Ovoids and Spreads arising from Involutions

H. Van Maldeghem*
Department of Pure Mathematics and Computeralgebra, University of Ghent, Galglaan 2, B-9000 Gent, Belgium

Abstract

In this paper, we give a new construction of the hermitian spreads in $H(q)$ without using the standard embedding in $\mathbf{P G}(6, q)$, without using the group $U_{3}(q)$, but using some geometric properties of the hexagon and an involution. Remarking that a similar construction holds in certain quadrangles of order s, with s a power of 2 , we obtain ovoids in quadrangles of type $T_{2}(O)$. We also survey a few recent constructions of new ovoids and spreads in the finite Moufang hexagons of order (q, q).

1 Introduction and definitions

A generalized polygon or generalized n-gon, $n \in N, n \geq 2$, is a point-line incidence geometry with an incidence graph of diameter n and girth $2 n$ (or gonality n). For finite generalized quadrangles, we refer to Payne \& Thas [5]. The only known examples of finite generalized hexagons (6-gons) are defined in Tits [9] and they satisfy the so-called Moufang condition, see Tits [10]. They arise from the Chevalley groups $G_{2}(q)$ and ${ }^{3} D_{4}(q)$. We will be concerned with the class arising from G_{2} and sometimes called the split Cayley hexagons, because they can be constructed using a split Cayley algebra. We will give two other constructions below: one due to Tits [9], the other using (intrinsic) coordinates, see De Smet \& Van MalDEGHEM [3].

It is common to call a generalized polygon thick if every element is incident with at least three other elements. It is well-known that for thick generalized polygons the number $s+1$ of points on a line is a constant, and, dually, the number $t+1$ of lines incident with a point is a constant. In this case, the pair (s, t) is called the order of the polygon.

An ovoid of a generalized quadrangle Γ is a set \mathcal{O} of points such that every line is incident with a unique element of \mathcal{O}. It follows readily that all points of \mathcal{O}

[^0]are mutually at distance 4 (distances measured in the incidence graph) and also, $|\mathcal{O}|=1+q^{2}$ if the quadrangle has order (q, q). An ovoid in a generalized hexagon is a set of points such that every point is at distance ≤ 2 from a unique element of the ovoid (distances again measured in the incidence graph). It follows readily that all points of an ovoid are at distance 6 from each other, and that there are $1+q^{3}$ elements in an ovoid if the hexagon has order (q, q). A spread is the dual notion of an ovoid.

Let $\Gamma=H(q)$ be the generalized hexagon of order (q, q) arising from $G_{2}(q)$. For an element u of Γ, we denote by $\Gamma_{i}(u)$ the set of points and lines of Γ at distance i from u. We fix the duality class of $H(q)$ by requiring that all points of $H(q)$ are regular, i.e., for every three points x, y, z such that $y, z \in \Gamma_{6}(x)$, the inequality $\left|\Gamma_{i}(x) \cap \Gamma_{6-i}(y) \cap \Gamma_{6-i}(z)\right| \geq 2$ implies $\left|\Gamma_{i}(x) \cap \Gamma_{6-i}(y) \cap \Gamma_{6-i}(z)\right|=q+1$, for $i=2,3$ (see Ronan [6]). We will use that property along with a certain involution to construct a spread \mathcal{S} in a subhexagon $H(\sqrt{q})$ of $H(q)$, and we show that \mathcal{S} is isomorphic to the so-called hermitian spread, as contructed by Thas [7]. We also give a survey of all known ovoids and spreads in $H(q)$. Finally, we show that the method above can also be applied to quadrangles and we give some non-classical examples.

2 Hermitian spreads of $H(q)$

The generalized hexagon $H(q)$ can be constructed as follows (see Tits [9]). Consider in $\mathbf{P G}(6, q)$ the quadric $Q(6, q)$ with equation $X_{0} X_{4}+X_{1} X_{5}+X_{2} X_{6}=X_{3}^{2}$. The points of $H(q)$ are all the points of $Q(6, q)$ and the lines of $H(q)$ are the lines of $Q(6, q)$ the Grassmann coordinates of which satisfy the following six linear equations:

$$
\begin{array}{lll}
p_{12}=p_{34}, & p_{54}=p_{32}, & p_{20}=p_{35} \\
p_{65}=p_{30}, & p_{01}=p_{36}, & p_{46}=p_{31}
\end{array}
$$

One can deduce all above equations from the first one by consecutively applying the following rule: if $p_{i j}=p_{3 k}$ is in the list, then so are $p_{(i \pm 4) k}=p_{3 j}$ and $p_{k(j \pm 4)}=p_{3 i}$, where in ± 4, one should choose the appropriate sign in order to obtain a number between 0 and 7 . Incidence is inherited from $\mathbf{P G}(6, q)$. Now consider a hyperplane H of $\mathbf{P G}(6, q)$ that intersects $Q(6, q)$ in an elliptic quadric. Then the lines of H which also belong to $H(q)$ form a spread \mathcal{S} in $H(q)$, called the hermitian spread, see Thas [7]. The spread \mathcal{S} has the following property. Let L, M be 2 lines of \mathcal{S}, then
$\mathrm{H}_{L, M}$ every line of $H(q)$ at distance 3 from every point of $H(q)$ which is itself at distance 3 from both L and M, is contained in \mathcal{S}.

By the regularity mentioned above, the number of lines in $H(q)$ at distance 3 from all points at distance 3 from both L and M is equal to $q+1$. Note that Bloemen, Thas \& Van Maldeghem [1] show that, whenever a spread of $H(q)$
has the property $\mathrm{H}_{L, M}$, for all lines L and at least 2 lines M, then the spread is a hermitian spread.

Now consider $H(q)$ and embed $H(q)$ in $H\left(q^{2}\right)$. Let θ be an involution in $H\left(q^{2}\right)$ fixing $H(q)$ pointwise. Such an involution always exists (apply the field automorphism $x \mapsto x^{q}$ on the above representation of $H\left(q^{2}\right)$ in $\operatorname{PG}\left(6, q^{2}\right)$). Let L and M be two opposite lines of $H(q)$. Let p be a point of $H\left(q^{2}\right)$ incident with L, but not fixed by θ. Let p^{\prime} be the projection of p^{θ} onto M (the point of M nearest to p^{θ}). By Ronan [6], there exists a unique subhexagon Γ of order $\left(1, q^{2}\right)$ through p and p^{\prime}, and Γ is isomorphic to the incidence graph of the projective plane $\mathbf{P G}\left(2, q^{2}\right)$. Let \mathcal{S} be the set of lines of Γ fixed by θ, or in other words, \mathcal{S} is the intersection of the set of lines of Γ with the set of lines of $H(q)$. Then we claim:

With the above notation, the set \mathcal{S} of lines is a spread of $H(q)$.
PROOF. Since θ fixes L and M, it maps p^{\prime} to the projection of p onto M. Hence both p^{θ} and $p^{\prime \theta}$ belong to Γ and hence θ preserves Γ. Note that no point of Γ is a point of $H(q)$. Indeed, every point of Γ is either at distance 4 from p or at distance 4 from p^{θ}. Hence if a point w of $H(q)$ would belong to Γ, then, since L belongs to $H(q)$, also the point p or p^{θ} would belong to $H(q)$, a contradiction. Since Γ is the incidence graph of $\mathbf{P G}\left(2, q^{2}\right)$, the involution θ induces in $\mathbf{P G}\left(2, q^{2}\right)$ a polarity (which we also denote by θ). Let x be the unique point of Γ collinear with both p and $p^{\prime \theta}$, and let y be the unique point collinear with both p^{θ} and p^{\prime}. By the regularity in $H\left(q^{2}\right)$, there are $q+1$ lines of $H(q)$ at distance 3 from both x and y, hence belonging to $H(q)$. Without loss of generality, we may assume that x represents a point of $\mathbf{P G}\left(2, q^{2}\right)$, and y represents a line of $\mathbf{P G}\left(2, q^{2}\right)$ not incident with x. Then we have shown that the polarity θ in $\mathbf{P G}\left(2, q^{2}\right)$ contains exactly $1+q$ absolute points incident with y (and equivalently, $1+q$ absolute lines incident with x). Hence θ is a unitary polarity in $\mathbf{P G}\left(2, q^{2}\right)$ and hence it contains $1+q^{3}$ absolute points. If z is such a point, then $\left\{z, z^{\theta}\right\}$ represents a collinear pair of points in $H\left(q^{2}\right)$ and the line $z z^{\theta}$ is fixed by θ, hence it belongs to $H(q)$. So we have found $1+q^{3}$ lines in the intersection of Γ and $H(q)$. Clearly, no two of these lines are at distance ≤ 4 from each other, because this would imply that the shortest path connecting these lines lies in both Γ and $H(q)$, and hence Γ and $H(q)$ would share at least one point, a contradiction. So \mathcal{S} is a set of $1+q^{3}$ lines mutually at distance 6 from each other. By Cameron, Thas \& Payne [2], \mathcal{S} is a spread of $H(q)$.

It is clear that \mathcal{S} is a hermitian spread. Indeed, if two lines belong to that spread (and we may take L and M), then all lines at distance 3 from two points at distance 3 from L and M belong to \mathcal{S}, as follows directly from the above proof. At the same time, \mathcal{S} can be viewed as a hermitian curve in $\mathbf{P G}\left(2, q^{2}\right)$, motivating the name for this spread.

3 Some other spreads of $H(q)$

We now review briefly some classes of spreads of $H(q)$. Therefore, we need a second description of $H(q)$.

Let us relabel the points and lines of the quadric $Q(6, q)$ (defined in the previous section) which belong to $H(q)$ according to Table 1. Then, according to De Smet \& Van Maldeghem [3], incidence in $H(q)$ is given by

$$
\begin{gathered}
{\left[k, b, k^{\prime}, b^{\prime}, k^{\prime \prime}\right] \mathbf{I}\left(k, b, k^{\prime}, b^{\prime}\right) \mathbf{I}\left[k, b, k^{\prime}\right] \mathbf{I}(k, b) \mathbf{I}[k] \mathbf{I}(\infty) \mathbf{I}} \\
{[\infty] \mathbf{I}(a) \mathbf{I}[a, l] \mathbf{I}\left(a, l, a^{\prime}\right) \mathbf{I}\left[a, l, a^{\prime}, l^{\prime}\right] \mathbf{I}\left(a, l, a^{\prime}, l^{\prime}, a^{\prime \prime}\right),}
\end{gathered}
$$

for all $a, a^{\prime}, a^{\prime \prime}, b, b^{\prime}, k, k^{\prime}, k^{\prime \prime}, l, l^{\prime} \in \mathbf{G F}(q)$, and by

$$
\begin{aligned}
&\left(a, l, a^{\prime}, l^{\prime}, a^{\prime \prime}\right) \mathbf{I}\left[k, b, k^{\prime}, b^{\prime}, k^{\prime \prime}\right] \\
& \begin{cases}b= & a^{\prime \prime}-a k, \\
a^{\prime}= & a^{2} k+b^{\prime}+2 a b, \\
l= & k^{\prime \prime}-k a^{3}-3 b a^{2}-3 a b^{\prime}, \\
k^{\prime}= & k^{2} a^{3}+l^{\prime}-k l-3 a^{2} a^{\prime \prime} k-3 a^{\prime} a^{\prime \prime}+3 a a^{\prime \prime 2}\end{cases}
\end{aligned}
$$

This provides a complete and explicit description of $H(q)$.

1. If $q=3^{2 h+1}$, then $H(q)$ admits a polarity, and the set of absolute lines (lines incident with their image) forms a spread of $H(q)$, the Ree-Tits spread, see Cameron, Thas \& Payne [2].
2. If $q=3^{e}$, then $H(q)$ is self-dual, and we may apply a duality to any spread \mathcal{S}. This gives us an ovoid \mathcal{O} of $H(q)$. We may then consider the image \mathcal{O}^{σ} of \mathcal{O} under an automorphism σ of $Q(6, q)$ which does not preserve $H(q)$, and interpret the set \mathcal{O}^{σ} again in $H(q)$. We obtain a new ovoid \mathcal{O}^{σ} in $H(q)$. Then we can again apply a duality to obtain a new spread \mathcal{S}^{\prime} of $H(q)$. One special case is worth mentioning. By Bloemen, Thas \& Van Maldeghem [1], it is possible to start with a hermitian spread \mathcal{S} and to choose σ such that the spread \mathcal{S}^{\prime} has a line L for which property $\mathrm{H}_{L, M}$ holds, for all lines $M, M \neq L$, of \mathcal{S}^{\prime}. We say that \mathcal{S}^{\prime} is locally hermitian in L. If we consider a point x on L and the set of $1+q^{2}$ lines of $Q(6, q)$ meeting exactly $1+q$ lines of \mathcal{S}^{\prime}, then this set of $1+q^{2}$ lines constitutes in the residue $Q(4, q)$ of $Q(6, q)$ an ovoid of the generalized quadrangle associated with $Q(4, q)$. Ovoids thus arising are isomorphic to the ones of Thas \& Payne [8], see again Bloemen, Thas \& Van Maldeghem [1].
3. It is calculated in Bloemen, Thas \& Van Maldeghem [1] that, using the coordinates above, the set

$$
\{[\infty]\} \cup\left\{\left[\gamma b^{\prime},-\gamma k^{\prime \prime}, k^{\prime}, b^{\prime}, k^{\prime \prime}\right] \mid k^{\prime}, b^{\prime}, k^{\prime \prime} \in \mathbf{G F}(q)\right\},
$$

POINTS	
Coordinates in $H(q)$	Coordinates in PG $(6, q)$
(∞)	$(1,0,0,0,0,0,0)$
(a)	$(a, 0,0,0,0,0,1)$
(k, b)	$(b, 0,0,0,0,1,-k)$
$\left(a, l, a^{\prime}\right)$	$\left(-l-a a^{\prime}, 1,0,-a, 0, a^{2},-a^{\prime}\right)$
$\left(k, b, k^{\prime}, b^{\prime}\right)$	$\left(k^{\prime}+b b^{\prime}, k, 1, b, 0, b^{\prime}, b^{2}-b^{\prime} k\right)$
$\left(a, l, a^{\prime}, l^{\prime}, a^{\prime \prime}\right)$	$\left(-a l^{\prime}+a^{\prime 2}+a^{\prime \prime} l+a a^{\prime} a^{\prime \prime},-a^{\prime \prime},-a,-a^{\prime}+a a^{\prime \prime}\right.$,
	$\left.1, l+2 a a^{\prime}-a^{2} a^{\prime \prime},-l^{\prime}+a^{\prime} a^{\prime \prime}\right)$
LINES	
Coordinates in $H(q)$	Representation in PG($6, q)$
$[\infty]$	$\langle(1,0,0,0,0,0,0),(0,0,0,0,0,0,1)\rangle$
$[k]$	$\langle(1,0,0,0,0,0,0),(0,0,0,0,0,1,-k)\rangle$
$[a, l]$	$\left\langle(a, 0,0,0,0,0,1),\left(-l, 1,0,-a, 0, a^{2}, 0\right)\right\rangle$
$\left[k, b, k^{\prime}\right]$	$\left\langle(b, 0,0,0,0,1,-k),\left(k^{\prime}, k, 1, b, 0,0, b^{2}\right)\right\rangle$
$\left[a, l, a^{\prime}, l^{\prime}\right]$	$\left\langle\left(-l-a a^{\prime}, 1,0,-a, 0, a^{2},-a^{\prime}\right)\right.$,
$\left.\left(-a l^{\prime}+a^{\prime 2}, 0,-a,-a^{\prime}, 1, l+2 a a^{\prime},-l^{\prime}\right)\right\rangle$	
$\left[k, b, k^{\prime}, b^{\prime}, k^{\prime \prime}\right]$	$\left\langle\left(k^{\prime}+b b^{\prime}, k, 1, b, 0, b^{\prime}, b^{2}-b^{\prime} k\right)\right.$,
	$\left.\left(b^{\prime 2}+k^{\prime \prime} b,-b, 0,-b^{\prime}, 1, k^{\prime \prime},-k k^{\prime \prime}-k^{\prime}-2 b b^{\prime}\right)\right\rangle$

Table 1: Coordinatization of $H(q)$.
for any non-square γ, is a hermitian spread in $H(q)$. A little distortion now yields new spreads for $q \equiv 1 \bmod 3$, namely, the set

$$
\mathcal{S}_{[9]}=\{[\infty]\} \cup\left\{\left[9 \gamma b^{\prime},-\gamma k^{\prime \prime}, k^{\prime}, b^{\prime}, k^{\prime \prime}\right] \mid k^{\prime}, b^{\prime}, k^{\prime \prime} \in \mathbf{G F}(q)\right\}
$$

is a spread of $H(q)$, not isomorphic to a previous mentioned one, see loc.cit., where it is also shown that $\mathcal{S}_{[9]}$ is locally hermitian in [∞].

4 Some ovoids of non-classical quadrangles

We now apply the method of section 2 to generalized quadrangles. Dualizing the situation, there is the following result.

Let Γ be a generalized quadrangle having a subquadrangle Γ^{\prime} with the following properties:
(i) every point of Γ^{\prime} is incident with exactly two lines of Γ^{\prime};
(ii) every point of Γ incident with a line of Γ^{\prime} belongs to Γ^{\prime};
(iii) every line of Γ is incident with at least one point of Γ^{\prime}.

Suppose moreover that there is an involution θ of Γ which preserves Γ^{\prime} and which has the following properties:
(a) there exist two points x_{1}, x_{2} of Γ^{\prime} such that θ interchanges the two lines through x_{i}, for each $i=1,2$;
(b) θ fixes a thick subquadrangle $\Gamma^{\prime \prime}$.

Then the set of points of Γ^{\prime} fixed under θ forms an ovoid of $\Gamma^{\prime \prime}$, or in other words, the intersection of the point sets of Γ^{\prime} and $\Gamma^{\prime \prime}$ is an ovoid in $\Gamma^{\prime \prime}$.

PROOF. By (iii), every line L of $\Gamma^{\prime \prime}$ is incident with a unique point x of Γ^{\prime} (unique indeed because otherwise L lies in Γ^{\prime}, contradicting (a), which asserts that L is not fixed in this case). Since θ fixes L and Γ^{\prime}, it fixes x, hence x belongs to $\Gamma^{\prime \prime}$. The result follows.

In the finite case, conditions $(i),(i i)$ and (iii) are equivalent with saying that the order of Γ is (s, s) and that the order of Γ^{\prime} is $(s, 1)$, for some integer $s \geq 2$ (see Payne \& Thas [5](2.2.1)). Putting $\Gamma \cong Q\left(4, q^{2}\right)$, the generalized quadrangle arising from a non-degenerate quadric in $\mathbf{P G}\left(4, q^{2}\right)$, and $\Gamma^{\prime \prime} \cong Q(4, q)$, we obtain an ovoid isomorphic to $Q^{-}(3, q)$ in $Q(4, q)$. So for q even, the two known ovoids in $Q(4, q), q=2^{2 h+1}$, arise either from a polarity (Suzuki-Tits ovoid), or from an involution. So one could say that they are both phenomena related to order 2 elements of the correlation group of $Q(4, q)$ (a similar remark holds for the Ree-Tits spreads and hermitian spreads in $H\left(3^{h+1}\right)$ above $)$.

Now we apply the above theorem to non-classical quadrangles of type $T_{2}(O)$. We describe a certain class of them algebraically. Let Γ be a geometry whose points are $(\infty),(a),(k, b)$ and $\left(a, l, a^{\prime}\right)$, for $a, a^{\prime}, k, l \in \mathbf{G F}\left(2^{2 e}\right)$, whose lines are $[\infty],[k]$, $[a, l]$ and $\left[k, b, k^{\prime}\right]$, for $k, k^{\prime}, a, b \in \mathbf{G F}\left(2^{2 e}\right)$, and incidence is given by

$$
\left[k, b, k^{\prime}\right] \mathbf{I}(k, b) \mathbf{I}[k] \mathbf{I}(\infty) \mathbf{I}[\infty] \mathbf{I}(a) \mathbf{I}[a, l] \mathbf{I}\left(a, l, a^{\prime}\right)
$$

for all $a, a^{\prime}, b, k, k^{\prime}, l \in \mathbf{G F}\left(2^{2 e}\right)$, and by

\[

\]

It is an elementary calculation to verify that this defines a generalized quadrangle, using the results of Hanssens \& Van Maldeghem [4], if and only if $(h, 2 e)=1$. Since in this case $(h, e)=1$, we see that restricting coordinates to $\mathbf{G F}(q)$, we obtain a subquadrangle $\Gamma^{\prime \prime}$ which can be seen as the fix point structure of the involution θ obtained by applying the field automorphism $x \mapsto x^{2^{e}}$ on each coordinate of each element (and fixing (∞) and $[\infty]$). It is also an elementary calculation, using the description above of Γ to verify that there is a unique subquadrangle Γ^{\prime} of order $\left(2^{2 e}, 1\right)$ through any pair of lines $\left\{[k],[k]^{\theta}\right\}$, for which $k \in \mathbf{G F}\left(2^{2 e}\right) \backslash \mathbf{G F}\left(2^{e}\right)$. Hence
we can apply the previous theorem and obtain an ovoid \mathcal{O} of $\Gamma^{\prime \prime}$. The explicit form of the ovoid is, after calculation,

$$
\mathcal{O}=\{(\infty)\} \cup\left\{\left.\left(a, l, l\left(k+k^{2^{e}}\right)^{2^{h}-1}+a \frac{k^{2^{e}+2^{h}}+k^{1+2^{e+h}}}{k+k^{2^{e}}}\right) \right\rvert\, a, l \in \mathbf{G F}\left(2^{e}\right)\right\} .
$$

The construction of ovoids via involutions is in fact inspired by the situation in the classical case: the intersection of a standard embedded quadrangle with a non-tangent hyperplane yields either a subquadrangle or an ovoid. But in a quadratic extension, we always get a subquadrangle. This is the quadrangle Γ^{\prime} of the last theorem. The idea is to reverse the procedure, and start with Γ^{\prime}, then restrict coordinates in Γ with the aid of an involution and obtain an ovoid in the subquadrangle $\Gamma^{\prime \prime}$ over the subfield. A similar argument holds in case of hexagons.

References

[1] I. Bloemen, J. A. Thas \& H. Van Maldeghem, Translation ovoids of Generalized Quadrangles and Hexagons, preprint, 1996.
[2] P. J. Cameron, J. A. Thas \& S. E. Payne, Polarities of generalized hexagons and perfect codes, Geom Dedicata 5 (1976), 525-528.
[3] V. De Smet \& H. Van Maldeghem, The finite Moufang hexagons coordinatized, Beiträge Algebra Geom. 34 (1993), 217 - 232.
[4] G. Hanssens \& H. Van Maldeghem, Algebraic properties of quadratic quaternary rings, Geom. Dedicata 30 (1989), 43-67.
[5] S. E. Payne \& J. A. Thas, Finite Generalized Quadrangles, Pitman, Boston London Melbourne, 1984.
[6] M. A. Ronan, A geometric characterization of Moufang hexagons, Invent. Math. 57 (1980), 227 - 262.
[7] J. A. Thas, Polar spaces, generalized hexagons and perfect codes, J. Combin. Theory Ser A 29 (1980), $87-93$.
[8] J. A. Thas \& S. E. Payne, Spreads and ovoids in finite generalized quadrangles, Geom. Dedicata 52 (1994), 227 - 253.
[9] J. Tits, Sur la trialité et certains groupes qui s'en déduisent, Inst. Hautes Études Sci. Publ. Math. 2 (1959), 14 - 60.
[10] J. Tits, Classification of buildings of spherical type and Moufang polygons: a survey, in "Coll. Intern. Teorie Combin. Acc. Naz. Lincei, Proceedings Roma 1973, Atti dei convegni Lincei 17 (1976), 229 - 246.

[^0]: *Senior Research Associate of the Fund for Scientific Research - Flanders (Belgium) (F.W.O.).

