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Abstract

We show that every embedded finite thick generalized hexagons H of order (q, t)
in PG(n, q) which satisfies the conditions

(i) the set of all points of H generates PG(n, q),
(ii) for any point x of H, the set of all points collinear in H with x is
contained in a plane of PG(n, q),
(iii) for any point x of H, the set of all points of H not opposite x in H
is contained in a hyperplane of PG(n, q),

is necessarily the standard representation of H(q) in PG(6, q) (on the quadric
Q(6, q)), the standard representation of H(q), q even, in PG(5, q) (inside a sym-
plectic space), or the standard representation of H(q, 3

√
q) in PG(7, q) (where the

lines of H are the lines fixed by a triality on the quadric Q+(7, q)). This generalizes
a result by Cameron & Kantor [3], which is used in our proof.

1 Introduction

A generalized n-gon, n ≥ 2, or a generalized polygon, is a rank 2 point-line geometry the
incidence graph of which has diameter n (i.e. two elements are at most at distance n)
and girth 2n (i.e. the length of any shortest circuit is 2n). A thick generalized polygon
is a generalized polygon for which each element is incident with at least three elements.

∗The second author is Senior Research Associate of the Belgian National Fund for Scientific Research
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In this case, the number of points on a line is a constant, say s + 1, and the number of
lines through a point is also constant, say t + 1. The pair (s, t) is called the order of
the polygon. As is immediately clear from the definition, there is a point-line duality for
generalized polygons.

These objects were introduced by Tits [16] to study classical, exceptional and twisted
Chevalley groups (of relative rank 2). Since then, they have become research objects in
their own right for many geometers.

A generalized polgygon Γ is embedded in the projective space PG(d, K) if its points are
points of PG(d, K) which generate PG(d, K), if its lines are lines of PG(d, K) and if all
points of Γ incident with any line L of Γ are exactly all points of PG(d, K) on the line
L. One of the many beautiful geometric results is the classification of all generalized
quadrangles embedded in projective space PG(d, K), a project which was started by
Buekenhout & Lefèvre [2], who treated the finite case, and finished by Dienst in
the infinite case [4]. A similar result for thick generalized hexagons seems at this moment
not within reach since there are many “exotic” examples obtained by projecting (from a
point) a given embedded generalized hexagon into a hyperplane. Several of these “exotic”
examples have the property that for some point x (but not necessarily all points) of the
hexagon the set of points not opposite x in the hexagon span the projective space generated
by the hexagon (opposite points are points at distance 6 in the incidence graph). So a first
natural condition to ask is that this never happens. But also under that assumption, it
is not clear whether a classification is possible since examples may be constructed in high
dimensional spaces as images on grassmannians of the classical embeddings. But these
have the property that all points collinear with any given point in the hexagon generate at
least a three dimensional space. So one may impose as a second condition that this never
happens. Explicit inspection of the classical hexagons arising from trialities reveals that
they satisfy the two conditions stated above. Hence the question may be asked whether
they are the only ones. The present paper answers this question affirmatively in the finite
case.

2 Statement of the Main Result

In [16], Tits defines two classes of thick generalized hexagons arising from trialities on
the hyperbolic quadric in projective 7-dimensional space over a commutative field. Here
we are only interested in the finite case, and then the two classes are related to Dickson’s
simple group G2(q) respectively the triality group 3D4(q) (which was discovered in that
same paper [16] by Tits); we call them the classical generalized hexagons. The generalized
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hexagon H corresponding to a triality τ on the quadric Q+(7, q) is defined as follows: the
points of H are the points p of Q+(7, q) which are mapped by τ onto a maximal singular
subspace incident with p, the lines of H are the lines which are fixed by τ and incidence
is the natural one. Tits [16] shows that there are two cases in which thick generalized
hexagons arise; in the first case one obtains a hexagon of order (q, 3

√
q), here denoted

by H(q, 3
√

q), in the second case one obtains a hexagon of order (q, q) which lies in a
hyperplane of PG(7, q), and denoted by H(q). So the latter can be represented on a
quadric Q(6, q) in 6-dimensional projective space (its points are all the points of Q(6, q)
while its lines are some lines of Q(6, q); see Tits [16] for more details). In the even
characteristic case, the polar space Q(6, q) is isomorphic to the symplectic polar space
W (5, q) and hence in this case one obtains a representation of H(q) in 5-dimensional
projective space. We call these three different representations of the classical generalized
hexagons the natural embeddings. They all satisfy conditions (i) up to (iv) below, as
follows immediately from Tits [16]; in (i) up to (iv), H is a classical hexagon naturally
represented in d-dimensional projective space, d = 5, 6, 7:

(i) The points incident with a line in H are all points of some line in PG(d, q).

(ii) The points of H span PG(d, q).

(iii) The points collinear (in H) with any given point in H are coplanar in PG(d, q).

(iv) The points not opposite any given point in H are contained in a hyperplane of
PG(d, q).

If we call any representation of any thick generalized hexagon satisfying the properties
(i), (ii), (iii) and (iv) a regular or ideal embedding in PG(d, q), then our Main Result
states that every regular embedding is natural.

Main Result. Let H be a finite thick generalized hexagon, regularly embedded in some
projective space. Then H is a natural embedding of a classical generalized hexagon.

It should be mentioned that in the proof of the Main Result we rely on the following
result on embeddings of generalized hexagons due to Cameron & Kantor [3].

Theorem (Cameron & Kantor [3],3.1, 3.2). Suppose that the finite thick generalized
hexagon H satisfies properties (i), (ii) together with

(iii)’ the set of all points collinear (in H) with any given point in H is a plane
of PG(d, q),
(iv)’ the points not opposite any given point x in H are contained in a hyper-
plane π of PG(d, q) and π does not contain points opposite x.
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Then H is a natural embedding in PG(5, q) or PG(6, q) of a classical generalized hexagon.

Remark. In this theorem the order of H is necessarily (q, q).

3 Digression

Before we prove the Main Result, we motivate the term regular or ideal embedding by the
following observations. The (finite) generalized quadrangles admitting a regular embed-
ding are precisely those with all points regular (in the sense of Payne & Thas [10]). As a
first step, we will show below that every generalized hexagon admitting a regular embed-
ding must have ideal lines (in the sense of Ronan [11]). The notions of “regular points”
for generalized quadrangles and “ideal lines” for generalized hexagons were unified for
generalized polygons by Van Maldeghem [19] as “distance-2 regular” points in general-
ized polygons. One might wonder whether regular embeddings of finite thick generalized
octagons exist (octagons are 8-gons and according to Feit & Higman [5] n = 8 is the
only value distinct from 3,4 and 6 for which there exist finite thick generalized n-gons).
In the appendix we show that any finite thick generalized octagon admitting a regular
embedding must be distance-2 regular and hence by Van Maldeghem [19] this cannot
occur. In view of these remarks, an alternative formulation of our Main Result is:

Main Result – Second version. If a finite thick generalized n-gon G, n ≥ 4, is regularly
embedded, then n = 4 or 6 and we have one of the following cases:

(a) G is the symplectic quadrangle W (q) naturally embedded in PG(3, q);

(b) G is the Hermitian quadrangle H(3, q2) naturally embedded in PG(3, q2);

(c) G is the classical hexagon H(q), q even, naturally embedded in PG(5, q);

(d) G is the classical hexagon H(q) naturally embedded in PG(6, q);

(e) G is the classical hexagon H(q, 3
√

q) naturally embedded in PG(7, q).

4 Proof of the Main Result

We prove the Main Result in a sequence of lemmas. The main idea is first to find the
upper bound d = 7 and lower bound d = 5 for the dimension of the projective space, and
then to consider the cases d = 5, 6, 7 separately in detail.
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In the sequel, let H be a thick generalized hexagon of order (q, t), with pointset P and
lineset L, regularly embedded in PG(d, q). For the sake of convenience, we will call
collinearity in H polycollinearity and keep the notion of collinearity strictly for PG(d, q).
Note that concurrency of lines is the same in the hexagon as in the projective space, that
coplanarity is only defined in the projective space, and that oppositeness will only be
considered in the hexagon; hence these notions do not cause confusion.

For two points x and y at distance 4 in the generalized hexagon H, we denote by x ∗ y
the unique point polycollinear with both.

4.1 General lemmas

An apartment in H is a set of six points and six lines forming a circuit. A full subhexagon
of the generalized hexagon H of order (q, t) is a subhexagon (i.e. a generalized hexagon
whose pointset and lineset are subsets of the pointset and lineset of H respectively and
for which the incidence is just the restriction of the incidence relation in H) of order (s, t),
for some s ≥ 1. It is called thin if s = 1.

Lemma 1 Let U be a subspace of PG(d, q) containing an apartment of H. Then all
points of H contained in U and incident with at least two lines of H in U , together with
the lines of H in U and the natural incidence, form a full subhexagon H′ of H.

PROOF. Let x and L be respectively a point and a line of H in U and suppose that there
exist at least two lines of H through x in U . Then all lines of H through x lie in U by
condition (iii). So there remains to show, by a well-known result (see e.g. Walker [20])
, that the unique chain in H joining x with L lies in U . If L contains a point polycollinear
with x, then this is obvious. Now suppose that the distance in H of x and L is 5. Then
there are points y, z and lines M, N in H such that x I M I y I N I z I L. Since L and M
are in U , both z and y are and hence N is. This proves the lemma. !

Remark 2 Lemma 1 also holds if condition (iv) is deleted and condition (i) is replaced
by the weaker condition:

(i)′ The points incident with a line in H are points (not necessaily all) of some
line in PG(d, q).
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If U and H′ are as in the above lemma, then we say that H′ is induced by U .

Consider any x ∈ P. The points not opposite x span a subspace which we denote by ξx.
By assumption (iv), ξx %= PG(d, q) for all x ∈ P .

Lemma 3 For every x ∈ P the space ξx has dimension d − 1 and does not contain any
point opposite x.

PROOF. Let x ∈ P and suppose that U is a hyperplane of PG(d, q) containing ξx and
a point u opposite x. Clearly U contains any apartment through x and u. So U induces
a subhexagon H′. But also all points polycollinear with x belong to H′ (by condition
(iii)), and so the order of H′ is (q, t); hence H′ = H, contradicting condition (ii). So if
the dimension of ξx is less than d− 1, then any point opposite x lies in some hyperplane
U containing ξx. Hence ξx is a hyperplane. Putting ξx = U in the first part of the proof,
the result follows. !

Corollary 4 For x, y ∈ P, x %= y, we have ξx %= ξy.

PROOF. The hyperplane ξx contains a point of H opposite y. By Lemma 3 we have
ξx %= ξy. !
For any x ∈ P, we denote by πx the unique plane in PG(d, q) spanned by all points
polycollinear with x. The next lemma shows that there are no other points of H in πx.

Lemma 5 For every x ∈ P, the plane πx does not contain points of H not polycollinear
with x.

PROOF. Let u ∈ P ∩ πx be not polycollinear with x. If u is not opposite x, then the
unique line of H through u nearest to x lies in πx, so it meets every line of H through x,
a contradiction. Hence u is opposite x, but then u ∈ πx ⊆ ξx, contradicting Lemma 3. !

Lemma 6 H is a classical generalized hexagon. Hence also every thick full subhexagon
of H is classical.

PROOF. If x and y are opposite points of H, then πx is not contained in ξy by Lemma 3.
Hence the set xy of points of H polycollinear with x and at distance 4 from y is contained
in the line ξy∩πx, and hence xy is equal to πx∩ξy∩P . Clearly, any such set is determined
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uniquely by any two of its points. This shows that H has ideal lines (in the sense of Ronan
[11]) and so by Ronan [11] it is classical. It is clear that also every full subhexagon of H
has ideal lines, so is classical if it is thick. !
The set πx ∩ ξy ∩ P is called an ideal line in Ronan [11], or a distance-2 trace in Van
Maldeghem [19].

Lemma 7 We have 5 ≤ d ≤ 7. Also, if H ∼= H(q), then d %= 7. If H ∼= H(q, 3
√

q), then
no subhexagon of H isomorphic with H( 3

√
q) is contained in a PG(d− 2, q).

PROOF. Clearly d ≥ 3. If d ≤ 4 then ξx∩ξy is a plane or a line for opposite points x and
y, and consequently every two lines at distance 3 from both x and y intersect, respectively
coincide, a contradiction. Hence d ≥ 5.

Consider an apartment Σ in H and a line L of H concurrent with exactly one line of Σ.
Let L and Σ generate a PG(m, q). Then m ≤ 6. Let H′ be the full subhexagon induced
by PG(m, q). Then the order of H′ is (s, t), with 2 ≤ s ≤ q. If q = s, then m = d ≤ 6
and we are done. So suppose s < q. Then there is a line M of H which does not lie
in PG(m, q), but which contains a point on a line of Σ. Let M and PG(m, q) generate
PG(m+1, q) and let PG(m+1, q) induce a full subhexagon H′′ of order (s′, t), s < s′ ≤ q.
Note that H′ is a full subhexagon of H′′. If s′ = q, then d = m + 1 ≤ 7 and we are done
again. If s′ < q, then it follows from Thas [14] that q ≥ s′2t, s′ ≥ s2t, and hence q ≥ s4t3.
Now from Haemers & Roos [6] we deduce q ≤ t3. This implies q = t3 and s = 1, a
contradiction.

Alternatively, we can argue as follows: we know that H is classical, hence if it contains a
proper full subhexagon, then necessarily H is H(q, 3

√
q) and H′ is H( 3

√
q). But then H′′

must coincide with one of them.

Assume that H ∼= H(q). By Thas [14], either s = q or q ≥ s2q. As s ≥ 2, necessarily
s = q and so m = d ≤ 6.

Now let H∗ be a proper thick full subhexagon of H, contained in a PG(d − 2, q). The
subhexagon induced by the subspace PG(d−1, q) generated by this PG(d−2, q) and any
line of H not in H∗ but concurrent with a line of H∗ must coincide with H (as above), a
contradiction. In particular, if H ∼= H(q, 3

√
q), then no subhexagon of H isomorphic with

H( 3
√

q) is contained in a PG(d− 2, q). !
A point-line geometry Ω with pointset P is sub-weakly embedded in a projective space
PG(d, q) if the following conditions are satisfied:

(a) P is a pointset of PG(d, q) which generates PG(d, q);
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(b) the points incident with a line in Ω are points (not necessarily all points) of some
line in PG(d, q); distinct lines of Ω define distinct lines of PG(d, q);

(c) for any point x of Ω, the subspace generated by the set {y ‖ y ∈ P is collinear with x}
meets P precisely in that set;

Theorem 8 Let the finite (thick) polar space Ω of rank r ≥ 3 be sub-weakly embedded
in PG(d, q), d ≥ 3, and assume that any line L of PG(d, K) which is not a line of Ω
intersects Ω in at most two points. If the lines of Ω contain q′ + 1 points, then GF (q′) is
a subfield of GF (q) and Ω is embedded in a subspace PG(d, q′) of PG(d, q).

PROOF. The proof is due to Thas & Van Maldeghem [15]. !
We now start our case-by-case study depending on d.

4.2 The case d = 5

By Lemma 6, H is classical and hence t ∈ {q, 3
√

q}.

Lemma 9 If t = q, then q is even and H ∼= H(q) is naturally embedded in PG(5, q).

PROOF. As |P| = q5 + q4 + q3 + q2 + q + 1, it is immediate that P is the pointset
of PG(5, q). By Cameron & Kantor [3], Theorem 3.2, q is even, x ,→ ξx defines a
symplectic polarity θ of PG(5, q) and H ∼= H(q) is naturally embedded in PG(5, q). !
We denote by δ the distance function in the incidence graph of H.

Lemma 10 The case t = 3
√

q cannot occur.

PROOF. Consider two opposite lines L and M in H. Let x1, y1 ∈ L, x1 %= y1, and
x2, y2 ∈ M , x2 %= y2, with δ(x1, x2) = δ(y1, y2) = 4. All points at distance 3 from both L
and M are in ξx1∩ξy1 and in ξx2∩ξy2 . The space ξx1∩ξy1 is 3-dimensional (by Corollary 4)
and has no point in common with M (such a point would be at distance 4 from each of
x1, y1, a contradiction). So ξx1 ∩ ξy1 ∩ ξx2 ∩ ξy2 is a line R of PG(5, q). Hence R is the set
of all points at distance 3 from L and M . So if δ(x, y) = 6, then the line xy of PG(5, q)
consists of q + 1 mutually opposite points of H. Also, it is readily seen using Lemma 5
that a line of PG(5, q) containing 2 points at mutual distance 4 contains exactly 3

√
q + 1
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points of H. Hence P is a set of type (0, 1, 3
√

q + 1, q + 1) in PG(5, q). By Lefèvre-
Percsy [9], P has either a plane section consisting of a line and a maximal arc, or a plane
section which is the complement of a maximal arc (and the maximal arc is respectively a
(( 3
√

q − 1)(q + 1) + 1; 3
√

q)-arc or a ((q − 3
√

q − 1)(q + 1) + 1; q − 3
√

q)-arc). In the latter
case q − 3

√
q must divide q (see e.g. Hirschfeld [7]), a contradiction. Hence there is a

plane section consisting of a line L and a maximal arc K. Let x, y, z be a triangle in K.
Then δ(x, y) = δ(y, z) = δ(z, x) = 4 (as no line xy, yz, zx of PG(5, q) is contained in
the plane section). Since x, y, z form a triangle, the points x ∗ y, y ∗ z, z ∗ x, which are
not contained in the plane of K, are distinct, and hence x, y, z define a unique apartment
in H. As H is classical, this apartment is contained in a unique subhexagon H′ of order
(1, 3
√

q). Remark that H′ contains the ideal lines respectively defined by x and y, by y and
z, and by z and x. These ideal lines consist precisely of the points of the plane section
on the respective lines xy, yz, zx. Hence also the points z′, x′, y′ on L and respectively
xy, yz, zx belong to H′. But all points of H′ in the plane xyz are at mutual distance 4,
while all points of L are at mutual distance 2 or 6, a contradiction. !

4.3 The case d = 6

By Lemma 6 we conclude again that H is classical and hence t ∈ {q, 3
√

q}.

Lemma 11 If t = q, then H ∼= H(q) is embedded naturally in the quadric Q(6, q) of
PG(6, q).

PROOF. This follows immediately from Cameron & Kantor [3], Theorem 3.2. !
So from now on in this subsection, we assume that t = 3

√
q.

Lemma 12 Let H′ be any subhexagon of order (t, t) of H. Then H′ is naturally embedded
in a subspace PG(5, 3

√
q) or PG(6, 3

√
q).

PROOF. By Lemma 7, the points of H′ either span PG(6, q) or a subspace PG(5, q).
Suppose first that H′ spans PG(5, q). Consider two opposite lines L and M of H′. Let
x1, y1 be distinct points of H′ on L, let x2, y2 be distinct points of H′ on M , and suppose
that δ(x1, x2) = δ(y1, y2) = 4. All points of H′ at distance 3 from both L and M are
in ξx1 ∩ ξy1 and in ξx2 ∩ ξy2 . By Lemma 3 the spaces ξxi ∩ PG(5, q) and ξyi ∩ PG(5, q)
are 4-dimensional, and as ξxi ∩ PG(5, q) contains a point of H′ opposite yi we have
ξxi ∩PG(5, q) %= ξyi ∩PG(5, q) and so ξxi ∩ ξyi ∩PG(5, q) is 3-dimensional, i = 1, 2. Also,
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the space ξx1 ∩ ξy1 ∩ PG(5, q) has no point in common with M (such a point would be at
distance 4 from each of x1, y1, a contradiction). So ξx1 ∩ ξy1 ∩ ξx2 ∩ ξy2 ∩ PG(5, q) is a
line R. Hence R contains the 3

√
q + 1 points of H′ at distance 3 from L and M (clearly R

does not contain other points of H′). So if x, y are points of H′ with δ(x, y) = 6, then the
line xy of PG(5, q) contains 3

√
q + 1 points of H′. Hence the points of H′ together with

the lines of PG(5, q) which contain at least 2 points (and hence 3
√

q + 1 points) of H′ is a
2− (( 3

√
q)5 + ( 3

√
q)4 + . . . + 3

√
q + 1, 3

√
q + 1, 1) design.

Suppose that two blocks of the design are disjoint in H′, but that the corresponding lines
of PG(5, q) intersect in PG(5, q). The plane defined by these blocks will be denoted by
π. In π a subdesign with more than ( 3

√
q)2 + 3

√
q + 1 points is induced. Let z be a point

of H′, but not in π. Through z we take a block M whose corresponding line in PG(5, q)
is disjoint from π (this is possible as H′ generates PG(5, q)). We now consider the planes
generated by M and the points of H′ not on M ; at least one of these planes, say π′, is
disjoint from π (again as H′ generates PG(5, q)). Now we join the points of H′ in π to
the points of H′ in π′. These lines contain more than

( 3
√

q−1)(( 3
√

q)2 + 3
√

q +1)2 +2(( 3
√

q)2 + 3
√

q +1) = ( 3
√

q)5 +( 3
√

q)4 +( 3
√

q)3 +( 3
√

q)2 + 3
√

q +1

points of H′, a contradiction.

Hence the design satisfies the axiom of Veblen and so it is the design of points and lines
of PG(5, 3

√
q). This implies that Γ is embedded in a PG(5, 3

√
q); hence by Cameron &

Kantor [3], Theorem 3.1, H′ is naturally embedded in PG(5, 3
√

q).

Now suppose that H′ spans the whole space PG(6, q). We consider the polar space Γ
consisting of the points of H′, the lines of H′ and the ideal lines of H′. We show that Γ is
sub-weakly embedded in PG(6, q). Clearly conditions (a) and (b) are satisfied. Condition
(c) follows from Lemma 3 by simply remarking that the points of H′ not opposite a given
point x of H′ are precisely those points which are collinear in Γ with x. We now show
that any line L of PG(6, q) which is not a line of Γ intersects Γ in at most two points.

Let L be a line of PG(6, q) which is not a line of Γ, and assume that L contains at least
three points x1, x2, x3 of H′. Since L does not belong to Γ, these three points are mutual
opposite. Let PG(5, q) be the projective 5-space generated by an arbitrary apartment Σ
in H′ containing x1 and x2. As δ(x1, x3) = δ(x2, x3) = 6 the point x3 does not belong to
the full subhexagon of order (1, t) defined by Σ. Let u be any point of Σ polycollinear
with x1 (there are two distinct choices for u). Since both x1 and x2 are not opposite u,
Lemma 3 implies that x3 is not opposite u. Hence there exists a line M of H′ through x3

meeting a line of H′ through u. Since we have two choices for u, we obtain two such lines
through x3 which must clearly belong to PG(5, q). Hence PG(5, q) induces H′ (since the
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induced hexagon contains the full subhexagon of order (1, t) defined by Σ plus an extra
point). This contradicts our assumption.

Consequently, by Theorem 8, Γ is embedded in a PG(6, 3
√

q); hence by Cameron &
Kantor [3], Theorem 3.2, H′ is naturally embedded in PG(6, 3

√
q). !

Lemma 13 There exists no regular embedding of H(q, 3
√

q) in PG(6, q).

PROOF. Consider a thick proper full subhexagon H′ of H ∼= H(q, 3
√

q), where H is
regularly embedded in PG(6, q). Then H′ has order ( 3

√
q, 3
√

q), and by Lemma 12 H′

is embedded in either a PG(5, 3
√

q) or a PG(6, 3
√

q). Suppose each such subhexagon is
embedded in a 5-dimensional subspace. Let Σ be an apartment with points x1, x2, . . . , x6,
where xi is polycollinear with xi+1 (subscripts taken modulo 6). By Lemma 5 the plane
πx1 does not contain x3. By Lemma 3, the line x4x5 does not contain a point of the
3-space x1x2x3x6 (such a point would be in ξx1 ∩ ξx2). Hence Σ generates a 5-space. If H′

and H′′ are distinct subhexagons of order ( 3
√

q, 3
√

q) containing Σ, then, by assumption,
they are both induced by the 5-space generated by Σ, a contradiction. Hence we may
assume that at least one subhexagon H′ isomorphic to H( 3

√
q) is naturally embedded in

a quadric Γ′ = Q(6, 3
√

q). Extend Γ′ to Γ = Q(6, q). The set of all points of Q(6, q) not in

Q(6, 3
√

q) will be denoted by Q̃.

1. Suppose H contains a point x of Γ not on a line of H′. Let L0, . . . , L 3√q be the lines
of H containing x. Each line Li contains one point yi of a line Mi of H′, see Thas
[14], and remark that yi is not contained in H′. All the lines of H′ containing a
point of H′ on Mi lie in a PG(4, q), which is the tangent space of Γ at Mi. The
space PG(4, q) contains all lines of H intersecting Mi (since it is the intersection
of ξu and ξw for two distinct points u and w of H′ on Mi), so it contains Li. As x
belongs to Γ, also the line Li belongs to Γ. Hence all points polycollinear with x
belong to Γ. On the set of points of H not on a line of H′, a graph G is induced by
the point graph of H; by Brouwer [1], the graph G is connected. Consequently
all points of H belong to Γ. Let ti be the number of planes πp containing a point xi

of Γ not in H. If t̄ is the average of the numbers ti, then

t̄ =
(q2( 3

√
q)2 + q 3

√
q + 1)(q + 1)[q2 + q + 1− ( 3

√
q + 1)q − 1]

q5 + q4 + q3 + q2 + q + 1− (q + 1)(q2( 3
√

q)2 + q 3
√

q + 1)

=
q2( 3
√

q)2 + q 3
√

q + 1

q2 + q 3
√

q + 1
> 1.
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Hence there is a point xi for which ti > 1. Let πp and πp′ be two planes containing
a common point x, x in Γ but not in H. Necessarily δ(p, p′) ≥ 4. If δ(p, p′) = 4,
then πp and πp′ generate a PG(3, q) and there arises a thick proper full subhexagon
H′′ of order ( 3

√
q, 3
√

q) in a PG(5, q) (by considering 5 points in PG(3, q) which lie in
an apartment in some PG(4, q)). If δ(p, p′) = 6, then πp and πp′ are contained in a
4-space and again there arises a thick proper full subhexagon H′′ of order ( 3

√
q, 3
√

q)
in a PG(5, q) (by considering any apartment through p and p′). Consequently Γ
contains a PG(5, 3

√
q), a contradiction.

2. We may assume by the foregoing that the points of H in Γ are the points of Γ on
the lines of H′. Let L, M be two lines of H′ at distance 6. Let x, y be two points of
H′ on L. Then ξx (respectively ξy) is the tangent hyperplane of Γ at x (respectively
y), which follows from the fact that H′ is embedded in Γ′ ⊂ Γ. So ξx ∩ ξy is 4-
dimensional. Let x′, y′ be two distinct points of M in H′. Then ξx′ ∩ ξy′ is also
4-dimensional. The space ξx ∩ ξy, respectively ξx′ ∩ ξy′ , intersects Γ in q + 1 planes
through L, respectively M . Since H′ is embedded in Γ′, ξx ∩ ξy ∩ ξx′ ∩ ξy′ is a plane
β.

In H′ the points at distance 3 from L and M form a conic C over GF ( 3
√

q) of β; in
H the points at distance 3 from L and M form a set O of q + 1 points.

(1) Suppose q is odd. If some three points of O are collinear, then these three points
together with the lines L and M generate a 5-dimensional space which induces
a thick full proper subhexagon of order ( 3

√
q, 3
√

q). By above considerations, it
must be embedded in a PG(5, 3

√
q), hence q is even. Therefore no three points

of O are collinear and so, by Segre’s theorem (see Hirschfeld [7]), O is a
conic containing C. The tangent of O at z ∈ C is the intersection of β and ξz,
that is, the intersection of β and the tangent hyperplane of Γ at z. The conic
Γ∩ β contains C and the tangent lines of it at points of C are the tangent lines
of O at these points. Consequently O = Γ∩β. Let u ∈ O\C. By 1., the point
u is on a line N of H′. On M there is a point v, not in H′, at distance 2 from
u. Hence each point of M in H′ is at distance 6 from each point of N in H′, a
contradiction as M and N are lines of H′.

(2) Suppose that q is even. Let x be a point of H not in Γ. By Thas [14] and 1.,
there are 3

√
q + 1 points in Γ polycollinear with x, which are points on 3

√
q + 1

lines of Γ′. Also, they form an ideal line (see e.g. Ronan [11]). So the plane πx

intersects Γ in a line. This is also the case if x ∈ Γ \ Γ′ (then the common line
of Γ and πx belongs to H). It easily follows that each line xz, with x ∈ H \ Γ,
z ∈ H, and δ(x, z) ≤ 4, is a tangent line of Γ (if δ(x, z) = 4, look in πx∗z). Hence
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ξx is generated by tangent lines of Γ through x. So ξx contains the kernel k of Γ.
It is clear that also ξy, y ∈ H∩Γ′, contains k. Consider now a point w ∈ H∩Γ,
w %∈ Γ′. Then w belongs to a line W of H′. If w1 and w2 are distinct points of
H′ on W , then ξw1 ∩ ξw2 intersects Γ′ in 3

√
q + 1 planes and Γ in q + 1 planes.

The hyperplane ξw contains these 3
√

q + 1 planes, hence contains ξw1 ∩ ξw2 . As
ξw1 ∩ ξw2 contains k, also ξw contains k. Let W ′ be a line of H′ at distance
6 from W , and let w′ be the point of W ′ at distance 4 from w. Then by the
foregoing, ww′ is a line of Γ. Hence w′ belongs to the tangent hyperplane ζ of Γ
at w. As w′ %∈ ξw1∩ξw2 , we have ζ = 〈w′, ξw1∩ξw2〉. As also ξw = 〈ξw1∩ξw2 , w

′〉,
we have ζ = ξw. If k belongs to H, then all points of H are at distance at most
4 from k, a contradiction. Hence k %∈ H. If u, v, k with u, v ∈ H and u %= v
are collinear, then the hyperplanes ξu, ξv generated by all tangent lines of Γ
at respectively u, v coincide, a contradiction. So we can injectively project H
from k into a PG(5, q) not containing k; it is immediately checked that we thus
obtain a regular embedding of H(q, 3

√
q) in PG(5, q), contradicting Lemma 10.

This completes the proof of the lemma. !

4.4 The case d = 7

By Lemma 6 and Lemma 7 we have t = 3
√

q.

Lemma 14 Every subhexagon H′ of H isomorphic to H( 3
√

q) is naturally embedded in a
quadric Q(6, 3

√
q).

PROOF. Let H′ be a subhexagon of H isomorphic to H( 3
√

q). By Lemma 7 the sub-
hexagon H′ generates either a PG(6, q) or a PG(7, q). Let Σ be an apartment in H′.
The subhexagon of H′ of order (1, 3

√
q) containing Σ will be denoted by H′′. The sub-

hexagon H′′ is contained in the space PG(m, q) generated by Σ; clearly m ≤ 5. Let L be
a line of H′ not in PG(m, q), but containing a point of one of the lines of Σ. Then the
space PG(m + 1, q) containing PG(m, q) and L induces a subhexagon H′′′ of H of order
( 3
√

q, 3
√

q). As Σ and L are contained in a unique subhexagon of H of order ( 3
√

q, 3
√

q), we
have H′ = H′′′. So H′ is contained in a PG(6, q). This result is also easily obtained from
Remark 2.

Similarly as in the proof of Lemma 12 we now show that H′ is naturally embedded in a
Q(6, 3

√
q). !
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Lemma 15 The pointset P of H is contained in a non-singular hyperbolic quadric.

PROOF. Fix a thick proper full subhexagon H′ (necessarily of order ( 3
√

q, 3
√

q)) of H.
By Lemma 14 it is contained in a unique quadric Γ′ = Q(6, 3

√
q). By Theorem 1 of Thas

& Van Maldeghem [15], there is a unique quadric Γ = Q(6, q) containing Γ′. If H
contains a point x %∈ H′ of the hyperplane U ⊃ Γ, U = PG(6, q), not on a line of H′,
then, as each line of H through x contains a point of Γ′ (see Thas [14]), each line of H
through x is in PG(6, q). So the subhexagon induced by U is H itself, a contradiction.

Now consider any apartment Σ in H′. The space V ′ = PG(5, 3
√

q) in U ′ = PG(6, 3
√

q),
with Γ′ ⊂ U ′ ⊂ U , generated by the points of Σ intersects Γ′ in a hyperbolic quadric
∆′ = Q+(5, 3

√
q) (∆′ contains a plane through each of the six points of Σ). By Theorem

1 of Thas & Van Maldeghem [15] there is a unique quadric ∆ = Q+(5, q) containing
∆′; clearly ∆ = Γ ∩ PG(5, q), with PG(5, q) ⊃ V ′. All points of H in V = PG(5, q) are
the points of ∆ on the lines of H′ in ∆, that is, on lines of ∆ intersecting two skew planes
π1 and π2 of ∆′ (these planes are the ideal planes, cf. Ronan [11], corresponding with the
unique subhexagon of order (1, 3

√
q) containing Σ).

Let M ∈ L, with M concurrent with a line of Σ, but not incident with a point of H′.
Then Σ and M define a subhexagon H′

∗, uniquely embedded in a quadric Γ′∗ = Q∗(6, 3
√

q).
As in the previous paragraphs, we define Γ∗, U∗, V∗ = V and ∆∗ = ∆.

Coordinates can be chosen in such a way that

U : X7 = 0, U∗ : X6 = 0,

and hence
V = V∗ : X6 = X7 = 0.

Let
∆ : F (X0, X1, . . . , X5) = X6 = X7 = 0,

Γ : X6G(X0, X1, . . . , X5) + F (X0, X1, . . . , X5) = X7 = 0,

Γ∗ : X7G∗(X0, X1, . . . , X5) + F (X0, X1, . . . , X5) = X6 = 0.

Consider the quadric

Qα : F (. . .) + X6G(. . .) + X7G∗(. . .) + αX6X7 = 0, α ∈ GF (q) ∪ {∞}

(Q∞ : X6X7 = 0). Then Qα ∩ U = Γ and Qα ∩ U∗ = Γ∗.
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Now we show that H lies on Qα, for some α ∈ GF (q) (as the number of points of H is
greater than the number of points of H in U ∪ U∗, we have α %= ∞).

Let S be a line of H not in Γ but containing a point of H in Γ \ ∆. Let r be a point of
S, r %∈ U , r %∈ U∗. Let Q be the unique quadric Qα containing r. By the choice of r we
already have α %= ∞. Let R be any line of H through r, but not intersecting V ; since S
does not intersect V , there are at least 3

√
q such lines. Then R has a point in common with

P ∩Γ and also with P ∩Γ∗. As these points are distinct, R contains at least three points
of Q, so R is contained in Q. The 3

√
q + 1 lines of H through r intersect Γ in collinear

points (an ideal line), so these points all lie on a line of Γ. Hence all lines R (including S)
lie in a plane of Q and this implies that the possible line R̃ through r intersecting V also
lies on Q. Let s and s′ be the points of S in Γ and Γ∗, respectively. Then every point m
at distance 3 from S, but not polycollinear with s or s′ lies in Q. Let T be a line of H
containing s, T %= S and T not in Γ. As S is in Q, as the line X of H through s in Γ is
in Q, and as T contains a point of Γ∗ ⊂ Q, the plane SX is on Q, hence also T ⊂ SX is
on Q. It follows that each point of H at distance 3 from S is in Q.

Now let m be a point at distance 5 from S. We may assume without loss of generality
that m and r are opposite. Let Y be at distance 2 from S and at distance 3 from m. If
Y is not in Γ nor in Γ∗, and if it does not intersect a line of H in ∆, then, interchanging
the roles of Y and S (which both uniquely define Q), we see that m is in Q. Now assume
that Y is not in Γ nor in Γ∗, but intersects a line of H in ∆. If the line Y ′ at distance 2
from Y and incident with m, does not intersect a line of H in ∆, then Y ′ belongs to Q,
so m belongs to Q. So assume that Y ′ intersects a line of ∆. The common points b, b′

of respectively Y , Y ′ and ∆ are on a line T contained in ∆ (they define a unique ideal
line). Let N %= S be a line through r not intersecting ∆. Let n be a point on N , but such
that n is opposite every point of the ideal line defined by b and b′ (this is possible since
at most 3

√
q + 1 points of N can be at distance 4 from at least one point of the ideal line

defined by b and b′). Choose n also outside Γ and Γ∗. Let N ′ be any line of H through n,
N ′ %= N , not intersecting ∆. The intersection y of Y and Y ′ is at distance 5 from N ′ (as
can be checked easily). Consider the point u at distance 2 from y and 3 from N ′. As n is
in Q, also N ′ is in Q, so u is in Q. Clearly u is not on the line Y . If u is in ∆, then u is
at distance 4 from n, a contradiction. So u is not on the line bb′. Hence the plane Y Y ′ is
in Q because bb′, Y and u are all in Q. This shows that m is indeed in Q. Finally assume
that Y is in Γ (the case Y inside Γ∗ is similar). Let Y ′ be as above (i.e. δ(Y, Y ′) = 2 and
δ(Y ′, m) = 1). Let A be any line of H not meeting ∆ and distinct from Y ′. There are
q − 1 points a on A at distance 5 from S such that the line at distance 3 from a meeting
S does not intersect S in a point of Γ or Γ∗. By the preceding, all these points belong to
Q, hence A lies on Q and so does m.
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Assume that the quadric Q admits a singular point k. Suppose, by way of contradiction,
that H contains distinct points u, v with u, v, k collinear. Let Q̃(6, q) be the non-singular
quadric defined by any full thick proper subhexagon H̃ of H containing u, v. The quadric
Q̃(6, 3

√
q) in which H̃ is embedded extends to a unique non-singular quadric of the space

PG(6, q) ⊃ Q̃(6, 3
√

q). Hence Q̃(6, q) = Q∩PG(6, q). Consequently k ∈ Q̃(6, q), so Q̃(6, q)
is singular, a contradiction. It also follows that k /∈ H (otherwise, take v = k). Further,
for any point u of H the hyperplane ξu is the tangent hyperplane of Q at u (since it is
spanned by lines on Q through u). Hence ξu contains k. Consequently, by projecting H
from k into a PG(6, q) not containing k, we obtain a regular embedding of H(q, 3

√
q) into

PG(6, q), contradicting Lemma 13.

Now we show that Q is of hyperbolic type. Suppose by way of contradiction that Q =
Q−(7, q). Let S = {xi|i = 1, 2, . . . , N}, N ∈ N, be the set of points of Q orthogonal to all
points of at least one line of H, but not lying in a plane which contains at least two lines
of H. We count in two different ways the ordered pairs (x, L), where x ∈ S, L is a line
of H and x is orthogonal to all points of L. Denoting by ti the number of lines of H all
points of which are orthogonal to xi, 1 ≤ i ≤ N , we obtain

N∑

i=1

ti = (1 + 3
√

q)(1 + q 3
√

q + (q 3
√

q)2)(q2 − q)q2.

Now we count in two ways the number of triples (x, L, M), where x ∈ S, L and M are
distinct lines of H, and x is orthogonal to all points of both L and M ; as Q−(7, q) does
not contain 3-spaces, such lines L and M are not concurrent. Next we show that L and
M are opposite. Suppose N is a line of Γ meeting both L and M . Then x is orthogonal to
all points of N , hence x is orthogonal to all points of the planes LN and MN . As Q does
not contain 3-spaces, x is a point of the plane LN , in contradiction with the definition of
the set S. Hence L and M are opposite. Now we show that no point on L is orthogonal
(on Q) to all points of M . Suppose by way of contradiction that z is incident with L and
that z is orthogonal (on Q) to all points of M . Let L′ be the unique line of H through z
at distance 4 from M . Let y be the unique point on L′ at distance 3 from M . Since every
point on M is orthogonal to y and to z, the lines M and L′ are contained in a plane;
hence they meet in Q and also in Γ, a contradiction. Now let π be a plane through L
contained in Q. If π does not contain a line of Γ other than L, then by the foregoing there
is a unique point in π, not on L, orthogonal to all points of M . Since there are q2 − q
choices for π, we obtain

N∑

i=1

ti(ti − 1) = (1 + 3
√

q)(1 + q 3
√

q + (q 3
√

q)2)q3(q2 − q).
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Expressing that N ·
∑

t2i − (
∑

ti)2 ≥ 0, one obtains

N ≥
q3(q − 1)(1 + 3

√
q)(1 + q 3

√
q + (q 3

√
q)2)

1 + q
.

Now it is easily checked that the right hand side is stricktly bigger than (1+q4)(1+q+q2)
whenever q ≥ 8, which is the total number of points on Q. Hence the result. !

Lemma 16 The subgroup of PΓL(8, q) fixing H and the hyperbolic quadric Q containing
H admits Tits’ triality group 3D4( 3

√
q) as subgroup.

PROOF. By the preceding lemma, we know that H lies entirely on a hyperbolic quadric
Q. Let Σ be an apartment of H. Then Σ generates a 5-dimensional space V which meets
Q in a hyperbolic quadric ∆ = Q+(5, q). There are exactly two points p, p′ of Q such that
∆ lies in the tangent hyperplane of Q at both p and p′. These two points together with
the six points of Σ determine a unique apartment Ω′ of the building Q. Let us denote
the points of Σ by e0, . . . , e5, where ei is polycollinear with ei+1 (with subscripts taken
modulo 6). In Q these 6 points form an octahedron Ω in which the points e0, e3, the lines
e2e4, e1e5 (of Q) and the planes e0e1e5, e3e1e5, e3e2e4 and e0e2e4 form a wall W (for the
building-terminology, see e.g. Tits [17] or Ronan [12]) of that octahedron. Now W is
contained in a unique wall W ′ of Ω′, where W ′ is obtained by adding the points p, p′ to W
together with the spaces generated by p respectively p′ and each of the spaces of W . Let
L be any line of H through e0, L %= e0e1. Then L is contained in the plane e0e1e5. Hence
by Tits [17], Addenda, there exists a unique collineation θ of Q mapping e0e5 onto L and
fixing all singular subspaces of Q incident with at least two singular subspaces in the half
apartment Ω

′
of Ω′ containing e1e2 and bounded by W ′. In particular, θ fixes all points of

H on the lines e0e1, e1e2, e2e3 and all lines of H through e1 and e2. Moreover, the planes
e0e1e2 and e1e2e3 are fixed pointwise, hence all points of H polycollinear with e1 or e2 are
fixed. Let H′ be any thick proper full subhexagon containing Σ. Let Γ = Q(6, q) be the
corresponding quadric on Q. We show that θ induces an automorphism of Γ. Take for Q
the equation X0X3 + X1X4 + X2X5 + X6X7 = 0 and for θ the map defined by xi ,→ xi

with i ∈ {0, 3, 4, 5, 6, 7}, x1 ,→ x1 − ax5 and x2 ,→ x2 + ax4, a ∈ GF (q). Let ei be the
point with 1 in the (i + 1)th position and with 0 elsewhere, i = 0, 1, . . . , 5. Then the
corresponding points p and p′ have coordinates (0, . . . , 0, 1, 0) and (0, . . . , 0, 1). Since Γ
lies in a hyperplane with equation bX6 + cX7 = 0, b, c ∈ GF (q), it is clearly fixed by θ.
Also θ fixes all singular subspaces of Q incident with at least two singular subspaces in
the half apartment Ω

′
and maps e0e5 onto the line L : X2 = X3 = X4 = X1 + aX5 = 0

of the plane e0e1e5. Let Γ′ = Q(6, 3
√

q) be the quadric whose set of points is exactly the
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set of points of H′. Define θ′ on Γ′ similarly as we defined θ on Q, where now the role of
W ′ is taken over by W . Then θ′ extends to an automorphism θ′ of Γ and θ′θ−1 acts as
the identity on Γ (by Tits [17], Theorem 4.1.2). Hence θ preserves Γ′. Now let θ′′ be the
axial root elation in H′ fixing all points at distance 1 and 3 from e1e2 and mapping e0e5

onto L. Then θ′′ extends to the polar space Γ′ (by Tits [17], Addenda) and, again by
Tits [17], Theorem 4.1.2, θ′′θ−1 is the identity on Γ′. Hence θ preserves H′. As each line
of H meeting ∆ (necessarily in a point on a line of ∆ which is also a line of the quadric
∆′ = Q+(5, 3

√
q) containing the subhexagon of order (1, 3

√
q) defined by Σ) is contained in

a thick proper full subhexagon containing Σ, θ maps lines of H meeting ∆ onto lines of
H. Now let M be a line of H not meeting ∆. Then M meets a line of every thick proper
full subhexagon containing Σ (this common point of M and the line of the subhexagon is
not contained in the subhexagon); there are exactly ( 3

√
q)2 + 3

√
q + 1 such subhexagons,

giving rise to ( 3
√

q)2 + 3
√

q+1 distinct points on M . Hence M θ contains at least that many
points of H, from which it follows that M θ is a line of H (otherwise two points x and
y of H on M θ must be at distance 4 and hence M θ lies in πx∗y and meets H in exactly
3
√

q +1 points). Hence θ preserves H and is a long root elation. So every axial root elation
of H extends to an automorphism of Q. As no non-trivial automorphism of Q fixes H
pointwise, any automorphism of H extends to at most one automorphism of Q. Since
these root elations generate 3D4( 3

√
q), the lemma is proved. !

Lemma 17 The generalized hexagon H ∼= H(q, 3
√

q) is naturally embedded in PG(7, q).

PROOF. Let Q be as in the preceding lemma. Then Q is the triality quadric Q+(7, q). Its
automorphism group contains only one conjugacy class of groups isomorphic to 3D4( 3

√
q)

by Kleidman [8], Theorem 2.3 (proved without using the classification of the finite simple
groups). As the naturally embedded generalized hexagon H(q, 3

√
q) is uniquely defined by

a subgroup of PΓO+(8, q) isomorphic to 3D4( 3
√

q), it now follows immediately that H is
naturally embedded in PG(7, q). !

5 Appendix

As promised in Section 3, we show that no thick finite generalized octagon admits a
regular embedding.

Suppose O is a thick finite generalized octagon regularly embedded in PG(d, q) for some
d ∈ N. Then s = q > t. Let x and y be opposite points of O. Let πx be the plane spanned
by all points polycollinear with x and let ξy be the subspace of PG(d, q) generated by all
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points not opposite y. We claim that πx is not contained in ξy. Indeed, suppose πx is
contained in ξy and let z be a point opposite y and at distance 2 from x. Since z and all
points polycollinear with z not opposite y are in πz ∩ ξy, and since these points determine
uniquely πz, it follows that πz ⊂ ξy. On the set of points at distance 8 from y a graph G is
induced by the point graph of O; by Brouwer [1], Theorem 1.1 (recall that t < s), the
graph G is connected. Hence all points of O belong to ξy, a contradiction. So the plane
πx is not contained in ξy.

The set of points polycollinear with x and at distance 6 from y is contained in πx ∩ ξy.
By the previous paragraph πx∩ ξy is a line of PG(d, q), so is determined by any two of its
points. Hence O is distance-2 regular in the sense of Van Maldeghem [19], contradicting
Theorem 2.3 of that paper. This completes the proof of the second version of the Main
result.
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