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If x is a regular point of a generalized quadrangle S = (P,B, I) of order (s, t), s "= 1, then
x defines a dual net with t + 1 points on any line and s lines through every point. If
s "= t, s > 1, t > 1, then S is isomorphic to a T3(O) of Tits if and only if S has a coregular
point x such that for each line L incident with x the corresponding dual net satisfies
the Axiom of Veblen. As a corollary we obtain some elegant characterizations of the
classical generalized quadrangles Q(5, s). Further we consider the translation generalized
quadrangles S(p) of order (s, s2), s "= 1, with base point p for which the dual net defined
by L, with p I L, satisfies the Axiom of Veblen. Next there is a section on Property (G)
and the Axiom of Veblen, and a section on flock generalized quadrangles and the Axiom
of Veblen. This last section contains a characterization of the TGQ of Kantor in terms of
the Axiom of Veblen. Finally, we prove that the dual net defined by a regular point of S,
where the order of S is (s, t) with s "= t and s "= 1 "= t, satisfies the Axiom of Veblen if and
only if S admits a certain set of proper subquadrangles.

1 Introduction

For terminology, notation, and results concerning finite generalized quadran-
gles and not explicitly given here, see the monograph of Payne and Thas [11],
which is henceforth denoted FGQ.

Let S = (P, B, I) be a (finite) generalized quadrangle (GQ) of order
(s, t), s ≥ 1, t ≥ 1. So S has v = |P | = (1 + s)(1 + st) points and b =
|B| = (1 + t)(1 + st) lines. If s "= 1 "= t, then t ≤ s2 and, dually, s ≤ t2; also
s + t divides st(1 + s)(1 + t).

There is a point-line duality for GQ (of order (s, t)) for which in any
definition or theorem the words “point” and “line” are interchanged and the
parameters s and t are interchanged. Normally, we assume without further
notice that the dual of a given theorem or definition has also been given.

Given two (not necessarily distinct) points x, x′ of S, we write x ∼ x′ and
say that x and x′ are collinear, provided that there is some line L for which
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242 GENERALIZED QUADRANGLES AND THE AXIOM OF VEBLEN

x I L I x′; hence x "∼ x′ means that x and x′ are not collinear. Dually, for
L, L′ ∈ B, we write L ∼ L′ or L "∼ L′ according as L and L′ are concurrent or
nonconcurrent. When x ∼ x′ we also say that x is orthogonal or perpendicular
to x′, similarly for L ∼ L′. The line incident with distinct collinear points x
and x′ is denoted xx′, and the point incident with distinct concurrent lines L
and L′ is denoted L ∩ L′.

For x ∈ P put x⊥ = {x′ ∈ P ‖x ∼ x′}, and note that x ∈ x⊥. The trace of
a pair {x, x′} of distinct points is defined to be the set x⊥∩x′⊥ and is denoted
tr(x, x′) or {x, x′}⊥; then |{x, x′}⊥| = s+1 or t+1 according as x ∼ x′ or x "∼
x′. More generally, if A ⊂ P, A “perp” is defined by A⊥ = ∩{x⊥ ‖x ∈ A}. For
x "= x′, the span of the pair {x, x′} is sp(x, x′) = {x, x′}⊥⊥ = {u ∈ P ‖u ∈ z⊥

for all z ∈ x⊥∩x′⊥}. When x "∼ x′, then {x, x′}⊥⊥ is also called the hyperbolic
line defined by x and x′, and |{x, x′}⊥⊥| = s+1 or |{x, x′}⊥⊥| ≤ t+1 according
as x ∼ x′ or x "∼ x′.

2 Regularity

Let S = (P, B, I) be a finite GQ of order (s, t). If x ∼ x′, x "= x′, or if x "∼ x′

and |{x, x′}⊥⊥| = t+1, where x, x′ ∈ P , we say the pair {x, x′} is regular. The
point x is regular provided {x, x′} is regular for all x′ ∈ P, x′ "= x. Regularity
for lines is defined dually.

A (finite) net of order k (≥ 2) and degree r (≥ 2) is an incidence structure
N = (P, B, I) satisfying

(i) each point is incident with r lines and two distinct points are incident
with at most one line;

(ii) each line is incident with k points and two distinct lines are incident
with at most one point;

(iii) if x is a point and L is a line not incident with x, then there is a unique
line M incident with x and not concurrent with L.

For a net of order k and degree r we have |P | = k2 and |B| = kr.

Theorem 2.1 (1.3.1 of Payne and Thas [11]) . Let x be a regular point
of the GQ S = (P, B, I) of order (s, t), s > 1. Then the incidence structure
with pointset x⊥ − {x}, with lineset the set of spans {y, z}⊥⊥, where y, z ∈
x⊥−{x}, y "∼ z, and with the natural incidence, is the dual of a net of order s
and degree t+1. If in particular s = t > 1, there arises a dual affine plane of
order s. Also, in the case s = t > 1 the incidence structure πx with pointset
x⊥, with lineset the set of spans {y, z}⊥⊥, where y, z ∈ x⊥, y "= z, and with
the natural incidence, is a projective plane of order s.
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3 Dual nets and the Axiom of Veblen

Now we introduce the Axiom of Veblen for dual nets N ∗ = (P, B, I).

Axiom of Veblen. If L1 I x I L2, L1 "= L2, M1 !I x !I M2, and if Li is
concurrent with Mj for all i, j ∈ {1, 2}, then M1 is concurrent with M2.

The only known dual net N ∗ which is not a dual affine plane and which
satisfies the Axiom of Veblen is the dual net Hn

q , n > 2, which is constructed
as follows : the points of Hn

q are the points of PG(n, q) not in a given subspace
PG(n− 2, q) ⊂ PG(n, q), the lines of Hn

q are the lines of PG(n, q) which have
no point in common with PG(n − 2, q), the incidence in Hn

q is the natural
one. By the following theorem these dual nets Hn

q are characterized by the
Axiom of Veblen.

Theorem 3.1 (Thas and De Clerck [14]) Let N ∗ be a dual net with s+1
points on any line and t + 1 lines through any point, where t + 1 > s. If N ∗

satisfies the Axiom of Veblen, then N ∗ ∼= Hn
q with n > 2 (hence s = q and

t + 1 = qn−1).

4 Generalized quadrangles and the Axiom of
Veblen

Consider a GQ T3(O) of Tits, with O an ovoid of PG(3, q); see 3.1.2 of FGQ.
Here s = q and t = q2. Then the point (∞) is coregular, that is, each line
incident with (∞) is regular. It is an easy exercise to check that for each line
incident with (∞) the corresponding dual net is isomorphic to H3

q . Hence for
each line incident with the point (∞) the corresponding dual net satisfies the
Axiom of Veblen. We now prove the converse.

Theorem 4.1 Let S = (P, B, I) be a GQ of order (s, t) with s "= t, s > 1 and
t > 1. If S has a coregular point x and if for each line L incident with x the
correponding dual net N ∗

L satisfies the Axiom of Veblen, then S is isomorphic
to a T3(O) of Tits.

Proof Let L1, L2, L3 be three lines no two of which are concurrent, let
M1, M2, M3 be three lines no two of which are concurrent, let Li "∼ Mj if and
only if {i, j} = {1, 2} and assume that x I L1. By 5.3.8 of FGQ it is sufficient
to prove that for any line L4 ∈ {M1, M2}⊥ with L4 "∼ Li, i = 1, 2, 3, there
exists a line M4 concurrent with L1, L2, L4.
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So let L4 ∈ {M1, M2}⊥ with L4 "∼ Li, i = 1, 2, 3. Consider the line R
containing L2 ∩ M2 and concurrent with L1. Further, consider the line R′

containing M2 ∩ L4 and concurrent with L1. By the regularity of L1 there is
a line S ∈ {M1, M3}⊥⊥ through the point L3 ∩M2. Clearly the lines L1 and
S are concurrent. So the line L1 is concurrent with the lines S, R, R′; also the
line M2 is concurrent with the lines S, R, R′. By the regularity of L1 the line
S belongs to the line {R,R′}⊥⊥ of the dual net N ∗

L1
defined by L1. Hence the

lines {R,R′}⊥⊥ and {M1, M3}⊥⊥ of N ∗
L1

have the element S in common. By
the Axiom of Veblen, also the lines {M1, R′}⊥⊥ and {M3, R}⊥⊥ of N ∗

L1
have

an element M4 in common. Consequently M4 is concurrent with L1, L2, L4.
Now from 5.3.8 of FGQ it follows that S is isomorphic to a T3(O) of Tits. !

Corollary 4.2 Let S be a GQ of order (s, t) with s "= t, s > 1 and t > 1.

(i) If s is odd, then S is isomorphic to the classical GQ Q(5, s) if and only
if it has a coregular point x and if for each line L incident with x the
corresponding dual net N ∗

L satisfies the Axiom of Veblen.

(ii) If s is even, then S is isomorphic to the classical GQ Q(5, s) if and only
if all its lines are regular and if for at least one point x and all lines L
incident with x the dual nets N ∗

L satisfy the Axiom of Veblen.

Proof Let (x, L) be an incident point-line pair of the GQ Q(5, s). By 3.2.4
of FGQ there is an isomorphism of Q(5, s) onto T3(O), with O an elliptic
quadric of PG(3, s), which maps x onto the point (∞). It follows that N ∗

L

satisfies the Axiom of Veblen.
Conversely, assume that the GQ S of order (s, t), with s odd, s "= t, s > 1

and t > 1, has a coregular point x such that for each line L incident with
x the dual net N ∗

L satisfies the Axiom of Veblen. Then by Theorem 4.1 the
GQ S is isomorphic to T3(O). By Barlotti [2] and Panella [9] each ovoid O
of PG(3, s), with s odd, is an elliptic quadric. Now by 3.2.4 of FGQ we have
S ∼= T3(O) ∼= Q(5, s).

Finally, assume that for the GQ S of order (s, t), with s even, s "= t, t > 1,
all lines are regular and that for at least one point x and all lines L incident
with x the dual nets N ∗

L satisfy the Axiom of Veblen. Then by Theorem 4.1
the GQ S is isomorphic to T3(O). Since all lines of S ∼= T3(O) are regular,
by 3.3.3(iii) of FGQ we finally have S ∼= T3(O) ∼= Q(5, s). !

5 Translation generalized quadrangles and the
Axiom of Veblen

Let S = (P, B, I) be a GQ of order (s, t), s "= 1, t "= 1. A collineation θ of S
is an elation about the point p if θ =id or if θ fixes all lines incident with p
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and fixes no point of P − p⊥. If there is a group H of elations about p acting
regularly on P − p⊥, we say S is an elation generalized quadrangle (EGQ)
with elation group H and base point p. Briefly, we say that (S(p), H) or S(p) is
an EGQ. If the group H is abelian, then we say that the EGQ (S(p), H) is a
translation generalized quadrangle. For any TGQ S(p) the point p is coregular
so that the parameters s and t satisfy s ≤ t; see 8.2 of FGQ. Also, by 8.5.2 of
FGQ, for any TGQ with s "= t we have s = qa and t = qa+1, with q a prime
power and a an odd integer; if s (or t) is even then by 8.6.1(iv) of FGQ either
s = t or s2 = t.

In PG(2n+m−1, q) consider a set O(n, m, q) of qm+1 (n−1)-dimensional
subspaces PG(0)(n− 1, q),PG(1)(n− 1, q), . . ., PG(qm)(n− 1, q), every three of
which generate a PG(3n− 1, q) and such that each element PG(i)(n− 1, q) of
O(n, m, q) is contained in a PG(i)(n + m − 1, q) having no point in common
with any PG(j)(n− 1, q) for j "= i. It is easy to check that PG(i)(n+m− 1, q)
is uniquely determined, i = 0, 1, . . . , qm. The space PG(i)(n + m − 1, q) is
called the tangent space of O(n, m, q) at PG(i)(n − 1, q). For n = m such a
set O(n, n, q) is called a generalized oval or an [n− 1]-oval of PG(3n− 1, q);
a generalized oval of PG(2, q) is just an oval of PG(2, q). For n "= m such a
set O(n, m, q) is called a generalized ovoid or an [n − 1]-ovoid or an egg of
PG(2n + m− 1, q); a [0]-ovoid of PG(3, q) is just an ovoid of PG(3, q).

Now embed PG(2n+m− 1, q) in a PG(2n+m, q), and construct a point-
line geometry T (n, m, q) as follows.

Points are of three types :

(i) the points of PG(2n + m, q)−PG(2n + m− 1, q);

(ii) the (n + m)-dimensional subspaces of PG(2n + m, q) which intersect
PG(2n + m− 1, q) in one of the PG(i)(n + m− 1, q);

(iii) the symbol (∞).

Lines are of two types :

(a) the n-dimensional subspaces of PG(2n+m, q) which intersect PG(2n+
m− 1, q) in a PG(i)(n− 1, q);

(b) the elements of O(n, m, q).

Incidence in T (n, m, q) is defined as follows. A point of type (i) is incident
only with lines of type (a); here the incidence is that of PG(2n + m, q). A
point of type (ii) is incident with all lines of type (a) contained in it and with
the unique element of O(n, m, q) contained in it. The point (∞) is incident
with no line of type (a) and with all lines of type (b).
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Theorem 5.1 (8.7.1 of Payne and Thas [11]) T (n, m, q) is a TGQ of
order (qn, qm) with base point (∞). Conversely, every TGQ is isomorphic
to a T (n, m, q). It follows that the theory of the TGQ is equivalent to the
theory of the sets O(n, m, q).

Corollary 5.2 The following hold for any O(n, m, q) :

(i) n = m or n(c + 1) = mc with c odd;

(ii) if q is even, then n = m or m = 2n.

Let O(n, 2n, q) be an egg of PG(4n−1, q). We say that O(n, 2n, q) is good
at the element PG(i)(n − 1, q) of O(n, 2n, q) if any PG(3n − 1, q) containing
PG(i)(n−1, q) and at least two other elements of O(n, 2n, q), contains exactly
qn + 1 elements of O(n, 2n, q).

Theorem 5.3 Let S(p) be a TGQ of order (s, s2), s "= 1, with base point p.
Then the dual net N ∗

L defined by the regular line L, with p I L, satisfies the
Axiom of Veblen if and only if the egg O(n, 2n, q) which corresponds to S(p)

is good at its element PG(i)(n− 1, q) which corresponds to L.

Proof Assume that the dual net N ∗
L satisfies the Axiom of Veblen. Let

the egg O(n, 2n, q) correspond to S(p) and let PG(i)(n − 1, q) correspond to
L. We have s = qn. The dual net has qn + 1 points on a line and q2n

lines through a point. By Theorem 3.1 the dual net N ∗
L is isomorphic to H3

qn .
Consider the TGQ T (n, 2n, q) ∼= S(p) and let PG(3n, q) be a subspace skew to
PG(i)(n−1, q) in the projective space PG(4n, q) in which T (n, 2n, q) is defined.
Let O(n, 2n, q) = {PG(0)(n− 1, q),PG(1)(n− 1, q), . . . , PG(q2n)(n− 1, q)}, let
〈PG(i)(n − 1, q),PG(j)(n − 1, q)〉∩PG(3n, q) = πj for all j "= i (πj is (n − 1)-
dimensional), let PG(4n−1, q)∩ PG(3n, q) =PG(3n−1, q) with PG(4n−1, q)
the space of O(n, 2n, q), and let PG(i)(3n − 1, q)∩PG(3n, q) =PG(2n − 1, q)
with PG(i)(3n−1, q) the tangent space of O(n, 2n, q) at PG(i)(n−1, q). Then
the dual net N ∗

L is isomorphic to the following dual net N ∗ : points of N ∗

are the q2n spaces πj, j "= i, and the q3n points of PG(3n, q)−PG(3n − 1, q),
lines of N ∗ are the q4n n-dimensional subspaces of PG(3n, q) which are not
contained in PG(3n− 1, q) and contain an element πj, j "= i, and incidence is
the natural one. Clearly the points πj, j "= i, of N ∗ form a parallel class of
points. Let M be a line of N ∗ incident with πj and let πk "= πj, k "= i "= j. As
N ∗ ∼= H3

qn the elements πk and M of N ∗ generate a dual affine plane A∗ in N ∗,
and the plane A∗ contains qn points πl, l "= i. Clearly the points of A∗ not of
type πl are the q2n points of the subspace 〈πk, M〉 of PG(3n, q) which are not
contained in PG(3n−1, q). Hence the qn points of A∗ of type πl are contained
in 〈πk, M〉∩ PG(3n− 1, q). It follows that these qn elements πl are contained
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in a (2n− 1)-dimensional space PG′(2n− 1, q); also, they form a partition of
PG′(2n− 1, q)−PG(2n− 1, q). Consequently for any two elements πl, πl′ , l "=
i "= l′, the space 〈πl, πl′〉 contains exactly qn elements πr, r "= i. Hence for any
two spaces PG(l)(n−1, q) and PG(l′)(n−1, q) of O(n, 2n, q)−{PG(i)(n−1, q)},
the (3n−1)-dimensional space 〈PG(i)(n−1, q),PG(l)(n−1, q),PG(l′)(n−1, q)〉
contains exactly qn + 1 elements of O(n, 2n, q). We conclude that O(n, 2n, q)
is good at PG(i)(n− 1, q).

Conversely, assume that O(n, 2n, q) is good at the element PG(i)(n− 1, q)
which corresponds to L. As in the first part of the proof we project onto
a PG(3n, q) and we use the same notations. Since O(n, 2n, q) is good at
PG(i)(n − 1, q), for any two elements πl, πl′ , l "= i "= l′, the space 〈πl, πl′〉
contains exactly qn elements πr, r "= i; these qn elements form a partition of
the points of 〈πl, πl′〉 which are not contained in PG(2n − 1, q). If M, M ′

are distinct concurrent lines of N ∗, then it is easily checked that M and M ′

generate a dual affine plane A∗ of order qn in N ∗. As A∗ satisfies the Axiom
of Veblen, also N ∗ satisfies the Axiom of Veblen. !

Let O = O(n, 2n, q) be an egg in PG(4n − 1, q). By 8.7.2 of FGQ the
q2n + 1 tangent spaces of O form an O∗ = O∗(n, 2n, q) in the dual space
of PG(4n − 1, q). So in addition to T (n, 2n, q) = T (O) there arises a TGQ
T (O∗) with the same parameters. The TGQ T (O∗) is called the translation
dual of the TGQ T (O). Examples are known for which T (O) ∼= T (O∗), and
examples are known for which T (O) "∼= T (O∗); see Thas [13].

6 Property (G) and the Axiom of Veblen

Let S = (P, B, I) be a GQ of order (s, s2), s "= 1. Let x1, y1 be distinct
collinear points. We say that the pair {x1, y1} has Property (G), or that
S has Property (G) at {x1, y1}, if every triple {x1, x2, x3} of points, with
x1, x2, x3 pairwise noncollinear and y1 ∈ {x1, x2, x3}⊥, is 3-regular; for the
definition of 3-regularity see 1.3 of FGQ. The GQ S has Property (G) at the
line L, or the line L has Property (G), if each pair of points {x, y}, x "= y
and x I L I y, has Property (G). If (x, L) is a flag, that is, if x I L, then
we say that S has Property (G) at (x, L), or that (x, L) has Property (G),
if every pair {x, y}, x "= y and y I L, has Property (G). Property (G) was
introduced in Payne [10] in connection with generalized quadrangles of order
(q2, q) arising from flocks of quadratic cones in PG(3, q).

Theorem 6.1 Let S = (P, B, I) be a GQ of order (s2, s), s even, satisfying
Property (G) at the point x. Then x is regular in S and the dual net N ∗

x

satisfies the Axiom of Veblen. Consequently N ∗
x
∼= H3

s .
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Proof Let S = (P, B, I) be a GQ of order (s2, s), s even, satisfying Property
(G) at the point x. By 3.2.1 of [13] the point x is regular. Let y be a point
of the dual net N ∗

x , let A1 and A2 be distinct lines of N ∗
x containing y, let B1

and B2 be distinct lines of N ∗
x not containing y, and let Ai ∩ Bj "= ∅ for all

i, j ∈ {1, 2}. Let {z} = A1∩B1 and let z I M , with x !I M . Further, let x I L,
with z !I L, let u be the point of A1 on L, and let v be the point of B1 on L.
The line of S incident with u resp. v and concurrent with M is denoted by
C resp. D; the line incident with z and x is denoted by N . Since S satisfies
Property (G) at x, the triple {C, D,N} is 3-regular. By 2.6.2 of TGQ the
lines of S concurrent with at least two lines of {C, D,N}⊥∪{C, D,N}⊥⊥ are
the lineset of a subquadrangle S ′ of order (s, s) of S. As x is regular for S it is
also regular for S ′. By Theorem 2.1 the point x defines a projective plane πx

of order s. Clearly A1, A2, B1, B2 are lines of the projective plane πx. Hence
B1 and B2 intersect in πx. Consequently N ∗

x satisfies the Axiom of Veblen,
and so N ∗

x
∼= H3

s . !

Theorem 6.2 (Thas [13]) A TGQ T (n, 2n, q) satisfies Property (G) at the
pair {(∞), ζ̄}, with ζ̄ a point of type (ii) incident with the line ζ of type
(b) (or, equivalently, at the flag ((∞), ζ)) if and only if, for any two elements
ζi, ζj (i "= j) of O(n, 2n, q)−{ζ}, the (n−1)-dimensional space PG(n−1, q) =
τ ∩ τi ∩ τj, with τ, τi, τj the respective tangent spaces of O(n, 2n, q) at ζ, ζi, ζj,
is contained in exactly qn + 1 tangent spaces of O(n, 2n, q).

Theorem 6.3 Let S(p) be a TGQ of order (s, s2), s "= 1, with base point
p. Then the dual net N ∗

L defined by the regular line L, with p I L, satisfies
the Axiom of Veblen if and only if the translation dual S ′(p

′) of S(p) satisfies
Property (G) at the flag (p′, L′), where L′ corresponds to L; in the even case,
N ∗

L satisfies the Axiom of Veblen if and only if S(p) satisfies Property (G) at
the flag (p, L).

Proof By Theorem 5.3 the dual net N ∗
L satisfies the Axiom of Veblen if and

only if O(n, 2n, q) is good at the element PG(i)(n−1, q) which corresponds to
L. By Theorem 6.1 the egg O(n, 2n, q) = O is good at PG(i)(n− 1, q) if and
only if T (O∗) satisfies Property (G) at the flag ((∞),PG(i)(3n − 1, q)), with
PG(i)(3n−1, q) the tangent space of O at PG(i)(n−1, q); by Theorem 4.3.2 of
[13], for q even, T (O∗) satisfies Property (G) at the flag ((∞),PG(i)(3n−1, q))
if and only if T (O) satisfies Property (G) at the flag ((∞),PG(i)(n− 1, q)). !

Theorem 6.4 Let S(p) be a TGQ of order (s, s2), s odd and s "= 1, with
base point p. If the dual net N ∗

L defined by some regular line L, with p I
L, satisfies the Axiom of Veblen, then S(p) contains at least s3 + s2 classical
subquadrangles Q(4, s).
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Proof This follows immediately from the preceding theorem and Theorem
4.3.4 of Thas [13]. !

Theorem 6.5 Let S(p) be a TGQ of order (s, s2), s odd and s "= 1, with base
point p. If p IL and if the dual net N ∗

L satisfies the Axiom of Veblen, then all
lines concurrent with L are regular.

Proof Let N be concurrent with L, p !I N , and let the line M of S(p) be
nonconcurrent with N . By Theorem 4.3.4 of Thas [13] the lines N, M are
lines of a subquadrangle of S(p) isomorphic to Q(4, qn). Hence {N, M} is a
regular pair of lines. We conclude that the line N is regular in S(p). !

7 Flock generalized quadrangles and the Ax-
iom of Veblen

Let F be a flock of the quadratic cone K with vertex x of PG(3, q), that is,
a partition of K − {x} into q disjoint irreducible conics. Then, by Thas [12],
with F there corresponds a GQ S(F ) of order (q2, q). In Payne [10] it was
shown that S(F ) satisfies Property (G) at its point (∞).

Let F = {C1, C2, . . . , Cq} be a flock of the quadratic cone K with vertex
x0 of PG(3, q), with q odd. The plane of Ci is denoted by πi, i = 1, 2, . . . , q.
Let K be embedded in the nonsingular quadric Q of PG(4, q). The polar line
of πi with respect to Q is denoted by Li; let Li ∩Q = {x0, xi}, i = 1, 2, . . . , q.
Then no point of Q is collinear with all three of x0, xi, xj, 1 ≤ i < j ≤ q. In
[1] it is proved that it is also true that no point of Q is collinear with all three
of xi, xj, xk, 0 ≤ i < j < k ≤ q. Such a set U of q + 1 points of Q will be
called a BLT -set in Q, following a suggestion of Kantor [7]. Since the GQ
Q(4, q) arising from Q is isomorphic to the dual of the GQ W (q) arising from
a symplectic polarity in PG(3, q), to a BLT-set in Q corresponds a set V of
q + 1 lines of W (q) with the property that no line of W (q) is concurrent with
three distinct lines of V ; such a set V will also be called a BLT -set.

To F corresponds a GQ S(F ) of order (q2, q). Knarr [8] proves that S(F )
is isomorphic to the following incidence structure.

Start with a symplectic polarity θ of PG(5, q). Let (∞) ∈PG(5, q) and let
PG(3, q) be a 3-dimensional subspace of PG(5, q) for which (∞) /∈PG(3, q) ⊂
(∞)θ. In PG(3, q) θ induces a symplectic polarity θ′, and hence a GQ W (q).
Let V be the BLT-set defined by F of the GQ W (q) and construct a geometry
S = (P, B, I) as follows.

Points : (i) (∞); (ii) lines of PG(5, q) not containing (∞) but contained
in one of the planes πt = (∞)Lt, with Lt a line of the BLT-set V ; (iii) points
of PG(5, q) not in (∞)θ.
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Lines : (a) planes πt = (∞)Lt, with Lt ∈ V ; (b) totally isotropic planes of
θ not contained in (∞)θ and meeting some πt in a line (not through (∞)).

The incidence relation I is the natural incidence inherited from PG(5, q).
Then Knarr [8] proves that S is a GQ of order (q2, q) isomorphic to the

GQ S(F ) arising from the flock F defining V .

Theorem 7.1 For any GQ S(F ) of order (q2, q) arising from a flock F , the
point (∞) is regular.

Proof The GQ S(F ) satisfies Property (G) at its point (∞). Then for q
even, by 3.2.1 of Thas [13], the point (∞) is regular. Now let q be odd, and
consider the construction of Knarr. If the point y is not collinear with (∞),
that is, if y is a point of PG(5, q) not in (∞)θ, then {(∞), y}⊥⊥ consists of
the q + 1 points of the line (∞)y of PG(5, q). As |{(∞), y}⊥⊥| = q + 1 the
point (∞) is regular. !

Let K be the quadratic cone with equation X0X1 = X2
2 of PG(3, q), q odd.

Then the q planes πt with equation tX0 −mtσX1 + X3 = 0, t ∈ GF (q), m a
given nonsquare of GF (q), and σ a given automorphism of GF (q), define a
flock F of K; see Thas [12]. The corresponding GQ S(F ) were first discovered
by Kantor [6], and so these flocks F will be called Kantor flocks. Any such
GQ S(F ) is a TGQ for some base line, and so the point-line dual of S(F )
is isomorphic to some T (O), with O an [n − 1]-ovoid. Also, in Payne [10] it
is proved that T (O) is isomorphic to its translation dual T (O∗); there is an
isomorphism of T (O) onto T (O∗) conserving types of points and lines and
mapping the line ζ of type (b) of T (O) onto the line τ of type (b) of T (O∗),
where τ is the tangent space of O at ζ.

Theorem 7.2 Consider the GQ S(F ) of order (q2, q) arising from the flock
F . If q is even, then the dual net N ∗

(∞) always satisfies the Axiom of Veblen
and so N ∗

(∞)
∼= H3

q . If q is odd, then the dual net N ∗
(∞) satisfies the Axiom of

Veblen if and only if F is a Kantor flock.

Proof Consider the GQ S(F ) of order (q2, q) arising from the flock F . Then
S(F ) satisfies Property (G) at the point (∞).

First, let q be even. Then by Theorem 6.1 the dual net N ∗
(∞) satisfies the

Axiom of Veblen, and so N ∗
(∞)

∼= H3
q .

Next, let q be odd. Suppose that F is a Kantor flock. Then the point-line
dual of S(F ) is isomorphic to some T (O), and by [10] T (O) ∼= T (O∗). The
point (∞) of S(F ) corresponds to some line ζ of type (b) of T (O). Hence
T (O) satisfies Property (G) at ζ. By Theorem 6.3 the dual net N ∗

τ which
corresponds with the regular line τ of T (O∗), where τ is the tangent space
of O at ζ, satisfies the Axiom of Veblen. Hence also the dual net N ∗

ζ which
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corresponds with the regular line ζ of T (O) satisfies the Axiom of Veblen.
It follows that the dual net N ∗

(∞) satisfies the Axiom of Veblen. Conversely,
suppose that the dual net N ∗

(∞) satisfies the Axiom of Veblen. Hence N ∗
(∞)

∼=
H3

q . In the representation of Knarr, this dual net looks as follows : points
of N ∗

(∞) are the lines of PG(5, q) not containing (∞) but contained in one
of the planes πt, lines of N ∗

(∞) can be identified with the threedimensional

subspaces of (∞)θ not containing (∞), and incidence is inclusion. By point-
hyperplane duality in (∞)θ, the net N(∞), which is the point-line dual of
N ∗

(∞), is isomorphic to the following incidence structure : points of N(∞)

are the points of (∞)θ−PG(3, q), lines of N(∞) are the planes of (∞)θ not
contained in PG(3, q) but containing one of the lines of the BLT-set V in
PG(3, q), and incidence is the natural one. As the net N∞ is isomorphic to
the dual of H3

q , it is easily seen to be derivable; see e.g. De Clerck and Johnson
[4]. In W (q) the lineset S = {L0, L1}⊥⊥ ∪ {L0, L2}⊥⊥ ∪ . . . ∪ {L0, Lq}⊥⊥ is a
linespread containing V ; see e.g. [12]. As N(∞) is derivable, by [3] there are
two distinct lines in PG(3, q), but not in {L0, L1}⊥∪{L0, L2}⊥∪. . .∪{L0, Lq}⊥,
intersecting the same q + 1 lines of S. Then by Johnson and Lunardon [5],
the flock F is a Kantor flock. !

Corollary 7.3 Suppose that the TGQ T (O), with O = O(n, 2n, q) and q
odd, is the point-line dual of a flock GQ S(F ) where the point (∞) of S(F )
corresponds to the line ζ of type (b) of T (O). Then T (O) is good at the
element ζ if and only if F is a Kantor flock.

Proof This follows immediately from Theorems 5.3 and 7.2. !

8 Subquadrangles and the Axiom of Veblen

Theorem 8.1 Let S = (P, B, I) be a GQ of order (s, t), s "= 1 "= t, having
a regular point x. If x together with any two points y, z, with y "∼ x and
x ∼ z "∼ y, is contained in a proper subquadrangle S ′ of S of order (s′, t), with
s′ "= 1, then s′ = t =

√
s and the dual net N ∗

x satisfies the Axiom of Veblen.
It follows that s and t are prime powers, and that for each subquadrangle
S ′ the projective plane πx of order t defined by the regular point x of S ′ is
desarguesian. Conversely, if the dual net N ∗

x satisfies the Axiom of Veblen,
then either (a) s = t, or (b) s = t2, s and t are prime powers, x and any two
points y, z with y "∼ x and x ∼ z "∼ y are contained in a subquadrangle S ′ of
S of order (t, t), and the projective plane πx of order t defined by the regular
point x of S ′ is desarguesian.

Proof Let S = (P, B, I) be a GQ of order (s, t), s "= 1 "= t, having a regular
point x.
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First, assume that x together with any two points y, z with y "∼ x and
x ∼ z "∼ y is contained in a proper subquadrangle S ′ of S of order (s′, t),
with s′ "= 1. As x is also regular for S ′, the GQ S ′ contains subquadrangles
of order (1, t). Then, by 2.2.2 of FGQ, we have s′ = t =

√
s. By Theorem 2.1

the dual net N ′∗
x arising from the regular point x of S ′, is a dual affine plane

of order s. Hence N ′∗
x satisfies the Axiom of Veblen. Now consider distinct

lines A1, A2, B1, B2 of the dual net N ∗
x , where A1 ∩A2 = {z}, z /∈ B1, z /∈ B2,

and Ai ∩ Bj "= ∅ for all i, j ∈ {1, 2}. Let A1 ∩ B1 = {u}, A2 ∩ B2 = {w},
and let y ∈ {u, w}⊥ − {x}. Let S ′ be a subquadrangle of order t containing
the points x, y, z of S. Then A1, A2, B1, B2 are lines of the dual net N ′∗

x . As
N ′∗

x satisfies the Axiom of Veblen, we have B1 ∩ B2 "= ∅. It follows that the
dual net N ′∗

x satisfies the Axiom of Veblen. Consequently N ′∗
x
∼= H3

t , and so
s and t are prime powers. For any subquadrangle S ′ the dual net N ′∗

x is a
dual affine plane of order t, which is isomorphic to a dual affine plane of order
t in H3

t . Hence the dual net N ′∗
x , and consequently also the corresponding

projective plane πx, are desarguesian.
Conversely, assume that the dual net N ∗

x satisfies the Axiom of Veblen.
Also, suppose that s "= t, that is, s > t by 1.3.6 of FGQ. Then, by Theorem
3.1, we have N ∗

x
∼= Hn

q with q a prime power and n > 2. As s = qn−1, t = q
and s ≤ t2 (by the inequality of Higman, see 1.2.3 of FGQ), we necessarily
have n = 3. Hence s = t2, t = q, and N ∗

x
∼= H3

q . Now consider any two
points y, z, with y "∼ x, x ∼ z "∼ y. As N ∗

x
∼= H3

q it is easily seen that z and
{x, y}⊥ generate a dual affine plane A of order q in N ∗

x . Let A1, A2, . . . , Aq2

be the lines of A. Further, let P ′ be the pointset of S consisting of the points
of A⊥

1 ∪ A⊥
2 ∪ . . . ∪ A⊥

q2 and the points of A. Clearly P ′ contains z and y,
and |P ′| = q3 + q2 + q + 1. Further, any line of S incident with at least
one point of P ′ either contains x or a point of A; the set of all these lines is
denoted by B′. Also, any point incident with two distinct lines of B′ belongs
to P ′. Then, by 2.3.1 of FGQ, S ′ = (P ′, B′, I′) with I′ the restriction of I to
(P ′ ×B′) ∪ (B′ × P ′) is a subquadrangle of S of order q. As in the first part
of the proof one now shows that for any such subquadrangle S ′ the projective
plane πx defined by x is desarguesian. !
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