbits of at least size $\left(q^{\prime}-1\right) / 4$, if L is a tangent of C in a, the cyclic subgroup of $L_{2}\left(q^{\prime}\right)$ fixing a and a second point b of C has again at least order $\left(q^{\prime}-1\right) / 2$ and acts semi-regularly on $L \backslash\{a\}$ and if L is skew to C in $P G\left(2, q^{\prime}\right), L_{2}\left(q^{\prime}\right)$ contains a cyclic subgroup of order $\left(q^{\prime}+1\right) / 2$, fixing L, and acting semi-regularly on $L \backslash C$. Hence the partition is not trivial if $q^{\prime}>5$. The only problem occurs when $G_{K}=L_{2}(5)$ and L is a bisecant of C in $P G\left(2, q^{\prime}\right)$. If L contains one point of K, all bisecants of C contain one point of K, so $|K|=15$. This is impossible since $G_{K} \cong L_{2}(5) \cong A_{5}$ does not act primitively on 15 points [3].
So we may assume that no point of K lies on a line of $P G\left(2, q^{\prime}\right)$. Let $x \in K, \sigma \in G_{K}$ and suppose that $x^{\sigma}=x$. If σ fixes two points a, b of C, then σ fixes four points, namely a, b, x and the pole of the line $a b$ w.r.t. C or the nucleus of C. No three of these points are collinear, otherwise x lies on a line of $P G\left(2, q^{\prime}\right)$, contradicting our assumption, hence σ is the identity. Suppose now σ acts semi-regularly on C. Then σ fixes two points a, b of C in a quadratic extension of $P G\left(2, q^{\prime}\right)$ and as above, this leads to σ being the identity. Finally, suppose σ fixes exactly one point u of C, then it fixes the tangent line T to C through u and it fixes also the line $x u$. Since σ has necessarily order p, it readily follows that it fixes all lines through u. So σ is central, $p=2$ (Lemma 4), and the axis is T. But x does not lie on T and is fixed, hence σ is the identity.
We have shown that no non-trivial element of G_{K} fixes a point of K. So G_{K} acts regularly on K and such an action can never be primitive for groups of non-prime order.

This completes the investigation of the infinite classes.

4.2 The sporadic classes.

The list of these classes is given by Bloom [1, Theorem 1.1] for q odd, and by Suzuki [13, intoduction] for q even.

4.2.1 Case $L_{2}(7) \leq G_{K} \leq P G L_{2}(7)$.

In this case, $q^{3} \equiv 1(\bmod 7), q$ odd, see Bloom [1, Theorem 1.1]. By the ATLAS [3], $L_{2}(7)$ can only act primitively on either 7 or 8 elements. If $G_{K} \cong P G L_{2}(7)$ and $L_{2}(7)$ as a
subgroup of G_{K} does not act transitively on K, then $|K|=28$ or 21 [3]. If $|K|=28$, then K can be identified with the pairs of points of $P G(1,7)$ and every involution fixes 4 pairs, contradicting lemma 6 . If $|K|=21$, then K can be identified with the pairs of conjucated points in $P G(1,49)$. The involution sending x to $-x$ fixes three such pairs, contradicting lemma 5 . We now deal with $G_{K} \cong L_{2}(7)$.

Proposition 5 The group $L_{2}(7)$ does not act primitively on any arc in $P G(2, q), q^{3} \equiv 1$ $(\bmod 7)$.

Proof : Suppose $|K|=7$. Since $L_{2}(7) \cong L_{3}(2)$, the Klein fourgroup K_{4} is inside G_{K}, it fixes three points $x, y, z \in K$ and acts regularly on the remaining four points of K. This contradicts Lemma 5.

Suppose now $|K|=8$. Drop the restrictions on q for the time being. It is shown that every orbit of $L_{2}(7)$ of length 8 which constitutes an arc in any finite projective plane must be a conic in a subplane of order 7 .
We can identify the points of K with the elements of $\operatorname{GF}(7) \cup\{\infty\}$ in the natural action of $L_{2}(7)$. We establish this identification via the indices. So $K=\left\{x_{0}, x_{1}, \ldots, x_{6}, x_{\infty}\right\}$. We coordinatize $P G(2, q)$ and take $x_{0}=(1,0,0), x_{\infty}=(0,1,0)$ and $x_{1}=(1,1,1)$. An element σ in G_{K} of order 3 fixing x_{0} and x_{∞} exists. It is multiplication by 2 or 4 in the natural action, let us assume multiplication by 2 . Since $1+q+q^{2} \not \equiv 2 \bmod 3, \sigma$ has to fix at least one other point y of $P G(2, q)$. By Lemma $4, \sigma$ cannot be central, hence $q \equiv 1(\bmod 3)$ and y is not incident with the line $x_{0} x_{\infty}$. Neither lies y on any other bisecant of K containing x_{0} or x_{∞}. It would imply that σ has to fix that bisecant point by point and so σ would be central. Hence we can take $y=(0,0,1)$. The matrix of σ looks like

$$
\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & 1
\end{array}\right), a, b \in \mathrm{GF}(q)^{*} .
$$

Clearly $a=b$ or $1 \in\{a, b\}$ implies that x_{1}, x_{1}^{σ} and $x_{1}^{\sigma^{2}}$ are collinear, hence $a \neq b, a, b \neq 1$. Since σ has order 3, both a and b are non-trivial third roots of unity, say $a=\omega$ and $b=\omega^{2}$, $\omega^{2}+\omega+1=0$. Hence $x_{2}=\left(\omega, \omega^{2}, 1\right)$ and $x_{4}=\left(\omega^{2}, \omega, 1\right)$. If we set $x_{3}=(u, v, 1)$, then $x_{6}=\left(\omega u, \omega^{2} v, 1\right)$ and $x_{5}=\left(\omega^{2} u, \omega v, 1\right)$. Let θ be the element of $L_{2}(7)$ mapping x_{i} to x_{i+1} and fixing x_{∞}. Knowing the action of θ on 8 points of $P G(2, q)$, we can find its matrix, namely

$$
\left(\begin{array}{ccc}
1 & 0 & b \\
1 & a & c \\
1 & 0 & d
\end{array}\right), a, b, c, d \in \mathrm{GF}(q)
$$

Expressing $x_{1}^{\theta}=x_{2}, x_{2}^{\theta}=x_{3}$ and $x_{3}^{\theta}=x_{4}$, the elements a, b, c, d must satisfy,
(A) $\omega+(1+d) \omega-1=(\omega+d) u$,
(B) $\omega+\omega^{2} a+(1+d) \omega^{2}-1-a=(\omega+d) v$,
(C) $u+(1+d) \omega-1=(u+d) \omega^{2}$,
(D) $u+a v+(1+d) \omega^{2}-1-a=(u+d) \omega$,
(E) $b=(1+d) \omega-1$,
(F) $c=(1+d) \omega^{2}-1-a$.

From (A) and (C), $(u-1)(u+2)=0$. If $u=1$, then $d=-1$ by (A), so $a(v-1)=0$ by (D). Clearly $a \neq 0$, so $v=1$ and $x_{1}=x_{3}$, a contradiction. So $u=-2$. Noting $\omega \neq-2$ ($p \neq 3$), we deduce from (A) that $d=-3 \omega-1$ since $\omega^{2}+\omega+1=0$. Combining (B) and (D), gives

$$
v^{2}(1-\omega)+v(5 \omega+4)+14 \omega+4=0 .
$$

This implies $v=-2$ or $v=-3 \omega+1$. If $v=-2$, then $a=-3$ by (B). But $x_{4}^{\theta}=x_{5}$ implies

$$
(2 \omega+1,-4 \omega-2,-4 \omega-2)=k .(2 \omega+2,-2 \omega, 1),
$$

for some $k \in \operatorname{GF}(q)^{*}$. This implies $-2 \omega=1$, hence $p=3$ and $a=0$ which is false. So $v=-3 \omega+1$. Then (B) implies $a=3 \omega+3$ and (E) and (F) imply that θ has matrix

$$
\left(\begin{array}{ccc}
1 & 0 & 3 \omega+2 \\
1 & 3 \omega+3 & -3 \omega-7 \\
1 & 0 & -3 \omega-1
\end{array}\right) .
$$

Expressing $x_{4}^{\theta}=x_{5}$, we obtain $7=0$ and $\omega=4$. So $p=7$ and all points of K satisfy $X_{0} X_{1}=X_{2}^{2}$, showing our assertion.
4.2.2 Case $A_{6} \leq G_{K} \leq \operatorname{Aut}\left(A_{6}\right)$.

First, assume $G_{K} \cong A_{6}$. This can only happen for q an even power of 2 [13, intoduction] or 5 and for $q \equiv 1$ or $19(\bmod 30)$ [1, Theorem $1.1(8)$ and $(9)]$.

Proposition 6 Under the above assumptions, if $A_{6} \leq P G L_{3}(q)$ acts primitively on an arc K, then q is even and K is the unique hyperoval consisting of 6 points in a subplane of order 4.

Proof : By the ATLAS [3], there are three distinct possibilities for $|K|$. First, suppose $|K|=6$. Select 4 points of K and give them coordinates $(1,0,0),(0,1,0),(0,0,1)$ and $(1,1,1)$. There is an element σ of order 3 fixing the first three points and acting regularly on the remaining three points of K. As in the proof of Proposition 5, σ has matrix

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right), \omega \in \operatorname{GF}(q), \omega \neq 1, \omega^{3}=1 .
$$

The group element with matrix

$$
\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -\omega & \omega \\
0 & 0 & \omega^{2}
\end{array}\right)
$$

fixes $(1,0,0)$ and $(0,1,0)$, maps $(0,0,1)$ to $\left(1, \omega, \omega^{2}\right)$ and $(1,1,1)$ to $(0,0,1)$. Hence, it should preserve K since A_{6} acts 4 -transitively on 6 points. So the image ($-1+\omega^{2},-\omega^{2}+$ $1, \omega)$ of $\left(1, \omega, \omega^{2}\right)$ must belong to K. This happens only if $p=2$, in which case all points of K except $(1,0,0)$ lie on the conic $X_{1} X_{2}=X_{0}^{2}$ in $P G(2,4)$. So K is the hyperoval mentioned in the statement of the proposition.
Next, suppose $|K|=10$. Then we can think of A_{6} as being $L_{2}(9)$ acting on the elements of $\operatorname{GF}(9) \cup\{\infty\}$. Hence, we can label the points of K as $x_{i}, i \in \operatorname{GF}(9) \cup\{\infty\}$, and the action of $L_{2}(9)$ goes via its natural action on the indices. An entirely similar argument as for the case $L_{2}(7)$ shows here that q must be an even power of 3 and that K is a conic in some subplane of order 9 of $P G(2, q)$. This case was treated in 4.1.3.

Finally, suppose $|K|=15$. Here, K can be identified with the pairs of the set $\{1,2,3,4,5,6\}$ with the natural action of $A_{6}[3]$. The involution (12)(34) $\in A_{6}$ fixes the pairs $\{1,2\}$, $\{3,4\},\{5,6\}$ and acts semi-regularly on the remaining ones. This permutation induces an involution in $P G(2, q)$ fixing three points of K, contradicting Lemma 5.

The next case deals with groups having A_{6} as a socle.
Proposition 7 Under the assumptions above, if $A_{6} \leq G_{K} \leq \operatorname{Aut}\left(A_{6}\right)$ acts primitively on an arc K in $P G(2, q)$, then $G_{K} \cong A_{6}, q=2^{2 h}, h \geq 1$, and K is a hyperoval in some subplane of order 4 .

Proof: By the previous result, we may assume that $A_{6} \not \approx G_{K}$. By the information in the ATLAS [3], there are two possibilities: the action of G_{K} on K is equivalent to the action of $P G L_{2}(9)$ on pairs of points, $O_{2}^{+}(9)$'s, of $P G(1,9)$ or the action on K is equivalent to the action of $P G L_{2}(9)$ on pairs of conjugated points in a quadratic extension, $O_{2}^{-}(9)$'s, of $P G(1,9)$.

In the first case, any involution of $L_{2}(9)$ fixes five pairs of $P G(1,9)$ and acts semi-regularly on the remaining 40 , contradicting Lemma 6.

In the second case, the involution $x \mapsto-x, x \in \mathrm{GF}(9)$, belongs to $L_{2}(9)$ and fixes 4 pairs of conjugated points in a quadratic extension of GF(9), contradicting Lemma 6 again.
4.2.3 Case $A_{7} \leq G_{K} \leq S_{7}$.

This occurs when $p=5$ and h is even [1, Theorem 1.1 (8)].
Proposition 8 The group A_{7} does not act primitively on any arc in $P G\left(2,5^{2 h}\right), h \geq 1$.

Proof : The group A_{7} has a primitive action on $7,15,21$ and 35 points [3]. Let $S:=$ $\{1,2,3,4,5,6,7\}$. The action of A_{7} on 7 points is the natural one on S and is 5 -transitive which is impossible by Lemma 6. The action on 21 points is the action of A_{7} on the unordered pairs of S. The permutation (1 243) fixes 6 pairs and hence should be the identity, by Lemma 6 again. The action on 35 points is the action on the triads of S. The permutation (123) fixes five triads and hence should be the identity again.

The action on 15 points is the action of A_{7} on the points of $P G(3,2)$. Here, there is an involution fixing three points on a line of $\operatorname{PG}(3,2)$, contradicting Lemma 5.

To conclude, we deal with $G_{K} \cong S_{7}$.

Proposition 9 The group S_{7} does not act primitively on any arc in $P G\left(2,5^{2 h}\right), h \geq 1$.

Proof: By the previous proposition, we may assume that A_{7}, as a subgroup of S_{7}, does not act primitively on K. This leaves only one possibility [3]: an action of S_{7} on 120 points. The group A_{7} acts on these points imprimitively in blocks of size 8 , the stabilizer of a block being $L_{2}(7)$. The 15 blocks can be identified with the points of $P G(3,2)$. The stabilizer of a point of $P G(3,2)$ in A_{7} is $L_{3}(2)$. This contains an element σ of order 3 and this element σ has to fix at least 2 other points of $P G(3,2)$. In other words, σ stabilizes 3 blocks, and in each one of them, it must fix 2 points. So σ fixes in total 6 points, contradicting Lemma 6 .

4.2.4 Case $A_{5} \cong G_{K}$.

In this case, $q \equiv \pm 1(\bmod 10)$ Bloom $[1$, Theorem $1.1(6)]$ or $q=2^{2 h}, h \geq 1$ Hartley [6, pp. 157-158]. By the ATLAS [3], G_{K} can only act primitively on 5,6 or 10 points. The action of A_{5} in $P G(2, q), q \equiv \pm 1(\bmod 10)$, is uniquely determined by 2 matrices T and B [1, Lemma 6.4].

Proposition 10 Suppose A_{5} fixes a $5-\operatorname{arc} K$ in $P G(2, q)$. Then $q=2^{2 h}, h \geq 1$, and K is a conic in a subplane $P G(2,4)$.

Proof : Let $K=\{(1,0,0),(0,1,0),(0,0,1),(1,1,1),(1, x, y)\}=\left\{p_{1}, \ldots, p_{5}\right\}$ where A_{5} acts naturally on the indices $i, 1 \leq i \leq 5$.

The mapping (12)(34) of A_{5} is defined by the matrix

$$
\left(\begin{array}{ccc}
0 & -1 & 1 \\
-1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

and fixes $(1, x, y)$ if and only if $y=x+1$.

The mapping (123) is defined by the matrix

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

and fixes $(1, x, y)$ if and only if $1+x=\rho, 1=\rho x$ and $x=\rho(1+x)$ for some $\rho \neq 0$. This implies $x^{2}+x-1=0$ and $x^{2}-x-1=0$. So $2=0$ and $x^{2}+x+1=0$. This shows that $q=2^{2 h}, h \geq 1$, and K is a conic in a subplane $P G(2,4)$.

Remark 1 This conic K is contained in a unique hyperoval of $P G(2,4)$ fixed by A_{6} (Proposition 6).

Proposition 11 When $q \equiv \pm 1(\bmod 10)$, then the sets $K_{1}=\{(1,1,1),(1,1,-1),(1,-1,1)$, $\left.(1,-1,-1),\left(0,4 t^{2}, 1\right),\left(0,-4 t^{2}, 1\right),\left(-4 t^{2}, 1,0\right),\left(4 t^{2}, 1,0\right),\left(1,0,4 t^{2}\right),\left(1,0,-4 t^{2}\right)\right\}$ and $K_{2}=$ $\{(1,0,1-2 t),(1,0,2 t-1),(1,2 t, 0),(1,-2 t, 0),(0,1,2 t),(0,1,-2 t)\}$ constitute a 10 -arc and a 6 -arc fixed by A_{5}. The points of K_{1} are the 10 points of $P G(2, q)$ on 3 bisecants of K_{2}.

Proof: This can be verified by using the matrices T and B of [1, Lemma 6.4].

Proposition 12 The $10-\operatorname{arc} K_{1}$ and $6-\operatorname{arc} K_{2}$ in $P G(2, q), q \equiv \pm 1(\bmod 10)$, are projectively unique.

Proof : (a) Suppose there is a second orbit O of size 10. Let $p \in O$, then p is fixed by a subgroup H of order 6 of A_{5}. The unique subgroup of order 3 in H must fix a point r_{1} of K_{1}. Then r_{1} is fixed by H. This implies that $p r_{1}$ is a tangent to K_{1}.
Since 10 is even, p belongs to a second tangent $p r_{2}$ to $K_{1}, r_{2} \in K_{1}$. If an element of order 3 in H fixes r_{2}, it fixes 4 points of K_{1}, which is false (Lemma 6), so p belongs to at least 4 tangents $p r_{i}, 1 \leq i \leq 4$, to K_{1}. Any involution γ in H must fix two tangents through p since it fixes r_{1}. It cannot fix 4 tangents (Lemma 6). Assume $\gamma\left(r_{2}\right)=r_{2}$ and $\gamma\left(r_{3}\right)=r_{4}$, then $\left\{p, r_{1}, r_{2}, r_{3}, r_{4}\right\}$ is a 5 -arc fixed by γ. This contradicts Lemma 5 .
(b) Suppose there is a second orbit O of size 6 .

If $p \in O$, then p is fixed by a subgroup H, of order 10 , of A_{5}. Since H has a unique subgroup of order 5 and since $\left|K_{2}\right|=6, H$ must fix one point r_{1} of K_{2} and, as in (a), $p r_{1}$ is tangent to K_{2}. An element of order 5 in H acts transitively on $K_{2} \backslash\left\{r_{1}\right\}$ and fixes p, so p extends K_{2} to a 7 -arc.

An involution γ of H fixes p, r_{1} and a second point r_{2} of K_{2}. Let $\gamma\left(r_{3}\right)=r_{4}, r_{3}, r_{4} \in K_{2}$, then $\left\{p, r_{1}, r_{2}, r_{3}, r_{4}\right\}$ is a 5 -arc fixed by γ. This again contradicts Lemma 5 .

Remark 2 Hexagons \mathcal{H} fixed by A_{5} were studied in detail by Dye [5]. These hexagons occur when $q \equiv \pm 1(\bmod 10), q=5^{h}$ or $q=2^{2 h}, h \geq 1$.
When $q=2^{2 h}, h \geq 1$, then \mathcal{H} is a hyperoval in a subplane $P G(2,4)$ and \mathcal{H} is fixed by A_{6} (Propositions 6 and 10).
From now on, assume q odd. If $q=5^{h}$, then \mathcal{H} is a conic in a subplane $P G(2,5)$ of $P G(2, q), A_{5} \cong L_{2}(5)$, but \mathcal{H} is not contained in a conic when $q \equiv \pm 1(\bmod 10)$. In both cases, this hexagon is called the Clebsch hexagon [5]. One of its particular properties is that it has exactly 10 Brianchon-points, i.e., points on exactly 3 bisecants to \mathcal{H}. If $q=5^{h}$, these Brianchon-points are the internal points of the conic \mathcal{H} in the subplane $P G(2,5)$. The 10 Brianchon-points constitute a $10-\operatorname{arc}$ if $q \equiv \pm 1(\bmod 10)$ (Proposition 11).
With this hexagon correspond 5 triangles whose edges partition \mathcal{H} and on which A_{5} acts in a natural way. These 5 triangles are self-polar w.r.t. a unique conic C. When $q=5^{h}$, $\mathcal{H}=C$. The 10 Brianchon-points belong to C if and only if $q=3^{2 h}, h \geq 1$, and in this case, C is a conic in a subplane $P G(2,9)$. Equivalently, when $q=3^{2 h}, h \geq 1$, the 10 -arc K_{1} (Proposition 11) is a conic in a subplane $P G(2,9)$.

This completes the proof of our main result.

5 Complete 2-transitive arcs

As an immediate consequence of the classification of primitive arcs made in Sections 3 and 4 , the following list of complete 2-transitive arcs is obtained. As before, assume $|K| \geq 5$.

Proposition 13 If K is a complete k-arc of $P G(2, q)$, fixed by a 2 -transitive projective group G_{K}, then either
(1) K is a conic in $P G(2, q), q$ odd, $q>3$;
(2) K is the unique 6 -arc in $P G(2,4)$;
(3) K is the unique 6 -arc in $P G(2,9)$ fixed by A_{5};
(4) K is the unique 10 -arc in $P G(2,11)$ or $P G(2,19)$ fixed by A_{5}.

Proof: This follows from the preceding classification.
The completeness of the 6 - and 10 -arc fixed by A_{5} in $P G(2, q), q \equiv \pm 1(\bmod 10)$, was checked by computer. The 10 -arc in $P G(2,9)$ fixed by A_{5} is the conic of $P G(2,9)$ (Remark 2), so this arc is included in case (1).

References

[1] D.M. Bloom, The subgroups of $\operatorname{PSL}(3, q)$ for odd q, Trans. Amer. Math. Soc. 127 (1967), $150-178$.
[2] F. Buekenhout, On a theorem of O'Nan and Scott, Bull. Soc. Math. Belg. (B) 40 (1988), 1 - 9.
[3] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford (1985).
[4] P. Dembowski, Finite Geometries, Springer-Verlag, New York (1968).
[5] R.H. Dye, Hexagons, Conics, A_{5} and $P S L_{2}(K)$, J. London Math. Soc. (2) 44 (1991), $270-286$.
[6] R.W. Hartley, Determination of the ternary collineation groups whose coefficients lie in the $G F\left(2^{n}\right)$, Ann. Math. 27 (1925), $140-158$.
[7] J.W.P. Hirschfeld, Projective Geometries over Finite Fields, Oxford University Press, Oxford (1979).
[8] J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford University Press, Oxford (1985).
[9] J.W.P. Hirschfeld and J.A. Thas, General Galois Geometries, Oxford University Press, Oxford (1991).
[10] H.H. Mitchell, Determination of the ordinary and modular ternary linear groups, Trans. Amer. Math. Soc. 12 (1911), 207 - 242.
[11] L. Storme and H. Van Maldeghem, Cyclic arcs in $P G(2, q)$, submitted.
[12] L. Storme and H. Van Maldeghem, Arcs fixed by a large cyclic group, to appear in ...
[13] M. Suzuki, Finite groups in which the centralizer of any element of order 2 is 2-closed, Ann. of Math. 82 (1965), 191 - 212.

Address of the authors:

Dept. of Pure Mathematics and Computeralgebra
University of Gent
Krijgslaan 281
B-9000 Gent
Belgium

[^0]: *Senior Research Assistant of the National Fund for Scientific Research Belgium.
 ${ }^{\dagger}$ Research Associate of the National Fund for Scientific Research Belgium.

