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Abstract

In this paper, we give a new construction of the hermitian spreads in H(q)
without using the standard embedding in PG(6, q), without using the group
U3(q), but using some geometric properties of the hexagon and an involution.
Remarking that a similar construction holds in certain quadrangles of order
s, with s a power of 2, we obtain ovoids in quadrangles of type T2(O). We
also survey a few recent constructions of new ovoids and spreads in the finite
Moufang hexagons of order (q, q).

1 Introduction and definitions

A generalized polygon or generalized n-gon, n ∈ N , n ≥ 2, is a point-line incidence
geometry with an incidence graph of diameter n and girth 2n (or gonality n). For
finite generalized quadrangles, we refer to Payne & Thas [5]. The only known
examples of finite generalized hexagons (6-gons) are defined in Tits [9] and they
satisfy the so-called Moufang condition, see Tits [10]. They arise from the Cheval-
ley groups G2(q) and 3D4(q). We will be concerned with the class arising from G2

and sometimes called the split Cayley hexagons, because they can be constructed
using a split Cayley algebra. We will give two other constructions below: one due
to Tits [9], the other using (intrinsic) coordinates, see De Smet & Van Mal-
deghem [3].

It is common to call a generalized polygon thick if every element is incident
with at least three other elements. It is well-known that for thick generalized
polygons the number s + 1 of points on a line is a constant, and, dually, the
number t+1 of lines incident with a point is a constant. In this case, the pair (s, t)
is called the order of the polygon.

An ovoid of a generalized quadrangle Γ is a set O of points such that every
line is incident with a unique element of O. It follows readily that all points of O
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are mutually at distance 4 (distances measured in the incidence graph) and also,
|O| = 1 + q2 if the quadrangle has order (q, q). An ovoid in a generalized hexagon
is a set of points such that every point is at distance ≤ 2 from a unique element
of the ovoid (distances again measured in the incidence graph). It follows readily
that all points of an ovoid are at distance 6 from each other, and that there are
1 + q3 elements in an ovoid if the hexagon has order (q, q). A spread is the dual
notion of an ovoid.

Let Γ = H(q) be the generalized hexagon of order (q, q) arising from G2(q).
For an element u of Γ, we denote by Γi(u) the set of points and lines of Γ at distance
i from u. We fix the duality class of H(q) by requiring that all points of H(q) are
regular, i.e., for every three points x, y, z such that y, z ∈ Γ6(x), the inequality
|Γi(x) ∩ Γ6−i(y) ∩ Γ6−i(z)| ≥ 2 implies |Γi(x) ∩ Γ6−i(y) ∩ Γ6−i(z)| = q + 1, for
i = 2, 3 (see Ronan [6]). We will use that property along with a certain involution
to construct a spread S in a subhexagon H(√q) of H(q), and we show that S is
isomorphic to the so-called hermitian spread, as contructed by Thas [7]. We also
give a survey of all known ovoids and spreads in H(q). Finally, we show that the
method above can also be applied to quadrangles and we give some non-classical
examples.

2 Hermitian spreads of H(q)

The generalized hexagon H(q) can be constructed as follows (see Tits [9]). Con-
sider in PG(6, q) the quadric Q(6, q) with equation X0X4 + X1X5 + X2X6 = X2

3 .
The points of H(q) are all the points of Q(6, q) and the lines of H(q) are the
lines of Q(6, q) the Grassmann coordinates of which satisfy the following six linear
equations:

p12 = p34, p54 = p32, p20 = p35,
p65 = p30, p01 = p36, p46 = p31.

One can deduce all above equations from the first one by consecutively applying the
following rule: if pij = p3k is in the list, then so are p(i±4)k = p3j and pk(j±4) = p3i,
where in ±4, one should choose the appropriate sign in order to obtain a number
between 0 and 7. Incidence is inherited from PG(6, q). Now consider a hyperplane
H of PG(6, q) that intersects Q(6, q) in an elliptic quadric. Then the lines of H
which also belong to H(q) form a spread S in H(q), called the hermitian spread,
see Thas [7]. The spread S has the following property. Let L,M be 2 lines of S,
then

HL,M every line of H(q) at distance 3 from every point of H(q) which is itself at
distance 3 from both L and M , is contained in S.

By the regularity mentioned above, the number of lines in H(q) at distance 3
from all points at distance 3 from both L and M is equal to q + 1. Note that
Bloemen, Thas & Van Maldeghem [1] show that, whenever a spread of H(q)
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has the property HL,M , for all lines L and at least 2 lines M , then the spread is a
hermitian spread.

Now consider H(q) and embed H(q) in H(q2). Let θ be an involution in
H(q2) fixing H(q) pointwise. Such an involution always exists (apply the field
automorphism x &→ xq on the above representation of H(q2) in PG(6, q2)). Let
L and M be two opposite lines of H(q). Let p be a point of H(q2) incident with
L, but not fixed by θ. Let p′ be the projection of pθ onto M (the point of M
nearest to pθ). By Ronan [6], there exists a unique subhexagon Γ of order (1, q2)
through p and p′, and Γ is isomorphic to the incidence graph of the projective
plane PG(2, q2). Let S be the set of lines of Γ fixed by θ, or in other words, S
is the intersection of the set of lines of Γ with the set of lines of H(q). Then we
claim:

With the above notation, the set S of lines is a spread of H(q).

PROOF. Since θ fixes L and M , it maps p′ to the projection of p onto M .
Hence both pθ and p′θ belong to Γ and hence θ preserves Γ. Note that no point
of Γ is a point of H(q). Indeed, every point of Γ is either at distance 4 from p or
at distance 4 from pθ. Hence if a point w of H(q) would belong to Γ, then, since
L belongs to H(q), also the point p or pθ would belong to H(q), a contradiction.
Since Γ is the incidence graph of PG(2, q2), the involution θ induces in PG(2, q2)
a polarity (which we also denote by θ). Let x be the unique point of Γ collinear
with both p and p′θ, and let y be the unique point collinear with both pθ and
p′. By the regularity in H(q2), there are q + 1 lines of H(q) at distance 3 from
both x and y, hence belonging to H(q). Without loss of generality, we may assume
that x represents a point of PG(2, q2), and y represents a line of PG(2, q2) not
incident with x. Then we have shown that the polarity θ in PG(2, q2) contains
exactly 1+q absolute points incident with y (and equivalently, 1+ q absolute lines
incident with x). Hence θ is a unitary polarity in PG(2, q2) and hence it contains
1 + q3 absolute points. If z is such a point, then {z, zθ} represents a collinear pair
of points in H(q2) and the line zzθ is fixed by θ, hence it belongs to H(q). So
we have found 1 + q3 lines in the intersection of Γ and H(q). Clearly, no two of
these lines are at distance ≤ 4 from each other, because this would imply that
the shortest path connecting these lines lies in both Γ and H(q), and hence Γ and
H(q) would share at least one point, a contradiction. So S is a set of 1 + q3 lines
mutually at distance 6 from each other. By Cameron, Thas & Payne [2], S is
a spread of H(q). !

It is clear that S is a hermitian spread. Indeed, if two lines belong to that
spread (and we may take L and M), then all lines at distance 3 from two points
at distance 3 from L and M belong to S, as follows directly from the above proof.
At the same time, S can be viewed as a hermitian curve in PG(2, q2), motivating
the name for this spread.
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3 Some other spreads of H(q)

We now review briefly some classes of spreads of H(q). Therefore, we need a second
description of H(q).

Let us relabel the points and lines of the quadric Q(6, q) (defined in the
previous section) which belong to H(q) according to Table 1. Then, according to
De Smet & Van Maldeghem [3], incidence in H(q) is given by

[k, b, k′, b′, k′′] I (k, b, k′, b′) I [k, b, k′] I (k, b) I [k] I (∞) I

[∞] I (a) I [a, l] I (a, l, a′) I [a, l, a′, l′] I (a, l, a′, l′, a′′),

for all a, a′, a′′, b, b′, k, k′, k′′, l, l′ ∈ GF(q), and by

(a, l, a′, l′, a′′) I [k, b, k′, b′, k′′]

)





b = a′′ − ak,
a′ = a2k + b′ + 2ab,
l = k′′ − ka3 − 3ba2 − 3ab′,
k′ = k2a3 + l′ − kl − 3a2a′′k − 3a′a′′ + 3aa′′2

This provides a complete and explicit description of H(q).

1. If q = 32h+1, then H(q) admits a polarity, and the set of absolute lines (lines
incident with their image) forms a spread of H(q), the Ree-Tits spread, see
Cameron, Thas & Payne [2].

2. If q = 3e, then H(q) is self-dual, and we may apply a duality to any spread
S. This gives us an ovoid O of H(q). We may then consider the image Oσ

of O under an automorphism σ of Q(6, q) which does not preserve H(q),
and interpret the set Oσ again in H(q). We obtain a new ovoid Oσ in H(q).
Then we can again apply a duality to obtain a new spread S ′ of H(q). One
special case is worth mentioning. By Bloemen, Thas & Van Maldeghem
[1], it is possible to start with a hermitian spread S and to choose σ such
that the spread S ′ has a line L for which property HL,M holds, for all lines
M , M += L, of S ′. We say that S ′ is locally hermitian in L. If we consider
a point x on L and the set of 1 + q2 lines of Q(6, q) meeting exactly 1 + q
lines of S ′, then this set of 1 + q2 lines constitutes in the residue Q(4, q)
of Q(6, q) an ovoid of the generalized quadrangle associated with Q(4, q).
Ovoids thus arising are isomorphic to the ones of Thas & Payne [8], see
again Bloemen, Thas & Van Maldeghem [1].

3. It is calculated in Bloemen, Thas & Van Maldeghem [1] that, using the
coordinates above, the set

{[∞]} ∪ {[γb′,−γk′′, k′, b′, k′′]|k′, b′, k′′ ∈ GF(q)},
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POINTS
Coordinates in H(q) Coordinates in PG(6, q)

(∞) (1, 0, 0, 0, 0, 0, 0)
(a) (a, 0, 0, 0, 0, 0, 1)

(k, b) (b, 0, 0, 0, 0, 1,−k)
(a, l, a′) (−l − aa′, 1, 0,−a, 0, a2,−a′)

(k, b, k′, b′) (k′ + bb′, k, 1, b, 0, b′, b2 − b′k)
(a, l, a′, l′, a′′) (−al′ + a′2 + a′′l + aa′a′′,−a′′,−a,−a′ + aa′′,

1, l + 2aa′ − a2a′′,−l′ + a′a′′)
LINES
Coordinates in H(q) Representation in PG(6, q)

[∞] 〈(1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 1)〉
[k] 〈(1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1,−k)〉

[a, l] 〈(a, 0, 0, 0, 0, 0, 1), (−l, 1, 0,−a, 0, a2, 0)〉
[k, b, k′] 〈(b, 0, 0, 0, 0, 1,−k), (k′, k, 1, b, 0, 0, b2)〉

[a, l, a′, l′] 〈(−l − aa′, 1, 0,−a, 0, a2,−a′),
(−al′ + a′2, 0,−a,−a′, 1, l + 2aa′,−l′)〉

[k, b, k′, b′, k′′] 〈(k′ + bb′, k, 1, b, 0, b′, b2 − b′k),
(b′2 + k′′b,−b, 0,−b′, 1, k′′,−kk′′ − k′ − 2bb′)〉

Table 1: Coordinatization of H(q).

for any non-square γ, is a hermitian spread in H(q). A little distortion now
yields new spreads for q ≡ 1 mod 3, namely, the set

S[9] = {[∞]} ∪ {[9γb′,−γk′′, k′, b′, k′′]|k′, b′, k′′ ∈ GF(q)}

is a spread of H(q), not isomorphic to a previous mentioned one, see loc.cit.,
where it is also shown that S[9] is locally hermitian in [∞].

4 Some ovoids of non-classical quadrangles

We now apply the method of section 2 to generalized quadrangles. Dualizing the
situation, there is the following result.

Let Γ be a generalized quadrangle having a subquadrangle Γ′ with the fol-
lowing properties:

(i) every point of Γ′ is incident with exactly two lines of Γ′;

(ii) every point of Γ incident with a line of Γ′ belongs to Γ′;

(iii) every line of Γ is incident with at least one point of Γ′.

Suppose moreover that there is an involution θ of Γ which preserves Γ′ and which
has the following properties:
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(a) there exist two points x1, x2 of Γ′ such that θ interchanges the two lines
through xi, for each i = 1, 2;

(b) θ fixes a thick subquadrangle Γ′′.

Then the set of points of Γ′ fixed under θ forms an ovoid of Γ′′, or in other words,
the intersection of the point sets of Γ′ and Γ′′ is an ovoid in Γ′′.

PROOF. By (iii), every line L of Γ′′ is incident with a unique point x of
Γ′ (unique indeed because otherwise L lies in Γ′, contradicting (a), which asserts
that L is not fixed in this case). Since θ fixes L and Γ′, it fixes x, hence x belongs
to Γ′′. The result follows. !

In the finite case, conditions (i), (ii) and (iii) are equivalent with saying that
the order of Γ is (s, s) and that the order of Γ′ is (s, 1), for some integer s ≥ 2
(see Payne & Thas [5](2.2.1)). Putting Γ ∼= Q(4, q2), the generalized quadrangle
arising from a non-degenerate quadric in PG(4, q2), and Γ′′ ∼= Q(4, q), we obtain
an ovoid isomorphic to Q−(3, q) in Q(4, q). So for q even, the two known ovoids
in Q(4, q), q = 22h+1, arise either from a polarity (Suzuki-Tits ovoid), or from
an involution. So one could say that they are both phenomena related to order 2
elements of the correlation group of Q(4, q) (a similar remark holds for the Ree-Tits
spreads and hermitian spreads in H(3h+1) above).

Now we apply the above theorem to non-classical quadrangles of type T2(O).
We describe a certain class of them algebraically. Let Γ be a geometry whose points
are (∞), (a), (k, b) and (a, l, a′), for a, a′, k, l ∈ GF(22e), whose lines are [∞], [k],
[a, l] and [k, b, k′], for k, k′, a, b ∈ GF(22e), and incidence is given by

[k, b, k′] I (k, b) I [k] I (∞) I [∞] I (a) I [a, l] I (a, l, a′),

for all a, a′, b, k, k′, l ∈ GF(22e), and by

(a, l, a′) I [k, b, k′]

)
{

a′ = k2h

a + b,
k′ = ka + l.

It is an elementary calculation to verify that this defines a generalized quadrangle,
using the results of Hanssens & Van Maldeghem [4], if and only if (h, 2e) = 1.
Since in this case (h, e) = 1, we see that restricting coordinates to GF(q), we obtain
a subquadrangle Γ′′ which can be seen as the fix point structure of the involution θ
obtained by applying the field automorphism x &→ x2e

on each coordinate of each
element (and fixing (∞) and [∞]). It is also an elementary calculation, using the
description above of Γ to verify that there is a unique subquadrangle Γ′ of order
(22e, 1) through any pair of lines {[k], [k]θ}, for which k ∈ GF(22e)\GF(2e). Hence
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we can apply the previous theorem and obtain an ovoid O of Γ′′. The explicit form
of the ovoid is, after calculation,

O = {(∞)} ∪ {(a, l, l(k + k2e

)2
h−1 + a

k2e+2h

+ k1+2e+h

k + k2e )|a, l ∈ GF(2e)}.

The construction of ovoids via involutions is in fact inspired by the situ-
ation in the classical case: the intersection of a standard embedded quadrangle
with a non-tangent hyperplane yields either a subquadrangle or an ovoid. But in
a quadratic extension, we always get a subquadrangle. This is the quadrangle Γ′

of the last theorem. The idea is to reverse the procedure, and start with Γ′, then
restrict coordinates in Γ with the aid of an involution and obtain an ovoid in the
subquadrangle Γ′′ over the subfield. A similar argument holds in case of hexagons.
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