Generalized quadrangles and the Axiom of Veblen

J. A. Thas
H. Van Maldeghem*

If x is a regular point of a generalized quadrangle $\mathcal{S}=(P, B, \mathrm{I})$ of order $(s, t), s \neq 1$, then x defines a dual net with $t+1$ points on any line and s lines through every point. If $s \neq t, s>1, t>1$, then \mathcal{S} is isomorphic to a $T_{3}(O)$ of Tits if and only if \mathcal{S} has a coregular point x such that for each line L incident with x the corresponding dual net satisfies the Axiom of Veblen. As a corollary we obtain some elegant characterizations of the classical generalized quadrangles $Q(5, s)$. Further we consider the translation generalized quadrangles $\mathcal{S}^{(p)}$ of order $\left(s, s^{2}\right), s \neq 1$, with base point p for which the dual net defined by L, with p I L, satisfies the Axiom of Veblen. Next there is a section on Property (G) and the Axiom of Veblen, and a section on flock generalized quadrangles and the Axiom of Veblen. This last section contains a characterization of the TGQ of Kantor in terms of the Axiom of Veblen. Finally, we prove that the dual net defined by a regular point of \mathcal{S}, where the order of \mathcal{S} is (s, t) with $s \neq t$ and $s \neq 1 \neq t$, satisfies the Axiom of Veblen if and only if \mathcal{S} admits a certain set of proper subquadrangles.

1 Introduction

For terminology, notation, and results concerning finite generalized quadrangles and not explicitly given here, see the monograph of Payne and Thas [11], which is henceforth denoted FGQ.

Let $\mathcal{S}=(P, B, \mathrm{I})$ be a (finite) generalized quadrangle (GQ) of order $(s, t), s \geq 1, t \geq 1$. So \mathcal{S} has $v=|P|=(1+s)(1+s t)$ points and $b=$ $|B|=(1+t)(1+s t)$ lines. If $s \neq 1 \neq t$, then $t \leq s^{2}$ and, dually, $s \leq t^{2}$; also $s+t$ divides $s t(1+s)(1+t)$.

There is a point-line duality for GQ (of order (s, t)) for which in any definition or theorem the words "point" and "line" are interchanged and the parameters s and t are interchanged. Normally, we assume without further notice that the dual of a given theorem or definition has also been given.

Given two (not necessarily distinct) points x, x^{\prime} of \mathcal{S}, we write $x \sim x^{\prime}$ and say that x and x^{\prime} are collinear, provided that there is some line L for which

[^0]x I L I x^{\prime}; hence $x \nsim x^{\prime}$ means that x and x^{\prime} are not collinear. Dually, for $L, L^{\prime} \in B$, we write $L \sim L^{\prime}$ or $L \nsim L^{\prime}$ according as L and L^{\prime} are concurrent or nonconcurrent. When $x \sim x^{\prime}$ we also say that x is orthogonal or perpendicular to x^{\prime}, similarly for $L \sim L^{\prime}$. The line incident with distinct collinear points x and x^{\prime} is denoted $x x^{\prime}$, and the point incident with distinct concurrent lines L and L^{\prime} is denoted $L \cap L^{\prime}$.

For $x \in P$ put $x^{\perp}=\left\{x^{\prime} \in P \| x \sim x^{\prime}\right\}$, and note that $x \in x^{\perp}$. The trace of a pair $\left\{x, x^{\prime}\right\}$ of distinct points is defined to be the set $x^{\perp} \cap x^{\prime \perp}$ and is denoted $\operatorname{tr}\left(x, x^{\prime}\right)$ or $\left\{x, x^{\prime}\right\}^{\perp}$; then $\left|\left\{x, x^{\prime}\right\}^{\perp}\right|=s+1$ or $t+1$ according as $x \sim x^{\prime}$ or $x \nsim$ x^{\prime}. More generally, if $A \subset P, A$ "perp" is defined by $A^{\perp}=\cap\left\{x^{\perp} \| x \in A\right\}$. For $x \neq x^{\prime}$, the span of the pair $\left\{x, x^{\prime}\right\}$ is $\operatorname{sp}\left(x, x^{\prime}\right)=\left\{x, x^{\prime}\right\}^{\perp \perp}=\left\{u \in P \| u \in z^{\perp}\right.$ for all $\left.z \in x^{\perp} \cap x^{\prime \perp}\right\}$. When $x \nsim x^{\prime}$, then $\left\{x, x^{\prime}\right\}^{\perp \perp}$ is also called the hyperbolic line defined by x and x^{\prime}, and $\left|\left\{x, x^{\prime}\right\}^{\perp \perp}\right|=s+1$ or $\left|\left\{x, x^{\prime}\right\}^{\perp \perp}\right| \leq t+1$ according as $x \sim x^{\prime}$ or $x \nsucc x^{\prime}$.

2 Regularity

Let $\mathcal{S}=(P, B, \mathrm{I})$ be a finite GQ of order (s, t). If $x \sim x^{\prime}, x \neq x^{\prime}$, or if $x \nsim x^{\prime}$ and $\left|\left\{x, x^{\prime}\right\}^{\perp \perp}\right|=t+1$, where $x, x^{\prime} \in P$, we say the pair $\left\{x, x^{\prime}\right\}$ is regular. The point x is regular provided $\left\{x, x^{\prime}\right\}$ is regular for all $x^{\prime} \in P, x^{\prime} \neq x$. Regularity for lines is defined dually.

A (finite) net of order $k(\geq 2)$ and degree $r(\geq 2)$ is an incidence structure $\mathcal{N}=(P, B, \mathrm{I})$ satisfying
(i) each point is incident with r lines and two distinct points are incident with at most one line;
(ii) each line is incident with k points and two distinct lines are incident with at most one point;
(iii) if x is a point and L is a line not incident with x, then there is a unique line M incident with x and not concurrent with L.

For a net of order k and degree r we have $|P|=k^{2}$ and $|B|=k r$.

Theorem 2.1 (1.3.1 of Payne and Thas [11]) . Let x be a regular point of the GQ $\mathcal{S}=(P, B, I)$ of order $(s, t), s>1$. Then the incidence structure with pointset $x^{\perp}-\{x\}$, with lineset the set of spans $\{y, z\}^{\perp \perp}$, where $y, z \in$ $x^{\perp}-\{x\}, y \nsim z$, and with the natural incidence, is the dual of a net of order s and degree $t+1$. If in particular $s=t>1$, there arises a dual affine plane of order s. Also, in the case $s=t>1$ the incidence structure π_{x} with pointset x^{\perp}, with lineset the set of spans $\{y, z\}^{\perp \perp}$, where $y, z \in x^{\perp}, y \neq z$, and with the natural incidence, is a projective plane of order s.

3 Dual nets and the Axiom of Veblen

Now we introduce the Axiom of Veblen for dual nets $\mathcal{N}^{*}=(P, B, \mathrm{I})$.
Axiom of Veblen. If $L_{1} \mathrm{I} x \mathrm{I} L_{2}, L_{1} \neq L_{2}, M_{1} £ x \mathrm{Y} M_{2}$, and if L_{i} is concurrent with M_{j} for all $i, j \in\{1,2\}$, then M_{1} is concurrent with M_{2}.

The only known dual net \mathcal{N}^{*} which is not a dual affine plane and which satisfies the Axiom of Veblen is the dual net $H_{q}^{n}, n>2$, which is constructed as follows : the points of H_{q}^{n} are the points of $\mathrm{PG}(n, q)$ not in a given subspace $\mathrm{PG}(n-2, q) \subset \mathrm{PG}(n, q)$, the lines of H_{q}^{n} are the lines of $\mathrm{PG}(n, q)$ which have no point in common with $\operatorname{PG}(n-2, q)$, the incidence in H_{q}^{n} is the natural one. By the following theorem these dual nets H_{q}^{n} are characterized by the Axiom of Veblen.

Theorem 3.1 (Thas and De Clerck [14]) Let \mathcal{N}^{*} be a dual net with $s+1$ points on any line and $t+1$ lines through any point, where $t+1>s$. If \mathcal{N}^{*} satisfies the Axiom of Veblen, then $\mathcal{N}^{*} \cong H_{q}^{n}$ with $n>2$ (hence $s=q$ and $\left.t+1=q^{n-1}\right)$.

4 Generalized quadrangles and the Axiom of Veblen

Consider a GQ $T_{3}(O)$ of Tits, with O an ovoid of $\mathrm{PG}(3, q)$; see 3.1.2 of FGQ. Here $s=q$ and $t=q^{2}$. Then the point (∞) is coregular, that is, each line incident with (∞) is regular. It is an easy exercise to check that for each line incident with (∞) the corresponding dual net is isomorphic to H_{q}^{3}. Hence for each line incident with the point (∞) the corresponding dual net satisfies the Axiom of Veblen. We now prove the converse.

Theorem 4.1 Let $\mathcal{S}=(P, B, I)$ be a GQ of order (s, t) with $s \neq t, s>1$ and $t>1$. If \mathcal{S} has a coregular point x and if for each line L incident with x the correponding dual net \mathcal{N}_{L}^{*} satisfies the Axiom of Veblen, then \mathcal{S} is isomorphic to a $T_{3}(O)$ of Tits.

Proof Let L_{1}, L_{2}, L_{3} be three lines no two of which are concurrent, let M_{1}, M_{2}, M_{3} be three lines no two of which are concurrent, let $L_{i} \nsim M_{j}$ if and only if $\{i, j\}=\{1,2\}$ and assume that $x \mathrm{I} L_{1}$. By 5.3.8 of FGQ it is sufficient to prove that for any line $L_{4} \in\left\{M_{1}, M_{2}\right\}^{\perp}$ with $L_{4} \nsim L_{i}, i=1,2,3$, there exists a line M_{4} concurrent with L_{1}, L_{2}, L_{4}.

So let $L_{4} \in\left\{M_{1}, M_{2}\right\}^{\perp}$ with $L_{4} \nsim L_{i}, i=1,2,3$. Consider the line R containing $L_{2} \cap M_{2}$ and concurrent with L_{1}. Further, consider the line R^{\prime} containing $M_{2} \cap L_{4}$ and concurrent with L_{1}. By the regularity of L_{1} there is a line $S \in\left\{M_{1}, M_{3}\right\}^{\perp \perp}$ through the point $L_{3} \cap M_{2}$. Clearly the lines L_{1} and S are concurrent. So the line L_{1} is concurrent with the lines S, R, R^{\prime}; also the line M_{2} is concurrent with the lines S, R, R^{\prime}. By the regularity of L_{1} the line S belongs to the line $\left\{R, R^{\prime}\right\}^{\perp \perp}$ of the dual net $\mathcal{N}_{L_{1}}^{*}$ defined by L_{1}. Hence the lines $\left\{R, R^{\prime}\right\}^{\perp \perp}$ and $\left\{M_{1}, M_{3}\right\}^{\perp \perp}$ of $\mathcal{N}_{L_{1}}^{*}$ have the element S in common. By the Axiom of Veblen, also the lines $\left\{M_{1}, R^{\prime}\right\}^{\perp \perp}$ and $\left\{M_{3}, R\right\}^{\perp \perp}$ of $\mathcal{N}_{L_{1}}^{*}$ have an element M_{4} in common. Consequently M_{4} is concurrent with L_{1}, L_{2}, L_{4}. Now from 5.3.8 of FGQ it follows that \mathcal{S} is isomorphic to a $T_{3}(O)$ of Tits.

Corollary 4.2 Let \mathcal{S} be a GQ of order (s, t) with $s \neq t, s>1$ and $t>1$.
(i) If s is odd, then \mathcal{S} is isomorphic to the classical GQ $Q(5, s)$ if and only if it has a coregular point x and if for each line L incident with x the corresponding dual net \mathcal{N}_{L}^{*} satisfies the Axiom of Veblen.
(ii) If s is even, then \mathcal{S} is isomorphic to the classical $\mathrm{GQ} Q(5, s)$ if and only if all its lines are regular and if for at least one point x and all lines L incident with x the dual nets \mathcal{N}_{L}^{*} satisfy the Axiom of Veblen.

Proof Let (x, L) be an incident point-line pair of the GQ $Q(5, s)$. By 3.2.4 of FGQ there is an isomorphism of $Q(5, s)$ onto $T_{3}(O)$, with O an elliptic quadric of $\mathrm{PG}(3, s)$, which maps x onto the point (∞). It follows that \mathcal{N}_{L}^{*} satisfies the Axiom of Veblen.

Conversely, assume that the $\mathrm{GQ} \mathcal{S}$ of order (s, t), with s odd, $s \neq t, s>1$ and $t>1$, has a coregular point x such that for each line L incident with x the dual net \mathcal{N}_{L}^{*} satisfies the Axiom of Veblen. Then by Theorem 4.1 the GQ \mathcal{S} is isomorphic to $T_{3}(O)$. By Barlotti [2] and Panella [9] each ovoid O of $\operatorname{PG}(3, s)$, with s odd, is an elliptic quadric. Now by 3.2.4 of FGQ we have $\mathcal{S} \cong T_{3}(O) \cong Q(5, s)$.

Finally, assume that for the GQ \mathcal{S} of order (s, t), with s even, $s \neq t, t>1$, all lines are regular and that for at least one point x and all lines L incident with x the dual nets \mathcal{N}_{L}^{*} satisfy the Axiom of Veblen. Then by Theorem 4.1 the GQ \mathcal{S} is isomorphic to $T_{3}(O)$. Since all lines of $\mathcal{S} \cong T_{3}(O)$ are regular, by 3.3.3(iii) of FGQ we finally have $\mathcal{S} \cong T_{3}(O) \cong Q(5, s)$.

5 Translation generalized quadrangles and the Axiom of Veblen

Let $\mathcal{S}=(P, B, \mathrm{I})$ be a GQ of order $(s, t), s \neq 1, t \neq 1$. A collineation θ of \mathcal{S} is an elation about the point p if $\theta=\mathrm{id}$ or if θ fixes all lines incident with p
and fixes no point of $P-p^{\perp}$. If there is a group H of elations about p acting regularly on $P-p^{\perp}$, we say \mathcal{S} is an elation generalized quadrangle (EGQ) with elation group H and base point p. Briefly, we say that $\left(\mathcal{S}^{(p)}, H\right)$ or $\mathcal{S}^{(p)}$ is an EGQ. If the group H is abelian, then we say that the EGQ $\left(\mathcal{S}^{(p)}, H\right)$ is a translation generalized quadrangle. For any TGQ $\mathcal{S}^{(p)}$ the point p is coregular so that the parameters s and t satisfy $s \leq t$; see 8.2 of FGQ. Also, by 8.5.2 of FGQ, for any TGQ with $s \neq t$ we have $s=q^{a}$ and $t=q^{a+1}$, with q a prime power and a an odd integer; if s (or t) is even then by 8.6.1(iv) of FGQ either $s=t$ or $s^{2}=t$.

In $\mathrm{PG}(2 n+m-1, q)$ consider a set $O(n, m, q)$ of $q^{m}+1(n-1)$-dimensional subspaces $\mathrm{PG}^{(0)}(n-1, q), \mathrm{PG}^{(1)}(n-1, q), \ldots, \mathrm{PG}^{\left(q^{m}\right)}(n-1, q)$, every three of which generate a $\mathrm{PG}(3 n-1, q)$ and such that each element $\mathrm{PG}^{(i)}(n-1, q)$ of $O(n, m, q)$ is contained in a $\mathrm{PG}^{(i)}(n+m-1, q)$ having no point in common with any $\mathrm{PG}^{(j)}(n-1, q)$ for $j \neq i$. It is easy to check that $\mathrm{PG}^{(i)}(n+m-1, q)$ is uniquely determined, $i=0,1, \ldots, q^{m}$. The space $\mathrm{PG}^{(i)}(n+m-1, q)$ is called the tangent space of $O(n, m, q)$ at $\mathrm{PG}^{(i)}(n-1, q)$. For $n=m$ such a set $O(n, n, q)$ is called a generalized oval or an $[n-1]$-oval of $\mathrm{PG}(3 n-1, q)$; a generalized oval of $\mathrm{PG}(2, q)$ is just an oval of $\mathrm{PG}(2, q)$. For $n \neq m$ such a set $O(n, m, q)$ is called a generalized ovoid or an $[n-1]$-ovoid or an egg of $\operatorname{PG}(2 n+m-1, q)$; a [0]-ovoid of $\operatorname{PG}(3, q)$ is just an ovoid of $\operatorname{PG}(3, q)$.

Now embed $\operatorname{PG}(2 n+m-1, q)$ in a $\operatorname{PG}(2 n+m, q)$, and construct a pointline geometry $T(n, m, q)$ as follows.

Points are of three types:
(i) the points of $\mathrm{PG}(2 n+m, q)-\mathrm{PG}(2 n+m-1, q)$;
(ii) the $(n+m)$-dimensional subspaces of $\operatorname{PG}(2 n+m, q)$ which intersect $\mathrm{PG}(2 n+m-1, q)$ in one of the $\mathrm{PG}^{(i)}(n+m-1, q)$;
(iii) the symbol (∞).

Lines are of two types :
(a) the n-dimensional subspaces of $\mathrm{PG}(2 n+m, q)$ which intersect $\mathrm{PG}(2 n+$ $m-1, q)$ in a $\mathrm{PG}^{(i)}(n-1, q) ;$
(b) the elements of $O(n, m, q)$.

Incidence in $T(n, m, q)$ is defined as follows. A point of type (i) is incident only with lines of type (a); here the incidence is that of $\mathrm{PG}(2 n+m, q)$. A point of type (ii) is incident with all lines of type (a) contained in it and with the unique element of $O(n, m, q)$ contained in it. The point (∞) is incident with no line of type (a) and with all lines of type (b).

Theorem 5.1 (8.7.1 of Payne and Thas [11]) $T(n, m, q)$ is a TGQ of order $\left(q^{n}, q^{m}\right)$ with base point (∞). Conversely, every TGQ is isomorphic to a $T(n, m, q)$. It follows that the theory of the TGQ is equivalent to the theory of the sets $O(n, m, q)$.

Corollary 5.2 The following hold for any $O(n, m, q)$:
(i) $n=m$ or $n(c+1)=m c$ with c odd;
(ii) if q is even, then $n=m$ or $m=2 n$.

Let $O(n, 2 n, q)$ be an egg of $\mathrm{PG}(4 n-1, q)$. We say that $O(n, 2 n, q)$ is good at the element $\mathrm{PG}^{(i)}(n-1, q)$ of $O(n, 2 n, q)$ if any $\mathrm{PG}(3 n-1, q)$ containing $\mathrm{PG}^{(i)}(n-1, q)$ and at least two other elements of $O(n, 2 n, q)$, contains exactly $q^{n}+1$ elements of $O(n, 2 n, q)$.

Theorem 5.3 Let $\mathcal{S}^{(p)}$ be a TGQ of order $\left(s, s^{2}\right), s \neq 1$, with base point p. Then the dual net \mathcal{N}_{L}^{*} defined by the regular line L, with p I L, satisfies the Axiom of Veblen if and only if the egg $O(n, 2 n, q)$ which corresponds to $\mathcal{S}^{(p)}$ is good at its element $P G^{(i)}(n-1, q)$ which corresponds to L.

Proof Assume that the dual net \mathcal{N}_{L}^{*} satisfies the Axiom of Veblen. Let the egg $O(n, 2 n, q)$ correspond to $\mathcal{S}^{(p)}$ and let $\mathrm{PG}^{(i)}(n-1, q)$ correspond to L. We have $s=q^{n}$. The dual net has $q^{n}+1$ points on a line and $q^{2 n}$ lines through a point. By Theorem 3.1 the dual net \mathcal{N}_{L}^{*} is isomorphic to $H_{q^{n}}^{3}$. Consider the TGQ $T(n, 2 n, q) \cong \mathcal{S}^{(p)}$ and let $\operatorname{PG}(3 n, q)$ be a subspace skew to $\mathrm{PG}^{(i)}(n-1, q)$ in the projective space $\mathrm{PG}(4 n, q)$ in which $T(n, 2 n, q)$ is defined. Let $O(n, 2 n, q)=\left\{\mathrm{PG}^{(0)}(n-1, q), \mathrm{PG}^{(1)}(n-1, q), \ldots, \mathrm{PG}^{\left(q^{2 n}\right)}(n-1, q)\right\}$, let $\left\langle\mathrm{PG}^{(i)}(n-1, q), \mathrm{PG}^{(j)}(n-1, q)\right\rangle \cap \mathrm{PG}(3 n, q)=\pi_{j}$ for all $j \neq i\left(\pi_{j}\right.$ is $(n-1)-$ dimensional), let $\mathrm{PG}(4 n-1, q) \cap \mathrm{PG}(3 n, q)=\mathrm{PG}(3 n-1, q)$ with $\mathrm{PG}(4 n-1, q)$ the space of $O(n, 2 n, q)$, and let $\mathrm{PG}^{(i)}(3 n-1, q) \cap \mathrm{PG}(3 n, q)=\mathrm{PG}(2 n-1, q)$ with $\mathrm{PG}^{(i)}(3 n-1, q)$ the tangent space of $O(n, 2 n, q)$ at $\mathrm{PG}^{(i)}(n-1, q)$. Then the dual net \mathcal{N}_{L}^{*} is isomorphic to the following dual net \mathcal{N}^{*} : points of \mathcal{N}^{*} are the $q^{2 n}$ spaces $\pi_{j}, j \neq i$, and the $q^{3 n}$ points of $\mathrm{PG}(3 n, q)-\mathrm{PG}(3 n-1, q)$, lines of \mathcal{N}^{*} are the $q^{4 n} n$-dimensional subspaces of $\mathrm{PG}(3 n, q)$ which are not contained in $\mathrm{PG}(3 n-1, q)$ and contain an element $\pi_{j}, j \neq i$, and incidence is the natural one. Clearly the points $\pi_{j}, j \neq i$, of \mathcal{N}^{*} form a parallel class of points. Let M be a line of \mathcal{N}^{*} incident with π_{j} and let $\pi_{k} \neq \pi_{j}, k \neq i \neq j$. As $\mathcal{N}^{*} \cong H_{q^{n}}^{3}$ the elements π_{k} and M of \mathcal{N}^{*} generate a dual affine plane \mathcal{A}^{*} in \mathcal{N}^{*}, and the plane \mathcal{A}^{*} contains q^{n} points $\pi_{l}, l \neq i$. Clearly the points of \mathcal{A}^{*} not of type π_{l} are the $q^{2 n}$ points of the subspace $\left\langle\pi_{k}, M\right\rangle$ of $\mathrm{PG}(3 n, q)$ which are not contained in $\mathrm{PG}(3 n-1, q)$. Hence the q^{n} points of \mathcal{A}^{*} of type π_{l} are contained in $\left\langle\pi_{k}, M\right\rangle \cap \mathrm{PG}(3 n-1, q)$. It follows that these q^{n} elements π_{l} are contained
in a $(2 n-1)$-dimensional space $\mathrm{PG}^{\prime}(2 n-1, q)$; also, they form a partition of $\mathrm{PG}^{\prime}(2 n-1, q)-\mathrm{PG}(2 n-1, q)$. Consequently for any two elements $\pi_{l}, \pi_{l^{\prime}}, l \neq$ $i \neq l^{\prime}$, the space $\left\langle\pi_{l}, \pi_{l^{\prime}}\right\rangle$ contains exactly q^{n} elements $\pi_{r}, r \neq i$. Hence for any two spaces $\mathrm{PG}^{(l)}(n-1, q)$ and $\mathrm{PG}^{\left(l^{\prime}\right)}(n-1, q)$ of $O(n, 2 n, q)-\left\{\mathrm{PG}^{(i)}(n-1, q)\right\}$, the $(3 n-1)$-dimensional space $\left\langle\mathrm{PG}^{(i)}(n-1, q), \mathrm{PG}^{(l)}(n-1, q), \mathrm{PG}^{\left(l^{\prime}\right)}(n-1, q)\right\rangle$ contains exactly $q^{n}+1$ elements of $O(n, 2 n, q)$. We conclude that $O(n, 2 n, q)$ is good at $\mathrm{PG}^{(i)}(n-1, q)$.

Conversely, assume that $O(n, 2 n, q)$ is good at the element $\mathrm{PG}^{(i)}(n-1, q)$ which corresponds to L. As in the first part of the proof we project onto a $\mathrm{PG}(3 n, q)$ and we use the same notations. Since $O(n, 2 n, q)$ is good at $\mathrm{PG}^{(i)}(n-1, q)$, for any two elements $\pi_{l}, \pi_{l^{\prime}}, l \neq i \neq l^{\prime}$, the space $\left\langle\pi_{l}, \pi_{l^{\prime}}\right\rangle$ contains exactly q^{n} elements $\pi_{r}, r \neq i$; these q^{n} elements form a partition of the points of $\left\langle\pi_{l}, \pi_{l^{\prime}}\right\rangle$ which are not contained in $\operatorname{PG}(2 n-1, q)$. If M, M^{\prime} are distinct concurrent lines of \mathcal{N}^{*}, then it is easily checked that M and M^{\prime} generate a dual affine plane \mathcal{A}^{*} of order q^{n} in \mathcal{N}^{*}. As \mathcal{A}^{*} satisfies the Axiom of Veblen, also \mathcal{N}^{*} satisfies the Axiom of Veblen.

Let $O=O(n, 2 n, q)$ be an egg in $\mathrm{PG}(4 n-1, q)$. By 8.7.2 of FGQ the $q^{2 n}+1$ tangent spaces of O form an $O^{*}=O^{*}(n, 2 n, q)$ in the dual space of $\mathrm{PG}(4 n-1, q)$. So in addition to $T(n, 2 n, q)=T(O)$ there arises a TGQ $T\left(O^{*}\right)$ with the same parameters. The TGQ $T\left(O^{*}\right)$ is called the translation dual of the TGQ $T(O)$. Examples are known for which $T(O) \cong T\left(O^{*}\right)$, and examples are known for which $T(O) \neq T\left(O^{*}\right)$; see Thas [13].

6 Property (G) and the Axiom of Veblen

Let $\mathcal{S}=(P, B, \mathrm{I})$ be a GQ of $\operatorname{order}\left(s, s^{2}\right), s \neq 1$. Let x_{1}, y_{1} be distinct collinear points. We say that the pair $\left\{x_{1}, y_{1}\right\}$ has Property (G), or that \mathcal{S} has Property (G) at $\left\{x_{1}, y_{1}\right\}$, if every triple $\left\{x_{1}, x_{2}, x_{3}\right\}$ of points, with x_{1}, x_{2}, x_{3} pairwise noncollinear and $y_{1} \in\left\{x_{1}, x_{2}, x_{3}\right\}^{\perp}$, is 3-regular; for the definition of 3 -regularity see 1.3 of FGQ. The GQ \mathcal{S} has Property (G) at the line L, or the line L has Property (G), if each pair of points $\{x, y\}, x \neq y$ and x I L I y, has Property (G). If (x, L) is a flag, that is, if x I L, then we say that \mathcal{S} has Property (G) at (x, L), or that (x, L) has Property (G), if every pair $\{x, y\}, x \neq y$ and y I L, has Property (G). Property (G) was introduced in Payne [10] in connection with generalized quadrangles of order $\left(q^{2}, q\right)$ arising from flocks of quadratic cones in $\operatorname{PG}(3, q)$.

Theorem 6.1 Let $\mathcal{S}=(P, B, I)$ be a GQ of order $\left(s^{2}, s\right)$, s even, satisfying Property (G) at the point x. Then x is regular in \mathcal{S} and the dual net \mathcal{N}_{x}^{*} satisfies the Axiom of Veblen. Consequently $\mathcal{N}_{x}^{*} \cong H_{s}^{3}$.

Proof Let $\mathcal{S}=(P, B, \mathrm{I})$ be a GQ of order $\left(s^{2}, s\right), s$ even, satisfying Property (G) at the point x. By 3.2.1 of [13] the point x is regular. Let y be a point of the dual net \mathcal{N}_{x}^{*}, let A_{1} and A_{2} be distinct lines of \mathcal{N}_{x}^{*} containing y, let B_{1} and B_{2} be distinct lines of \mathcal{N}_{x}^{*} not containing y, and let $A_{i} \cap B_{j} \neq \emptyset$ for all $i, j \in\{1,2\}$. Let $\{z\}=A_{1} \cap B_{1}$ and let $z \mathrm{I} M$, with $x \Varangle M$. Further, let x I L, with $z \mathrm{£} L$, let u be the point of A_{1} on L, and let v be the point of B_{1} on L. The line of \mathcal{S} incident with u resp. v and concurrent with M is denoted by C resp. D; the line incident with z and x is denoted by N. Since \mathcal{S} satisfies Property (G) at x, the triple $\{C, D, N\}$ is 3 -regular. By 2.6.2 of TGQ the lines of \mathcal{S} concurrent with at least two lines of $\{C, D, N\}^{\perp} \cup\{C, D, N\}^{\perp \perp}$ are the lineset of a subquadrangle \mathcal{S}^{\prime} of order (s, s) of \mathcal{S}. As x is regular for \mathcal{S} it is also regular for \mathcal{S}^{\prime}. By Theorem 2.1 the point x defines a projective plane π_{x} of order s. Clearly $A_{1}, A_{2}, B_{1}, B_{2}$ are lines of the projective plane π_{x}. Hence B_{1} and B_{2} intersect in π_{x}. Consequently \mathcal{N}_{x}^{*} satisfies the Axiom of Veblen, and so $\mathcal{N}_{x}^{*} \cong H_{s}^{3}$.

Theorem 6.2 (Thas [13]) A TGQ $T(n, 2 n, q)$ satisfies Property (G) at the pair $\{(\infty), \bar{\zeta}\}$, with $\bar{\zeta}$ a point of type (ii) incident with the line ζ of type (b) (or, equivalently, at the flag $((\infty), \zeta)$) if and only if, for any two elements $\zeta_{i}, \zeta_{j}(i \neq j)$ of $O(n, 2 n, q)-\{\zeta\}$, the $(n-1)$-dimensional space $P G(n-1, q)=$ $\tau \cap \tau_{i} \cap \tau_{j}$, with τ, τ_{i}, τ_{j} the respective tangent spaces of $O(n, 2 n, q)$ at $\zeta, \zeta_{i}, \zeta_{j}$, is contained in exactly $q^{n}+1$ tangent spaces of $O(n, 2 n, q)$.

Theorem 6.3 Let $\mathcal{S}^{(p)}$ be a TGQ of order $\left(s, s^{2}\right), s \neq 1$, with base point p. Then the dual net \mathcal{N}_{L}^{*} defined by the regular line L, with $p I L$, satisfies the Axiom of Veblen if and only if the translation dual $\mathcal{S}^{\prime\left(p^{\prime}\right)}$ of $\mathcal{S}^{(p)}$ satisfies Property (G) at the flag $\left(p^{\prime}, L^{\prime}\right)$, where L^{\prime} corresponds to L; in the even case, \mathcal{N}_{L}^{*} satisfies the Axiom of Veblen if and only if $\mathcal{S}^{(p)}$ satisfies Property (G) at the flag (p, L).

Proof By Theorem 5.3 the dual net \mathcal{N}_{L}^{*} satisfies the Axiom of Veblen if and only if $O(n, 2 n, q)$ is good at the element $\mathrm{PG}^{(i)}(n-1, q)$ which corresponds to L. By Theorem 6.1 the egg $O(n, 2 n, q)=O$ is good at $\mathrm{PG}^{(i)}(n-1, q)$ if and only if $T\left(O^{*}\right)$ satisfies Property (G) at the flag $\left((\infty), \mathrm{PG}^{(i)}(3 n-1, q)\right)$, with $\mathrm{PG}^{(i)}(3 n-1, q)$ the tangent space of O at $P G^{(i)}(n-1, q)$; by Theorem 4.3.2 of [13], for q even, $T\left(O^{*}\right)$ satisfies Property (G) at the flag $\left((\infty), \mathrm{PG}^{(i)}(3 n-1, q)\right)$ if and only if $T(O)$ satisfies Property (G) at the flag $\left((\infty), \mathrm{PG}^{(i)}(n-1, q)\right)$.

Theorem 6.4 Let $\mathcal{S}^{(p)}$ be a TGQ of order $\left(s, s^{2}\right), s$ odd and $s \neq 1$, with base point p. If the dual net \mathcal{N}_{L}^{*} defined by some regular line L, with $p I$ L, satisfies the Axiom of Veblen, then $\mathcal{S}^{(p)}$ contains at least $s^{3}+s^{2}$ classical subquadrangles $Q(4, s)$.

Proof This follows immediately from the preceding theorem and Theorem 4.3.4 of Thas [13].

Theorem 6.5 Let $\mathcal{S}^{(p)}$ be a TGQ of order $\left(s, s^{2}\right)$, s odd and $s \neq 1$, with base point p. If pIL and if the dual net \mathcal{N}_{L}^{*} satisfies the Axiom of Veblen, then all lines concurrent with L are regular.

Proof Let N be concurrent with $L, p \mp N$, and let the line M of $\mathcal{S}^{(p)}$ be nonconcurrent with N. By Theorem 4.3.4 of Thas [13] the lines N, M are lines of a subquadrangle of $\mathcal{S}^{(p)}$ isomorphic to $Q\left(4, q^{n}\right)$. Hence $\{N, M\}$ is a regular pair of lines. We conclude that the line N is regular in $\mathcal{S}^{(p)}$.

7 Flock generalized quadrangles and the Axiom of Veblen

Let F be a flock of the quadratic cone K with vertex x of $\operatorname{PG}(3, q)$, that is, a partition of $K-\{x\}$ into q disjoint irreducible conics. Then, by Thas [12], with F there corresponds a GQ $\mathcal{S}(F)$ of order $\left(q^{2}, q\right)$. In Payne [10] it was shown that $\mathcal{S}(F)$ satisfies Property (G) at its point (∞).

Let $F=\left\{C_{1}, C_{2}, \ldots, C_{q}\right\}$ be a flock of the quadratic cone K with vertex x_{0} of $\operatorname{PG}(3, q)$, with q odd. The plane of C_{i} is denoted by $\pi_{i}, i=1,2, \ldots, q$. Let K be embedded in the nonsingular quadric Q of $\mathrm{PG}(4, q)$. The polar line of π_{i} with respect to Q is denoted by L_{i}; let $L_{i} \cap Q=\left\{x_{0}, x_{i}\right\}, i=1,2, \ldots, q$. Then no point of Q is collinear with all three of $x_{0}, x_{i}, x_{j}, 1 \leq i<j \leq q$. In [1] it is proved that it is also true that no point of Q is collinear with all three of $x_{i}, x_{j}, x_{k}, 0 \leq i<j<k \leq q$. Such a set U of $q+1$ points of Q will be called a BLT-set in Q, following a suggestion of Kantor [7]. Since the GQ $Q(4, q)$ arising from Q is isomorphic to the dual of the GQ $W(q)$ arising from a symplectic polarity in $\operatorname{PG}(3, q)$, to a BLT-set in Q corresponds a set V of $q+1$ lines of $W(q)$ with the property that no line of $W(q)$ is concurrent with three distinct lines of V; such a set V will also be called a BLT-set.

To F corresponds a GQ $\mathcal{S}(F)$ of order $\left(q^{2}, q\right)$. Knarr [8] proves that $\mathcal{S}(F)$ is isomorphic to the following incidence structure.

Start with a symplectic polarity θ of $P G(5, q)$. Let $(\infty) \in \mathrm{PG}(5, q)$ and let $\mathrm{PG}(3, q)$ be a 3 -dimensional subspace of $\mathrm{PG}(5, q)$ for which $(\infty) \notin \mathrm{PG}(3, q) \subset$ $(\infty)^{\theta}$. In $\operatorname{PG}(3, q) \theta$ induces a symplectic polarity θ^{\prime}, and hence a GQ $W(q)$. Let V be the BLT-set defined by F of the GQ $W(q)$ and construct a geometry $\mathcal{S}=(P, B, \mathrm{I})$ as follows.

Points: (i) (∞); (ii) lines of $\operatorname{PG}(5, q)$ not containing (∞) but contained in one of the planes $\pi_{t}=(\infty) L_{t}$, with L_{t} a line of the BLT-set V; (iii) points of $\operatorname{PG}(5, q)$ not in $(\infty)^{\theta}$.

Lines: (a) planes $\pi_{t}=(\infty) L_{t}$, with $L_{t} \in V$; (b) totally isotropic planes of θ not contained in $(\infty)^{\theta}$ and meeting some π_{t} in a line (not through (∞)).

The incidence relation I is the natural incidence inherited from $\operatorname{PG}(5, q)$.
Then Knarr [8] proves that \mathcal{S} is a GQ of order $\left(q^{2}, q\right)$ isomorphic to the GQ $\mathcal{S}(F)$ arising from the flock F defining V.

Theorem 7.1 For any GQ $\mathcal{S}(F)$ of order $\left(q^{2}, q\right)$ arising from a flock F, the point (∞) is regular.

Proof The GQ $\mathcal{S}(F)$ satisfies Property (G) at its point (∞). Then for q even, by 3.2.1 of Thas [13], the point (∞) is regular. Now let q be odd, and consider the construction of Knarr. If the point y is not collinear with (∞), that is, if y is a point of $\operatorname{PG}(5, q)$ not in $(\infty)^{\theta}$, then $\{(\infty), y\}^{\perp \perp}$ consists of the $q+1$ points of the line $(\infty) y$ of $\operatorname{PG}(5, q)$. As $\left|\{(\infty), y\}^{\perp \perp}\right|=q+1$ the point (∞) is regular.

Let K be the quadratic cone with equation $X_{0} X_{1}=X_{2}^{2}$ of $\operatorname{PG}(3, q), q$ odd. Then the q planes π_{t} with equation $t X_{0}-m t^{\sigma} X_{1}+X_{3}=0, t \in G F(q), m$ a given nonsquare of $G F(q)$, and σ a given automorphism of $G F(q)$, define a flock F of K; see Thas [12]. The corresponding GQ $\mathcal{S}(F)$ were first discovered by Kantor [6], and so these flocks F will be called Kantor flocks. Any such GQ $\mathcal{S}(F)$ is a TGQ for some base line, and so the point-line dual of $\mathcal{S}(F)$ is isomorphic to some $T(O)$, with O an $[n-1]$-ovoid. Also, in Payne [10] it is proved that $T(O)$ is isomorphic to its translation dual $T\left(O^{*}\right)$; there is an isomorphism of $T(O)$ onto $T\left(O^{*}\right)$ conserving types of points and lines and mapping the line ζ of type (b) of $T(O)$ onto the line τ of type (b) of $T\left(O^{*}\right)$, where τ is the tangent space of O at ζ.

Theorem 7.2 Consider the GQ $\mathcal{S}(F)$ of order $\left(q^{2}, q\right)$ arising from the flock F. If q is even, then the dual net $\mathcal{N}_{(\infty)}^{*}$ always satisfies the Axiom of Veblen and so $\mathcal{N}_{(\infty)}^{*} \cong H_{q}^{3}$. If q is odd, then the dual net $\mathcal{N}_{(\infty)}^{*}$ satisfies the Axiom of Veblen if and only if F is a Kantor flock.

Proof Consider the GQ $\mathcal{S}(F)$ of order $\left(q^{2}, q\right)$ arising from the flock F. Then $\mathcal{S}(F)$ satisfies Property (G) at the point (∞).

First, let q be even. Then by Theorem 6.1 the dual net $\mathcal{N}_{(\infty)}^{*}$ satisfies the Axiom of Veblen, and so $\mathcal{N}_{(\infty)}^{*} \cong H_{q}^{3}$.

Next, let q be odd. Suppose that F is a Kantor flock. Then the point-line dual of $\mathcal{S}(F)$ is isomorphic to some $T(O)$, and by [10] $T(O) \cong T\left(O^{*}\right)$. The point (∞) of $\mathcal{S}(F)$ corresponds to some line ζ of type (b) of $T(O)$. Hence $T(O)$ satisfies Property (G) at ζ. By Theorem 6.3 the dual net \mathcal{N}_{τ}^{*} which corresponds with the regular line τ of $T\left(O^{*}\right)$, where τ is the tangent space of O at ζ, satisfies the Axiom of Veblen. Hence also the dual net \mathcal{N}_{ζ}^{*} which
corresponds with the regular line ζ of $T(O)$ satisfies the Axiom of Veblen. It follows that the dual net $\mathcal{N}_{(\infty)}^{*}$ satisfies the Axiom of Veblen. Conversely, suppose that the dual net $\mathcal{N}_{(\infty)}^{*}$ satisfies the Axiom of Veblen. Hence $\mathcal{N}_{(\infty)}^{*} \cong$ H_{q}^{3}. In the representation of Knarr, this dual net looks as follows : points of $\mathcal{N}_{(\infty)}^{*}$ are the lines of $\mathrm{PG}(5, q)$ not containing (∞) but contained in one of the planes π_{t}, lines of $\mathcal{N}_{(\infty)}^{*}$ can be identified with the threedimensional subspaces of $(\infty)^{\theta}$ not containing (∞), and incidence is inclusion. By pointhyperplane duality in $(\infty)^{\theta}$, the net $\mathcal{N}_{(\infty)}$, which is the point-line dual of $\mathcal{N}_{(\infty)}^{*}$, is isomorphic to the following incidence structure : points of $\mathcal{N}_{(\infty)}$ are the points of $(\infty)^{\theta}-\mathrm{PG}(3, q)$, lines of $\mathcal{N}_{(\infty)}$ are the planes of $(\infty)^{\theta}$ not contained in $\operatorname{PG}(3, q)$ but containing one of the lines of the BLT-set V in $\mathrm{PG}(3, q)$, and incidence is the natural one. As the net \mathcal{N}_{∞} is isomorphic to the dual of H_{q}^{3}, it is easily seen to be derivable; see e.g. De Clerck and Johnson [4]. In $W(q)$ the lineset $S=\left\{L_{0}, L_{1}\right\}^{\perp \perp} \cup\left\{L_{0}, L_{2}\right\}^{\perp \perp} \cup \ldots \cup\left\{L_{0}, L_{q}\right\}^{\perp \perp}$ is a linespread containing V; see e.g. [12]. As $\mathcal{N}_{(\infty)}$ is derivable, by [3] there are two distinct lines in $\mathrm{PG}(3, q)$, but not in $\left\{L_{0}, L_{1}\right\}^{\perp} \cup\left\{L_{0}, L_{2}\right\}^{\perp} \cup \ldots \cup\left\{L_{0}, L_{q}\right\}^{\perp}$, intersecting the same $q+1$ lines of S. Then by Johnson and Lunardon [5], the flock F is a Kantor flock.

Corollary 7.3 Suppose that the TGQ $T(O)$, with $O=O(n, 2 n, q)$ and q odd, is the point-line dual of a flock GQ $\mathcal{S}(F)$ where the point (∞) of $\mathcal{S}(F)$ corresponds to the line ζ of type (b) of $T(O)$. Then $T(O)$ is good at the element ζ if and only if F is a Kantor flock.

Proof This follows immediately from Theorems 5.3 and 7.2.

8 Subquadrangles and the Axiom of Veblen

Theorem 8.1 Let $\mathcal{S}=(P, B, I)$ be a GQ of order $(s, t), s \neq 1 \neq t$, having a regular point x. If x together with any two points y, z, with $y \nsim x$ and $x \sim z \nsim y$, is contained in a proper subquadrangle \mathcal{S}^{\prime} of \mathcal{S} of order $\left(s^{\prime}, t\right)$, with $s^{\prime} \neq 1$, then $s^{\prime}=t=\sqrt{s}$ and the dual net \mathcal{N}_{x}^{*} satisfies the Axiom of Veblen. It follows that s and t are prime powers, and that for each subquadrangle \mathcal{S}^{\prime} the projective plane π_{x} of order t defined by the regular point x of \mathcal{S}^{\prime} is desarguesian. Conversely, if the dual net \mathcal{N}_{x}^{*} satisfies the Axiom of Veblen, then either (a) $s=t$, or (b) $s=t^{2}, s$ and t are prime powers, x and any two points y, z with $y \nsim x$ and $x \sim z \nsim y$ are contained in a subquadrangle \mathcal{S}^{\prime} of \mathcal{S} of order (t, t), and the projective plane π_{x} of order t defined by the regular point x of \mathcal{S}^{\prime} is desarguesian.

Proof Let $\mathcal{S}=(P, B, \mathrm{I})$ be a GQ of order $(s, t), s \neq 1 \neq t$, having a regular point x.

First, assume that x together with any two points y, z with $y \nsim x$ and $x \sim z \nsim y$ is contained in a proper subquadrangle \mathcal{S}^{\prime} of \mathcal{S} of order $\left(s^{\prime}, t\right)$, with $s^{\prime} \neq 1$. As x is also regular for \mathcal{S}^{\prime}, the GQ \mathcal{S}^{\prime} contains subquadrangles of order $(1, t)$. Then, by 2.2.2 of FGQ, we have $s^{\prime}=t=\sqrt{s}$. By Theorem 2.1 the dual net $\mathcal{N}_{x}^{\prime *}$ arising from the regular point x of \mathcal{S}^{\prime}, is a dual affine plane of order s. Hence $\mathcal{N}_{x}^{\prime *}$ satisfies the Axiom of Veblen. Now consider distinct lines $A_{1}, A_{2}, B_{1}, B_{2}$ of the dual net \mathcal{N}_{x}^{*}, where $A_{1} \cap A_{2}=\{z\}, z \notin B_{1}, z \notin B_{2}$, and $A_{i} \cap B_{j} \neq \emptyset$ for all $i, j \in\{1,2\}$. Let $A_{1} \cap B_{1}=\{u\}, A_{2} \cap B_{2}=\{w\}$, and let $y \in\{u, w\}^{\perp}-\{x\}$. Let \mathcal{S}^{\prime} be a subquadrangle of order t containing the points x, y, z of \mathcal{S}. Then $A_{1}, A_{2}, B_{1}, B_{2}$ are lines of the dual net $\mathcal{N}_{x}^{\prime *}$. As $\mathcal{N}_{x}^{\prime *}$ satisfies the Axiom of Veblen, we have $B_{1} \cap B_{2} \neq \emptyset$. It follows that the dual net $\mathcal{N}_{x}^{\prime *}$ satisfies the Axiom of Veblen. Consequently $\mathcal{N}_{x}^{\prime *} \cong H_{t}^{3}$, and so s and t are prime powers. For any subquadrangle \mathcal{S}^{\prime} the dual net $\mathcal{N}_{x}^{\prime *}$ is a dual affine plane of order t, which is isomorphic to a dual affine plane of order t in H_{t}^{3}. Hence the dual net $\mathcal{N}_{x}^{\prime *}$, and consequently also the corresponding projective plane π_{x}, are desarguesian.

Conversely, assume that the dual net \mathcal{N}_{x}^{*} satisfies the Axiom of Veblen. Also, suppose that $s \neq t$, that is, $s>t$ by 1.3.6 of FGQ. Then, by Theorem 3.1, we have $\mathcal{N}_{x}^{*} \cong H_{q}^{n}$ with q a prime power and $n>2$. As $s=q^{n-1}, t=q$ and $s \leq t^{2}$ (by the inequality of Higman, see 1.2.3 of FGQ), we necessarily have $n=3$. Hence $s=t^{2}, t=q$, and $\mathcal{N}_{x}^{*} \cong H_{q}^{3}$. Now consider any two points y, z, with $y \nsim x, x \sim z \nsim y$. As $\mathcal{N}_{x}^{*} \cong H_{q}^{3}$ it is easily seen that z and $\{x, y\}^{\perp}$ generate a dual affine plane \mathcal{A} of order q in \mathcal{N}_{x}^{*}. Let $A_{1}, A_{2}, \ldots, A_{q^{2}}$ be the lines of \mathcal{A}. Further, let P^{\prime} be the pointset of \mathcal{S} consisting of the points of $A_{1}^{\perp} \cup A_{2}^{\perp} \cup \ldots \cup A_{q^{2}}^{\perp}$ and the points of \mathcal{A}. Clearly P^{\prime} contains z and y, and $\left|P^{\prime}\right|=q^{3}+q^{2}+q+1$. Further, any line of \mathcal{S} incident with at least one point of P^{\prime} either contains x or a point of \mathcal{A}; the set of all these lines is denoted by B^{\prime}. Also, any point incident with two distinct lines of B^{\prime} belongs to P^{\prime}. Then, by 2.3.1 of FGQ, $\mathcal{S}^{\prime}=\left(P^{\prime}, B^{\prime}, \mathrm{I}^{\prime}\right)$ with I^{\prime} the restriction of I to $\left(P^{\prime} \times B^{\prime}\right) \cup\left(B^{\prime} \times P^{\prime}\right)$ is a subquadrangle of \mathcal{S} of order q. As in the first part of the proof one now shows that for any such subquadrangle \mathcal{S}^{\prime} the projective plane π_{x} defined by x is desarguesian.

References

[1] L. Bader, G. Lunardon and J.A. Thas, Derivation of flocks of quadratic cones, Forum Math. 2 (1990), 163-174.
[2] A. Barlotti, Un' estensione del teorema di Segre-Kustaanheimo, Boll. Un. Mat. Ital. 10 (1955), 96-98.
[3] M. Biliotti and G. Lunardon, Insiemi di derivazione e sottopiani di Baer in un piano di traslazione, Atti Accad. Naz. Lincei Rend. 69 (1980), 135-141.
[4] F. De Clerck and N.L. Johnson, Subplane covered nets and semipartial geometries, Discrete Math. 106/107, (1992), 127-134.
[5] N.L. Johnson and G. Lunardon, Maximal partial spreads and flocks, Des. Codes Cryptogr., to appear.
[6] W.M. Kantor, Some generalized quadrangles with parameters $\left(q^{2}, q\right)$, Math. Z. 192 (1986), 45-50.
[7] W.M. Kantor, Note on generalized quadrangles, flocks and BLT-sets, J. Combin. Theory Ser. A 58 (1991), 153-157.
[8] N. Knarr, A geometric construction of generalized quadrangles from polar spaces of rank three, Resultate Math. 21 (1992), 332-334.
[9] G. Panella, Caratterizzazione delle quadriche di uno spazio (tridimensionale) lineare sopra un corpo finito, Boll. Un. Mat. Ital. 10 (1955), 507-513.
[10] S.E. Payne, An essay on skew translation generalized quadrangles, Geom. Dedicata 32 (1989), 93-118.
[11] S.E. Payne and J.A. Thas, Finite Generalized Quadrangles, Pitman, Boston, 1984.
[12] J.A. Thas, Generalized quadrangles and flocks of cones, European J. Combin. 8 (1987), 441-452.
[13] J.A. Thas, Generalized quadrangles of order $\left(s, s^{2}\right), I$, J. Combin. Theory Ser. A 67 (1994), 140-160.
[14] J.A. Thas and F. De Clerck, Partial geometries satisfying the axiom of Pasch, Simon Stevin 51 (1977), 123-137.
J.A. Thas Department of Pure Mathematics and Computer Algebra, University of Ghent, Krijgslaan 281, B-9000 Gent, Belgium
e-mail : jat@cage.rug.ac.be
H. Van Maldeghem Department of Pure Mathematics and Computer Algebra, University of Ghent, Krijgslaan 281, B-9000 Gent, Belgium
e-mail : hvm@cage.rug.ac.be

[^0]: *Senior Research Associate of the Belgian National Fund for Scientific Research

