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Abstract

We characterize some classical quadrangles by means of properties of their groups
of projectivities. In particular, we characterize all finite classical quadrangles with
regular lines, and all symplectic quadrangles over quadratically closed fields.

1 Introduction and statement of the Main Result

1.1 Definitions and notation

A weak generalized quadrangle Γ = (P ,L, I ) is a point-line incidence geometry satisfying
the following axioms.

(GQ1) Every point is incident with at least two, but not all lines.

(GQ2) Every line is incident with at least two, but not all points.

(GQ3) For every point x and every line L not incident with x, there is a unique incident
point-line pair (y, M) with L I y I M I x.

A (thick) generalized quadrangle is a weak generalized quadrangle satisfying the additional
axiom (GQ4).
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(GQ4) Every point is incident with at least three lines and every line is incident with at
least three points.

Generalized quadrangles were introduced by Tits [1959]. The above definition is taken
from Van Maldeghem [19**]. A standard reference on finite generalized quadrangles is
the monograph by Payne & Thas [1984].

We now introduce some more terminology. A flag is a set consisting of a point and a
line which are incident. A sequence (u0, u1, . . . , ud−1, ud) with u0 I u1 I . . . I ud−1 I ud, is
called a path (of length d), d ≥ 0. The distance δ(v, w) between two elements v, w of a
generalized quadrangle Γ is the length of a minimal path joining v and w. Two elements
at distance 4 are called opposite. By Axiom (GQ3), no two elements can be at distance
≥ 5 from each other. The set of elements at distance i from a certain element u of Γ is
denoted by Γi(u). For i = 1, we also write Γ(u) = Γ1(u). Two lines at distance 0 or 2 are
called concurrent (notation L ⊥M) and we write L⊥ for the set of lines concurrent with
L, i.e. L⊥ = Γ2(L)∪ {L}. For a set of lines {L1, . . . , Lm} the set of lines concurrent with
all of them is denoted by {L1, . . . , Lm}⊥ =

⋂m
i=1 L⊥

i . Two points at distance 0 or 2 are
called collinear (similar notation).

If u and v are two distinct elements which are not opposite, then there is a unique element
projuv incident with u nearest to v; we call it the projection of v onto u.

An element u of a generalized quadrangle is called regular if for w opposite u, the set
Γ2(u) ∩ Γ2(w) is determined by any two of its elements. In other words, for w1 and w2

opposite u, one has

|Γ2(u) ∩ Γ2(w1) ∩ Γ2(w2)| ≥ 2 =⇒ Γ2(u) ∩ Γ2(w1) = Γ2(u) ∩ Γ2(w2).

The set Γ2(u) ∩ Γ2(w), u opposite w, is sometimes called a trace if u and w are points,
and a dual trace if u and w are lines. We abbreviate Γ2(u) ∩ Γ2(w) often by uw or wu. A
projective point is a regular point x for which xy ∩ xz is never empty, for all points y and
z opposite x. Clearly, it is enough to require that xy ∩xz is never empty for all points y, z
opposite x, with y opposite z. The motivation for the name “projective” is that the set
of points {x} ∪ Γ2(x) together with the traces xy, y opposite x, and the lines Γ(x) form
a projective plane precisely when x is a projective point, see Van Maldeghem [19**].

It is well known that in any generalized quadrangle Γ, the number s + 1 of points on a
line is a constant (possibly infinite), and, dually, the number t+1 of lines through a point
is a constant. The pair (s, t) is usually called the order of Γ.

There is the principle of duality for generalized quadrangles. Indeed, interchanging the
names “point” and “line” of a given generalized quadrangle Γ produces another generalized
quadrangle ΓD, the dual of Γ.
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Now let v and u be two opposite elements of a generalized quadrangle Γ. We define the
map [v; u] : Γ(v)→ Γ(u) as follows:

w[v;u] = w′ ⇐⇒ δ(w,w′) = 2.

By Axiom (GQ3), this is well-defined and bijective. We call the map [v; u] a perspectivity
from v to u. Now let {wi : i ∈ {0, 1, 2, . . . , k}}, k ∈ N \ {0}, be a set of elements with
wi−1 opposite wi, i = 1, 2, . . . , k. We put

[w0; wk] := [w0; w1][w1; w2] . . . [wk−1; wk],

and we call the map [w0; wk] : Γ(w0) → Γ(wk) a projectivity from w0 to wk. If w0 = wk,
then we have a self-projectivity. The set of all self-projectivities of an element u of a
generalized quadrangle Γ clearly forms a group under composition, and we call it the
group of projectivities of u. For x and y points, the groups of projectivities of x and
y, viewed as permutation groups acting on Γ(x) and Γ(y), respectively, are isomorphic.
Similarly for groups of projectivities of lines. We denote by Π(Γ) the permutation group
corresponding to the group of projectivities of any line of Γ, and call it the general group
of projectivities of Γ. Dually, we denote by Π∗(Γ) the permutation group corresponding
to the group of projectivities of a point and call it the general dual group of projectivities
of Γ. It turns out that for an element u of Γ, the set of self-projectivities which can be
written as a composition of an even number of perspectivities forms a subgroup of index
at most 2 of the full group of projectivities of u. Again, this is independent of u (but
depending on the type of u, i.e., point or line) and we denote by Π+(Γ) the corresponding
subgroup of Π(Γ) (the special group of projectivities of Γ), and by Π∗

+(Γ) the corresponding
subgroup of Π∗(Γ) (the special dual group of projectivities of Γ). Note that the special
(dual) group of projectivities is doubly transitive. All these facts are well known, see e.g.
Knarr [1988].

Now we turn to some examples.

1.2 Examples

Let K be any (commutative) field and let θ be a symplectic polarity of the projective space
PG(3, K). The points of PG(3, K) together with the totally isotropic lines of PG(3, K)
with respect to θ form a generalized quadrangle, which we call the symplectic quadrangle
over K, notation W(K). We write W(q) for W(GF(q)), where GF(q) is the Galois field of
q elements. The permutation group Π+(W(K)) coincides with Π(W(K)) and is equivalent
to PSL2(K) acting naturally on PG(1, K); the permutation group Π∗

+(W(K)) coincides
with Π∗(W(K)) and is equivalent to PGL2(K) acting naturally on the projective line
PG(1, K), see Van Maldeghem [19**].
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The points and lines of any non-degenerate quadric of Witt index 2 in some projective
space form a weak generalized quadrangle, called an orthogonal quadrangle. In the fi-
nite case, two classes of (thick) generalized quadrangles arise this way: in PG(4, q) and
PG(5, q), and we denote them respectively by Q(4, q) and Q(5, q). Their order is, respec-
tively, (q, q) and (q, q2). Notice that W(q) is the dual of Q(4, q), and W(q) is isomorphic
to Q(4, q) if and only if q is even, see e.g. Payne & Thas [1984], where one can also
find that all lines of both Q(4, q) and Q(5, q) are regular (and hence all points of W(q) are
regular; more generally, all points of W(K) are regular, for any field K).

An important open problem is the question: is every finite generalized quadrangle all
lines of which are regular necessarily isomorphic to Q(4, q) or to Q(5, q)? A fair amount
of characterizations of Q(5, q) exists using the assumption of regularity of all the lines,
plus an extra condition. Few results though characterize Q(4, q) and Q(5, q) at the same
time using the regularity of the lines. With a condition on the groups of projectivities we
provide such a characterization in this paper.

Also, we provide a characterization of Q(5, q) only using an assumption on the special
dual group of projectivities, together with the condition that t = s2 for the order (s, t).
We also characterize W(K) for some particular fields K.

1.3 Main Results

For our first result, we recall that a field in which every quadratic equation has at least
one solution is a quadratically closed field. A separably quadratically closed field is a field
which has no separably quadratic extension. Every quadratically closed field is separably
quadratically closed. The converse is true whenever the characteristic of the field is not
equal to 2. If the characteristic is equal to 2, then there are separably quadratically
closed fields which are not quadratically closed (e.g. the separable quadratic closure of a
non-perfect field).

Theorem 1 Let Γ be a generalized quadrangle all points of which are regular. If every
element of Π∗(Γ) has a fixed element, then Γ ∼= W(K), for some separably quadratically
closed field K.

For our second main result, we introduce the following terminolgy. A Zassenhaus (per-
mutation) group is a permutation group acting 2-transitively such that only the identity
stabilizes at least 3 points.

Theorem 2 Let Γ be a generalized quadrangle all lines of which are regular. Suppose
Π(Γ) is a Zassenhaus group which satisfies the following additional properties:
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(i) the set of all elements of Π(Γ) fixing only a point p forms, together with the identity,
a commutative subgroup of Π(Γ)p (the stabilizer of the point p in Π(Γ));

(ii) every non-identity element of Π(Γ) with an involutory couple has exactly two fixed
elements.

Then Γ is either an orthogonal quadrangle or the dual of a quadrangle arising from a
σ-hermitian form in a vector space of dimension 4 over a skew field; in particular, Γ is a
Moufang quadrangle.

If moreover

(iii) Π(Γ)p,q (the stabilizer in Π(Γ) of two distinct points p, q) is abelian,

then there is a field K of characteristic += 2 and with −1 a square in K such that Γ is
isomorphic to the dual of W(K).

Corollary 1 Let Γ be a generalized quadrangle all points of which are regular, and let K
be some (commutative) field. If Π∗(Γ) is permutation equivalent to PSL2(K) acting on
the projective line PG(1, K), with either K separably quadratically closed, or char K += 2
and −1 is a square in K, then Γ ∼= W(K).

For the next result, we need some notation. Namely, for any prime power q, we denote by

PGL
(
√

q)
2 (q) the group of all projective transformations of PG(1, q) generated by PGL2(q)

and the transformation induced by the semi-linear mapping with identity matrix and
corresponding field automorphism x -→ x

√
q, if q is a square. If q is not a square, then we

read
√

q as the identity in this definition.

Theorem 3 Let Γ be a finite generalized quadrangle of order (s, t) all points of which
are regular. Then Γ is dual to Q(4, s) or to Q(5, s) if and only if Π∗(Γ) is permutation
equivalent to a subgroup of PGL2(t) acting naturally on PG(1, t) and Π(Γ) is permutation

equivalent to a subgroup of PGL(
√

s)
2 (s) acting naturally on PG(1, s).

Theorem 4 Let Γ be a finite generalized quadrangle of order (s,
√

s). Then Γ is dual to
Q(5, q) if and only if Π+(Γ) is a Zassenhaus group.

Notice that the finite classical projective planes are characterized by a very simple prop-
erty: a finite projective plane of order s += 23, s > 4, is classical if and only if its
group of projectivities does not contain the alternating group in its natural action, see
Grundhöfer [1988]. Theorem 4 is the best approximation of that result for quadrangles
that we are aware of.
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We are still far away from the analogue of the classical results for projective planes:
a projective plane is Moufang if and only if the stabilizer of a point in the group of
projectivities has a regular abelian normal subgroup, and it is pappian if and only if its
group of projectivities is sharply 3-transitive. Nevertheless, the theorems in this paper are
a first step towards such a characterization for Moufang quadrangles with regular points
or lines.

2 Coordinatization

2.1 Introduction of the coordinates

In this section, we recall some facts about coordinatization of generalized quadrangles
that we will need in the proof of Theorem 2. Everything is due to Hanssens & Van
Maldeghem [1988, 1989].

Let Γ be a generalized quadrangles of order (s, t). Choose any point and label it (∞);
choose any line through (∞) and label it [∞]. Let R1 and R2 be sets of cardinalities s
and t, respectively, containing the distinguished elements 0 and 1, but not containing ∞.
As a general rule, we denote the coordinates of lines with square brackets; those of points
by parentheses.

We complete the flag {(∞), [∞]} to an ordinary quadrangle

(∞) I [∞] I (0) I [0, 0] I (0, 0, 0) I [0, 0, 0] I (0, 0) I [0] I (∞).

We choose bijectively a coordinate (a, 0, 0), a ∈ R1, for the points of [0, 0, 0] distinct
from (0, 0) (in conformity with the already defined coordinate (0, 0, 0)), and we do the
same dually for the lines through (0, 0, 0) (replacing R1 by R2). We label the projection
of (a, 0, 0) onto [∞] by (a) (similarly dually); we also label the projection onto [0] of
proj[1,0,0](a

′) by (0, a′) (similarly dually), and we label the projection of (0, a′) onto [0, 0]
by (0, 0, a′) (similarly dually). Furthermore, we label the projection of (0, 0, b) onto any
line [k], k ∈ R2, by (k, b) (and dually), and we label the projection of (0, a′) onto the
line [a, l] by (a, l, a′) (and dually). This way, every point and line has been given unique
coordinates. We define the quaternary operations Q1 and Q2,

Q1 : R1 ×R2 ×R1 ×R2 → R1,
Q2 : R1 ×R2 ×R1 ×R2 → R2,

as follows:
Q1(a, k, b, k′) = a′ ⇔ δ(proj[k,b,k′](a), (0, a′)) = 2

and
Q2(a, k, b, k′) = l ⇔ δ([a, l], [k, b, k′]) = 2.
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Then clearly we have

(a, l, a′) I [a, l] I (a) I [∞] I (∞) I [k] I (k, b) I [k, b, k′]

and
(a, l, a′) I [k, b, k′]

2
{

Q1(a, k, b, k′) = a′,
Q2(a, k, b, k′) = l.

We define the following binary operation ⊕ in R1:

a⊕ b := Q1(a, 1, b, 0).

We have the following properties (which are easy to verify):

Q1(a, 0, b, k′) = b = Q1(0, k, b, 0),
Q2(a, 0, 0, k′) = k′ = Q2(0, k, b, k′),
0⊕ a = a = a⊕ 0.

We call the quadruple (R1, R2, Q1, Q2) a coordinatizing ring for Γ. We note that [∞] is a
regular line if and only if Q2 is independent of its third argument.

2.2 Root elations and Moufang quadrangles

Let Γ be any generalized quadrangle. Let u I v I w, with u += w. Let u1 and u2 be two
elements incident with a common element which is also incident with u. Then there is
at most one automorphism θ(u1, u2) of Γ which fixes all elements incident with u, v and
w, and which maps u1 to u2. We call θ(u1, u2) an (u, v, w)-elation, or a root elation. If
there is at least one such root elation for every choice of u1, u2, with u1 += u += u2, then we
say that Γ is (u, v, w)-transitive (this is a generalization of a similar notion for projective
planes). If Γ is (x, L, y)-transitive for all points x, y and all lines L with x I L I y, x += y,
then we call Γ half Moufang. If moreover the dual of Γ is also half Moufang, then we say
that Γ is a Moufang quadrangle. This Moufang condition was introduced by Tits [1974].
All Moufang quadrangles are classified by Tits & Weiss [1997]. If there is at least one
regular element, and if there are no involutory root elations, then the classification follows
from a result of Faulkner [1977].

¿From Hanssens & Van Maldeghem [1989], we recall that a coordinatized generalized
quadrangle Γ is ((∞), [∞], (0))-transitive if and only if

Q1(a, k, b⊕B, k′) = Q1(a, k, b, k′)⊕B
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and
Q2(a, k, b⊕B, k′) = Q2(a, 0, B, Q2(a, k, b, k′)),

for all a, b, B ∈ R1 and all k, k′ ∈ R2. In that case, the action of an ((∞), [∞], (0))-elation
on the points of the line [0] is given by (0, a) -→ (0, a⊕B), for some (fixed) B ∈ R1.

3 Proofs of the theorems

3.1 Proof of Theorem 1

Let p be any point. Let L and M be two distinct lines through p. Let xi and yi, i = 1, 2
be two points incident with L and M respectively, but different from p. Suppose also
x1 += x2 and y1 += y2. Let pi, i = 1, 2, be any point opposite p but collinear with both xi

and yi. We want to show that pp1 ∩ pp2 is non-empty, and we may assume that p1 and
p2 are not collinear. By assumption, the projectivity [p; p1; p2; p] has at least one fixed
element. Let N be a fixed element, then the projections of p1 and p2 onto N coincide
unless Γ contains a triangle. Hence the traces pp1 and pp2 have either at least 2 elements
in common, in which case they coincide (in view of the regularity of p), a contradiction,
or they have exactly one element in common. This shows that p is a projective point.
Hence every point is projective and by Schroth [1992], we conclude that Γ ∼= W(K), for
some field K.

Suppose now first that K has characteristic 2 and let Ax2 + Bx + C = 0 be an arbitrary
quadratic equation over K, with B += 0. We may assume that A = 1. If B + C = 1, then
x = 1 is a solution of that equation. So suppose that B + C += 1. If B += 0, then we put
B1 = B−1(1 + C) and B2 = B + B1. It is now easy to see that the element x -→ B1x+C

x+B2
of

PGL2(K) belongs to PSL2(K) and a fixed element x0 satisfies x2
0 + Bx0 + C = 0. This

implies that K does not have a proper separable quadratic extension.

Now suppose that K has characteristic different from 2. The following argument is deduced
from one we learned from Norbert Knarr. Let a ∈ K; we must show that a is a square
in K. Put r = a−1

2 and s = a+1
2 . The element x -→ 2sx−r

rx of PGL2(K) clearly belongs
to PSL2(K), hence it has a fixed point x0 which satisfies the quadratic equation rx2

0 −
2sx0 + r = 0. Consequently the discriminant 4s2 − 4r2 = 4a is a square.

This completes the proof of Theorem 1.

3.2 Proof of Theorem 2

In order to prove Theorem 2, we note that a line L is regular if whenever L, L1, L2 are
pairwise skew lines with the property that there exist lines M1, M2 meeting all three of
them, then any other line meeting two of {L, L1, L2} also has to meet the third one.
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We put G = Π(Γ) and we denote by H the (abstract) stabilizer in G of a point. Further-
more, we let N ⊂ H be the set of elements which fix exactly one point, together with the
identity. Then by assumption, N is an abelian (normal) subgroup of H acting on a line
minus one point.

1. N is transitive.

Let (R1, R2, Q1, Q2) be an arbitrary coordinatizing ring. We may assume that H
is the stabilizer of the point labeled (∞) acting on the line [∞]. Let b ∈ R1 be an
arbitrary element. The projectivity

θb = [[∞], [1, b, 0], [0], [1, 0, 0], [∞]]

maps 0 to b, and, by definition of ⊕, maps a to a⊕ b. Suppose θb has a fixed point
(x), x +=∞. Since [∞] is a regular line, there is a line Lx through (x) meeting both
[1, b, 0] and [1, 0, 0]. Since (x)θb = (x), the projections onto [0] of the intersections
of Lx with [1, b, 0] and [1, 0, 0] coincide, hence b = 0 or there arises a triangle.
So for b += 0 there are no fixed elements besides (∞), i.e. θb ∈ N and in fact
N = {θb; b ∈ R1} because a transitive abelian subgroup is sharply transitive.

2. The set-up.

Considering N as an additive group with operation law + and identity denoted
by 0, we can now identify θb ∈ N and b ∈ R1. Then the action of N ≤ G on
R1 ∪ {∞} is given by right translation (fixing ∞) and for every projectivity ρ of
the point row [∞], the mapping θ : N ∪ {∞} → N ∪ {∞} : x -→ xθ defined by
(x)ρ = (xθ) is an element of G. By projecting successively onto [1, 0, 0] and [0], it
follows that, identifying (∞) with (0,∞), for every projectivity ρ of the point row
[0], the mapping θ : N ∪ {∞} → N ∪ {∞} : x -→ xθ defined by (0, x)ρ = (0, xθ)
is an element of G. Our first aim is to show that Γ is ((∞), [∞], (0))-transitive.
To that end, we have to show that Q1(a, k, b ⊕ B, k′) = Q1(a, k, b, k′) ⊕ B and
Q2(a, k, b⊕B, k′) = Q2(a, 0, B, Q2(a, k, b, k′)). It will follow that Γ is a half Moufang
quadrangle. Our second aim is then to construct all other root elations and restrict
the possibilities for Γ. Finally, we have to show that, if the stabilizer in H of some
point is abelian, then Γ is dual to the symplectic quadrangle W(K) for some field
K.

3. Q2(a, k, b⊕B, k′) = Q2(a, 0, B, Q2(a, k, b, k′)).

This identity is automatically satisfied since [∞] is a regular line (see above: Q2 is
independent of its third argument in that case, and we always have Q2(a, 0, 0, x) =
x).

4. a⊕ b in R1 is the same as a + b in N .

Just note that θa + θb = θa⊕b since they agree at 0 and N acts sharply transitively.
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5. For any k, k′ ∈ R2 \ {0}, the projectivity [[0]; [0, 0]; [k]; [0, k′]; [0]] has no fixed points
besides (∞).

Let x be a fixed point of the projectivity mentioned. Let x′, x′′ and x′′′ be the succes-
sive projections onto [0, 0], [k] and [0, k′]. Then the projectivity [[∞]; xx′; x′′x′′′; [∞]]
interchanges the points (∞) and (0). By assumption, there are two fixed points
(ai), i = 1, 2.

This means that (ai) and its projections onto xx′ and x′′x′′′ are collinear (since
otherwise there would be a triangle), say they are incident with Mi, i = 1, 2. Since
[∞] is a regular line, every line meeting two elements of {[∞], xx′, x′′x′′′} meets also
the third, contradicting the fact that [k] meets [∞] and x′′x′′′, but not xx′.

6. Q1(a, k, b⊕B, k′) = Q1(a, k, b, k′)⊕B.

Put a1 = Q1(a, k, b ⊕ B, k′) and a2 = Q1(a, k, b, k′). We have to show that a1 =
a2 + B. Let L be the line that joins the point (a) to its projection x2 onto [k, b, k′].
Then L also meets [k, b + B, k′], say in the point x1 (by regularity of the line [∞]
and the fact that both [k] and [0, k′] meet all three of [∞], [k, b, k′], [k, b+B, k′]). By
definition, the projection of xi onto [0] is the point (0, ai), i = 1, 2. Now consider
the projectivity θ = [[0]; L; [k]; [0, 0]; [0]]. If a = 0, then L = [0, k′] and θ has no
fixed points except for (∞) by the previous paragraph. Suppose now a += 0 and
assume that θ has a fixed point (0, x), x ∈ N . By the previous paragraph, the
projectivity θ′ = [[0]; [0, 0]; [k]; [0, k′]; [0]] has no fixed points except (∞). Since N
is a subgroup, the projectivity θθ′ has some fixed element (0, x′), x′ ∈ N . But
θθ′ = [[0]; L; [k]; [0, k′]; [0]], and since any line joining a point of [k] to its pro-
jection onto [0, k′] has to intersect L by the regularity of [∞], this is equal to
θθ′ = [[0]; L; [0, k′]; [0]]. Now if (0, x′) is a fixed point of θθ′, then [k] has to in-
tersect the line defined by (0, x′) and its projection to L, yielding a triangle unless
k = 0, in which case a1 = b + B and a2 = b by the identities in the introduction, so
the result follows trivially. Hence we can assume that θ has no fixed points distinct
from (∞) and so we can write θ : (0, x) -→ (0, x+C) for some C ∈ K. But aθ

1 = b+B
and aθ

2 = b. Hence a1 + C = b + B and a2 + C = b, consequently a1 = a2 + B.
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7. Γ is a Moufang quadrangle.

We have already shown that Γ is a half Moufang quadrangle. Now let p be any point,
let L1 and L2 be distinct lines through p, let xi be incident with Li, i = 1, 2, with
xi += p. Let (x1, M1, y, M2, x2) and (x1, M ′

1, y
′, M ′

2, x2) be two paths with y += p += y′.
We have to show that there exists an (L1, p, L2)-elation mapping M1 onto M ′

1. Let
z be any point on M2, y += z += x2. Let (M ′

1, z
′, P, z) and (P, z′′, P ′, p) be two paths

(which uniquely define the elements z′, z′′, P, P ′). Let θ be the (p, L2, x2)-elation
mapping y to z. Let θ′ be the (p, P ′, z′′)-elation mapping z to z′. Then θ′ induces
on the point row of L2 an element η belonging to N (considering N with respect
to L2 and p, i.e., considering N as a subgroup of the group of self-projectivities of
L1 and each element of N fixes p). Let θ′′ be the (x1, L1, p)-elation wich maps xη

2

onto x2 (or equivalently, z′ to y′), then θ′′ induces on L2 the mapping η−1 because
x2 is fixed by θ′θ′′. Also, if θ induces the mapping η′ on the point row of L1, then
θ′ similarly induces η′−1 on L1 since θθ′ fixes x1. Hence the collineation θθ′θ′′ is an
(L1, p, L2)-elation which maps y to yθθ′θ′

= zθ′θ′′
= z′θ

′′
= y′.

8. Which Moufang quadrangles have regular lines?

By the classification of Moufang quadrangles mentioned above, the only Moufang
quadrangles with regular lines are the orthogonal quadrangles, the duals of the
quadrangles arising from σ-hermitian forms over skew fields in vector spaces of
dimension 4 (for precise definitions, see e.g. Tits [1974], Chapter 8), the duals of
some quadrangles arising from σ-hermitian forms over skew fields of characteristic 2
in vector spaces of dimension > 4, and so-called mixed quadrangles (which are
subquadrangles of symplectic quadrangles in characteristic 2). This follows from
Van Maldeghem [19**], Table 5.1. However, no Moufang quadrangle satisfying
the hypotheses of Theorem 2 has root elations of even order (because these root
elations have involutory couples without having two fixed points). This rules out all
Moufang quadrangles defined over a field in characteristic 2, in particular the last
two classes mentioned above. This proves the first statement of Theorem 2.

We now assume that the stabilizer in G of two points is abelian and we take a closer
look at orthogonal quadrangles and dual hermitian quadrangles in vector spaces of
dimension 4.

9. Moufang quadrangles arising from σ-hermitian forms in vector spaces of dimen-
sion 4.

Let Γ be a Moufang quadrangle arising from a σ-hermitian form in a vector space
of dimension 4 over the skew field L. It is shown in Tits [1974] (10.10, page 213),
that the dual group of projectivities contains all maps of the form

Lσ,−1 → Lσ,−1 : x -→ aσxa,
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where a ∈ L \ {0}, and Lσ,−1 = {t + tσ : t ∈ L}. These projectivities all fix
two elements and hence they must commute with each other (since they are a
subgroup of the stabilizer of two elements in PSL2(K)). By Tits [1974] (10.5) and
(10.9), Γ is the dual of an orthogonal quadrangle (remember that K does not have
characteristic 2).

10. Orthogonal quadrangles.

First, we note:

Suppose Γ′ is a subquadrangle of the generalized quadrangle Γ. Let L be a line of Γ′

(note that L is also a line of Γ). Then the group of self-projectivities of L in Γ′ is,
as a permutation group acting on Γ′(L), a subgroup of the stabilizer of Γ′(L) of the
group of self-projectivities of L in Γ, viewed as a permutation group acting on Γ(L).

To prove this, it is enough to remark that every perspectivity in Γ′ extends uniquely
to a perspectivity in Γ in the obvious way.

Now we can show the following result:

If Γ is an orthogonal quadrangle arising from a non-degenerate quadric in PG(d, K),
with K a field of characteristic += 2, then Π(Γ) is permutation equivalent to PSL2(K)
if and only if Γ is dual to W(K).

If K is quadratically closed, then d = 4 and the result follows. So we may assume
that K is not quadratically closed.

By our observation above, it clearly suffices to show that for d = 5, the group Π(Γ)
contains an element of the form x -→ mx, with m a non-square in K.

By Van Maldeghem [19**], Γ is coordinatized by R1 = K and R2 = K×K, and
there exists a non-square m ∈ K such that

Q1(a, (k1, k2), b, (k′1, k
′
2)) = b + a(k2

1 + mk2
2) + 2(k1k′1 + mk2k′2),

Q2(a, (k1, k2), b, (k′1, k
′
2)) = (k′1, k

′
2)− (ak1, ak2).

Now the map determined by
{

(a, (l1, l2), a′) -→ (a, (ml2, l1), ma′)
[(k1, k2), b, (k′1, k

′
2)] -→ [(mk2, k1), mb, (mk′2, k

′
1)]

clearly preserves incidence, it fixes every point on [∞], and it induces on [0] the map
(0, a) -→ (0, ma). By Van Maldeghem [19**], Lemma(8.3.1), Π(Γ) contains the
element of PGL2(K) determined by x -→ mx. Since m is not a square in K, the
result follows.

This result now implies that every orthogonal quadrangle which is not dual to a
symplectic quadrangle has fixed point free involutory self-projectivities (of a line).
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Indeed, by the 2-transitivity of Π(Γ), there exists at least one involution θ ∈ Π(Γ) ≥
PSL2(K) of the form x -→ −a2/x. If −1 is not a square in K, this has no fixed
points. If −1 is a square in K, then we compose with x -→ mx, m a non-square
as above, to obtain the mapping x -→ −ma2/x. The latter mapping has no fixed
points.

The theorem is proved.

3.3 Proof of Corollary 1

Let K be a field of characteristic += 2 in which −1 is a square. We show that PSL2(K)
acting on PG(1, K) satisfies the assumptions of Theorem 2. Indeed, this action can be
identified with the action of the rational transformations x -→ ax+b

cx+d , with ad − bc a non-
zero square in K. The stabilizer of ∞ is AGL+

1 (K), its elements being the maps of the
form x -→ a2x+ b. If such a function has no fixed point apart from ∞, then clearly a = 1,
and the elements with a = 1 form a subgroup of PSL2(K). Moreover, the stabilizer of ∞
and 0 is commutative (and consists of the elements of the form x -→ a2x, a += 0). Also,
any element with an involutory couple, say (∞, 0), has the form x -→ −a2/x, a += 0. Since
−1 is a square in K, this has two distinct fixed points (ia) and (−ia) where i2 = −1.

Also, if K is a separably quadratically closed field, then obviously the conditions of The-
orem 1 are satisfied, and the result follows.

The corollary is proved.

We should point out that the conditions on the permutation group Π(Γ) in Theorem 2 are
a special case of a characterization of subgroups of PGL2(K) due to Mäurer[1983]. By
his result, Π(Γ) satisfies assumptions (i)− (iii) if and only if it is permutation equivalent
to PSL2(K) for a field of characteristic += 2 with −1 a square in K acting on the projective
line PG(1, K).

3.4 Proof of Theorem 3

As in the proof of Theorem 2, the result follows if Γ does not contain any 3 × 3-grid
(a k × &-grid being a weak generalized quadrangle with lines containing k points, with
lines containing & points, and such that every point is incident with 2 lines). Indeed,
Condition (ii) of Theorem 2 is only used in the proof of that theorem in Paragraph 5.
With the notation of that paragraph, the points (∞), (0), x, x′, x′′ and x′′′ form the dual of
a 3×3-grid, if x is a fixed point of the projectivity under consideration. So Condition (ii)
may be replaced by the condition that no such dual grid exists. Of course, Condition (i)
is satisfied by every 2-transitive subgroup of PGL2(q) (acting naturally on PG(1, q)).
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Hence we assume that Γ does contain a 3×3-grid. If Π(Γ) is contained in PGL2(s), then
Γ contains a regular pair of lines, hence s = t and Γ is dual to W(s) with s even. Hence
we may assume that s is a perfect square, say s = q2, and that Π(Γ) contains a non-linear
semi-linear transformation. Note that, since Γ contains regular points, s ≥ t.

1. Every 3× 3-grid is contained in a maximal (q + 1)× (q + 1)-grid.
Let {L1, L2, L3} ⊆ {M1, M2, M3}⊥ with Mi opposite Mj, i += j, i, j ∈ {1, 2, 3}, and
with L1 += L2 += L3 += L1. The projectivity σ = [L1; L2; L3; L1] has at least three
fixed points. Identifying in GF(q2) ∪ {∞} these points with 0, 1,∞, we readily
see that σ is either the identity or the map x -→ xq. If a is fixed under σ, then
{a, projL2

a, projL3
a} forms a triangle, hence projaL2 = projaL3. It follows that

|{L1, L2, L3}⊥| ≥ q + 1. Suppose {M0, M1, . . . ,Mq} ⊆ {L1, L2, L3}⊥, with Mi += Mj

for i += j, i, j ∈ {0, 1, . . . , q}. The projectivity σi = [M0; Mi; Mq; M0], 0 < i < q,
has at least three fixed points which are independent of i. Identifying these points
with 0, 1,∞ again, we deduce similarly as before that there are at least q + 1 lines
L (namely, one line through each point on M0 corresponding to an element of
GF(q)∪{∞}) in {M0, M1, . . . ,Mq}⊥. Hence we already have a (q+1)× (q+1)-grid
G containing L1, L2, L3, M1, M2, M3. We now show that this grid is maximal. In
fact, we will show that whenever a line L meets three of the lines M0, M1, . . . ,Mq,
then it must meet all of them and it belongs to G. We may assume L1 += L += L2.
By considering the projectivity [L; L1; L2; L], we see as above that L must belong
to {M0, M1, . . . ,Mq}⊥. Now, if L /∈ G, then the projectivity [M0; Mi; Mq; M0],
0 < i < q, has at least q + 2 fixed points, hence it is the identity and we easily
deduce (as before) that |{M0, M1, . . . ,Mq}⊥| = q2 + 1. Now consider a point w on
L1 not incident with any Mi, 0 ≤ i ≤ q. Let {M0, M1. . . . ,Mq}⊥ = {L0, L1, . . . , Lq2}.
Let Ni = projwLi, 0 ≤ i ≤ q2, i += 1. If Ni = Nj for some i += j, then Ni meets three
of the lines L0, L1, . . . , Lq2 and as before, we deduce that it must meet every such
line, and again as before this implies that G is contained in an (s+1)× (s+1)-grid.
Hence s = t, a contradiction. So the lines Ni, 0 ≤ i ≤ q2, i += 1, are pairwise distinct
and we obtain s ≤ t. Consequently s = t, a contradiction. We conclude that G is
maximal.

2. We have t = q.
Let G be a (q +1)× (q +1)-grid with line set {L0, L1, . . . , Lq, M0, M1, . . . , Mq}, and
with Li ⊥ Mj, for all i, j ∈ {0, 1, . . . , q}. Let w0 be a point on L0 not belonging to
the grid. By the previous paragraph, the q lines Ni, 1 ≤ i ≤ q, incident with w0

and concurrent with Li are mutually distinct. Now assume that t += q, i.e., t > q.
Then there is some further line N through w0, N += Ni, i = 1, 2, . . . , q. Consider
the projectivity σi = [L0; Li; Lq; L0]. It has exactly q + 1 fixed points, hence it is an
involution σ (in fact, independent of i). Let w′

0 be the image of w0 under σ. Let wi

be the projection of w′
0 onto Li, and let w′

i be the projection of w0 onto Li, 1 ≤ i ≤ q.
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Using the fact that σi is involutory, we easily see that w′
0, w

′
1, . . . , w

′
q ∈ {w0, wq}⊥

and w0, w1, . . . , wq ∈ {w′
0, w

′
q}⊥. By the regularity of points in Γ, we deduce that wi

and w′
j are collinear for all i, j ∈ {0, 1, . . . , q}. Now let w′ be the point of N collinear

with wq, and hence with wi, for all i ∈ {0, 1, . . . , q}. Let N ′ be the line through w′

concurrent with M0. Let w be the projection of w′
0 onto N ′. Then w is collinear

with w′
i, for all i ∈ {0, 1, . . . , q}. Denote by xij the intersection of Li with Mj. Then

the projectivity θ = [L0; Lq; N ′; L0] has a fixed point x00 and an involutory couple
(w0, w′

0). Hence it is an involution. If a semi-linear involution fixes ∞ and has an
involutory couple (0, b), it is of the form x -→ −(b/bq)xq + b. Hence if θ is semi-
linear but not linear, then it coincides with the involution σ = [L0; L1; Lq; L0] since
they agree on x00 and the involutory couple (w0, w′

0). Hence θ has in particular
the same set of fixed points as σ. As before, this implies that N ′ meets all Mi,
i ∈ {0, 1, . . . , q}, and so G is not maximal, a contradiction. We conclude that θ
is linear. Similarly the projectivity θ′ = [L0; L1; N ′; L0] is a linear involution. We
deduce θ = θ′. Hence θ′θ−1 = [L0; L1; N ′; Lq; L0] is the identity. It readily follows
that the line Mi, i ∈ {0, 1, . . . , q}, is concurrent with N ′. Hence again, G is not
maximal, a contradiction. We conclude that t = q.

3. Γ is a Moufang quadrangle.
We already have that Γ has order (q2, q). By Payne & Thas [1984](1.2.4), every
three pairwise opposite lines are contained in a (q + 1) × 3-grid, in particular in a
3 × 3-grid. Hence, every three pairwise opposite lines are contained in a maximal
(q + 1) × (q + 1)-grid. The result now follows directly from the dual of Payne &
Thas [1984](5.3.2(i)).

3.5 Proof of Theorem 4

Let L0 be any line of Γ. Let L1 be any line opposite L0, and let M0, M1, M2 be three
different lines concurrent with both L0 and L1. As above, we know that L0, L1, M0, M1, M2

are contained in a (
√

s+1)×3-grid containing
√

s+1 lines L0, , L1, L2, . . . , L√
s which are

all concurrent with M0, M1, M2. Similarly, there are
√

s + 1 lines M0, M1, M2, . . . ,M√
s

concurrent with L0, L1, L2. If we show that Lj meets Mi, for i, j ∈ {3, 4, . . . ,
√

s}, then
as above, we are done (again using Payne & Thas [1984](5.4.2(i))). Therefore, consider
the even projectivity θ = [L0; L1; L2; Lj; L0]. Clearly the intersection points of L0 with
M0, M1, M2, respectively, are fixed by θ. By assumption, also the intersection point x of
L0 and Mi is fixed. This yields a triangle with vertices x, projL2

x, projLj
x if Lj does not

meet Mi.

The theorem is proved.
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