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Generalized quadrangles and the Axiom of
Veblen

J. A. Thas H. Van Maldeghem*

If 2 is a regular point of a generalized quadrangle S = (P, B,I) of order (s,t),s # 1, then
x defines a dual net with ¢ + 1 points on any line and s lines through every point. If
s#t,s>1,t> 1, then S is isomorphic to a T5(0) of Tits if and only if S has a coregular
point x such that for each line L incident with = the corresponding dual net satisfies
the Axiom of Veblen. As a corollary we obtain some elegant characterizations of the
classical generalized quadrangles Q(5,s). Further we consider the translation generalized
quadrangles S of order (s,s%),s # 1, with base point p for which the dual net defined
by L, with p I L, satisfies the Axiom of Veblen. Next there is a section on Property (G)
and the Axiom of Veblen, and a section on flock generalized quadrangles and the Axiom
of Veblen. This last section contains a characterization of the TGQ of Kantor in terms of
the Axiom of Veblen. Finally, we prove that the dual net defined by a regular point of S,
where the order of S is (s,t) with s # ¢ and s # 1 # ¢, satisfies the Axiom of Veblen if and

only if § admits a certain set of proper subquadrangles.

1 Introduction

For terminology, notation, and results concerning finite generalized quadran-
gles and not explicitly given here, see the monograph of Payne and Thas [11],
which is henceforth denoted FGQ.

Let S = (P,B,I) be a (finite) generalized quadrangle (GQ) of order
(s,t),s > 1,t > 1. So S has v = |P| = (1 4 s)(1 + st) points and b =
|B| = (14 t)(1 + st) lines. If s # 1 # t, then ¢t < s? and, dually, s < #%; also
s+t divides st(1 + s)(1 +t).

There is a point-line duality for GQ (of order (s,t)) for which in any
definition or theorem the words “point” and “line” are interchanged and the
parameters s and t are interchanged. Normally, we assume without further
notice that the dual of a given theorem or definition has also been given.

Given two (not necessarily distinct) points x, 2’ of S, we write x ~ 2/ and
say that = and 2’ are collinear, provided that there is some line L for which
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242 GENERALIZED QUADRANGLES AND THE AXIOM OF VEBLEN

x I L T2'; hence x o 2/ means that x and 2’ are not collinear. Dually, for
L, L' € B, we write L ~ L' or L ¢ L" according as L and L’ are concurrent or
nonconcurrent. When x ~ z’ we also say that x is orthogonal or perpendicular
to ', similarly for L ~ L’. The line incident with distinct collinear points x
and z’ is denoted xz’, and the point incident with distinct concurrent lines L
and L' is denoted L N L'.

For x € P put + = {2/ € P ||z ~ '}, and note that = € x*. The trace of
a pair {z, '} of distinct points is defined to be the set - Nzt and is denoted
tr(z,2') or {x,2'}*; then |{z,2'}*| = s+1 or t+1 according as x ~ 2’ or x £
2. More generally, if A C P, A “perp” is defined by A+ = N{z* ||z € A}. For
x # 2/, the span of the pair {z,2'} is sp(x,2') = {z, 2/}t = {u € P||u € 2+
for all z € xtNa’t}. When z £ 2/, then {z, 2’} is also called the hyperbolic
line defined by = and 2/, and |{x, 2'}**| = s+1 or [{z, 2'}**| < t+1 according
asx ~x' orz bl

2 Regularity

Let S = (P, B,1) be a finite GQ of order (s,t). If x ~ ', x # ', or if z ¢ 2
and [{z, 2’} = t+1, where z, 2’ € P, we say the pair {x, 2’} is regular. The
point x is regular provided {x,z'} is regular for all ' € P, 2’ # x. Regularity
for lines is defined dually.

A (finite) net of order k (> 2) and degree r (> 2) is an incidence structure

N = (P, B,I) satisfying

(i) each point is incident with 7 lines and two distinct points are incident
with at most one line;

(ii) each line is incident with & points and two distinct lines are incident
with at most one point;

(iii) if = is a point and L is a line not incident with z, then there is a unique
line M incident with x and not concurrent with L.

For a net of order k and degree r we have |P| = k? and |B| = kr.

Theorem 2.1 (1.3.1 of Payne and Thas [11]) . Let x be a reqular point
of the GQ § = (P, B, I) of order (s,t),s > 1. Then the incidence structure
with pointset x+ — {x}, with lineset the set of spans {y, 2}, where y,z €
vt —{z},y # 2, and with the natural incidence, is the dual of a net of order s
and degree t + 1. If in particular s =t > 1, there arises a dual affine plane of
order s. Also, in the case s =t > 1 the incidence structure 7, with pointset
xt, with lineset the set of spans {y, z}*+, where y,2 € xt,y # 2, and with
the natural incidence, is a projective plane of order s.
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3 Dual nets and the Axiom of Veblen
Now we introduce the Aziom of Veblen for dual nets N* = (P, B, I).

Axiom of Veblen. If Ly 1 © 1 Ly, Ly # Lo, My ¥z ¥ My, and if L; is
concurrent with M; for alli,j € {1,2}, then My is concurrent with M.

The only known dual net A* which is not a dual affine plane and which
satisfies the Axiom of Veblen is the dual net Hj,n > 2, which is constructed
as follows : the points of H}" are the points of PG(n, ¢) not in a given subspace
PG(n—2,q) C PG(n,q), the lines of H] are the lines of PG(n, ¢) which have
no point in common with PG(n — 2, ¢), the incidence in Hy is the natural
one. By the following theorem these dual nets H;' are characterized by the
Axiom of Veblen.

Theorem 3.1 (Thas and De Clerck [14]) Let N* be a dual net with s+1
points on any line and t + 1 lines through any point, where t +1 > s. If N'*
satisfies the Aziom of Veblen, then N* = H} with n > 2 (hence s = q and
t+1=q"1).

4 Generalized quadrangles and the Axiom of
Veblen

Consider a GQ T3(0O) of Tits, with O an ovoid of PG(3, q); see 3.1.2 of FGQ.
Here s = g and ¢t = ¢?. Then the point (c0) is coregular, that is, each line
incident with (c0) is regular. It is an easy exercise to check that for each line
incident with (co) the corresponding dual net is isomorphic to H, g’. Hence for
each line incident with the point (0o) the corresponding dual net satisfies the
Axiom of Veblen. We now prove the converse.

Theorem 4.1 Let S = (P, B, I) be a GQ of order (s,t) with s #t,s > 1 and
t>1. If S has a coregular point x and if for each line L incident with x the

correponding dual net N satisfies the Axiom of Veblen, then S is isomorphic
to a T3(0) of Tits.

Proof Let Li,Ls, L3 be three lines no two of which are concurrent, let
My, My, M3 be three lines no two of which are concurrent, let L; 4 M; if and
only if {i,7} = {1,2} and assume that x I L;. By 5.3.8 of FGQ it is sufficient
to prove that for any line Ly € {M;, My}+ with Ly o L;,i = 1,2,3, there
exists a line M, concurrent with Ly, Lo, Ly.
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So let Ly € {My, My}t with Ly 4 L;,i = 1,2,3. Consider the line R
containing Ly N M3 and concurrent with L;. Further, consider the line R’
containing My N Ly and concurrent with L;. By the regularity of L; there is
a line S € {M;, ]\/[3}LL through the point Ls N M,. Clearly the lines L, and
S are concurrent. So the line L; is concurrent with the lines S, R, R’; also the
line M is concurrent with the lines S, R, R’. By the regularity of L; the line
S belongs to the line {R, R’} of the dual net N} defined by L;. Hence the
lines {R, R'}*+ and {M;, M3}+ of N}, have the element S in common. By
the Axiom of Veblen, also the lines {M;, R'}*+ and {M;s, R} of N, have
an element M, in common. Consequently M, is concurrent with Lq, Lo, Ly.
Now from 5.3.8 of FGQ it follows that S is isomorphic to a T3(O) of Tits. O

Corollary 4.2 Let S be a GQ of order (s,t) with s #t, s > 1 and t > 1.
(i) If s is odd, then S is isomorphic to the classical GQ Q(5, s) if and only

if it has a coreqular point x and if for each line L incident with x the
corresponding dual net N satisfies the Aziom of Veblen.

(ii) If s is even, then S is isomorphic to the classical GQ Q(5, s) if and only
if all its lines are reqular and if for at least one point x and all lines L
incident with x the dual nets N} satisfy the Aziom of Veblen.

Proof Let (z, L) be an incident point-line pair of the GQ Q(5, s). By 3.2.4
of FGQ there is an isomorphism of Q(5,s) onto T3(0), with O an elliptic
quadric of PG(3,s), which maps z onto the point (co). It follows that N}
satisfies the Axiom of Veblen.

Conversely, assume that the GQ S of order (s,t), with s odd, s #t,s > 1
and t > 1, has a coregular point x such that for each line L incident with
x the dual net N} satisfies the Axiom of Veblen. Then by Theorem 4.1 the
GQ S is isomorphic to 73(0). By Barlotti [2] and Panella [9] each ovoid O
of PG(3,s), with s odd, is an elliptic quadric. Now by 3.2.4 of FGQ we have
S = T5(0) = Q(5,5).

Finally, assume that for the GQ S of order (s,t), with s even, s # ¢,t > 1,
all lines are regular and that for at least one point x and all lines L incident
with z the dual nets N} satisfy the Axiom of Veblen. Then by Theorem 4.1
the GQ S is isomorphic to 73(0). Since all lines of § = T3(0) are regular,
by 3.3.3(iii) of FGQ we finally have & = T3(0) = Q(5, s). O

5 Translation generalized quadrangles and the
Axiom of Veblen

Let S = (P, B,1) be a GQ of order (s,t),s # 1,t # 1. A collineation 6 of S
is an elation about the point p if # =id or if 6 fixes all lines incident with p
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and fixes no point of P —pt. If there is a group H of elations about p acting
regularly on P — pt, we say S is an elation generalized quadrangle (EGQ)
with elation group H and base point p. Briefly, we say that (S®, H) or S®) is
an EGQ. If the group H is abelian, then we say that the EGQ (S®), H) is a
translation generalized quadrangle. For any TGQ S the point p is coregular
so that the parameters s and ¢ satisfy s < t; see 8.2 of FGQ. Also, by 8.5.2 of
FGQ, for any TGQ with s # t we have s = ¢® and t = ¢**!, with ¢ a prime
power and a an odd integer; if s (or t) is even then by 8.6.1(iv) of FGQ either
s=tors?=t.

In PG(2n+m—1, q) consider a set O(n,m, q) of ¢™+1 (n—1)-dimensional
subspaces PG (n —1,¢), PGV (n—1,q),..., PG (n —1,q), every three of
which generate a PG(3n — 1, ¢) and such that each element PG®(n — 1, q) of
O(n,m, q) is contained in a PG®(n 4+ m — 1,¢) having no point in common
with any PGY(n —1,¢q) for j # i. It is easy to check that PG®(n4+m —1,q)
is uniquely determined, i = 0,1,...,¢™. The space PG®(n 4+ m — 1,q) is
called the tangent space of O(n,m,q) at PG®W(n —1,¢). For n = m such a
set O(n,n,q) is called a generalized oval or an [n — 1]-oval of PG(3n — 1, q);
a generalized oval of PG(2,q) is just an oval of PG(2,¢q). For n # m such a
set O(n,m,q) is called a generalized ovoid or an [n — 1]-ovoid or an egg of
PG(2n +m — 1,q); a [0]-ovoid of PG(3, q) is just an ovoid of PG(3, ¢).

Now embed PG(2n+m —1,q) in a PG(2n+ m, ¢), and construct a point-
line geometry T'(n,m, q) as follows.

Points are of three types :

(i) the points of PG(2n 4+ m,q¢)—PG(2n+m — 1, q);

(ii) the (n + m)-dimensional subspaces of PG(2n + m,¢) which intersect
PG(2n +m — 1,q) in one of the PG (n +m — 1, q);

(iii) the symbol (00).
Lines are of two types :

(a) the n-dimensional subspaces of PG(2n +m, ¢) which intersect PG(2n +
m—1,q) in a PGW(n —1,¢q);

(b) the elements of O(n,m,q).

Incidence in T'(n, m, q) is defined as follows. A point of type (i) is incident
only with lines of type (a); here the incidence is that of PG(2n +m,q). A
point of type (ii) is incident with all lines of type (a) contained in it and with
the unique element of O(n,m,q) contained in it. The point (co) is incident
with no line of type (a) and with all lines of type (b).
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Theorem 5.1 (8.7.1 of Payne and Thas [11]) T(n,m,q) is a TGQ of
order (¢",q™) with base point (00). Conversely, every TGQ is isomorphic
to a T(n,m,q). It follows that the theory of the TGQ is equivalent to the
theory of the sets O(n,m,q).

Corollary 5.2 The following hold for any O(n,m,q) :
(i) n=m orn(c+ 1) = mc with ¢ odd,
(ii) if q is even, then n = m or m = 2n.

Let O(n,2n,q) be an egg of PG(4n —1,¢q). We say that O(n, 2n, q) is good
at the element PGW(n — 1,q) of O(n,2n, q) if any PG(3n — 1,q) containing
PG®(n—1,¢q) and at least two other elements of O(n, 2n, q), contains exactly
q" + 1 elements of O(n, 2n, q).

Theorem 5.3 Let S®) be a TGQ of order (s, s?),s # 1, with base point p.
Then the dual net N} defined by the regular line L, with p I L, satisfies the
Aziom of Veblen if and only if the egg O(n,2n, q) which corresponds to S®
is good at its element PGW(n — 1,q) which corresponds to L.

Proof Assume that the dual net N satisfies the Axiom of Veblen. Let
the egg O(n,2n, q) correspond to S® and let PG®(n — 1, ¢) correspond to
L. We have s = ¢". The dual net has ¢® + 1 points on a line and ¢**
lines through a point. By Theorem 3.1 the dual net A/ is isomorphic to H, §n~
Consider the TGQ T'(n,2n, q) = S® and let PG(3n, q) be a subspace skew to
PG®(n—1, q) in the projective space PG(4n, q) in which T'(n, 2n, q) is defined.
Let O(n,2n,q) = {PGO(n —1,¢), PGV (n—1,q),..., PG« (n —1,q)}, let
(PGY(n —1,q),PGY(n — 1,9))NPG(3n, q) = ; for all j # i(m; is (n — 1)-
dimensional), let PG(4n—1,¢)N PG(3n, q) =PG(3n—1, ¢) with PG(4n—1, q)
the space of O(n,2n,q), and let PG®(3n — 1,¢)NPG(3n, q¢) =PG(2n — 1,q)
with PG®)(3n— 1, ¢) the tangent space of O(n, 2n, q) at PG®(n—1,¢). Then
the dual net N is isomorphic to the following dual net N* : points of N/*
are the ¢*" spaces 7;,j # i, and the ¢*" points of PG(3n,q)—PG(3n — 1,¢),
lines of A'* are the ¢'™ n-dimensional subspaces of PG(3n,¢) which are not
contained in PG(3n — 1, ¢) and contain an element 7;, j # ¢, and incidence is
the natural one. Clearly the points 7,7 # 4, of N* form a parallel class of
points. Let M be a line of N* incident with 7; and let 7y, # 7,k # i # j. As
N* = H3, the elements 7, and M of N* generate a dual affine plane A* in N,
and the plane A* contains ¢" points m;, [ # i. Clearly the points of A* not of
type m are the ¢°" points of the subspace (m, M) of PG(3n, ¢) which are not
contained in PG(3n—1, q). Hence the ¢" points of A* of type m;, are contained
in (mz, M)N PG(3n —1,¢q). It follows that these ¢" elements m; are contained
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in a (2n — 1)-dimensional space PG'(2n — 1, q); also, they form a partition of
PG'(2n —1,q)—PG(2n — 1,¢). Consequently for any two elements 7, 7, 1 #
i # I', the space (m, my) contains exactly ¢" elements 7,7 # i. Hence for any
two spaces PG® (n—1,¢) and PG (n—1, q) of O(n, 2n, q) —{PGD(n—1,¢)},
the (3n — 1)-dimensional space (PG®(n—1,¢), PGV (n—1,q),PG)(n—1,q))
contains exactly ¢" + 1 elements of O(n,2n, q). We conclude that O(n, 2n, q)
is good at PG®(n — 1, ¢).

Conversely, assume that O(n,2n, q) is good at the element PG®)(n — 1, q)
which corresponds to L. As in the first part of the proof we project onto
a PG(3n,q) and we use the same notations. Since O(n,2n,q) is good at
PG@(n — 1,q), for any two elements 7, 7,1 # i # I', the space (m,m)
contains exactly ¢" elements 7., r # 7; these ¢" elements form a partition of
the points of (m, ) which are not contained in PG(2n — 1,q). If M, M’
are distinct concurrent lines of N*, then it is easily checked that M and M’
generate a dual affine plane A* of order ¢" in N*. As A* satisfies the Axiom
of Veblen, also N* satisfies the Axiom of Veblen. O

Let O = O(n,2n,q) be an egg in PG(4n — 1,q). By 8.7.2 of FGQ the
¢*" + 1 tangent spaces of O form an O* = O*(n,2n,q) in the dual space
of PG(4n — 1,¢). So in addition to T'(n,2n,q) = T(O) there arises a TGQ
T(0*) with the same parameters. The TGQ T'(0*) is called the translation
dual of the TGQ T'(O). Examples are known for which 7'(O) = T'(O*), and
examples are known for which 7'(O) 2 T'(O*); see Thas [13].

6 Property (G) and the Axiom of Veblen

Let S = (P,B,I) be a GQ of order (s,s%),s # 1. Let x1,y; be distinct
collinear points. We say that the pair {z1,y;} has Property (G), or that
S has Property (G) at {x1,y1}, if every triple {x1, x5, 23} of points, with
T1, To, r3 pairwise noncollinear and y; € {x1, e, x3}t, is 3-regular; for the
definition of 3-regularity see 1.3 of FGQ. The GQ S has Property (G) at the
line L, or the line L has Property (G), if each pair of points {z,y},z # y
and x I L I y, has Property (G). If (z,L) is a flag, that is, if I L, then
we say that S has Property (G) at (x,L), or that (z,L) has Property (G),
if every pair {z,y},x # y and y I L, has Property (G). Property (G) was
introduced in Payne [10] in connection with generalized quadrangles of order
(¢%,q) arising from flocks of quadratic cones in PG(3, q).

Theorem 6.1 Let S = (P, B, 1) be a GQ of order (s%,5), s even, satisfying
Property (G) at the point x. Then x is reqular in S and the dual net N}
satisfies the Aziom of Veblen. Consequently N7¥ = H?3.
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Proof LetS = (P, B,I) be a GQ of order (s?, s), s even, satisfying Property
(G) at the point x. By 3.2.1 of [13] the point z is regular. Let y be a point
of the dual net V¥, let A; and A, be distinct lines of NV containing y, let By
and By be distinct lines of A} not containing y, and let A; N B; # ( for all
i,7 €{1,2}. Let {z} = AyNB; and let z I M, with z ¥ M. Further, let 2 1 L,
with z ¥ L, let u be the point of A; on L, and let v be the point of By on L.
The line of § incident with u resp. v and concurrent with M is denoted by
C resp. D; the line incident with z and x is denoted by N. Since S satisfies
Property (G) at z, the triple {C, D, N} is 3-regular. By 2.6.2 of TGQ the
lines of S concurrent with at least two lines of {C, D, N} U{C, D, N}** are
the lineset of a subquadrangle S’ of order (s, s) of S. As x is regular for S it is
also regular for §’. By Theorem 2.1 the point = defines a projective plane ,
of order s. Clearly Ay, As, By, Bs are lines of the projective plane m,. Hence
By and B, intersect in 7. Consequently N satisfies the Axiom of Veblen,
and so N = H3. O

Theorem 6.2 (Thas [13]) A TGQ T'(n,2n,q) satisfies Property (G) at the
pair {(c0),CY, with ¢ a point of type (ii) incident with the line ¢ of type
(b) (or, equivalently, at the flag ((00),()) if and only if, for any two elements
G, G (i # j) of O(n,2n,q)—{C}, the (n—1)-dimensional space PG(n—1,q) =
TN 7 N1, with T,7;, 7; the respective tangent spaces of O(n,2n, q) at ¢, G, ¢,
is contained in exactly " + 1 tangent spaces of O(n,2n,q).

Theorem 6.3 Let S be a TGQ of order (s,s%),s # 1, with base point
p. Then the dual net N} defined by the regular line L, with p I L, satisfies
the Axiom of Veblen if and only if the translation dual S/ of SV satisfies
Property (G) at the flag (p', L"), where L' corresponds to L; in the even case,
N satisfies the Aziom of Veblen if and only if S®) satisfies Property (G) at
the flag (p, L).

Proof By Theorem 5.3 the dual net N satisfies the Axiom of Veblen if and
only if O(n, 2n, q) is good at the element PG (n — 1, ¢) which corresponds to
L. By Theorem 6.1 the egg O(n,2n,q) = O is good at PG®(n — 1, ¢) if and
only if T(O*) satisfies Property (G) at the flag ((00),PG®(3n — 1,¢)), with
PG®(3n—1, q) the tangent space of O at PG (n—1, q); by Theorem 4.3.2 of
[13], for ¢ even, T(O*) satisfies Property (G) at the flag ((c0),PG®(3n—1, q))
if and only if T(O) satisfies Property (G) at the flag ((00),PG®(n —1,¢)). O

Theorem 6.4 Let S be a TGQ of order (s,s%),s odd and s # 1, with
base point p. If the dual net N} defined by some regular line L, with p I
L, satisfies the Aziom of Veblen, then S®P) contains at least s> + s* classical
subquadrangles Q(4, s).



THAS and VAN MALDEGHEM 249

Proof This follows immediately from the preceding theorem and Theorem
4.3.4 of Thas [13]. O

Theorem 6.5 Let S®) be a TGQ of order (s, s?),s odd and s # 1, with base
point p. If pIL and if the dual net N} satisfies the Axiom of Veblen, then all
lines concurrent with L are reqular.

Proof Let N be concurrent with L,p ¥ N, and let the line M of S® be
nonconcurrent with N. By Theorem 4.3.4 of Thas [13] the lines N, M are
lines of a subquadrangle of S®) isomorphic to Q(4,¢"). Hence {N, M} is a
regular pair of lines. We conclude that the line N is regular in S®). O

7 Flock generalized quadrangles and the Ax-
iom of Veblen

Let F be a flock of the quadratic cone K with vertex x of PG(3,¢), that is,
a partition of K — {z} into ¢ disjoint irreducible conics. Then, by Thas [12],
with F' there corresponds a GQ S(F) of order (¢2,¢). In Payne [10] it was
shown that S(F) satisfies Property (G) at its point (00).

Let FF = {C},Cy,...,C,4} be a flock of the quadratic cone K with vertex
zo of PG(3,¢), with ¢ odd. The plane of C; is denoted by m;,i = 1,2,...,q.
Let K be embedded in the nonsingular quadric @ of PG(4, q). The polar line
of m; with respect to @ is denoted by L;; let L; N Q = {zo,x;},1 =1,2,...,q.
Then no point of () is collinear with all three of z¢, z;,2;,1 <i < j <g¢q. In
[1] it is proved that it is also true that no point of ) is collinear with all three
of x;,xj,2,,0 <1 < j <k <gq SuchasetU of ¢+ 1 points of () will be
called a BLT-set in @, following a suggestion of Kantor [7]. Since the GQ
Q(4, q) arising from @ is isomorphic to the dual of the GQ W (q) arising from
a symplectic polarity in PG(3,¢), to a BLT-set in @) corresponds a set V' of
g+ 1 lines of W (q) with the property that no line of W (q) is concurrent with
three distinct lines of V'; such a set V' will also be called a BLT-set.

To F corresponds a GQ S(F) of order (¢2, q). Knarr [8] proves that S(F')
is isomorphic to the following incidence structure.

Start with a symplectic polarity 6 of PG(5, q). Let (00) €PG(5, ¢) and let
PG(3, q) be a 3-dimensional subspace of PG(5, q) for which (c0) ¢PG(3,¢q) C
(00)?. In PG(3,q) @ induces a symplectic polarity ¢, and hence a GQ W(q).
Let V' be the BLT-set defined by F' of the GQ W (q) and construct a geometry
S = (P, B,1) as follows.

Points : (i) (o0); (ii) lines of PG(5, q) not containing (co) but contained
in one of the planes m = (00) Ly, with L; a line of the BLT-set V; (iii) points
of PG(5,¢) not in (00)?.
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Lines : (a) planes m = (00) L, with L; € V; (b) totally isotropic planes of
6 not contained in (00)? and meeting some 7; in a line (not through (c0)).

The incidence relation I is the natural incidence inherited from PG(5, q).

Then Knarr [8] proves that S is a GQ of order (¢?,¢) isomorphic to the
GQ S(F) arising from the flock F' defining V.

Theorem 7.1 For any GQ S(F) of order (¢%,q) arising from a flock F, the
point (00) is reqular.

Proof The GQ S(F) satisfies Property (G) at its point (c0). Then for ¢
even, by 3.2.1 of Thas [13], the point (co) is regular. Now let ¢ be odd, and
consider the construction of Knarr. If the point y is not collinear with (co),
that is, if y is a point of PG(5,¢) not in (00)?, then {(c0),y}** consists of
the ¢ + 1 points of the line (c0)y of PG(5,q). As [{(c0),y}**| = ¢+ 1 the
point (c0) is regular. O

Let K be the quadratic cone with equation XoX; = X3 of PG(3, ¢), ¢ odd.
Then the ¢ planes m; with equation tXo — mt°X; + X3 = 0,t € GF(q),m a
given nonsquare of GF(q), and o a given automorphism of GF(q), define a
flock F of K; see Thas [12]. The corresponding GQ S(F') were first discovered
by Kantor [6], and so these flocks F' will be called Kantor flocks. Any such
GQ S(F) is a TGQ for some base line, and so the point-line dual of S(F)
is isomorphic to some 7'(0), with O an [n — 1]-ovoid. Also, in Payne [10] it
is proved that T'(O) is isomorphic to its translation dual 7'(O*); there is an
isomorphism of T(0) onto T'(O*) conserving types of points and lines and
mapping the line ¢ of type (b) of T(O) onto the line 7 of type (b) of T(0*),
where 7 is the tangent space of O at (.

Theorem 7.2 Consider the GQ S(F) of order (¢2,q) arising from the flock
F. If q is even, then the dual net /\/'(’;o) always satisfies the Axiom of Veblen
and so N\, = H}. If q is odd, then the dual net Ny satisfies the Aziom of
Veblen if and only if F' is a Kantor flock.

Proof Consider the GQ S(F) of order (¢?, q) arising from the flock F'. Then
S(F) satisfies Property (G) at the point (00).

First, let ¢ be even. Then by Theorem 6.1 the dual net J\/'(Zo) satisfies the
Axiom of Veblen, and so N, = H.

Next, let ¢ be odd. Suppose that F'is a Kantor flock. Then the point-line
dual of S(F) is isomorphic to some T'(0), and by [10] T'(O) = T(0O*). The
point (0o) of S(F) corresponds to some line ¢ of type (b) of T(O). Hence
T(O) satisfies Property (G) at . By Theorem 6.3 the dual net N which
corresponds with the regular line 7 of T(O*), where 7 is the tangent space
of O at (, satisfies the Axiom of Veblen. Hence also the dual net /\/C* which
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corresponds with the regular line ¢ of T'(O) satisfies the Axiom of Veblen.
It follows that the dual net ./\/(fx)) satisfies the Axiom of Veblen. Conversely,
suppose that the dual net /\/'(t)o) satisfies the Axiom of Veblen. Hence () =
H g. In the representation of Knarr, this dual net looks as follows : points
of NV(., are the lines of PG(5,¢) not containing (co) but contained in one
of the planes m;, lines of ./\f(*oo) can be identified with the threedimensional
subspaces of (00)? not containing (o), and incidence is inclusion. By point-
hyperplane duality in (c0)?, the net N(so), which is the point-line dual of
./\/(”;O), is isomorphic to the following incidence structure : points of N,
are the points of (00)?—PG(3,¢), lines of N are the planes of (c0)? not
contained in PG(3,¢) but containing one of the lines of the BLT-set V' in
PG(3,q), and incidence is the natural one. As the net N, is isomorphic to
the dual of H, g’, it is easily seen to be derivable; see e.g. De Clerck and Johnson
[4]. In W (q) the lineset S = {Lg, L1 }** U {Lo, Lo} U...U{Ly, L}t is a
linespread containing V; see e.g. [12]. As Ny is derivable, by [3] there are
two distinct lines in PG(3, ¢), but not in { Lo, Ly }*U{ Lo, Lo }*U. . .U{ Lo, L, }*,
intersecting the same ¢ + 1 lines of S. Then by Johnson and Lunardon [5],
the flock F'is a Kantor flock. O

Corollary 7.3 Suppose that the TGQ T(0), with O = O(n,2n,q) and q
odd, is the point-line dual of a flock GQ S(F') where the point (c0o) of S(F')
corresponds to the line ¢ of type (b) of T(O). Then T(O) is good at the
element C if and only if F is a Kantor flock.

Proof This follows immediately from Theorems 5.3 and 7.2. O

8 Subquadrangles and the Axiom of Veblen

Theorem 8.1 Let S = (P, B,I) be a GQ of order (s,t),s # 1 # t, having
a reqular point x. If x together with any two points y,z, with y % x and
x ~ z gby, is contained in a proper subquadrangle 8" of S of order (s',t), with
s'# 1, then ' =t = /s and the dual net N} satisfies the Aziom of Veblen.
It follows that s and t are prime powers, and that for each subquadrangle
S’ the projective plane m, of order t defined by the reqular point x of S’ is
desarguesian. Conversely, if the dual net N} satisfies the Aziom of Veblen,
then either (a) s =t, or (b) s =2, s and t are prime powers, x and any two
points y, z with y o4 x and x ~ z L y are contained in a subquadrangle S" of
S of order (t,t), and the projective plane m, of order t defined by the regular
point x of S’ is desarguesian.

Proof Let S = (P, B,I) be a GQ of order (s,t),s # 1 # t, having a regular
point x.
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First, assume that = together with any two points y, z with y ¢ x and
x ~ z o y is contained in a proper subquadrangle S’ of S of order (¢',1),
with s’ # 1. As z is also regular for &', the GQ S’ contains subquadrangles
of order (1,t). Then, by 2.2.2 of FGQ, we have s’ = ¢t = y/s. By Theorem 2.1
the dual net N/* arising from the regular point = of &', is a dual affine plane
of order s. Hence N* satisfies the Axiom of Veblen. Now consider distinct
lines Al, Ag, Bl, B2 of the dual net N;, where Al N A2 = {Z}, z ¢ Bl, z ¢ BQ,
and A, N B; # 0 for all 7,5 € {1,2}. Let Ay N By = {u}, Ay N By = {w},
and let y € {u,w}t — {z}. Let &' be a subquadrangle of order ¢ containing
the points x,y,z of S. Then Ay, Ay, By, By are lines of the dual net NV/*. As
N* satisfies the Axiom of Veblen, we have By N By # (). It follows that the
dual net N/* satisfies the Axiom of Veblen. Consequently N* & H?, and so
s and t are prime powers. For any subquadrangle &’ the dual net N* is a
dual affine plane of order ¢, which is isomorphic to a dual affine plane of order
t in H?. Hence the dual net AN’*, and consequently also the corresponding
projective plane 7,, are desarguesian.

Conversely, assume that the dual net N satisfies the Axiom of Veblen.
Also, suppose that s # t, that is, s > t by 1.3.6 of FGQ. Then, by Theorem
3.1, we have N & H} with ¢ a prime power and n > 2. As s = gt =gq
and s < t? (by the inequality of Higman, see 1.2.3 of FGQ), we necessarily
have n = 3. Hence s = t*,t = ¢, and N} & Hg. Now consider any two
points y, z, with y 4 x, 2 ~ 2z £ y. As N} & Hg’ it is easily seen that z and
{z,y}*+ generate a dual affine plane A of order ¢ in N. Let Ay, Ay, ..., Ap
be the lines of A. Further, let P’ be the pointset of S consisting of the points
of A UAy U...UAz and the points of A. Clearly P’ contains z and y,
and |P'| = ¢ + ¢* + ¢ + 1. Further, any line of S incident with at least
one point of P’ either contains z or a point of A; the set of all these lines is
denoted by B’. Also, any point incident with two distinct lines of B’ belongs
to P’. Then, by 2.3.1 of FGQ, &' = (P’, B',T') with I’ the restriction of T to
(P x B")U (B’ x P') is a subquadrangle of S of order ¢q. As in the first part
of the proof one now shows that for any such subquadrangle S’ the projective
plane 7, defined by x is desarguesian. a
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