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Abstract

First we construct a fuzzy group from a fuzzy projective geometry, and then we construct
a fuzzy projective geometry from a fuzzy group.

1 Introduction

Fuzzy groups were introduced by Rosenfeld in 1971, in [7]. Fuzzy vector spaces were introduced
by Katsaras and Liu in 1977, in [4]. In [6], we introduced fuzzy projective geometries.
These fuzzy projective geometries were deduced from fuzzy vector spaces. In this article, we
deduce a fuzzy group corresponding with such a fuzzy projective geometry (section 4), thus
obtaining a relationship between fuzzy vector spaces and fuzzy groups by means of these fuzzy
projective geometries.
Moreover, we will give a construction of fuzzy projective geometries from fuzzy groups that
yields the same fuzzy projective geometries as defined in [6].
The fuzzy projective geometries we constructed are thus an important link in the connection
between the theories of fuzzy vector spaces and fuzzy groups.

2 Preliminaries

In this paper, (G, ·) or shortly G will always denote a group, and its neutral element will be
denoted by e.

Definition 2.1 ([7]) A fuzzy set µ on a group G is a fuzzy subgroup of G if, ∀x, y ∈ G the
following holds:
(1) µ(x · y) ≥ µ(x) ∧ µ(y), and
(2) µ(x−1) = µ(x).

From (1) we immediately see that µ(e) ≥ µ(a), for all a ∈ G.

Remark that the conditions (1) and (2) are equivalent with:
(3) µ(x · y−1) ≥ µ(x) ∧ µ(y)
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which looks like the classical condition for a subset H of a group G to be a subgroup of G: if
a, b ∈ H, then a · b−1 ∈ H.

Definition 2.2 ([10]) Let µ be a fuzzy set of some set X. Then for t ∈ [0, 1], the set µt = {x ∈
X|µ(x) ≥ t} is called a level subset of the fuzzy set µ.

Proposition 2.1 (Propositions 2.1 and 2.2 in [1]) A fuzzy set µ on the group G is a fuzzy
subgroup of G if and only if µt is a subgroup of G for every t ∈ [0, µ(e)].

Proposition 2.2 (Proposition 3.3 in [5]) If G is a group having a chain

{e} = G0 ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gn = G

of subgroups, with n maximal, then a fuzzy subgroup µ of G is a step function from G → [0, 1]
having at most n + 1 steps.

If the subgroups Gi are as in the proposition above, the membership degree of e must be higher
than the membership degrees of the elements of the group G1\{e}, which in turn have to be
higher than the membership degrees of the elements in the group G2\G1 and so on, leaving
the elements of the group Gn\Gn−1 with the lowest membership degree (this follows from the
definition of fuzzy group). This means that the level subsets of µ are given by Gi\Gi−1. Remark
that the chain of subgroups of G don’t need to be chosen maximal.
In fact, in [5] the proposition is stated for normal fuzzy subgroups, but it holds for fuzzy
subgroups as well.

Definition 2.3 A projective space PG(V ) = (D(V ), I) corresponding to a vector space V , is
defined as the collection D(V ) of subspaces of V together with the following incidence relation I
on the subspaces: U and U ′ are incident if U ⊆ U ′ or U ′ ⊆ U , which we denote U I U ′ (for more
details, see e.g. [3]). The dimension d(U) of a subspace U is equal to the number of base vectors
of U . The projective dimension pd(U) of U is defined by pd(U) = d(U)− 1. The definition
of projective points, lines, planes, . . . is based on this projective dimension: subspaces having
projective dimension 0 are called projective points, projective lines have projective dimension
1 and so on. Throughout this article, we will denote a projective space by P. The order of
a projective space is the number of points on a line minus one. If we work with projective
spaces over a finite field of order q, the number of points on a line equals q + 1, so the order of
the projective space will be q.

Definition 2.4 Suppose P is an n-dimensional projective space. A flag in P is a sequence of
distinct, non-trivial (i.e. different from ∅ and P) subspaces (U0, U1, . . . , Um) such that Uj ⊂ Ui

for all j < i ≤ m ≤ n − 1. The rank of a flag is the number of subspaces it contains. A
maximal flag in P is a flag of length n.
Suppose from now on that the dimension of Ui equals i. A flag of type {i, i+1, . . . ,m}, where
m > i is a sequence of distinct, non-trivial subspaces (Ui, Ui+1, . . . , Um) such that Uj ⊂ Uk for
all i ≤ j < k ≤ m ≤ n− 1. We denote this shortly as an [i, m]-flag.

Suppose P is an n-dimensional projective space.
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Definition 2.5 The fuzzy set λ is a fuzzy n-dimensional space on P if λ(p) ≥ λ(q) ∧ λ(r),
for all collinear points p, q, r of P. We denote [λ,P]. The projective space P is called the base
projective space of [P,λ]. If P is a fuzzy point, line, plane, . . . , we use base point, base line,
base plane, . . . , respectively.

Property 2.3 A fuzzy n-dimensional space [λ,P] is of the following form (see [6]):
λ : P → [0, 1]

p +→ a1 if p = q
p +→ a2 for p ∈ U1\{q}
p +→ a3 for p ∈ U2\U1

. . .
p +→ an for p ∈ Un−1\Un−2

p +→ an+1 for p ∈ P\Un−1,

for a certain maximal flag (q, U1, . . . , Un−1) in P, and for some reals a1 ≥ a2 ≥ a3 ≥ . . . ≥ an+1

in [0, 1].

One can prove this in the same way as for fuzzy vector spaces (see Theorem 3.2 in [6]).

3 The classical case

We will start this section with a short explanation of how in the classical case, a flag-transitive
geometry can be constructed from its automorphism group. To keep things simple, we construct
the smallest possible projective space: the Fano plane.

The Fano configuration PG(2, 2) is the projective plane over the finite field GF (2). Throughout
this article we will use the notation F . It consists of 7 points and 7 lines and it is the smallest
non-trivial projective plane. Every point of F is incident with exactly three lines of F and every
line of F contains exactly three points of F . Its automorphism group is L3(2), and consists of
168 elements. The subgroups of L3(2) that stabilize points are symmetric groups of order 24,
and so are the subgroups of L3(2) that stabilize a line.

Now, suppose we are given the group L3(2), how do we recover the corresponding Fano plane?
We will construct a geometry F ′ based on L3(2), and show that F ′ = F . For this, we select two
subgroups S4 and S′

4 (symmetric groups of order 24) of L3(2), which meet in a group isomorphic
to D8. The latter is a group that stabilize a line and fixes a point on that line, thus a group
stabilizing a flag so we see that D8 is the maximal possible intersection of S4 and S′

4. Both S4

and S′
4 have 7 left cosets. We will denote a left coset by gS4, with g ∈ L3(2). Since we will only

consider left cosets, we will from now on write ‘coset’ instead of left coset, since no confusion is
possible.
We define the points and lines of F ′ as follows:
points: the (7) cosets of S4.
lines: the (7) cosets of S′

4.
incidence: gS4 I hS′

4 ⇐⇒ gS4 ∩ hS′
4 /= ∅, so a point is incident with a line if the cosets that
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define them have a nonzero intersection (in fact, if they intersect in a coset of the group D8; the
flags are then the (21) cosets of S4 ∩ S′

4 = D8).
One can show that this geometry F ′ is indeed the Fano configuration F (see [2], 1.2.17).

4 Fuzzy groups from fuzzy projective spaces

To keep things clear, we start with a construction of the fuzzy group corresponding with a fuzzy
projective geometry on the Fano plane F = GF(∈,∈), before we turn to the general case.

4.1 The fuzzy group corresponding with the fuzzy Fano plane

Suppose [F ,λ] is a fuzzy projective space, thus for a certain flag (q, L) in F and reals a0 ≥ a1 ≥
a2 ∈ [0, 1] we have:

λ : F → [0, 1]
p +→ α0 if p = q
p +→ α1 if p ∈ L\{q} (1)
p +→ α2 if p ∈ F\{L}.

Since we have to construct a fuzzy group, we know by proposition 2.2 that we have to find a
chain of subgroups of L3(2). We do this as follows.
The stabilizor of F is just its automorphism group L3(2). We can consider L3(2) to be the group
stabilizing all points of [λ,F ] with a membership degree that is at least a2. We now search the
subgroup of L3(2) that stabilizes the points with membership degree at least a1. Since all these
points are on the line L, this subgroup is just the stabilizor of L, hence a symmetric group of order
24: S′

4. At last, we search for the subgroup of S′
4 that fixes the unique point p with membership

degree a0 on L. This is a diheder group of order 8: D8. (Remark that this is not the group that
stabilizes the point p, since this is a symmetric group of order 24: S4; but we have S4∩S′

4 = D8.)

This reasoning yields the chain D8 ≤ S′
4 ≤ L3(2). With this chain we construct in a natural

way the following fuzzy set on L3(2):
µ : L3(2) → [0, 1]

x +→ a0 if x ∈ D8

x +→ a1 if x ∈ S′
4\D8

x +→ a2 if x ∈ L3(2)\S′
4.

We have to check that this fuzzy set is indeed a fuzzy group. This is straightforward by the
multiplication in the group L3(2) and its subgroups and since a0 ≥ a1 ≥ a2.

4.2 General case

Suppose P is an n-dimensional projective space, and [λ,P] is an n-dimensional fuzzy projective
space on P. Like in the previous section, it is possible to define a fuzzy group on the automor-
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phism group of P.

Suppose [λ,P] is of the following form:
λ : P → [0, 1]

p +→ a1 if p = q
p +→ a2 for p ∈ U1\{q}
p +→ a3 for p ∈ U2\U1

. . .
p +→ an for p ∈ Un−1\Un−2

p +→ an+1 for p ∈ P\Un−1,

for a certain maximal flag (q, U1, . . . , Un−1) in P, and for some reals a1 ≥ a2 ≥ a3 ≥ . . . ≥ an+1

in [0,1].

We now search for a chain of subgroups of G, in the same way as we did in the previous section. So
we first search the stabilizor group Stn−1, stabilising all points in [λ,P] with membership degrees
at least an−1, thus the points in the hyperplane Un−1 in P. Then we search for the subgroup of
Stn−2 of Stn−1, stabilizing the (n− 2)-dimensional subspace Un−2, and so on, creating a chain
of subspaces (St0, St1, . . . , Un−2, Un−1, G). With this chain we define the following fuzzy set on
G:

µ : G −→ [0, 1]
x +→ an if x ∈ G\Stn−1

x +→ an−1 if x ∈ Stn−1\Stn−2

. . .
x +→ a1 if x ∈ St1\St0
x +→ a0 if x ∈ St0.

One can easily prove that this is a fuzzy group on P. We define this µ to be the fuzzy group
corresponding with the fuzzy projective geometry [λ,P].

5 Fuzzy projective spaces from fuzzy groups

We start this section with a concrete case: the construction of the fuzzy Fano plane from a
certain fuzzy group on the automorphism group of F . Afterwards, we give the construction in
the n-dimensional case.

5.1 A small fuzzy example

We want to define a fuzzy projective Fano plane starting from a certain fuzzy subgroup µ of
L3(2). Since the base plane will be the geometry deduced from L3(2), the base plane of this
fuzzy projective plane will be the Fano plane.
To agree with [6], the resulting fuzzy projective plane [F ,λ] has to be of the following form:
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λ : F → [0, 1]
p +→ α0 if p = q
p +→ α1 for p ∈ L\{q}

(1) p +→ α2 for p ∈ F\{L}

(1)

for some α0 ≥ α1 ≥ α2 ∈ [0, 1] and (q, L) a flag in F .
Of what form must µ be to obtain such a fuzzy projective geometry? From proposition 2.2 we
know that with µ there corresponds a chain of subgroups of L3(2).
We proof that if we choose this chain of subgroups as follows:

D8 ≤ S′
4 ≤ L3(2),

S′
4 being the stabilizer of a line, and if we take the point stabilizer S4 such that S4 ∩ S′

4 = D8

(this S4 is indeed unique), that we can recover the fuzzy Fano plane from the fuzzy group µ.
(Note that this chain is not maximal! A maximal chain could for example be: {e} ≤ C2 ≤ K4 ≤
D8 ≤ S′

4 ≤ L3(2)). This chain allows us to write µ as the following fuzzy group on L3(2):

µ : L3(2) → [0, 1]
x +→ a0 if x ∈ D8

x +→ a1 if x ∈ S′
4\D8

x +→ a2 if x ∈ L3(2)\S′
4,

with a0 ≥ a1 ≥ a2 ∈ [0, 1]. In the sequel however we will suppose that the real numbers a0, a1

and a2 are different, because it clarifies the explanation. In the case some of these values are
the same, an analogue reasoning can be made.
We want to obtain the fuzzy projective plane [F ,λ] for some α’s, so we restrict our attention to
the fuzzy points, since the shape of the fuzzy lines is completely deduced from the fuzzy points.
We define the base points to be the classical cosets of S4. Every classical point lies in exactly 3
flags, i.e. in 3 cosets of D8 in L3(2). Now we explain how the membership degrees of the fuzzy
points are given.
Look at the group D8 = S4 ∩ S′

4. It has 21 cosets, one of them is just D8 itself, 2 of them are
disjoint subsets of S′

4\D8 and the 18 others are disjoint subsets of L3(2)\S′
4.

We define the following fuzzy set on K, the set of all cosets of D8 in L3(2):
ν : K → [0, 1]

gD8 +→ µ(g)

Is this well–defined, i.e. is the membership degree of a coset independent of the chosen repre-
sentant g ∈ L3(2) of that coset? It is, since from elementary group theory we know that

gD8 = D8 ⇐⇒ g ∈ D8

gD8 ⊂ S′
4\D8 ⇐⇒ g ∈ S′

4\D8

gD8 ⊂ L3(2)\S′
4 ⇐⇒ g ∈ L3(2)\S′

4
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So the fuzzy set ν on K is of the following form:

ν : K → [0, 1]
X +→ a0 if X = D8

X +→ a1 if X ⊆ S′
4\D8

X +→ a2 if X ⊆ L3(2)\S′
4,

with a0 ≥ a1 ≥ a2 ∈ [0, 1]. Note that this fuzzy set has exactly the same structure as µ. The
only difference is the base set (L3(2) for µ and K for ν).
Each base point lies in 3 flags. Consider a base point p, and the 3 flags it is incident with: gD8,
hD8 and jD8, with g, h and j different elements of L3(2). How do we determine the membership
degree λ(p) of the fuzzy point [p, λ(p)]? We define the following fuzzy set λ on the set P of all
base points of [F ,λ]:

λ : P → [0, 1]
p +→ max(ν(gD8), ν(hD8), ν(jD8)),

(2)

where gD8, hD8 and jD8 are the three flags through the point p.

What is the result of this definition? There are 7 base points, every point lies in 3 flags and
every flag contains exactly one point. The membership degree of each flag in the fuzzy set ν will
be used only once, since there are 21 flags, and three flags are needed for the determination of
the membership degree of one point (see (2)).
This means that exactly one fuzzy point will have the membership degree a0. There are two
flags with membership degree a1 in the fuzzy set ν, let us call them nD8 and mD8. There can
only be two fuzzy points with membership degree a1, if these two flags do not contain the same
point, and if no flag of membership degree a1 contains the base point of the fuzzy point with
membership degree a0.

This is not the case, since D8 ∪ nD8 ∪ mD8 = S′
4, the group that stabilizes a line L. Since

D8, nD8 and mD8 are mutually disjoint, and since they all stabilize the same line L, they all
have to fix another point on that line, because they have to be different. This means that it
is impossible that two of these flags appear in the determination of the membership degree (by
the maximum in (2)) of the same fuzzy point. Thus we find 3 points on a line with values a0,
a1 and a1. All the other points will have membership degree a2, since only flags with value a2

are left. So we find a fuzzy projective plane of the form:

λ : F → [0, 1]
p +→ a0 if p = q
p +→ a1 if p ∈ L\{q}
p +→ a2 if p ∈ F\{L},

for a0 ≥ a1 ≥ a2 ∈ [0, 1]. Thus λ is a fuzzy projective plane of the form (1). So we proved the
following theorem:
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Theorem 5.1 The fuzzy projective plane [F ,λ]:

λ : F → [0, 1]
p +→ α0 if p = q
p +→ α1 for p ∈ L\{q}
p +→ α2 for p ∈ F\{L},

where F is the Fano plane, (p, L) is a flag in F and a0 ≥ a1 ≥ a2 are reals in [0, 1] can be
constructed from the following fuzzy subgroup µ on the automorphism group L3(2) of F :

µ : L3(2) → [0, 1]
x +→ a0 if x ∈ D8

x +→ a1 if x ∈ S′
4\D8

x +→ a2 if x ∈ L3(2)\S′
4,

where S′
4 is the stabilizer group of the line L and D8 is the stabilizer group of the point p on the

line L.

5.2 General case

Suppose PG(n, q) = P is an n-dimensional projective space (over some finite field K), with
automorphism group G. We choose a flag F = (U0, U1, U2, . . . , Un−1) in P, where Ui is an
i-dimensional subspace of P, so U0 is a point and Un−1 is a hyperplane, and construct a fuzzy
projective space [λ,P] on P (see definition 2.3), based on this flag. We will now construct a
fuzzy group µ on G that allows us to recover [λ,P]. For this, we need a chain of subgroups of
G. We choose this chain in the following way:

We search for the group that stabilizes (Un−1), we call it Stn−1. Next, we consider the
[n − 2, n − 1]-flag (Un−2, Un−1). We call its stabilizer group Stn−2. In general, we call Stn−i

the group that stabilizes the [n− i, n− 1]-flag (Un−i, Un−i+1, . . . , Un−1), so the group stabilizing
the [1, n − 1]-flag (U1, U2, . . . , Un−1) is called St1, and the stabilizer of the whole maximal flag
is called St0.

These stabilizors form the following chain of subgroups of G:

St0 ⊆ St1 ⊆ . . . ⊆ Stn−1 ⊆ G.

With this chain we construct the following fuzzy group µ on G:

µ : G −→ [0, 1]
x +→ an if x ∈ G\Stn−1

x +→ an−1 if x ∈ Stn−1\Stn−2

. . .
x +→ a1 if x ∈ St1\St0
x +→ a0 if x ∈ St0,
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where the real numbers ai are the same as in the definition of [λ,P]. Again we suppose that all
the values ai are different, for the sake of clarity of this explanation. An analogue reasoning can
be made if some values are the same. In fact, also the demand for P to be a projective space
over a finite field is not necessary. However, the finite case is much easier to explain and to
understand, so we focus on finite fields. The same construction can be made for base projective
spaces over infinite fields.

We now take the subgroup St′ of G stabilising the point U0, such that St1 ∩ St′ = St0. Then
we know that the base points of the fuzzy points will be given by the classical cosets of St′. We
will now determine the membership degree of the fuzzy points with these base points.

Like in section 5.1, we define the following fuzzy set on K, the set of all cosets of St0 in G:
ν : K → [0, 1]

gSt0 +→ µ(g)

This definition is well–defined, since:

gSt0 = St0 ⇐⇒ g ∈ St0
gSt0 ⊂ St1\St0 ⇐⇒ g ∈ St1\St0
. . .
gSt0 ⊂ Stn−1\Stn−2 ⇐⇒ g ∈ Stn−1\Stn−2

gSt0 ⊂ Stn\Stn−1 ⇐⇒ g ∈ Stn\Stn−1

So we can write the fuzzy set ν on K as follows:

ν : K → [0, 1]
X +→ a0 if X = St0
X +→ a1 if X ⊆ St1\St0

. . .
X +→ an−1 if X ⊆ Stn−1\Stn−2

X +→ an if X ⊆ G\Stn−1

Since P = PG(n, q) is a projective space of order q, there are q+1 points on a line. Furthermore,
there are qi+qi−1+qi−2+. . .+q2+q+1 points in every subspace Ui, and this for all i ∈ {1, . . . n}
(of course there is only one point ‘in’ U0, since it is a point itself). From now on, we denote the
number qi + qi−1 + qi−2 + . . . + q2 + q + 1 by Ni for i ∈ {1, 2, . . . , n}. There are q + 1 = N1

hyperplanes passing through a fixed (n − 2)-dimensional space. In general, there are Nn−i i-
dimensional subspaces of P passing through a fixed (i−1)-dimensional subspace of P. The total
number of maximal flags in P is thus N1 · N2 · · ·Nn−1 · Nn. From this we conclude that there
are N1 · N2 · · ·Nn−1 flags through a fixed point of P.
Since St0 stabilizes (U0, . . . , Un) and St1 stabilizes (U1, U2, . . . , Un) and since there are q+1 = N1

points on U1, we have:
|St1| = (q + 1)|St0|,

which means that there are q + 1 cosets of St0 that are contained in St1 (including St0 itself).
In the same way, since St2 stabilizes (U2, U3, . . . , Un), and since in U2 we can choose a pair (p, L)
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such that p I L, p a point and L a line in (q + 1)(q2 + q + 1) different ways, we find that:

|St2| = (q + 1)(q2 + q + 1)|St0|,

which means that there are (q + 1)(q2 + q + 1) = N1 · N2 cosets of St0 in St2.

In general, we will find that there are N1 · N2 · · ·Ni cosets of St0 in Sti, thus there are equally
many [0, i]-flags in Ui. This means, since there are Ni points in Ui, that there are N1 ·N2 · · ·Ni−1

flags through every point in Ui, since the number of flags through a point is a constant in every
subspace of P.

We define the fuzzy projective space defined from the fuzzy group µ as follows:

λ : P −→ [0, 1]
p +→ maxNn−1

i=1 ν(xiSt0),
(3)

where xiSt0 are the Nn−1 flags through the point p. Since every flag contains just one point,
the membership degree of a flag in ν will appear in the determination of the membership degree
of just one fuzzy point in λ.

Since there is one coset of St0 (St0 itself) that has the membership degree a0 in ν, the point
p this flag contains (this is U0) will be given the membership degree a0, and U0 will be unique
with this membership degree.

St1 contains q + 1 cosets of St0, this means that there will be exactly q flags with membership
degree a1 in ν. Since all these flags and the flag with membership degree a0 stabilize the line
U1 that contains q + 1 points, these flags all contain a different point. Since afterwards we will
only find other flags through these points with a lower membership degree, this means that all
points on U1\U0 have the membership degree a1 in λ.

St2 contains N2 ·N1 cosets of St0, thus there are equally many flags in U2, of which N2 ·N1−N1 =
(q2 + q)(q + 1) with membership degree a2 (this is the number of flags in U2\U1). There are N2

points in U2, such that there are N1 = q + 1 flags through every point. The membership degree
of the points of U1 do not change, since the flags that are added have a smaller membership
degree in the fuzzy set ν, so they vanish in the definition of membership degree in the fuzzy set
λ, where the maximum operator is used. All points of U2\U1 get the membership degree a2.

Sti contains Ni · · ·N1 cosets of St0, thus Ui contains Ni · · ·N1 flags. This means that there are
Ni−1 · · ·N1 flags through every point, of which Ni · · ·N1 −Ni−1 · · ·N1 with membership degree
ai (this is the number of flags in Ui\Ui−1). The new flags that go through points in Ui−1 that
are already given a membership degree before, do not change these membership degrees, since
the membership degrees of the new flags are lower than these of the flags already used, thus they
will not contribute in the determination of the membership degree of the points, since for this
the maximum of the membership degrees of all flags is taken (see (3)). The points in Ui\Ui−1
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will all get the membership degree ai in λ.

We end up with a situation that every point of P is given a membership degree in the fuzzy
set λ, such that there is 1 point having the (highest) membership degree a0, there are q points
with membership degree a1, q2 points with membership degree a2, . . . , in general, there are
qi points of P with the membership degree ai. Moreover, since the point with membership
degree a0 = U0, the line defined by the points with membership degree a1 and a0 is U1, and in
general, since Ui is the space determined by the points of P with membership degree a0 or a1

or . . . or ai in λ, we have proved that λ is a fuzzy n-dimensional projective space of the form of
definition 2.3.

Theorem 5.2 Let P be an n-dimensional projective space, not necessary over a finite field. The
fuzzy projective space [P,λ]:
λ : P → [0, 1]

p +→ a1 if p = q
p +→ a2 for p ∈ U1\{q}
p +→ a3 for p ∈ U2\U1

. . .
p +→ an for p ∈ Un−1\Un−2

p +→ an+1 for p ∈ P\Un−1,
with (q = U0, U1, . . . , Un−1) a maximal flag in P and a1 ≥ a2 ≥ a3 ≥ . . . ≥ an+1 reals in [0, 1],
can be constructed from the following fuzzy subgroup µ on the automorphism group G of P:

µ : G −→ [0, 1]
x +→ an if x ∈ G\Stn−1

x +→ an−1 if x ∈ Stn−1\Stn−2

. . .
x +→ a1 if x ∈ St1\St0
x +→ a0 if x ∈ St0,

where St0 ⊆ St1 ⊆ . . . ⊆ Stn−1 is a chain of subgroups of G such that Sti stabilizes the [i, n]-flag
(Ui, Ui+1, . . . , Un−1, Un), for all i ∈ {1, 2, . . . n}.

We remark that the stabilizor groups Sti we used, are in fact parabolic subgroups of G. Hence it
is clear how to generalize the procudure explained in the present paper to geometries belonging
to (almost) simple classical groups, or to exceptional groups of Lie type. Also, one can do exactly
the same for semi-simple algebraic groups, or, more generally, for all groups with a (B,N)-pair
(or Tits system). The parabolic subgroups are the subgroups containing a Borel subgroup. It
follows that the base geometry is just the associated building, as defined by Tits [8]. The level
subgroups form (in the general case) a maximal chain of subgroups between a Borel subgroup
and the whole group. Basically, the arguments of the present paper can be used, but for non-
linear diagrams there are some additional choices to make due to the fact that a flag is not
linearly ordered by inclusion! This will be investigated in a forthcoming paper. Also, one is
tempted to apply the same ideas to (simple) Lie algebras where a Borel subalgebra must replace
the role of the Borel subgroup used above.
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