Geometry, Combinatorial Designs and Related Structures (ed. J. W. P. Hirschfeld), Cambridge University Press, London Math. Soc. Lecture Note Ser. **245** (1997), 241 -- 253

Generalized quadrangles and the Axiom of Veblen

J. A. Thas H. Van Maldeghem^{*}

If x is a regular point of a generalized quadrangle S = (P, B, I) of order $(s, t), s \neq 1$, then x defines a dual net with t + 1 points on any line and s lines through every point. If $s \neq t, s > 1, t > 1$, then S is isomorphic to a $T_3(O)$ of Tits if and only if S has a coregular point x such that for each line L incident with x the corresponding dual net satisfies the Axiom of Veblen. As a corollary we obtain some elegant characterizations of the classical generalized quadrangles Q(5,s). Further we consider the translation generalized quadrangles $S^{(p)}$ of order $(s, s^2), s \neq 1$, with base point p for which the dual net defined by L, with p I L, satisfies the Axiom of Veblen. Next there is a section on Property (G) and the Axiom of Veblen. Finally, we prove that the dual net defined by a regular point of S, where the order of S is (s, t) with $s \neq t$ and $s \neq 1 \neq t$, satisfies the Axiom of Veblen if and only if S admits a certain set of proper subquadrangles.

1 Introduction

For terminology, notation, and results concerning finite generalized quadrangles and not explicitly given here, see the monograph of Payne and Thas [11], which is henceforth denoted FGQ.

Let S = (P, B, I) be a (finite) generalized quadrangle (GQ) of order $(s,t), s \ge 1, t \ge 1$. So S has v = |P| = (1+s)(1+st) points and b = |B| = (1+t)(1+st) lines. If $s \ne 1 \ne t$, then $t \le s^2$ and, dually, $s \le t^2$; also s + t divides st(1+s)(1+t).

There is a point-line duality for GQ (of order (s,t)) for which in any definition or theorem the words "point" and "line" are interchanged and the parameters s and t are interchanged. Normally, we assume without further notice that the dual of a given theorem or definition has also been given.

Given two (not necessarily distinct) points x, x' of S, we write $x \sim x'$ and say that x and x' are *collinear*, provided that there is some line L for which

^{*}Senior Research Associate of the Belgian National Fund for Scientific Research

 $x \ I \ L \ I \ x'$; hence $x \not\sim x'$ means that x and x' are not collinear. Dually, for $L, L' \in B$, we write $L \sim L'$ or $L \not\sim L'$ according as L and L' are concurrent or nonconcurrent. When $x \sim x'$ we also say that x is *orthogonal* or *perpendicular* to x', similarly for $L \sim L'$. The line incident with distinct collinear points x and x' is denoted xx', and the point incident with distinct concurrent lines L and L' is denoted $L \cap L'$.

For $x \in P$ put $x^{\perp} = \{x' \in P \mid | x \sim x'\}$, and note that $x \in x^{\perp}$. The trace of a pair $\{x, x'\}$ of distinct points is defined to be the set $x^{\perp} \cap x'^{\perp}$ and is denoted $\operatorname{tr}(x, x')$ or $\{x, x'\}^{\perp}$; then $|\{x, x'\}^{\perp}| = s + 1$ or t + 1 according as $x \sim x'$ or $x \not\sim x'$. More generally, if $A \subset P, A$ "perp" is defined by $A^{\perp} = \cap \{x^{\perp} \mid | x \in A\}$. For $x \neq x'$, the span of the pair $\{x, x'\}$ is $\operatorname{sp}(x, x') = \{x, x'\}^{\perp \perp} = \{u \in P \mid | u \in z^{\perp}$ for all $z \in x^{\perp} \cap x'^{\perp}\}$. When $x \not\sim x'$, then $\{x, x'\}^{\perp \perp}$ is also called the *hyperbolic line* defined by x and x', and $|\{x, x'\}^{\perp \perp}| = s + 1$ or $|\{x, x'\}^{\perp \perp}| \leq t + 1$ according as $x \sim x'$ or $x \not\sim x'$.

2 Regularity

Let S = (P, B, I) be a finite GQ of order (s, t). If $x \sim x', x \neq x'$, or if $x \not\sim x'$ and $|\{x, x'\}^{\perp \perp}| = t+1$, where $x, x' \in P$, we say the pair $\{x, x'\}$ is regular. The point x is regular provided $\{x, x'\}$ is regular for all $x' \in P, x' \neq x$. Regularity for lines is defined dually.

A (finite) net of order $k (\geq 2)$ and degree $r (\geq 2)$ is an incidence structure $\mathcal{N} = (P, B, I)$ satisfying

- (i) each point is incident with r lines and two distinct points are incident with at most one line;
- (ii) each line is incident with k points and two distinct lines are incident with at most one point;
- (iii) if x is a point and L is a line not incident with x, then there is a unique line M incident with x and not concurrent with L.

For a net of order k and degree r we have $|P| = k^2$ and |B| = kr.

Theorem 2.1 (1.3.1 of Payne and Thas [11]) . Let x be a regular point of the GQ S = (P, B, I) of order (s, t), s > 1. Then the incidence structure with pointset $x^{\perp} - \{x\}$, with lineset the set of spans $\{y, z\}^{\perp \perp}$, where $y, z \in$ $x^{\perp} - \{x\}, y \not\sim z$, and with the natural incidence, is the dual of a net of order sand degree t + 1. If in particular s = t > 1, there arises a dual affine plane of order s. Also, in the case s = t > 1 the incidence structure π_x with pointset x^{\perp} , with lineset the set of spans $\{y, z\}^{\perp \perp}$, where $y, z \in x^{\perp}, y \neq z$, and with the natural incidence, is a projective plane of order s.

3 Dual nets and the Axiom of Veblen

Now we introduce the Axiom of Veblen for dual nets $\mathcal{N}^* = (P, B, I)$.

Axiom of Veblen. If $L_1 \ I \ x \ I \ L_2, L_1 \neq L_2, M_1 \not \models x \not \models M_2$, and if L_i is concurrent with M_j for all $i, j \in \{1, 2\}$, then M_1 is concurrent with M_2 .

The only known dual net \mathcal{N}^* which is not a dual affine plane and which satisfies the Axiom of Veblen is the dual net $H_q^n, n > 2$, which is constructed as follows : the points of H_q^n are the points of $\mathrm{PG}(n,q)$ not in a given subspace $\mathrm{PG}(n-2,q) \subset \mathrm{PG}(n,q)$, the lines of H_q^n are the lines of $\mathrm{PG}(n,q)$ which have no point in common with $\mathrm{PG}(n-2,q)$, the incidence in H_q^n is the natural one. By the following theorem these dual nets H_q^n are characterized by the Axiom of Veblen.

Theorem 3.1 (Thas and De Clerck [14]) Let \mathcal{N}^* be a dual net with s+1 points on any line and t+1 lines through any point, where t+1 > s. If \mathcal{N}^* satisfies the Axiom of Veblen, then $\mathcal{N}^* \cong H_q^n$ with n > 2 (hence s = q and $t+1 = q^{n-1}$).

4 Generalized quadrangles and the Axiom of Veblen

Consider a GQ $T_3(O)$ of Tits, with O an ovoid of PG(3, q); see 3.1.2 of FGQ. Here s = q and $t = q^2$. Then the point (∞) is coregular, that is, each line incident with (∞) is regular. It is an easy exercise to check that for each line incident with (∞) the corresponding dual net is isomorphic to H_q^3 . Hence for each line incident with the point (∞) the corresponding dual net satisfies the Axiom of Veblen. We now prove the converse.

Theorem 4.1 Let S = (P, B, I) be a GQ of order (s, t) with $s \neq t, s > 1$ and t > 1. If S has a coregular point x and if for each line L incident with x the corresponding dual net \mathcal{N}_L^* satisfies the Axiom of Veblen, then S is isomorphic to a $T_3(O)$ of Tits.

Proof Let L_1, L_2, L_3 be three lines no two of which are concurrent, let M_1, M_2, M_3 be three lines no two of which are concurrent, let $L_i \not\sim M_j$ if and only if $\{i, j\} = \{1, 2\}$ and assume that $x \ I \ L_1$. By 5.3.8 of FGQ it is sufficient to prove that for any line $L_4 \in \{M_1, M_2\}^{\perp}$ with $L_4 \not\sim L_i, i = 1, 2, 3$, there exists a line M_4 concurrent with L_1, L_2, L_4 .

So let $L_4 \in \{M_1, M_2\}^{\perp}$ with $L_4 \not\sim L_i, i = 1, 2, 3$. Consider the line R containing $L_2 \cap M_2$ and concurrent with L_1 . Further, consider the line R' containing $M_2 \cap L_4$ and concurrent with L_1 . By the regularity of L_1 there is a line $S \in \{M_1, M_3\}^{\perp\perp}$ through the point $L_3 \cap M_2$. Clearly the lines L_1 and S are concurrent. So the line L_1 is concurrent with the lines S, R, R'; also the line M_2 is concurrent with the lines S, R, R'. By the regularity of L_1 the line S belongs to the line $\{R, R'\}^{\perp\perp}$ of the dual net $\mathcal{N}_{L_1}^*$ defined by L_1 . Hence the lines $\{R, R'\}^{\perp\perp}$ and $\{M_1, M_3\}^{\perp\perp}$ of $\mathcal{N}_{L_1}^*$ have the element S in common. By the Axiom of Veblen, also the lines $\{M_1, R'\}^{\perp\perp}$ and $\{M_3, R\}^{\perp\perp}$ of $\mathcal{N}_{L_1}^*$ have an element M_4 in common. Consequently M_4 is concurrent with L_1, L_2, L_4 . Now from 5.3.8 of FGQ it follows that S is isomorphic to a $T_3(O)$ of Tits. \Box

Corollary 4.2 Let S be a GQ of order (s,t) with $s \neq t$, s > 1 and t > 1.

- (i) If s is odd, then S is isomorphic to the classical GQ Q(5, s) if and only if it has a coregular point x and if for each line L incident with x the corresponding dual net N^{*}_L satisfies the Axiom of Veblen.
- (ii) If s is even, then S is isomorphic to the classical GQ Q(5, s) if and only if all its lines are regular and if for at least one point x and all lines L incident with x the dual nets N^L_L satisfy the Axiom of Veblen.

Proof Let (x, L) be an incident point-line pair of the GQ Q(5, s). By 3.2.4 of FGQ there is an isomorphism of Q(5, s) onto $T_3(O)$, with O an elliptic quadric of PG(3, s), which maps x onto the point (∞) . It follows that \mathcal{N}_L^* satisfies the Axiom of Veblen.

Conversely, assume that the GQ S of order (s, t), with s odd, $s \neq t, s > 1$ and t > 1, has a coregular point x such that for each line L incident with x the dual net \mathcal{N}_L^* satisfies the Axiom of Veblen. Then by Theorem 4.1 the GQ S is isomorphic to $T_3(O)$. By Barlotti [2] and Panella [9] each ovoid Oof PG(3, s), with s odd, is an elliptic quadric. Now by 3.2.4 of FGQ we have $S \cong T_3(O) \cong Q(5, s)$.

Finally, assume that for the GQ S of order (s, t), with s even, $s \neq t, t > 1$, all lines are regular and that for at least one point x and all lines L incident with x the dual nets \mathcal{N}_L^* satisfy the Axiom of Veblen. Then by Theorem 4.1 the GQ S is isomorphic to $T_3(O)$. Since all lines of $S \cong T_3(O)$ are regular, by 3.3.3(iii) of FGQ we finally have $S \cong T_3(O) \cong Q(5, s)$. \Box

5 Translation generalized quadrangles and the Axiom of Veblen

Let S = (P, B, I) be a GQ of order $(s, t), s \neq 1, t \neq 1$. A collineation θ of S is an *elation* about the point p if θ =id or if θ fixes all lines incident with p

and fixes no point of $P - p^{\perp}$. If there is a group H of elations about p acting regularly on $P - p^{\perp}$, we say S is an elation generalized quadrangle (EGQ) with elation group H and base point p. Briefly, we say that $(S^{(p)}, H)$ or $S^{(p)}$ is an EGQ. If the group H is abelian, then we say that the EGQ $(S^{(p)}, H)$ is a translation generalized quadrangle. For any TGQ $S^{(p)}$ the point p is coregular so that the parameters s and t satisfy $s \leq t$; see 8.2 of FGQ. Also, by 8.5.2 of FGQ, for any TGQ with $s \neq t$ we have $s = q^a$ and $t = q^{a+1}$, with q a prime power and a an odd integer; if s (or t) is even then by 8.6.1(iv) of FGQ either s = t or $s^2 = t$.

In $\operatorname{PG}(2n+m-1,q)$ consider a set O(n,m,q) of q^m+1 (n-1)-dimensional subspaces $\operatorname{PG}^{(0)}(n-1,q), \operatorname{PG}^{(1)}(n-1,q), \ldots, \operatorname{PG}^{(q^m)}(n-1,q)$, every three of which generate a $\operatorname{PG}(3n-1,q)$ and such that each element $\operatorname{PG}^{(i)}(n-1,q)$ of O(n,m,q) is contained in a $\operatorname{PG}^{(i)}(n+m-1,q)$ having no point in common with any $\operatorname{PG}^{(j)}(n-1,q)$ for $j \neq i$. It is easy to check that $\operatorname{PG}^{(i)}(n+m-1,q)$ is uniquely determined, $i = 0, 1, \ldots, q^m$. The space $\operatorname{PG}^{(i)}(n+m-1,q)$ is called the *tangent space* of O(n,m,q) at $\operatorname{PG}^{(i)}(n-1,q)$. For n = m such a set O(n,n,q) is called a *generalized oval* or an [n-1]-oval of $\operatorname{PG}(3n-1,q)$; a generalized oval of $\operatorname{PG}(2,q)$ is just an oval of $\operatorname{PG}(2,q)$. For $n \neq m$ such a set O(n,m,q) is called a *generalized ovoid* or an [n-1]-ovoid or an egg of $\operatorname{PG}(2n+m-1,q)$; a [0]-ovoid of $\operatorname{PG}(3,q)$ is just an ovoid of $\operatorname{PG}(3,q)$.

Now embed PG(2n + m - 1, q) in a PG(2n + m, q), and construct a pointline geometry T(n, m, q) as follows.

Points are of three types :

- (i) the points of PG(2n + m, q) PG(2n + m 1, q);
- (ii) the (n + m)-dimensional subspaces of PG(2n + m, q) which intersect PG(2n + m 1, q) in one of the $PG^{(i)}(n + m 1, q)$;
- (iii) the symbol (∞) .

Lines are of two types :

- (a) the *n*-dimensional subspaces of PG(2n+m,q) which intersect PG(2n+m-1,q) in a $PG^{(i)}(n-1,q)$;
- (b) the elements of O(n, m, q).

Incidence in T(n, m, q) is defined as follows. A point of type (i) is incident only with lines of type (a); here the incidence is that of PG(2n + m, q). A point of type (ii) is incident with all lines of type (a) contained in it and with the unique element of O(n, m, q) contained in it. The point (∞) is incident with no line of type (a) and with all lines of type (b). **Theorem 5.1 (8.7.1 of Payne and Thas [11])** T(n, m, q) is a TGQ of order (q^n, q^m) with base point (∞) . Conversely, every TGQ is isomorphic to a T(n, m, q). It follows that the theory of the TGQ is equivalent to the theory of the sets O(n, m, q).

Corollary 5.2 The following hold for any O(n, m, q):

- (i) n = m or n(c+1) = mc with c odd;
- (ii) if q is even, then n = m or m = 2n.

Let O(n, 2n, q) be an egg of PG(4n - 1, q). We say that O(n, 2n, q) is good at the element $PG^{(i)}(n - 1, q)$ of O(n, 2n, q) if any PG(3n - 1, q) containing $PG^{(i)}(n - 1, q)$ and at least two other elements of O(n, 2n, q), contains exactly $q^n + 1$ elements of O(n, 2n, q).

Theorem 5.3 Let $\mathcal{S}^{(p)}$ be a TGQ of order $(s, s^2), s \neq 1$, with base point p. Then the dual net \mathcal{N}_L^* defined by the regular line L, with $p \ I \ L$, satisfies the Axiom of Veblen if and only if the egg O(n, 2n, q) which corresponds to $\mathcal{S}^{(p)}$ is good at its element $PG^{(i)}(n-1,q)$ which corresponds to L.

Proof Assume that the dual net \mathcal{N}_L^* satisfies the Axiom of Veblen. Let the egg O(n, 2n, q) correspond to $\mathcal{S}^{(p)}$ and let $\mathrm{PG}^{(i)}(n-1, q)$ correspond to L. We have $s = q^n$. The dual net has $q^n + 1$ points on a line and q^{2n} lines through a point. By Theorem 3.1 the dual net \mathcal{N}_L^* is isomorphic to $H_{a^n}^3$. Consider the TGQ $T(n, 2n, q) \cong \mathcal{S}^{(p)}$ and let PG(3n, q) be a subspace skew to $PG^{(i)}(n-1,q)$ in the projective space PG(4n,q) in which T(n, 2n, q) is defined. Let $O(n, 2n, q) = \{ PG^{(0)}(n-1, q), PG^{(1)}(n-1, q), \dots, PG^{(q^{2n})}(n-1, q) \}, let$ $(\mathrm{PG}^{(i)}(n-1,q),\mathrm{PG}^{(j)}(n-1,q)) \cap \mathrm{PG}(3n,q) = \pi_j \text{ for all } j \neq i (\pi_j \text{ is } (n-1))$ dimensional), let $PG(4n-1,q) \cap PG(3n,q) = PG(3n-1,q)$ with PG(4n-1,q)the space of O(n, 2n, q), and let $PG^{(i)}(3n-1, q) \cap PG(3n, q) = PG(2n-1, q)$ with $PG^{(i)}(3n-1,q)$ the tangent space of O(n, 2n, q) at $PG^{(i)}(n-1,q)$. Then the dual net \mathcal{N}_L^* is isomorphic to the following dual net \mathcal{N}^* : points of \mathcal{N}^* are the q^{2n} spaces $\pi_j, j \neq i$, and the q^{3n} points of PG(3n, q) - PG(3n - 1, q), lines of \mathcal{N}^* are the q^{4n} *n*-dimensional subspaces of $\mathrm{PG}(3n,q)$ which are not contained in PG(3n-1,q) and contain an element $\pi_i, j \neq i$, and incidence is the natural one. Clearly the points $\pi_j, j \neq i$, of \mathcal{N}^* form a parallel class of points. Let M be a line of \mathcal{N}^* incident with π_j and let $\pi_k \neq \pi_j, k \neq i \neq j$. As $\mathcal{N}^* \cong H^3_{a^n}$ the elements π_k and M of \mathcal{N}^* generate a dual affine plane \mathcal{A}^* in \mathcal{N}^* , and the plane \mathcal{A}^* contains q^n points $\pi_l, l \neq i$. Clearly the points of \mathcal{A}^* not of type π_l are the q^{2n} points of the subspace $\langle \pi_k, M \rangle$ of PG(3n, q) which are not contained in PG(3n-1,q). Hence the q^n points of \mathcal{A}^* of type π_l are contained in $\langle \pi_k, M \rangle \cap \mathrm{PG}(3n-1,q)$. It follows that these q^n elements π_l are contained in a (2n-1)-dimensional space $\operatorname{PG}'(2n-1,q)$; also, they form a partition of $\operatorname{PG}'(2n-1,q)-\operatorname{PG}(2n-1,q)$. Consequently for any two elements $\pi_l, \pi_{l'}, l \neq i \neq l'$, the space $\langle \pi_l, \pi_{l'} \rangle$ contains exactly q^n elements $\pi_r, r \neq i$. Hence for any two spaces $\operatorname{PG}^{(l)}(n-1,q)$ and $\operatorname{PG}^{(l')}(n-1,q)$ of $O(n, 2n, q) - \{\operatorname{PG}^{(i)}(n-1,q)\}$, the (3n-1)-dimensional space $\langle \operatorname{PG}^{(i)}(n-1,q), \operatorname{PG}^{(l)}(n-1,q), \operatorname{PG}^{(l')}(n-1,q) \rangle$ contains exactly $q^n + 1$ elements of O(n, 2n, q). We conclude that O(n, 2n, q) is good at $\operatorname{PG}^{(i)}(n-1,q)$.

Conversely, assume that O(n, 2n, q) is good at the element $\mathrm{PG}^{(i)}(n-1, q)$ which corresponds to L. As in the first part of the proof we project onto a $\mathrm{PG}(3n, q)$ and we use the same notations. Since O(n, 2n, q) is good at $\mathrm{PG}^{(i)}(n-1,q)$, for any two elements $\pi_l, \pi_{l'}, l \neq i \neq l'$, the space $\langle \pi_l, \pi_{l'} \rangle$ contains exactly q^n elements $\pi_r, r \neq i$; these q^n elements form a partition of the points of $\langle \pi_l, \pi_{l'} \rangle$ which are not contained in $\mathrm{PG}(2n-1,q)$. If M, M'are distinct concurrent lines of \mathcal{N}^* , then it is easily checked that M and M'generate a dual affine plane \mathcal{A}^* of order q^n in \mathcal{N}^* . As \mathcal{A}^* satisfies the Axiom of Veblen, also \mathcal{N}^* satisfies the Axiom of Veblen. \Box

Let O = O(n, 2n, q) be an egg in PG(4n - 1, q). By 8.7.2 of FGQ the $q^{2n} + 1$ tangent spaces of O form an $O^* = O^*(n, 2n, q)$ in the dual space of PG(4n - 1, q). So in addition to T(n, 2n, q) = T(O) there arises a TGQ $T(O^*)$ with the same parameters. The TGQ $T(O^*)$ is called the *translation dual* of the TGQ T(O). Examples are known for which $T(O) \cong T(O^*)$, and examples are known for which $T(O) \cong T(O^*)$; see Thas [13].

6 Property (G) and the Axiom of Veblen

Let S = (P, B, I) be a GQ of order $(s, s^2), s \neq 1$. Let x_1, y_1 be distinct collinear points. We say that the pair $\{x_1, y_1\}$ has *Property* (G), or that S has *Property* (G) at $\{x_1, y_1\}$, if every triple $\{x_1, x_2, x_3\}$ of points, with x_1, x_2, x_3 pairwise noncollinear and $y_1 \in \{x_1, x_2, x_3\}^{\perp}$, is 3-regular; for the definition of 3-regularity see 1.3 of FGQ. The GQ S has *Property* (G) at the *line* L, or the line L has *Property* (G), if each pair of points $\{x, y\}, x \neq y$ and $x \ I \ L \ I \ y$, has Property (G). If (x, L) is a flag, that is, if $x \ I \ L$, then we say that S has *Property* (G) at (x, L), or that (x, L) has *Property* (G), if every pair $\{x, y\}, x \neq y$ and $y \ I \ L$, has Property (G). Property (G) was introduced in Payne [10] in connection with generalized quadrangles of order (q^2, q) arising from flocks of quadratic cones in PG(3, q).

Theorem 6.1 Let S = (P, B, I) be a GQ of order (s^2, s) , s even, satisfying Property (G) at the point x. Then x is regular in S and the dual net \mathcal{N}_x^* satisfies the Axiom of Veblen. Consequently $\mathcal{N}_x^* \cong H_s^3$. **Proof** Let $\mathcal{S} = (P, B, I)$ be a GQ of order (s^2, s) , s even, satisfying Property (G) at the point x. By 3.2.1 of [13] the point x is regular. Let y be a point of the dual net \mathcal{N}_x^* , let A_1 and A_2 be distinct lines of \mathcal{N}_x^* containing y, let B_1 and B_2 be distinct lines of \mathcal{N}_x^* not containing y, and let $A_i \cap B_j \neq \emptyset$ for all $i, j \in \{1, 2\}$. Let $\{z\} = A_1 \cap B_1$ and let $z \mid M$, with $x \nmid M$. Further, let $x \mid L$, with $z \nmid L$, let u be the point of A_1 on L, and let v be the point of B_1 on L. The line of \mathcal{S} incident with u resp. v and concurrent with M is denoted by C resp. D; the line incident with z and x is denoted by N. Since S satisfies Property (G) at x, the triple $\{C, D, N\}$ is 3-regular. By 2.6.2 of TGQ the lines of \mathcal{S} concurrent with at least two lines of $\{C, D, N\}^{\perp} \cup \{C, D, N\}^{\perp \perp}$ are the lineset of a subquadrangle \mathcal{S}' of order (s, s) of \mathcal{S} . As x is regular for \mathcal{S} it is also regular for \mathcal{S}' . By Theorem 2.1 the point x defines a projective plane π_x of order s. Clearly A_1, A_2, B_1, B_2 are lines of the projective plane π_x . Hence B_1 and B_2 intersect in π_x . Consequently \mathcal{N}_x^* satisfies the Axiom of Veblen, and so $\mathcal{N}_x^* \cong H_s^3$.

Theorem 6.2 (Thas [13]) A TGQ T(n, 2n, q) satisfies Property (G) at the pair $\{(\infty), \overline{\zeta}\}$, with $\overline{\zeta}$ a point of type (ii) incident with the line ζ of type (b) (or, equivalently, at the flag $((\infty), \zeta)$) if and only if, for any two elements $\zeta_i, \zeta_j \ (i \neq j)$ of $O(n, 2n, q) - \{\zeta\}$, the (n-1)-dimensional space PG(n-1, q) = $\tau \cap \tau_i \cap \tau_j$, with τ, τ_i, τ_j the respective tangent spaces of O(n, 2n, q) at ζ, ζ_i, ζ_j , is contained in exactly $q^n + 1$ tangent spaces of O(n, 2n, q).

Theorem 6.3 Let $\mathcal{S}^{(p)}$ be a TGQ of order $(s, s^2), s \neq 1$, with base point p. Then the dual net \mathcal{N}_L^* defined by the regular line L, with $p \ IL$, satisfies the Axiom of Veblen if and only if the translation dual $\mathcal{S}'^{(p')}$ of $\mathcal{S}^{(p)}$ satisfies Property (G) at the flag (p', L'), where L' corresponds to L; in the even case, \mathcal{N}_L^* satisfies the Axiom of Veblen if and only if $\mathcal{S}^{(p)}$ satisfies Property (G) at the flag (p, L).

Proof By Theorem 5.3 the dual net \mathcal{N}_L^* satisfies the Axiom of Veblen if and only if O(n, 2n, q) is good at the element $\mathrm{PG}^{(i)}(n-1, q)$ which corresponds to L. By Theorem 6.1 the egg O(n, 2n, q) = O is good at $\mathrm{PG}^{(i)}(n-1, q)$ if and only if $T(O^*)$ satisfies Property (G) at the flag $((\infty), \mathrm{PG}^{(i)}(3n-1, q))$, with $\mathrm{PG}^{(i)}(3n-1, q)$ the tangent space of O at $\mathrm{PG}^{(i)}(n-1, q)$; by Theorem 4.3.2 of [13], for q even, $T(O^*)$ satisfies Property (G) at the flag $((\infty), \mathrm{PG}^{(i)}(3n-1, q))$ if and only if T(O) satisfies Property (G) at the flag $((\infty), \mathrm{PG}^{(i)}(n-1, q))$. \Box

Theorem 6.4 Let $\mathcal{S}^{(p)}$ be a TGQ of order (s, s^2) , s odd and $s \neq 1$, with base point p. If the dual net \mathcal{N}_L^* defined by some regular line L, with p I L, satisfies the Axiom of Veblen, then $\mathcal{S}^{(p)}$ contains at least $s^3 + s^2$ classical subquadrangles Q(4, s). **Proof** This follows immediately from the preceding theorem and Theorem 4.3.4 of Thas [13]. \Box

Theorem 6.5 Let $\mathcal{S}^{(p)}$ be a TGQ of order (s, s^2) , s odd and $s \neq 1$, with base point p. If p IL and if the dual net \mathcal{N}_L^* satisfies the Axiom of Veblen, then all lines concurrent with L are regular.

Proof Let N be concurrent with $L, p \not\models N$, and let the line M of $\mathcal{S}^{(p)}$ be nonconcurrent with N. By Theorem 4.3.4 of Thas [13] the lines N, M are lines of a subquadrangle of $\mathcal{S}^{(p)}$ isomorphic to $Q(4, q^n)$. Hence $\{N, M\}$ is a regular pair of lines. We conclude that the line N is regular in $\mathcal{S}^{(p)}$. \Box

7 Flock generalized quadrangles and the Axiom of Veblen

Let F be a flock of the quadratic cone K with vertex x of PG(3, q), that is, a partition of $K - \{x\}$ into q disjoint irreducible conics. Then, by Thas [12], with F there corresponds a GQ $\mathcal{S}(F)$ of order (q^2, q) . In Payne [10] it was shown that $\mathcal{S}(F)$ satisfies Property (G) at its point (∞) .

Let $F = \{C_1, C_2, \ldots, C_q\}$ be a flock of the quadratic cone K with vertex x_0 of PG(3, q), with q odd. The plane of C_i is denoted by $\pi_i, i = 1, 2, \ldots, q$. Let K be embedded in the nonsingular quadric Q of PG(4, q). The polar line of π_i with respect to Q is denoted by L_i ; let $L_i \cap Q = \{x_0, x_i\}, i = 1, 2, \ldots, q$. Then no point of Q is collinear with all three of $x_0, x_i, x_j, 1 \leq i < j \leq q$. In [1] it is proved that it is also true that no point of Q is collinear with all three of $x_i, x_j, x_k, 0 \leq i < j < k \leq q$. Such a set U of q + 1 points of Q will be called a *BLT-set* in Q, following a suggestion of Kantor [7]. Since the GQ Q(4, q) arising from Q is isomorphic to the dual of the GQ W(q) arising from a symplectic polarity in PG(3, q), to a BLT-set in Q corresponds a set V of q + 1 lines of W(q) with the property that no line of W(q) is concurrent with three distinct lines of V; such a set V will also be called a *BLT-set*.

To F corresponds a GQ $\mathcal{S}(F)$ of order (q^2, q) . Knarr [8] proves that $\mathcal{S}(F)$ is isomorphic to the following incidence structure.

Start with a symplectic polarity θ of PG(5,q). Let $(\infty) \in PG(5,q)$ and let PG(3,q) be a 3-dimensional subspace of PG(5,q) for which $(\infty) \notin PG(3,q) \subset (\infty)^{\theta}$. In $PG(3,q) \theta$ induces a symplectic polarity θ' , and hence a GQ W(q). Let V be the BLT-set defined by F of the GQ W(q) and construct a geometry $\mathcal{S} = (P, B, I)$ as follows.

Points : (i) (∞); (ii) lines of PG(5, q) not containing (∞) but contained in one of the planes $\pi_t = (\infty)L_t$, with L_t a line of the BLT-set V; (iii) points of PG(5, q) not in (∞)^{θ}. Lines : (a) planes $\pi_t = (\infty)L_t$, with $L_t \in V$; (b) totally isotropic planes of θ not contained in $(\infty)^{\theta}$ and meeting some π_t in a line (not through (∞)).

The incidence relation I is the natural incidence inherited from PG(5, q).

Then Knarr [8] proves that S is a GQ of order (q^2, q) isomorphic to the GQ S(F) arising from the flock F defining V.

Theorem 7.1 For any GQ $\mathcal{S}(F)$ of order (q^2, q) arising from a flock F, the point (∞) is regular.

Proof The GQ $\mathcal{S}(F)$ satisfies Property (G) at its point (∞) . Then for q even, by 3.2.1 of Thas [13], the point (∞) is regular. Now let q be odd, and consider the construction of Knarr. If the point y is not collinear with (∞) , that is, if y is a point of PG(5, q) not in $(\infty)^{\theta}$, then $\{(\infty), y\}^{\perp \perp}$ consists of the q + 1 points of the line $(\infty)y$ of PG(5, q). As $|\{(\infty), y\}^{\perp \perp}| = q + 1$ the point (∞) is regular.

Let K be the quadratic cone with equation $X_0X_1 = X_2^2$ of PG(3, q), q odd. Then the q planes π_t with equation $tX_0 - mt^{\sigma}X_1 + X_3 = 0, t \in GF(q), m$ a given nonsquare of GF(q), and σ a given automorphism of GF(q), define a flock F of K; see Thas [12]. The corresponding GQ $\mathcal{S}(F)$ were first discovered by Kantor [6], and so these flocks F will be called Kantor flocks. Any such GQ $\mathcal{S}(F)$ is a TGQ for some base line, and so the point-line dual of $\mathcal{S}(F)$ is isomorphic to some T(O), with O an [n-1]-ovoid. Also, in Payne [10] it is proved that T(O) is isomorphic to its translation dual $T(O^*)$; there is an isomorphism of T(O) onto $T(O^*)$ conserving types of points and lines and mapping the line ζ of type (b) of T(O) onto the line τ of type (b) of $T(O^*)$, where τ is the tangent space of O at ζ .

Theorem 7.2 Consider the GQ $\mathcal{S}(F)$ of order (q^2, q) arising from the flock F. If q is even, then the dual net $\mathcal{N}^*_{(\infty)}$ always satisfies the Axiom of Veblen and so $\mathcal{N}^*_{(\infty)} \cong H^3_q$. If q is odd, then the dual net $\mathcal{N}^*_{(\infty)}$ satisfies the Axiom of Veblen if and only if F is a Kantor flock.

Proof Consider the GQ $\mathcal{S}(F)$ of order (q^2, q) arising from the flock F. Then $\mathcal{S}(F)$ satisfies Property (G) at the point (∞) .

First, let q be even. Then by Theorem 6.1 the dual net $\mathcal{N}^*_{(\infty)}$ satisfies the Axiom of Veblen, and so $\mathcal{N}^*_{(\infty)} \cong H^3_q$.

Next, let q be odd. Suppose that F is a Kantor flock. Then the point-line dual of $\mathcal{S}(F)$ is isomorphic to some T(O), and by [10] $T(O) \cong T(O^*)$. The point (∞) of $\mathcal{S}(F)$ corresponds to some line ζ of type (b) of T(O). Hence T(O) satisfies Property (G) at ζ . By Theorem 6.3 the dual net \mathcal{N}^*_{τ} which corresponds with the regular line τ of $T(O^*)$, where τ is the tangent space of O at ζ , satisfies the Axiom of Veblen. Hence also the dual net \mathcal{N}^*_{ζ} which

corresponds with the regular line ζ of T(O) satisfies the Axiom of Veblen. It follows that the dual net $\mathcal{N}^*_{(\infty)}$ satisfies the Axiom of Veblen. Conversely, suppose that the dual net $\mathcal{N}^*_{(\infty)}$ satisfies the Axiom of Veblen. Hence $\mathcal{N}^*_{(\infty)} \cong$ H_a^3 . In the representation of Knarr, this dual net looks as follows : points of $\mathcal{N}^*_{(\infty)}$ are the lines of $\mathrm{PG}(5,q)$ not containing (∞) but contained in one of the planes π_t , lines of $\mathcal{N}^*_{(\infty)}$ can be identified with the three dimensional subspaces of $(\infty)^{\theta}$ not containing (∞) , and incidence is inclusion. By pointhyperplane duality in $(\infty)^{\theta}$, the net $\mathcal{N}_{(\infty)}$, which is the point-line dual of $\mathcal{N}^*_{(\infty)}$, is isomorphic to the following incidence structure : points of $\mathcal{N}_{(\infty)}$ are the points of $(\infty)^{\theta} - PG(3,q)$, lines of $\mathcal{N}_{(\infty)}$ are the planes of $(\infty)^{\theta}$ not contained in PG(3,q) but containing one of the lines of the BLT-set V in $\mathrm{PG}(3,q)$, and incidence is the natural one. As the net \mathcal{N}_{∞} is isomorphic to the dual of H_a^3 , it is easily seen to be derivable; see e.g. De Clerck and Johnson [4]. In W(q) the lineset $S = \{L_0, L_1\}^{\perp \perp} \cup \{L_0, L_2\}^{\perp \perp} \cup \ldots \cup \{L_0, L_q\}^{\perp \perp}$ is a linespread containing V; see e.g. [12]. As $\mathcal{N}_{(\infty)}$ is derivable, by [3] there are two distinct lines in PG(3, q), but not in $\{L_0, L_1\}^{\perp} \cup \{L_0, L_2\}^{\perp} \cup \ldots \cup \{L_0, L_q\}^{\perp}$, intersecting the same q + 1 lines of S. Then by Johnson and Lunardon [5], the flock F is a Kantor flock.

Corollary 7.3 Suppose that the TGQ T(O), with O = O(n, 2n, q) and q odd, is the point-line dual of a flock GQ S(F) where the point (∞) of S(F) corresponds to the line ζ of type (b) of T(O). Then T(O) is good at the element ζ if and only if F is a Kantor flock.

Proof This follows immediately from Theorems 5.3 and 7.2.

8 Subquadrangles and the Axiom of Veblen

Theorem 8.1 Let S = (P, B, I) be a GQ of order $(s, t), s \neq 1 \neq t$, having a regular point x. If x together with any two points y, z, with $y \not\sim x$ and $x \sim z \not\sim y$, is contained in a proper subquadrangle S' of S of order (s', t), with $s' \neq 1$, then $s' = t = \sqrt{s}$ and the dual net \mathcal{N}_x^* satisfies the Axiom of Veblen. It follows that s and t are prime powers, and that for each subquadrangle S' the projective plane π_x of order t defined by the regular point x of S' is desarguesian. Conversely, if the dual net \mathcal{N}_x^* satisfies the Axiom of Veblen, then either (a) s = t, or (b) $s = t^2$, s and t are prime powers, x and any two points y, z with $y \not\sim x$ and $x \sim z \not\sim y$ are contained in a subquadrangle S' of S of order (t, t), and the projective plane π_x of order t defined by the regular point x of S' is desarguesian.

Proof Let S = (P, B, I) be a GQ of order $(s, t), s \neq 1 \neq t$, having a regular point x.

First, assume that x together with any two points y, z with $y \not\sim x$ and $x \sim z \not\sim y$ is contained in a proper subquadrangle \mathcal{S}' of \mathcal{S} of order (s', t), with $s' \neq 1$. As x is also regular for \mathcal{S}' , the GQ \mathcal{S}' contains subquadrangles of order (1, t). Then, by 2.2.2 of FGQ, we have $s' = t = \sqrt{s}$. By Theorem 2.1 the dual net \mathcal{N}'_x arising from the regular point x of \mathcal{S}' , is a dual affine plane of order s. Hence \mathcal{N}'^*_x satisfies the Axiom of Veblen. Now consider distinct lines A_1, A_2, B_1, B_2 of the dual net \mathcal{N}_x^* , where $A_1 \cap A_2 = \{z\}, z \notin B_1, z \notin B_2$, and $A_i \cap B_j \neq \emptyset$ for all $i, j \in \{1, 2\}$. Let $A_1 \cap B_1 = \{u\}, A_2 \cap B_2 = \{w\}, i \in \{1, 2\}$. and let $y \in \{u, w\}^{\perp} - \{x\}$. Let \mathcal{S}' be a subquadrangle of order t containing the points x, y, z of \mathcal{S} . Then A_1, A_2, B_1, B_2 are lines of the dual net \mathcal{N}'^*_x . As \mathcal{N}'^*_x satisfies the Axiom of Veblen, we have $B_1 \cap B_2 \neq \emptyset$. It follows that the dual net \mathcal{N}'^*_x satisfies the Axiom of Veblen. Consequently $\mathcal{N}'^*_x \cong H^3_t$, and so s and t are prime powers. For any subquadrangle \mathcal{S}' the dual net \mathcal{N}'^*_x is a dual affine plane of order t, which is isomorphic to a dual affine plane of order t in H_t^3 . Hence the dual net $\mathcal{N}_x^{\prime*}$, and consequently also the corresponding projective plane π_x , are desarguesian.

Conversely, assume that the dual net \mathcal{N}_x^* satisfies the Axiom of Veblen. Also, suppose that $s \neq t$, that is, s > t by 1.3.6 of FGQ. Then, by Theorem 3.1, we have $\mathcal{N}_x^* \cong H_q^n$ with q a prime power and n > 2. As $s = q^{n-1}, t = q$ and $s \leq t^2$ (by the inequality of Higman, see 1.2.3 of FGQ), we necessarily have n = 3. Hence $s = t^2, t = q$, and $\mathcal{N}_x^* \cong H_q^3$. Now consider any two points y, z, with $y \not\sim x, x \sim z \not\sim y$. As $\mathcal{N}_x^* \cong H_q^3$ it is easily seen that z and $\{x, y\}^\perp$ generate a dual affine plane \mathcal{A} of order q in \mathcal{N}_x^* . Let $A_1, A_2, \ldots, A_{q^2}$ be the lines of \mathcal{A} . Further, let P' be the pointset of \mathcal{S} consisting of the points of $A_1^\perp \cup A_2^\perp \cup \ldots \cup A_{q^2}^\perp$ and the points of \mathcal{A} . Clearly P' contains z and y, and $|P'| = q^3 + q^2 + q + 1$. Further, any line of \mathcal{S} incident with at least one point of P' either contains x or a point of \mathcal{A} ; the set of all these lines is denoted by B'. Also, any point incident with two distinct lines of B' belongs to P'. Then, by 2.3.1 of FGQ, $\mathcal{S}' = (P', B', \mathbf{I}')$ with \mathbf{I}' the restriction of \mathbf{I} to $(P' \times B') \cup (B' \times P')$ is a subquadrangle of \mathcal{S} of order q. As in the first part of the proof one now shows that for any such subquadrangle \mathcal{S}' the projective plane π_x defined by x is desarguesian. \Box

References

- L. Bader, G. Lunardon and J.A. Thas, Derivation of flocks of quadratic cones, *Forum Math.* 2 (1990), 163-174.
- [2] A. Barlotti, Un' estensione del teorema di Segre-Kustaanheimo, Boll. Un. Mat. Ital. 10 (1955), 96-98.

- [3] M. Biliotti and G. Lunardon, Insiemi di derivazione e sottopiani di Baer in un piano di traslazione, Atti Accad. Naz. Lincei Rend. 69 (1980), 135-141.
- [4] F. De Clerck and N.L. Johnson, Subplane covered nets and semipartial geometries, *Discrete Math.* 106/107, (1992), 127-134.
- [5] N.L. Johnson and G. Lunardon, Maximal partial spreads and flocks, *Des. Codes Cryptogr.*, to appear.
- [6] W.M. Kantor, Some generalized quadrangles with parameters (q^2, q) , Math. Z. **192** (1986), 45-50.
- [7] W.M. Kantor, Note on generalized quadrangles, flocks and BLT-sets, J. Combin. Theory Ser. A 58 (1991), 153-157.
- [8] N. Knarr, A geometric construction of generalized quadrangles from polar spaces of rank three, *Resultate Math.* 21 (1992), 332-334.
- [9] G. Panella, Caratterizzazione delle quadriche di uno spazio (tridimensionale) lineare sopra un corpo finito, Boll. Un. Mat. Ital. 10 (1955), 507-513.
- [10] S.E. Payne, An essay on skew translation generalized quadrangles, Geom. Dedicata 32 (1989), 93-118.
- [11] S.E. Payne and J.A. Thas, *Finite Generalized Quadrangles*, Pitman, Boston, 1984.
- [12] J.A. Thas, Generalized quadrangles and flocks of cones, European J. Combin. 8 (1987), 441-452.
- [13] J.A. Thas, Generalized quadrangles of order (s, s^2) , I, J. Combin. Theory Ser. A 67 (1994), 140-160.
- [14] J.A. Thas and F. De Clerck, Partial geometries satisfying the axiom of Pasch, Simon Stevin 51 (1977), 123-137.

J.A. Thas Department of Pure Mathematics and Computer Algebra, University of Ghent, Krijgslaan 281, B-9000 Gent, Belgium e-mail : jat@cage.rug.ac.be

H. Van Maldeghem Department of Pure Mathematics and Computer Algebra, University of Ghent, Krijgslaan 281, B-9000 Gent, Belgium e-mail : hvm@cage.rug.ac.be