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Abstract

Let Γ be a thick finite generalized hexagon and let G be a group of automorphisms
of Γ. If G acts transitively on the set of non-degenerate ordered heptagons, then Γ is
one of the Moufang hexagons H(q) or 3H(q) associated to the Chevalley groups G2(q)
or 3D4(q) respectively, or their duals; and G contains the corresponding Chevalley
group. Moreover, we show that no thick generalized octagon admitting a group acting
transitively on the set of ordered nonagons (enneagons) can exist. This completes
the determination of all finite thick generalized n-gons, n ≥ 3, with a group acting
transitively on the set of ordered (n+1)-gons with elementary methods. Because we
do not use the classification of the finite simple groups, from which these results also
follow.

1 Introduction and Main Results

A finite generalized n-gon of order (s, t), s, t ∈ N \ {0}, is an incidence geometry Γ =
(P ,L, I) in which P and L are disjoint non-empty sets of objects called points and lines
respectively, and for which I is a symmetric point-line incidence relation satisfying axioms
(GP1), (GP2) and (GP3).

(GP1) Each point is incident with 1 + t lines and two distinct points are incident with at
most one line.

(GP2) Each line is incident with 1+s points and two distinct lines are incident with at most
one point.
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(GP3) If the distance in the incidence graph between two elements (points and lines) v, w
is — strictly — smaller than n, then there is a unique minimal (i.e. with a minimal
number of elements) sequence of consecutive incident elements starting with v and
ending in w.

For a generalized quadrangle (4-gon), hexagon (6-gon) and octagon (8-gon), we can write
(GP3) respectively as follows:

(GQ3) For every non-incident pair (x, L) ∈ P×L, there exists a unique pair (y, M) ∈ P×L
for which x I M I y I L.

(GH3) For every non-incident pair (x, L) ∈ P×L, there exists either a unique pair (y, M) ∈
P × L for which x I M I y I L, or a unique quadruple (y, M, z, N) ∈ P × L× P × L
for which x I N I z I M I y I L.

(GO3) For every non-incident pair (x, L) ∈ P×L, there exists either a unique pair (y, M) ∈
P × L for which x I M I y I L, or a unique quadruple (y, M, z, N) ∈ P × L× P × L
for which x I N I z I M I y I L or a a unique sixtuple (y, M, z, N, u, X) ∈ P×L×P×
L× P × L for which x I X I u I N I z I M I y I L.

The following terminology will be used throughout. A finite generalized hexagon or octagon
of order (s, t) is thick if s, t ≥ 2 (the non-thick generalized hexagons and octagons are the
flag complexes (or the doubles) of the projective planes and generalized quadrangles of order
(s,s) respectively) and the dual of this (order (1, s) and (s, 1) respectively). A heptagon in
a generalized hexagon is a subconfiguration consisting of seven distinct points and seven
distinct lines such that each line (respectively point) is incident with exactly two points
(respectively lines). An ordered heptagon is a heptagon in which the elements are ordered
in such a way that two consecutive elements are incident. Similar definitions for nonagons
and ordered nonagons in generalized octagons. A sub-n-gon of order (1, 1) (a “usual” n-
gon) in a generalized n-gon, n = 6, 8 is an apartment. A skeleton is a subconfiguration
Ω = (Σ; L, p) where Σ is an apartment and L (respectively p) is a line (respectively point)
not in Σ but incident with a point p1 (respectively line L1) of Σ, where p1 I L1. We will
always use upper case letters, such as L, M, N for lines and lower case ones, such as p, x, z, b
for points. If in a generalized hexagon, a point x is collinear with two non-collinear points
p1 and p2, then by axiom (GH3), x is unique with that property and we denote x = p1 ∗p2.

There are presently, up to duality, only two classes of thick finite generalized hexagons
known and they are related to the Chevalley groups G2(q) and 3D4(q). We denote the
first one by H(q) (distinguishing it from its dual H(q)D by saying that H(q) is naturally
embedded in the quadric Q6(q), see Tits [16]) and the second one by 3H(q) (distinguishing
it by its dual 3H(q)D by telling that it has order (q, q3)). From this, it follows that the dual
of H(q) is a subhexagon of 3D4(q) (see Tits [16] or Kantor [7]). We call the members
of these 4 classes of finite generalized hexagons the finite classical hexagons. They were
all discovered by Tits [16] (but the name “Tits hexagon” would cause confusion with the
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hexagons satisfying the Tits property, which was introduced by Buekenhout & Van
Maldeghem [1]).

As for finite thick generalized octagons, the situation is even simpler. Only one such class
is presently know (up to duality). It is also due to Tits [19] and it is related to the class
of Ree groups of characteristic 2. These octagons have order (q, q2) and we call them the
Ree-Tits octagons.

It follows easily from the main result of Van Maldeghem [20] that the finite classical
hexagons admit an automorphism group G acting transitively on the set of skeletons. This
in fact is equivalent with G acting transitively on the set of ordered heptagons, see below.
The converse is also true. Suppose the finite generalized hexagon Γ admits a group G
acting transitively on the set of ordered heptagons. Then G is a group with a (B, N)-pair
of type G2 and using the classification of the finite simple groups one can show that Γ must
be classical (for an explicit proof, see Buekenhout & Van Maldeghem [1]). The aim
of this paper is to give a proof of this result without using the classification of the finite
simple groups. Once we have shown that the generalized hexagon must be classical, then
a result of Seitz [12] immediately implies that G must contain the simple group G2(q)
(q ≥ 3), 3D4(q) or G2(2)′ ∼= U3(3). In the latter case, the order of H(2) is (2, 2), the full
automorphism group is G2(2) and the number of ordered heptagons is exactly equal to the
order of G2(2) (which is 12, 096). So G must contain the corresponding Chevalley group.

Our first main result is:

THEOREM 1. Let Γ be a finite thick generalized hexagon and let G be a group of
automorphisms of Γ. Then G acts transitively on the set of ordered heptagons if and only
if Γ is one of the classical generalized hexagons H(q), 3H(q), H(q)D or 3H(q)D and G
contains the corresponding Chevalley group.

A similar result is proved for finite generalized quadrangles by Thas & Van Maldeghem
[15]. Of course, for finite projective planes, an analogous result (transitivity on ordered
quadrangles) follows immediately from the well-known theorem of Ostrom & Wagner
[8]. By a well known result of Feit & Higman [3], finite thick generalized n-gons exist
only for n = 2, 3, 4, 6, 8. So we finally turn our attention to octagons. We will show as
second main result:

THEOREM 2. There does not exist a finite thick generalized octagon admitting a group
of collineations acting transitively on the set of ordered nonagons.

As a result, we have the following corollary:

COROLLARY. A finite thick generalized n-gon Γ admitting a group G acting transitively
on the set of all ordered (n+1)-gons is Moufang and a complete list of such pairs (Γ, G) is
determined by elementary methods (i.e. without using the classification of the finite simple
groups).

We remark that the finiteness assumption cannot be dispensed with in the preceding results;
indeed, this follows from a well-known construction method of Kegel and Schleiermacher
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as adapted by Tits [18].

We also remark that Theorem 1 improves on the main result of Van Maldeghem [20]
in which all finite generalized hexagons with transitive apartments are classified. These
hexagons satisfy automatically the hypothesis of Theorem 1.

The motivation for studying generalized polygons admitting an automorphsm group acting
transitively on ordered circuits of a certain length stems from the need of a classification-free
proof of the fact that all finite rank 2 Tits systems are known. In the case of quadrangles,
Payne & Thas [9] have developed a geometric machinery which can be used to try to
do so. A large part of that machinery must be used to show that all finite generalized
quadrangles with a group acting transitively on ordered pentagons are known, see Thas
& Van Maldeghem [15]. No such machinery is available for hexagons and octagons,
but this paper wants to show that in spite of that, geometric reasonings can prove a lot.
Also, by the geometric nature of our proof, certain substructures turn up (mainly affine
planes), and a more systematic investigation of those must lead to a better understanding
of the fact that so few finite hexagons are known. For octagons, the new idea of distance-i
regularity (see Van Maldeghem [21]) is here succesfully applied.

In fact, it is the author’s belief that a classification-free prove of the above mentioned fact
is within reach, at least for the case of equal parameters (i.e. s = t). The geometry needed
in the case of hexagons would not be much different from that turning up in the proof of
our main result.

2 Proof of the Theorem 1

In this section, we denote by Γ = (P ,L, I) a finite thick generalized hexagon of order
(s, t) and by G a group of automorphisms of Γ acting transitively on the set of ordered
heptagons. Note that we may assume s, t ≥ 3 by Cohen & Tits [2].

Recall that the distance in Γ is the one inherited from the incidence graph. Elements at
distance 6 (the maximal distance in Γ) are called opposite.

We notice that the proof is not longer than the one of the equivalent result for generalized
quadrangles, despite the lack of a comparable machinery for finite generalized hexagons.
With such a machinery (mainly on anti-regular points (see below) and on the half Moufang
condition), our proof would be significantly shorter.

2.1 Some General Facts

2.1.1 Skeletons

Let χ = (p1, L1, . . . , p7, L7), with p1 I L1 I p2 I . . . I p7 I L7 I p1, be an ordered heptagon in Γ.
Let p′i be the point of Li+3 at distance 4 from pi (where indices are taken modulo 7). Con-
sider the skeleton Ω = (Σ; L7, p′5), where Σ is the apartment (p1, L1, . . . , p4, L4, p′1, . . . , p1).
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Then χ completely determines Ω and vice versa. Hence G acts transitively on the set of
skeletons, and conversely, every group acting transitively on the set of skeletons also acts
transitively on the set of ordered heptagons.

2.1.2 The Moufang condition

Consider an apartment Σ = (p1, L1, . . . , p6, L6, p1) (where consecutive elements are inci-
dent). If the group of collineations of Γ fixing every point incident with either L1 or L2,
and also fixing every line incident with either p1, p2 or p3 acts transitively on the set of
apartments containing p1, p2, p3, L6, L1, L2 and L3, then we say that Γ is (p1, L1, p2, L2, p3)-
transitive (and these collinations are called (p1, L1, p2, L2, p3)-elations). Dually, one defines
(L1, p2, L2, p3, L3, )-transitivity. If Γ is (p1, L1, p2, L2, p3)-transitive for all possible choices
of the points p1, p2, p3 and the lines L1 and L2 in Γ, and if moreover, also the dual transi-
tivity property holds for every possible choice, then one calls Γ Moufang. From a theorem
of Fong & Seitz [4, 5] follows that finite Moufang generalized hexagons are classical.
The converse is also true, see Tits [17]. We will use that characterization in the proof of
Theorem 1.

2.1.3 Half regular and anti-regular points

Let x be a point of Γ and consider the set of points Γ(x) collinear with x. We define blocks
in this set as follows: for every point y opposite x, the block xy is the set of points collinear
with x and at distance 4 from y.

1. If this geometry is a semi-linear space (i. e. two points in Γ(x) determine at most one
such block), then we say that x is half regular. This notion is introduced by Van
Maldeghem & Bloemen [22], where the authors remark that from a theorem of
Ronan [10] follows that, if every point of a generalized hexagon is half regular, then
it is Moufang. An alternative (and actually better) name for half regular is distance-
2 regular, see Van Maldeghem [21] (it is better since one can generalize this to
arbitrary distance from x). Anyway, we will also use this characterization of the
classical hexagons in the finite case (Ronan’s result is indeed also valid in the infinite
case).

2. If in this geometry two blocks meet in at most 2 points, and if every 3 pairwise
non-collinear points in Γ(x) are contained in a least (and hence exactly) one block,
then we call x anti-regular. This definition is modelled on the same situation in
generalized quadrangles (see Payne & Thas [9]). We will meet this property in
our proof thus giving a motivation to study anti-regularity in generalized hexagons
separately without assuming a group.

The geometry obtained in this paragraph will be denoted by Γx
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2.2 Reduction to two main cases

Our proof is inspired by Ronan [11], although we cannot use his results (because, as we
will see, we will have the intersection set property, but not the regulus property).

For two points x, y at distance 4 from each other, we denote by x ∗ y the unique point at
distance 2 from both x and y.

Consider two points x, y at distance 4 from each other via the chain x I Lx I (x∗y) I Ly I y.
Let p be a point collinear with x but not incident with Lx. Let p1 and p2 be two points
collinear with y, not incident with Ly and at distance 4 from p. There are two possibilities.

1. Suppose xp1 = xp2 . By the transitivity property, there is a collineation fixing x, x∗y, y
and p1 and mapping the line yp2 to any desired line L through y, yp1 &= L &= Ly. The
set xp1 is preserved and p2 is mapped to a point p3 on L. Obviously, xp3 = xp2 = xp1 .
Since L was arbitrary, every point z collinear with y, opposite x and at distance 4
from p has the property xz = xp1 . By the transitivity, we can now let p vary over the
set of all points collinear with x but not on Lx, and hence we obtain the property that
whenever z1 and z2 are points collinear with y and opposite x, then either xz1 = xz2 ,
or xz1 ∩xz2 = {x ∗ y}. By transitivity, this holds for every such pair (x, y). Following
Ronan [11], we say that all intersection sets (w.r.t. points) of Γ have order 1.

2. Suppose now xp1 &= xp2 . Then there exists a line L through x incident with two
distinct points a1 and a2 at distance 4 from p1 and p2 respectively. By the transitivity
property, there is a collineation θ fixing x, y, p1, a1 and yp2 and mapping a2 to any
desired point on L distinct from x and a1. The point p2 will be mapped onto any point
pθ

2 incident with yp2, except for y and z, where z has distance 4 from a1. Obviously,
xp1 ∩ xpθ

2 contains pθ and xp1 ∩ xz contains a1. Since pθ
2 was essentially arbitrary, and

since by transitivity also the line yp2 is arbitrary and for the same reason p1 as well,
we conclude that whenever z1 and z2 are points at distance 4, collinear with y and
opposite x, then |xz1 ∩ xz2| ≥ 2. Reversing the roles of x and y, we also see that
whenever u1 and u2 are two non-collinear points in Γ(x) opposite y, then there exists
a point z collinear to y and opposite x such that {u1, u2} ⊆ xz.

Let us get back to the above situation involving a1, a2, p1 and p2. There exist also
collineations fixing x, y, p1, a1 and p and mapping a2 to any point u of L different
from x and a1. Of course, such mappings do not preserve the line yp2, and in fact
every other choice for u gives another image of yp2, hence s − 1 ≤ t − 1, implying
s ≤ t.

The properties obtained in this paragraph are also valid for every choice of such a
pair (x, y), by transitivity. Following Ronan [11], we say that all intersection sets of
Γ have order ≥ 2.

From this, we derive two possibilities:
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Case (i) In either Γ or its dual, all intersection sets have order 1;

Case (ii) In both Γ and its dual, all intersection sets have order ≥ 2.

Remark that Case (ii) implies s = t.

2.3 Case (i)

In fact, Ronan [11] proves that, if Γ has also the regulus condition, then it is Moufang.
We are not in a position to show directly the regulus condition, but a little weaker version
will do the trick here. We may assume, by duality, that all intersection sets w.r.t. points
have order 1 in Γ.

We consider an apartment (p1, L1, . . . , p6, L6, p1) as in 2.1.2. Denote by S the set of points of
the form x∗y, with x I L2, y I L5 and x at distance 4 from y. Using the transitivity property
as above, one shows completely similar to the argument in the previous paragraphs, that
either pu

1 = pp4
1 , for all u ∈ S \ {√∞}, or every point on every line L through p1, L1 &=

L &= L6, is at distance 4 from exactly 1 element of S. We call these cases Subcase (a)
and Subcase (b) respectively. If Subcase (a) holds for one apartment and one choice of
p1 in that apartment, then Subcase (a) holds for all apartments and choices of p1, by the
transitivity. Similarly for Subcase (b).

2.3.1 Subcase (a)

We assume in this paragraph that Subcase (a) (respectively Subcase (b)) holds. Let p be
any point of Γ. We show that p is half regular — or distance-2 regular— (respectively
anti-regular). Therefore, let a and b be two non-collinear points collinear with p. Let x
and y be two points opposite p both at distance 4 from both a and b. We must show
px = py (respectively px = py or px ∩ py = {a, b}; by the Subcase (b) assumption, we
already have at least one block through every three pairwise non-collinear points in Γ(p)).
We may suppose that either x ∗ a is not collinear with y ∗ a, or x ∗ b is not collinear with
y ∗ b, otherwise the result follows from the Subcase (a) (respectively (b)) assumption. So
suppose x ∗ b is not collinear with y ∗ b. Let L be the line joining b and y ∗ b and let M
be the line joining a ∗ x and a. Let u and v be the points collinear with y ∗ b and x ∗ a
respectively, and at distance 3 from M and L respectively.

By the Case (i) assumption, px = pv and py = pu, and by the Subcase (a) assumption,
pv = pu (respectively pv = pu,or pv ∩ pu = {a, b}), implying px = py (respectively px = py,
or px ∩ py = {a, b}). This shows that p is half regular (respectively anti-regular). But this
means that all points are half regular and Γ is classical.
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2.3.2 Subcase (b)

We show the result in four steps.

STEP 1

In this step, we make the additional assumption that G acts regularly on the set of ordered
heptagons in Γ. Fix an apartment Σ = (p1, L1, . . . , p6, L6, p1), where consecutive elements
are incident. Let L be any line incident with p1, L1 &= L &= L6. The group H1 fixing
p1, p2, p3, L, L6, L1, L2 and L3 has order s(s − 1) and acts sharply doubly transitively on
the set V of points incident with L6 but different from p1. Hence it acts on that set as a
Frobenius group and so H1 had a unique normal regular subgroup N1 of order s, which is
elementary abelian. So s = πn1

1 with π1 a prime and n1 ∈ N0. Similarly t = πn2
2 , π2 prime

and n2 ∈ N0.

Now let p be a point incident with L1, p1 &= p &= p2. The subgroup of H1 fixing p acts
regularly on the set V (see above), hence this subgroup is N1. Since p was essentially
arbitrary, N1 fixes L, L6 and L3, fixes every point on L1, every point on L2 and acts
regularly on V . Let N ′

1 be the subgroup of H1 fixing p6. Suppose an element θ ∈ N ′
1 fixes

some point x on L2, p2 &= x &= p3. Let x′ be the point collinear with x and at distance 3
from L5. By the assumption of Subcase (b), the unique point at distance 4 from x′ on L is
different from the unique point at distance 4 from p4 on L, but both these points are fixed
by θ. Hence θ fixes a skeleton, which implies that θ is the identity. This shows that N ′

1

acts regularly on the set V ′ of points incident with L2 but distinct from p2 and p3. Hence
H1 acts transitively on V ′ and N1 ! H1 partitions V ′ in equal orbits. But |V ′| = s − 1 is
relatively prime to π1. Since N1 is a π1-group, this implies that N1 fixes all elements of L2.

Hence N1 fixes L, L3, L6 and every point on L1 and on L2. Similarly, the dual result holds.

We now forget about the above notation to derive a geometric property. Consider a point
p in Γ. Consider the geometry Γp. Fix a block K, a point x on K and a point y off K,
with x and y non-collinear in Γ. Remember that p is anti-regular, so every 3 points of Γp

which are non-collinear in Γ define a unique block. Hence, the number of blocks through
y and x meeting K in exactly 2 points is t − 1. On the other hand, there are in total s
blocks through x and y, at least one of which meets K in exactly {x} (if K = pu, then
there is a point w on the line joining u and x ∗u at distance 4 from y; pu and pw have only
x in their intersection, otherwise a pentagon arises), so at most s− 1 blocks through x and
y meet K in a second point. This implies t ≤ s.

STEP 2

In this paragraph, we keep our assumption about the regularity of G on the set of ordered
heptagons, or equivalently, on the set of skeletons of Γ. But we handle the case t < s,
which will be assumed throughout this step. We consider again the notation of the first
two paragraphs of Step 1. In particular the subgroup N1 fixes L6, L3 and L, and it fixes
L1 and L2 pointwise. In fact, L was essentially arbitrary. So we can define a regular group
N2 for a different line M through p1, L6 &= M &= L1 in the same way as N1 was defined
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for L. By the transitivity on V there exists for every θ ∈ N1 an element θ′ ∈ N2 such
that (pθ

6)
θ′

= p6. So θθ′ fixes Σ and all points on L1 or L2, hence θθ′ fixes a subhexagon of
order (s, t′), implying s ≤ t or t = t′ by Thas [13]. By our assumption, t = t′, so θ′ = θ−1

and so θ fixes both L and M . Since M was essentially arbitrary, θ fixes every line through
p1. A similar argument shows that θ also fixes every line through p3. Now consider a line
X through p2, L1 &= X &= L2. The group H2 fixing Σ and X has order s − 1 and acts
transitively on the set of points incident with L1 and different from p1 and p2. Suppose any
element ϕ ∈ H2 fixes a point x on L6, p1 &= x &= p6. By the Subcase (b) assumption, the
point u on X, at distance 4 from the point w, which is defined by: w is collinear with x and
at distance 3 from L3, is different from the point u′ at distance 4 from p5 and incident with
X. Hence ϕ fixes the skeleton determined by the apartment containing p1, p2, u′, p5 and p6

and furthermore consisting of the line L2 and the point u. By the regularity of the action
of G on the set of skeletons, ϕ must be the identity. Hence H2 acts regularly on the set of
points of L6 different from p1 and p6. Since s > 2, this group is non-trivial, and letting p6

now vary over V , we obtain a group H3 of order s(s−1) acting sharply doubly transitively
on V and fixing p1, p2, p3 and L6, L1, L2 and X. A similar argument as above shows that in
fact N1 is a subgroup of H3 and hence we conclude that Γ is (p1, L1, p2, L2, p3)-transitive.

By transitivity, Γ is also (p2, L2, p3, L3, p4)-transitive with corresponding group N3 (so every
element of N3 fixes all elements incident with one of the points p2, p3, p4 or with one of the
lines L2, L3). Suppose the commutator [N1, N3] is trivial. It is easy to see that this implies
that every element of N1 fixes every line through every point of L1 respectively L2. This
implies that, with dual notation, LL4

1 = LM4
1 , where M4 is a line opposite L1, meeting L3

and at distance 4 from L6. This means that the dual ΓD of Γ satisfies the assumption of
Case (i), and hence we may assume that ΓD also satisfies the assumption of Subcase (b). So
s ≤ t, a contradiction. Hence [N1, N3] is non-trivial. But it is easily seen that any element
θ of [H1, N2] fixes every element incident with one of L1, p2, L2, p3, L3. By conjugating θ
with the subgroup of G fixing Σ, we see that Γ is (L1, p2, L2, p3, L3)-transitive. Hence Γ
is Moufang. But this is again a contradiction, because no Moufang hexagon satisfies the
assumption of Subcase (b), see e.g. Ronan [10],(5.9). Hence this situation cannot occur.

STEP 3

In this step, we still assume that G acts regularly on the set of skeletons of Γ, but by
the last paragraph, we necessarily have s = t. We consider the notation of the first two
paragraphs of Step 1 again, in particular the group N1 fixing L6, L3 and L, and fixing L1

and L2 pointwise. Note that this group must fix at least one other line L′ through p2,
L1 &= L′ &= L2, and one other line L′′ through p3, L2 &= L′′ &= L3 (because N1 is a π-group
for some prime π and t is a power of π). Similarly, there is a group N4 of order s = t fixing
p1, p2, p3 and p4, all lines through p2 and p3, a point p on L1, p′ on L2 and p′′ on L3, p, p′, p′′

not in Σ.

We now interrupt our proof for a moment to get back to the notation of the last paragraph
of Step 1, in order to derive some more geometric properties. In the geometry Γp we fix
a point p ∗ p′ with p′ a point of Γ at distance 4 from p. Let L be the line joining p′ and
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p ∗ p′. Let x be a point collinear with p′ and opposite p. By the Case (i) assumption,
there are exactly s points y opposite p and collinear with p′ for which px = py. Evidently,
every other point u collinear with p′ and opposite p gives rise to a different block pu &= px

of Γp and moreover pu ∩ px = {p ∗ p′}. So p′ defines exactly s blocks of Γp which meet
two by two in p ∗ p′. Varying p′ over L (keeping it at distance 4 from p of course), we see
that the set of points opposite p and at distance 3 from L define at most s2 blocks in Γp

(“at most” since some of them could coincide). Now consider two arbitrary lines L1 and
L2 through p, not incident with p ∗ p′, and consider arbitrary points p1 and p2 on L1 and
L2 respectively, p1 &= p &= p2. Let p′1 be a point not incident with L but collinear with
p′ and at distance 4 from p1. Then p′1 defines a block in S through p1, and hence by the
Subcase (b) assumption, there is a point x at distance 3 from L such that {p1, p2} ⊆ px.
Varying p1 and p2 over L1 respectively L2, we see that at least s2 blocks through p ∗ p′ are
defined by points at distance three from L, hence exactly s2. It is now easy to see that
the incidence structure Π(p, L) with point set the set of points collinear with p but not
collinear with p ∗ p′, and line set the set of blocks of the form px with x at distance 3 from
L and opposite p, together with the ordinary lines through p, forms an affine plane (with
the obvious incidence relation). Every point on L different from p ∗ p′ symbolizes a point
at infinity of Π(p, L) and also p is a point at infinity of Π(p, L) in an obvious way.

We now get back to our previous situation (first paragraph of this Step 3). Let θ be
any non-trivial element of N1. This collineation induces in Π(p2, L6) a non-trivial axial
collineation (indeed, all points of the line L2 are fixed), hence θ is central. Since θ fixes the
lines L′, L2 and the line at infinity of Π(p2, L6), the center must be the point p2 at infinity,
which is incident with all three fixed lines mentioned. Hence θ fixes all lines through p2.
Similarly θ induces an axial non-trivial collineation in Π(p1, L2) (all points at infinity of
Π(p1, L2) are fixed), and hence θ is central, but as already three lines through the point
p1 at infinity are fixed (the line at infinity, L and L1), p1 must be the center, hence θ
fixes all lines through p1 and similarly, also all lines through p3. We conclude that Γ is
(p1, L1, p2, L2, p3)-transitive. Considering again the commutator [N1, N3] as in the second
paragraph of Step 2, we obtain that either ΓD has anti-regular points, in which case Γ is
dually (L1, p2, L2, p3, L3)-transitive and hence Moufang; or [N1, N3] is non-trivial and Γ is
Moufang again. But as before, this is a contradiction since a Moufang hexagon cannot
satisfy the assumption of Subcase (b).

So we conclude that Case (i), Subcase (b) cannot occur if G acts regularly on the set of
ordered heptagons.

STEP 4

We now drop every extra assumption on Γ and G. Consider a certain fixed heptagon in Γ
and take the intersection of all subhexagons containing this heptagon. This is again a thick
generalized hexagon Γ′ which does not contain strictly any thick subhexagon. Clearly G
induces in Γ′ a group of collineations acting transitively on the set of ordered heptagons,
but since Γ′ does not contain strictly any subhexagon, this action must be regular. It is
also clear that Γ′ satisfies the assumptions of Case (i) and Subcase (b), so by the previous
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steps, Γ′ cannot exist. Hence Γ cannot exist.

This completes the proof of Case (i).

2.4 Case (ii)

Here we assume that all intersection sets have order ≥ 2 in both Γ and ΓD, and that
s = t. As in the previous case, it suffices to show that this situation cannot occur if G acts
regularly on the set of ordered heptagons.

Note that Γ does not even contain any subhexagon of order (1, s) or (s, 1) since this would
imply that Γ satisfies the condition of Case (i). Indeed, if Γ′ is a subhexagon of order (1, s)
containing two points p, p′ at distance 4 from each other, then all points u of Γ′ collinear
with p′ and opposite p determine the same set pu as this set consists of all points of Γ′

collinear with p.

Consider an apartment Σ = (p1, L1, . . . , p6, L6, p1) as before, then we again obtain a sharply
doubly transitive permutation group and a group N1 fixing L6, L3, fixing L1 and L2 point-
wise, and fixing some lines L, L′, L′′ through p1, p2, p3 respectively and not contained in
Σ; N1 acts regularly on the set of points incident with L6 but different from p1. By the
transitivity property of G, we can choose either L or L′ or L′′ (but we obtain possibly a
different group N∗

1 ) arbitrarily (but with the same restrictions). With every element θ of
N1 corresponds an element θ′ of N∗

1 such that θθ′ fixes Σ elementwise. But it also fixes
every point on L1 and on L2, hence it fixes a subhexagon of order (s, t′). By Thas [13],
t′ = 1 or t′ = s. We already ruled out t′ = 1, hence t′ = s and so θ = θ′. We conclude that
N1 also fixes every line through p1, every line through p2 and every line through p3. So Γ
is (p1, L1, p2, L2, p3)-transitive. Also the dual transitivity holds here and so Γ is Moufang.
But this is impossible since every Moufang hexagon of order (s, s) has a subhexagon of
order (1, s) or (s, 1), see e.g. Ronan [10],(6.11).

This completes the proof of the Theorem 1.

3 Proof of Theorem 2

Now we suppose that Γ is a finite thick generalized octagon of order (s, t) admitting a
group G acting transitively on the set of all ordered nonagons of Γ, or equivalently (as for
hexagons), on the set of all skeletons of Γ. Upon taking the intersection of all suboctagons
containing a fixed nonagon, we may suppose that G acts regularly on the above sets
(because if we show that this regular situation cannot occur, then also the more general
transitive situation is impossible). By the fact that 2st must be a perfect square, see Feit
& Higman [3], we may assume that s < t.

We adopt the following notation throughout: Σ is the apartment (p1, L1, p2, . . . , p8, L8, p1),
where consecutive elements are incident. The distance is again the one inherited from the
incidence graph and elements at distance 8 are called opposite.
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The reader can easily generalize the definition of Moufang condition to octagons and by
Tits [19], all Moufang octagons are Ree-Tits octagons.

We again consider some steps.

STEP A.

In this step, we show the claim that G acts regularly on configurations of the form (Σ, p, L),
where L is a line incident with p1, p is a point incident with L2 and neither L nor p is in Σ.
The subgroup H1 of G fixing Σ elementwise has order (s− 1)(t− 1) and acts transitively
on the set of lines through p1 different from L8 and L1. The stabilizer H2 of L in H1 has
therefore order (s−1). We have to show that H2 acts transitively on the set of s−1 points
on L2 different from p2 and p3. Suppose this is not the case, then there is a collineation θ
in H2 fixing some point p on L2, p2 &= p &= p3. There is a unique line M at distance 4 from
L and at distance 3 from p5; there is a unique point x on M at distance 6 from p; there is
a unque point y on L7 (different from p7 and p8) at distance 6 from x and there is a unique
point z on L3 at distance 6 from y. Obviously, θ fixes all these elements. Dually, there is
a line Z through p8, L7 &= Z &= L8, fixed by θ. But now θ fixes a skeleton (Σ; Z, y), hence
θ is the identity and our claim follows.

STEP B

We show half of the Moufang condition. As for generalized hexagons (Step 1 of 2.3.2), we
have a sharply doubly transitive group H3 acting on the lines through p8 different from L8

fixing p8, p1, · · · , p4, p, where p is a certain arbitrarily chosen point on L8 (p not in Σ). As
in 2.3.2 and using Step A above, one shows again that H3 has a regular normal subgroup
N3 fixing every line through p1, p2 and p3. Since we have now t > s, and by Thas [14], Γ
does not contain a suboctagon of order (s′, t) unless s = s′, we can dualize the argument
of Step 2 of 2.3.2 (using also Step A above) to obtain that Γ is (L8, p1, . . . , L3)-transitive.

Note that, dually, we have a group N1 of order s fixing L8, L4 and a certain arbitrary line
L through p1, L8 &= L &= L1, and fixing every point on L1, L2 and L3. The group N1 acts
regularly on the set of points incident with L8 but different from p1.

In particular we deduce that both s and t are powers of a prime (not necessarily the same
one, but since 2st is a square, at least one of these primes equals 2).

STEP C

In this step, we determine two geometric properties that Γ must have, if it were not
Moufang.

(R1) If Γ is not Moufang, then the commutator [N3, N4] must be trivial (N4 is the group
of all (L1, p2, . . . , L4)-elations). As in Step 2 of 2.3.2, this means that, whenever x
is a point collinear with p6 (or p4) and at distance 6 from p2 (or p8), then px

1 = pp5
1

(where yz is the set of points collinear with y and at distance 6 from z; y and z must
be opposite).
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(R2) Let p be any point on L1, p1 &= p &= p2. Define the elements p I M1 I x1 I M2 I x2 I M3 I
x3 I L5. Let M be any line through p4, L3 &= M &= L4, and let θ (respectively θ′) be
the unique (L8, p1, . . . , L3)-elation (respectively (M1, p, L1, . . . , L3)-elation) mapping
L4 onto M .

First assume that the unique point x on M at distance 6 from p8 is opposite x1. Then
the collineation θ′θ−1 fixes all points of L1, L2 and L3, it fixes all lines through p2 and
p3 and it does not fix all points on L4. By composing with a suitable (L1, p2, . . . , L4)-
elation, we obtain a collineation ϕ fixing L8 and L4, every point on L1, L2 and L3

and every line through p2 and p3. By conjugation, the group N5 of such collineations
acts transitively (hence regularly) on the points incident with L4 different from p4.
If at least one element ϕ of N5 fixes at least one line L through p1, L8 &= L &= L1,
then by conjugation with the subgroup H2 of G fixing Σ and L, every element of N5

must fix L. By conjugation with the subgroup H1 fixing Σ (and acting transitively
on the set of lines through p1 different from L8 and L1), we see that N5 must fix
every line through p1. By a similar argument, N5 fixes all lines through p4 if it does
not act semi-regularly on the set of lines through p4 different from L3 and L4. So
Γ is (p1, L1, . . . , p4)-transitive unless N5 acts semi-regularly on the set of t − 1 lines
through p1 different from L8 and L1, or on the set of t− 1 lines through p4 different
from L3 and L4. If this happens, then s divides t− 1.

We now show that also s − 1 must divide t − 1. Let θ ∈ N5 be non-trivial. Let
θ′ ∈ N1 such that θ′θ−1 fixes Σ. Since θ does not fix L, θ′θ−1 is non-trivial and
fixes every point on L1, L2 and L3, hence it fixes a suboctagon of order (s, 1). This
suboctagon is easily seen to be Moufang (by the presence of the group N1 or N5), and
by transitivity, it is also self-dual. Hence it is the double of a symplectic quadrangle
of characteristic 2 and, if s &= 2, the elations generate the symlectic group PSp4(s)
which contains a subgroup K (of “generalized homologies”) of order s−1 which fixes
Σ and every point on L1, and which acts transitively on the remaining points of L8

(indeed, this follows from the fact that the symplectic group PSp4(s) is simple in
this case). No non-trivial element of K can fix an additional line through p1 since
otherwise a non-trivial thick suboctagon is fixed. Hence the claim for s &= 2. But if
s = 2, then t = 4 and the result follows.

Hence s(s − 1) divides t − 1. But this implies that either s(s − 1) = t − 1, or
2s(s − 1) ≤ t − 1. Note that certainly t is odd, and hence t is a square. But if
s(s− 1) = t− 1, then s2− s + 1 = t and so (s− 1)2 < t < s2, a contradiction. Hence
2s(s− 1) ≤ t− 1 ≤ s2 − 1 (by the inequality of Higman [6]), implying s = 1. This
shows that our assumption is false. Hence x is at distance 6 from x1, for every choice
of M and p.

From this we derive the following property of Γ:

(RR) If x and y are opposite points of Γ, L is a line at distance 3 from y and 5 from x,
and z is opposite x and at distance 3 from L, then either xy = xz, or |xy ∩ xz| = 1.
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Indeed, suppose |xy ∩xz| ≥ 2. Let a be the unique point collinear with x and at distance 3
from L, and let b be a second point in xy∩xz. Let Ly and Lz be the unique lines through b
at distance 5 from y and z respectively and let py and pz be the points on L collinear with
y and z respectively. If py = pz or Ly = Lz, then xy = xz by (R1) and (R2) respectively. So
suppose py &= pz and Ly &= Lz. Let u be the unique point collinear with z and at distance
5 from Ly. By (R1), xz = xu and by (R2), xy = xu. Hence (RR) follows.

The property (RR) expresses a kind of distance-2 regularity. In the next and last step, we
will show that this is impossible for any generalized octagon. The proof is completely the
same as the one ruling out distance-2 regular octagons in Van Maldeghem [21], since
in fact (RR) is the only thing used in the proof in that paper. For the convenience of the
reader, we repeat this proof here.

STEP D

Let (p1, L1, p2, . . . , p8, L8, p1) be as above. We assume that property (RR) holds for every
pair of opposite points x, y (which we may by transitivity). Let p′1 be incident with L8 but
different from both p1 and p8 (Γ is thick). Construct the sequence (p′1, p

′
1p
′
2, p

′
2, p

′
2p
′
3, p

′
3, p

′
3p
′
4, p

′
4)

such that p′4 is incident with L4. Let (p2, p2p′′3, p
′′
3, p

′′
3p

′′
4, p

′′
4, p

′′
4p

′′
5, p

′′
5, p

′′
5p6, p6) be a sequence

with p3 &= p′′3 &= p1 (again possible by the thickness assumption). Since {p1, p3} ⊆ pp6
2 ∩ p

p′
3

2 ,
property (RR) implies that p′3 is at distance 6 from p′′3 and so we can define a sequence
(p′3, p

′
3x1, x1, x1x2, x2, x2p′′3, p

′′
3). Clearly x1 is incident with neither p′2p

′
3, nor p′3p

′
4.

Suppose first that x2 is not incident with p′′3p
′′
4. Let x3 be the unique point on p′′3p

′′
4 at

distance 6 from p′4. Clearly p′′3 &= x3 &= p′′4. But {x2, p2} ⊆ (p′′3)
p′
2∩(p′′3)

p′
4 , hence the distance

between p′2 and x3 is 6, so p′2 and p′′4 are opposite. Now pp2
6 and p

p′
2

6 share the points p5

and p7, and so there is a sequence (p′2, p
′
2y1, y1, y1y2, y2, y2p′′5, p

′′
5). Clearly y1 is incident

with neither p′1p
′
2 nor p′2p

′
3. And if y2 were incident with p′′4p

′′
5, then the distance between

p′2 and p′′4 would be 6, contradicting the fact that they are opposite. Also, p′2x1 &= p′2y1

(otherwise a cycle of length 14 or 12 via x3 and p′′5 arises). Clearly p′′3 and y1 are opposite,
but this contradicts {p′1, p′3, y1} ⊆ (p′2)

p6 and {p′1, p′3} ⊆ (p′2)
p′′
3 ∩ (p′2)

p3 and property (RR).
We conclude that x2 must be incident with p′′3p

′′
4.

So we may suppose that x2 is incident with p′′3p
′′
4. By symmetry, y2 (defined as in the

previous paragraph) must be incident with p′′4p
′′
5. But then (p′2, y1, y2, p′′4, x2, x1, p′3, p

′
2) forms

a cycle of length 14 in Γ, a contradiction.

This completes the proof of Theorem 2.
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