Characterizations by Automorphism Groups
of some Rank 3 Buildings,
II. A Half Strongly-Transitive Locally finite Triangle
building is a Bruhat-Tits Building.
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Abstract

We complete the proof of the fact that every locally finite triangle building A with
a half strongly-transitive automorphism group G (e.g., this happens when A is defined
via a (B, N)-pair in G) is a Bruhat-Tits building associated with a classical linear
group over a locally finite local skewfield.

1 Introduction and Main Result

In order to show that every half strongly-transitive locally finite triangle building A is a
Bruhat-Tits building (this is an affine building arising from an algebraic, classical or mixed
type group over some local field as in BRUHAT & TITS [4]; see Part I [11]), we prove that
the projective Hjelmslev planes of level n attached to each vertex of A satisfy the Moufang
condition, for all positive integers n. In Part I [11] of this paper, we proposed a machinery to
do so. In particular, a method based on an induction hypothesis was developed and it was
shown that only the first step of the induction hypothesis must be verified, along with the
construction of a certain type of automorphism (called a 1h—collineation) in each Hjelmslev
plane. We briefly summerize these results below, after recalling the main definitions.

Let us first write down the Main Result of this part of the paper:

Theorem 1. If A is a locally finite triangle building with a half strongly-transitive automor-
phism group G, and if O is an arbitrary vertex of A, then the projective Hjelmslev plane
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"H(O) of level n, n > 1, attached to O, as in VAN MALDEGHEM [9], satisfies the Moufang
condition, i.e., it admits every elation and hence it is a desarguesian Hjelmslev plane.

From this theorem, we will derive the following result, which is stated in Part I [11] as the
Main Result of Parts I and II:

Main Result. If A is a locally finite triangle building with a half strongly transitive au-
tomorphism group G, then A is associated to a desarguesian projective plane, and hence
A is a Bruhat-Tits building and arises from a classical group PSL3(K) over a locally finite
local skewfield K.

2 Preliminaries

2.1 Definitions

We briefly recall some definitions from Part I [11].

Let A be an affine building of type A,. If each residue is finite, then A is called locally finite.
If there is a type-preserving automorphism group G acting transitively on the set of pairs of
chambers at fixed Weyl-distance from each other, for each such Weyl-distance, then we say
that G acts half strongly-transitively on A.

Let O be some vertex of A. Then we denote by "H(O) (or simply H if no confusion is possible)
the Hjelmslev plane of level n attached to O (this is the geometry of vertices at distance n
from O in A, see VAN MALDEGHEM [9], or Part I [11]). The point set of "H is denoted P,
the line set L. The natural epimorphism from "H onto kH, 1 < k < n, is denoted by *r.
Points (respectively lines) of "H with the same image under *r are called k-neighbouring, 1-
neighbouring being abbreviated by neighbouring (and denoted ~). A point and a line whose
images under *7 are incident are called k-near (and again, 1-near is simplified to near).
Every collineation o of "H preserves all neighbour relations and hence induces a collineation
(a)* in 'H, which we call the ()** -projection of . To simplify notation, we denote (c)**
sometimes by a when acting on elements of 'H (if no confusion is possible).

An elation in "H with awzis some line [ and center some point P, where P is incident with [,
is a collineation of 'H fixing all points on [ and fixing all lines through P. If the group of
all elations with axis [ and center P acts transitively on the points not near [ incident with
some line m (which is itself not neighbouring [, but which is incident with P), then we say
that H is (P,1)-transitive. If 'H is (P,[)-transitive for all choices of such P and [, then we
say that 'H is a Moufang Hjelmslev plane, or that 'H satisfies the Moufang condition.

We will use the word awis (of a collineation) to denote a line which is pointwise fixed by a
collineation. Dually for center.

A collineation § of 'H, n > 2, is a quasi-elation if a point P and a line [ of "H exist such that
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(i) (8)*' is an elation with axis " 7 (l) and center " 7(P), " w(P) " T " 'm(l);

(i) all lines (n — 1)-neighbouring [ are fixed,;
(iii) all points (n — 1)-neighbouring P are fixed.

Every line m, " w(m) ="~ '7(l), that is incident with at least 3 two by two non-neighbouring
fixed points is called a quasi-azis for 8. Every point Q, " '7(Q) = " 'm(P), that is incident
with at least 3 two by two non-neighbouring fixed lines is a quasi-center for 6. We have
shown in Part I [11](Remark 9) that every quasi-elation has at least one center and, dually,

at least one axis. Also, every elation is a quasi-elation (see Lemma 5 of Part I [11]).

In Part I [11], we have proved several elementary properties of quasi-elations. We will use
these in the present paper. We now recall the definition of some other types of collineations.

Forallk,1<k<n-—1,a khlp—collineation of "H is an elation with axis [ € L and center P
€ "P, and ()™—* -projection trivial.

A generalized 1-homology of 'H is a mnon-trivial collineation of "H with ()*—! -projection
trivial, and with an axis [ € £ and a center P €" P, with [ not near P.

2.2 Some known results

We remind the reader of three important results of Part I [11]. Let G be an automorphism
group of a triangle building A, and let "U(O) (or "¥ if no confusion is possible) be the group
of automorphisms of "H(O) induced by G.

Proposition 1 Suppose that for every vertex v of A, H(v) is a Moufang plane (with all
elations inherited from G), that there exists at least one 'h-collineation in ?—](v), and that
there exists at least one quasi-elation in H(v) with non-trivial ()** -projection. Then H is a
Moufang projective Hjelmslev plane and all elations belong to .

Proposition 2 Let n > 3 and suppose that IH(’U) 18 a Moufang Hjelmslev plane of level k,
for every k < n—1 (and all elations are induced by G) and for all vertices v of A, and that
for every vertex v of A, there exists some non-trivial 'h-collineation, in H(v) (and induced
by G). Then there exists a quasi-elation of 'H in "V with non-trivial ()** -projection and "H
is a Moufang projective Hjelmslev plane with all elations belonging to "VU.

A well-formed triangle in the projective Hjelmslev plane H is a set of three pairwise non-
neighbouring points {P, @, S} such that 1’/T(P),17T(Q),17T(S) are not collinear in H.

Property 3 (transitivity on the well-formed triangles of 'H) Suppose that G acts half
strongly-tranisitively on A. Let { Py, Py, Ps} and {Q1, Q2, Qs} be well-formed triangles of H.
Then a collineation o in "V exists such that a(P;) = Q;, for all i € {1,2,3}.



3 Fixed point sets in finite Hjelmslev planes of level n

In this section, which is independent of any hypothesis on the automorphism group, we will
show that, if 'H is finite, then every collineation has an equal number of fixed points and fixed
lines, just as in the case of a finite projective plane, see for instance HUGHES & PIPER [5].
The method of proof will be a straightforward generalization of the case n = 1 (projective
planes). However, for reasons of notation, we will give the proof only for the case of n = 2.
The general case is proved in detail in the thesis of the second author, see VAN STEEN [12].

Also, in this section, we temporarily use another notation for points and lines of ‘H. This
will be convenient for the proofs of the next lemmas.

We assume that 1H is a finite projective plane of order q. We label the points of H arbitrarily
by 1pi, 1 <i<qg*+4q+1, and we label the ¢? points in every 77 (pz) arbitrarily by pj,
1 < j < ¢*> We then label a pomt P of H by the sequence p; pj with 1 < j < ¢2,
1 <i<¢®+q+ 1, where p; refers to n(P) and p] to P in the obvious way.

In the same way we label any line of H by a sequence 1, QZJ-, 1<ji<@PF1<i<¢g+q+1,
with 7; referring to m(l) and 7, to .

Dipi~ pgpn & Q=g

Notice that with this labelling we have § 1 " 12 .
lilelglh = 1=4.

Definition 4 An incidence matrix A for H is said to be normal if the point p; pj refers to
row ¢(i — 1) 4 j of A, and the line 1; I; refers to column ¢2(i — 1) + j of A.

We can therefore write A = (an(i71)+j,q2(gfl)+h> with Ag2(i—1)+j,q2(g—1)+h — 1if lpi 2])]' ? 1lg Zlh,
and with ag2(i—1)1j42(g—1)+n = 0 otherwise.

Lemma 5 If H is finite, and if A is a normal incidence matriz for H and o a collineation
m 2\11, then « can be represented by 2 permutation matrices B and C satisfying

BA = AC.
Proof. This is a standard exercise. O

Lemma 6 If H is finite, and if A is a normal incidence matriz for H, then det(A) # 0
(over Q, the field of rational numbers).

Proof. Consider the matrix product B = AAT. Then the diagonal elements b;;, 1 < i <
v=q*(¢> + ¢+ 1) are given by

b;; = the number of lines that are incident with a point
= q(g+1).



The non-diagonal elements of B, namely b;;, 7 # j, for 1 <14, j < v, satisfy

b;j = the number of lines that are incident with the points P and @)
respectively corresponding with the i’th and j'th row of A.

If P and @) are neighbouring points, then b;; = ¢. If P and @) are non-neighbouring points,
then b;; = 1. Hence, the determinant of the matrix AAT is equal to

q2[q2 + qu2 Jq2 - Jq2
J 2 27 , +qgJ2 --- J 2
det(AAT) = det ! T , T , ! ;
Jq2 Jq2 s q2]q2 —+ quz

where [2 denotes the (¢ x ¢?)-identity matrix and J. denotes the (¢* x ¢*)-matrix with
all entries equal to 1. If we denote the rows and columns of the blockmatrix above by
respectively R;, 1 <i < ¢*>+q+1, and K;, 1 <i < ¢*+q+ 1, then, after replacing the rows
R;, i # 1, by R; — Ry, and afterwards replacing the first column by the sum of all columns,
we obtain

q2]q2 + (2(] + qz)qu Jq2 . qu
det(AAT) = det 0 Plp+(q—1)Jp - 0
0 0 q2]q2+(q—1)Jq2

Hence 5
det(AAT) = det(q*I,2 + (2¢ + ¢°)J2) (det(*I2 + (g — 1) J2))" ™.

After an elementary calculation, we obtain

det(AAT) = (q + 1)%qRC D@0 +20°

Hence det(AAT) = 0 if and only if ¢ € {—1,0}. Since ¢ > 2 and since det(A) = det(AT), the
lemma follows. O

Lemma 6 enables us to formulate the following useful result.

Lemma 7 If H is finite, then every collineation of H has an equal number of fized points
and fixed lines.

Proof. Suppose « is a collineation of H. Then, using Lemma 5, a can be represented by
permutation matrices B and C with BA = AC and A a normal incidence matrix for H.

By definition of B, the trace tr(B) equals the number of fixed points of .. In the same way
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tr(C) gives the number of fixed lines of a.

Using Lemma 5 again together with Lemma 6, which guarantees the existence of A™1, we
obtain that B = ACA™!. Thus tr(B) = tr(C). Hence « has an equal number of fixed points
and fixed lines. O]

Similarly, one shows:

Lemma 8 Let 'H be finite. Then every collineation acting on 'H has an equal number of
fixed points and fized lines, n > 1. O

In fact, only the non-singularity of an incidence matrix of "H is somewhat harder to prove
than in the case n = 2. But this boils down to some calculation which are uninteresting and
uniformative for the rest of this paper. As mentioned before, a complete detailed proof can
be found in VAN STEEN [12].

4 Proof of Theorem 1

In this section we prove Theorem I of the Introduction. So we assume that A is a locally
finite triangle building with a half strongly-transitive automorphism group G. After some
definitions of affine planes and dual affine planes occurring in "H, we prove first Theorem I
for the cases n = 1, 2.

4.1 Affine planes in H

Suppose 7(Q) is a point of H(O), 1 < i < n, for some point Q@ € "P(0O). Then the
projective plane, viewed as a completed affine plane (and which allows us to speak about

points at infinity, once we defined a line at infinity), associated with iﬂ'(Q) is denoted by
pol

H(7(Q)) and defined as follows.
For i = 1, the vertex O is viewed as the line at infinity. _
For i > 1, the point l_lﬁ(Q) of 1_177(0) corresponds with the line at infinity of 1H(?r(Q)).

The projective Hjelmslev plane of level j associated with ‘7(Q), 1 < 7, is denoted by H(7(Q))
and defined as the projective Hjelmslev plane of level j attached to the vertex 7(Q) of the
triangle building A such that ‘7(H(7(Q))) = H(7(Q)).

Suppose T(m) is a line of H(O), 1 < i < n, for some line m € L(0). Then the projective
plane, viewed as a completed dual affine plane, associated with (m) is denoted by H('m(m))
and is defined in a similar way as H(7(Q)).

For i = 1, we view O as the point at infinity of H('m(m)).

For ¢ > 1, the line_l_lw(m) of "L(0) corresponds with the point at infinity of the dual
projective plane H(m(m)),



The projective Hjelmslev plane of level j associated with ‘w(m), 1 < 7, is denoted by JH(W(m )
J

and defined as the projective Hjelmslev plane attached to ‘w(m) such that ‘7(H(7(m))) =

1

H('m(m)).
See also Part I [11] for these definitions.

4.2 The case of levels 1 and 2

In this subsection we show:

Theorem Ia If A is a locally finite triangle building with a half strongly-transitive group
G, then for all vertices O of §, the projective plane 1H(O) and the projective Hjelmslev plane
H(O) satisfy the Moufang condition and both W(O) and “U(O) contain all elations.

Lemma 9 1H(O) 1s a desarquesian projective plane of order ¢ = p®, where p is some prime
and s > 1. Also, all elations belong to 1\IJ(O).

Proof. This is a consequence of Property 3, the Theorem of Ostrom-Wagner (see HUGHES
& PIPER [5]) and the locally finiteness assumption. O

Note that ¥ contains the little projective group PSL(3,¢). From now on we denote the
order of a vertex-residue in A by ¢ = p°®, where p is a fixed prime and s is a fixed positive
integer.

Lemma 10 For all lines | of H, |"U,| = kq"(q + 1), for some positive integer k.

Proof. Suppose K € “P and L € “P determine a unique line [ (so K # L). Let M be some
point of H not near I, and let m be the line defined by M and K. Put IZ\IJM7K7L| =k, k>1
Then by Property 3, \Q\Ill| is equal to k£ multiplied with the number of possible choices for
K, L, M defined as above. An elementary counting argument shows that there are exactly
q"(q + 1) such choices. O

Lemma 11 Suppose | € L and P € “P such that PT1. Then every Sylow p-subgroup T' of
"W, p acts transitively on P\ {Q € “P|Q is near 1}.

Proof. By Lemma 9, H is a projective plane of order ¢ = p*. Suppose p' | k with k£ as in
Lemma 10 and where ¢ > 0. By Lemma 10 the order of 2\I]l’p equals kqS. Hence p| |2\1117P|
and the Sylow p-subgroups of Q\I/l, p are non-trivial. Let I' be such a Sylow p-subgroup. Then
IT| = p%**. Suppose now R is some point of H with ‘w(R) / 'w(l) and put |R'| = p*, the
order of the orbit of R under the group I'.



Notice that |R'| is indeed a power of p, since |T'| = |T'z||R"| and since |T'| = p5 .
Using |T'| = [Tg[|R"],

I'r] = the order of the subgroup of I' fixing R
p6s+t7u'

Since I'g < U, p g and, by using Lemma 10 again (|'W; pr| = kq?), we obtain that postt=* | p2+,

Hence 65+t —u < 2s+t or
4s < u. (1)

But there are only ¢* possibilities to pinpoint a point R of H that is not near [. Thus
|RY| < p**, which implies that p* < p** or that
u < 4s. (2)

From 1 and 2 we conclude that u = 4s.

Consequently |RT| = ¢*. The result is the transitivity of I on P\ {Q € P | Qis nearl}. O

Lemma 12 Suppose [,m € QE, [ & m. Suppose P is the point of?-[ determined by | and
m, and suppose @) is some point incident with | not neighbouring P. Then every Sylow
p-subgroup T' of 2\Ifl7m7Q acts transitively on the set {S € P | S Tm, l7r(S) + 17T(P)}.

Proof. Noting that |, ,, o| = kq¢? (consequence of Lemma 10), that |"¥;,, o | = k, where
R is some element of {S € P|S Tm, 7(S) # m(P)} (Lemma 10 and Property 3), and that
there are ¢2 points of H incident with m that do not neighbour P, the proof of Lemma 11
is easily adapted. 0

Now we note (see e.g. HUPPERT [6], Hilfssatz 7.7.):

Lemma 13 Suppose T is some group and 6 an epimorphism
0:1T — 0(7).

If T is a Sylow p-subgroup of Y, for some p > 2, then O(') is a Sylow p-subgroup of O(Y).

In view of Proposition 1, we have to exibit at least one quasi-elation with non-trivial ()** -
projection. This will be done in the following lemma.

Lemma 14 At least one quasi-elation exists in R (with a quasi-azis and a quasi-center)
with ()** -projection non-trivial.



Proof. Consider some points P and Q of H, 'n(P) # 7(Q), and a line m not near Q with
PTm. Let I be the line in £ incident with P and Q.

By property 3, U P,o.m acts transitively on the points that are incident with m but which do
not neighbour P. So ¢? | |2\Il P.Q.m|. So it is possible to consider a non-trivial Sylow p-subgroup
I of Wpom. By Lemma 13, (I')** is a Sylow p-subgroup of (Wpq,.m)* .

We claim that (I')*! contains at least one elation with axis ‘7(l). Indeed, if we coordinatize
H such that

17T(P) = (100 )T,
Q) = (01 0)",
(m) = Y =0,

then (I')** is contained in the group of semi-linear matrices

0
T

1 0 d
0 b 0 ) ) ba Cad € GF((]),
0 0 ¢

z

a group of order (q — 1)%gs with ¢ = p® as before. In fact, since (I')*! is a p-group, (I')*! is
contained in the group of matrices

0
T

1 0d
dag=10 10 y , d e GF(q).
0 01 z

Suppose there exists for every automorphism 6 of GF(q) that occurs in (I')** only one
d € GF(q) \ {0} to form a matrix dg9 of (I')**. Then |(I')*| < s < ¢. However, by
Lemma 12, we have ¢| |(I')** |, a contradiction.

Hence, different elements d and d' € GF(q) \ {0} exist, and an automorphism 6 of GF(q)
exists such that d49 and d4 ¢ are both elements of (I')**. Thus, since (I')*! is a group,
5d/79(5d,9)*1 = 5d/796—d971,9*1 = 5d’—d,1 € (F)*l and d' — d 7§ 0. Consequently, 5d’—d,1 is an

elation of (I')*' with axis 7(l) and center 7(P). The claim follows.

Let o be some element of ' with (a)*' a non-trivial elation with axis (/) and center
1

7(P). The lines of H that are incident with '7(P) correspond with the points at infinity
of H('m(P)). Hence, in H('r(P)) a induces a collineation with axis the line at infinity of
1

H('m(P)) and fixes at least one affine point of H('w(P)), namely P. Since the order of o is

a power of p (a being an element of a Sylow p-group), « induces the identity collineation in
1.

H('7(P)). Dually, o also induces the identity in H('w(1)).

We now consider an arbitrary point '7(R) # '7(P), R € “P, that is incident with w(l). Then
the collineation induced by o in H('w(R)) has a center at infinity, corresponding with the
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line '7(1) of H, becaue a induces the identity in H('w(l)). Since (a)** # 1 and points at
infinity of H('7(R)) are in one-one correspondence with the lines in £ that are incident with
'7(R), no other point at infinity of H('r(R)) can be fixed by o

Hence o induces in H('m(R)) a non-trivial elation with some affine axis determined by an
I'NH(r(R) ' e L, n(l') = w(l), where I'N 'H('n(R)) is the formal notation for the unique
vertex in A that is adjacent to I, w(I') and 7 (R).

Dually, we consider an arbitrary line ‘7(u) # n(l), u € L, such that w(u) I w(P). Following
the reasoning of the previous paragraph, we obtain that a induces a non-trivial elation in
H('m(u)) with some affine center, determined by a P’ N H('w(u)), P’ € *P, P' ~ P, where
again P'N H('w(u)) is a formal notation and indicates the unique vertex in A that is adjacent

to P, ‘w(P'), and ‘m(u).

We conclude that « is a quasi-elation with quasi-axis (quasi-axes) neighbouring | and quasi-
center (quasi-centers) neighbouring P, such that (a)** # 1. O

Our next aim is the construction of a non-trivial ‘h-colineation in H. We recall some defini-
tions from Part I [11].

A 'hl-collineation in “V is a h-collineation with axis L. Dually, a 'hg-collineation in *U is a
'h-collineation with center R. A 'hk,-collineation in “¥ is a 'h'-collineation which is also a
1hR—COHiIleatiOIl.

We denote the sets of 'h-collineations, h-collineations with axis [, 'h-collineations with center
R, and 'h-collineations with axis [ and center R in U respectively as 'ne, 'nc', th(R) and
hCl -

Now note that, by Lemma 2 of Part I [11], for every point P of H, a generalized 1-homology
induces in H('m(P)) either the identity or a non-trivial elation with axis at infinity. Since
H('w(P)) is a finite projective plane of order ¢ (by Lemma 9), the order of such an induced
non-trivial elation is equal to p. So we may denote the order of the subgroup of ¥ consisting
of all generalized 1-homologies with an axis [ and a center R by p"(l, R), for some specific

r >0 (or p" if no confusion is possible).

The next theorem is a result about finite projective planes, independent of our hypotheses.
We use the notation of HUGHES & PIPER [5]. In particular, for an automorphism group Y
of a projective plane, a point () and a line [ of that plane, we denote by T (g, the set of all
collineations in T with center () and axis [.

Theorem 15 Let H be a finite projective plane of order ¢ = p* (p prime, s > 1), and |
some line of H. If Y is a collineation group of H such that Y (g, is non-trivial and |Y g
is some fized power of p, for all points Q of H that are incident with I, then [ (o] = q.

Proof. Suppose [T(gy| = p", h > 0. Then [Tyy| = (¢+ 1)(p" — 1) + 1, since there are
exactly ¢ + 1 points of H incident with .
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Using Theorem 4.16 of HUGHES & PIPER [5], [Y(||¢? = p*. Hence (¢ +1)(p" —1)+1 =

h
P4t —pf = pi(ph + % — 1) > p®, and is a power of p, say p" (r > s).
h
Consequently, p is a divisor of p" + % — 1, which is only possible for p" = p* = q. O

The following lemma is the crux of the proof of Theorem I.
Lemma 16 At least one non-trivial "h-collineation exists in "W,

Proof. By Lemma 14, a quasi-elation o with some quasi-axis | € £ and quasi-center
neighbouring some point P € “P, PTIl, and with non-trivial ()** -projection exists. Let
m T P be some fixed line in £ for o with w(m) # 7(l) (use Property 3 if necessary), and let

Q be some point of H incident with I, '7(Q) # n(P)

Part 1:

In this part we prove the claim that there exists a group of collineations fixing all lines
neighbouring [, fixing all lines of H that are incident with 'w(P), and acting transitively on
the points that neighbour P and that are also incident with [.

For the moment, let us denote by T the subgroup of " generated by all collineations fixing
every point in “P that neighbours P, fixing all lines of ‘H that neighbour [ (and by considering
intersection of such lines, thus fixing all points of H that are incident with ‘7 (1)).
Then a € T and (T)* is a set of elations with axis () and center ‘7(P). Hence

()™ <q. (3)
If Y <7 is the set of collineations of T with ()*! -projection trivial, then

k=1 (@)

So by (3) and (4),

)=
q

By the dual of Lemma 11, any Sylow p-group I of the subgroup of “¥ consisting of collineations
fixing [ and @), acts transitively on the lines that are not near ) and that are in particular in-
cident with some point R Tm, w(R) I w(l). Hence, for every line m/ T R, and with ‘r(m/) =
17r(m) some collineation 6, of I' mapping m’ to m exists. The collineations (5;1,104(5m/ are again
clements of T because ‘7(P) is fixed by 8,,. Since (a)* # 1, we also have (3 }ad,)** # 1.

Suppose m” and m" are distinct lines of H, satisfying ‘7(m”) = ‘m(m”) = '7(m) and m” T
R T m". Suppose 6, 58, = 6, b adm. Then §Lad, fixes the line 5} (m) and &1 (m).
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Since both ¢-%(m) and &}, (m) are incident with R and neighbouring, 'w(R) is fixed by
5L ad,n. Hence (6 Lad,»)* =1, using 7(R) J '7(l), a contradiction.

As a consequence of the previous paragraphs, the ¢ choices for m’ as a line of ‘H that
neighbours m and that is incident with R, correspond with two by two different collineations
0-tad, €T, with (6, !ad, )" a non-trivial elation (of order p) acting on H.

It can now be seen that
Y| >q(p—1)+1.

Consequently
| > 1,

which guarantees the existence of a collineation € T such that (n)** =1 but n # 1.

Since n # 1, some point U of H, 17T(U) + 17r(P), exists such that n maps U to some point
U U ~U, U £U.

By Lemma 2 of Part I [11],  induces in H('7(U)) a non-trivial elation. The center of the
induced elation is determined by a line of H, say 17T(v), v € L, such that every line of H
incident with both U and U’ neighbours v. Notice that 7 (v) might coincide with ' (l).

The question was whether a group of collineations fixing all lines neighbouring [ exists,
fixing all lines of H that are incident with ‘7(P), and acting transitively on the points that
neighbour P and that are also incident with [. Consider the induced collineations in the
Hjelmslev plane H('w(1)) of level 2 associated with the vertex m(l). We remark that the
vertex O is now a point of H('r(1)), that '7(P) is a line of H('w(l)) incident (in H('w(1)))
with O, and that [ is a line of H('w(l)) which is different from the line ‘7(P) of H('w(l)) and
not incident (in H('w(1))) with O. The lines of H(O) that neighbour I correspond with lines
of H('n(l)) that are not incident (incidence in H('x(1))) with O.

So dually, and after shifting the problem to ?[(O), we should show the existence of a set
of collineations with ()*' -projection trivial, that induce in H (7 (T)), for some point T of

H(0), q elations.

To prove this existence, we remark that all ‘directions’, or points at infinity of 11'—‘[(17T(T ),
play the same role, using the transitivity of U on the well-formed triangles of H. Hence
the number of elations for some ‘fixed direction’ (the identity included) acting on H('w(T))
equals p", 0 < h < s.

Using earlier results in this proof (concerning 1), we know that 1 < p”". Hence, applying
Theorem 15, we conclude p" = ¢ and our claim is proved.

Part 2: In this Part we prove the actual occurence of a non-trivial 'h-collineation in “U.

For this purpose we consider the subgroup Y” of “¥ fixing all points in “P fixed by . Then
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(0C7)1 | < g and
|T///‘ Z m’
q
where Y" consists of all elements of T” with trivial ()** -projection.
As proven in Part 1, for every point P' 71, P’ ~ P, a collineation fp exists that fixes all
lines that neighbour I, fixes all lines of H that are incident with '7(P), and that maps P’ to

P. The collineations 65/ afp are again elements of Y” with ()*! -projection not trivial.

Notice that the set {#5'afp | P' ~ P, P'T1} consists of two by two different elements. This
can be shown similarly as above (see the argument concerning d,, in Part 1). Consequently,

T >qp—1)+1

and so [Y"| > 1. In other words, some non-trivial collineation ¢’ in "W exists with (6')* =1
and fixing all points of ‘H that are fixed by . Applying Lemma 2 of Part I [11] of this paper,
all points of H that are near [ are fixed by 6 (recall that by Lemma 14, « fixes at least one
point neigbouring any point near [).

Suppose non-trivial 'h-collineations do not exist. Then by Lemma 16(ii) of Part I [11], a is
a generalized 1-homology. Hence p” > 1. Consider the subgroup T® of “U consisting of all
collineations fixing every point of H near [, and fixing some arbitrary line u not neighbouring
[. Then every element of this group has a trivial ()** -projection and the order of the group
is p'p*, where p* (z > 0) is the orbit under Y% of some point V Tu, ‘w(V) I 'm(I). We note
that the only collineations active on H('r(V)) are elations, by Lemma 2 or Lemma 16 of
Part I [11].

On the other hand, [Y%| equals ¢(p” — 1) + 1. This can be seen as follows. If a collineation 3
€ T exists such that the only points of H that are incident with u and fixed by 8 neighbour
P, then by Lemma 7, and since the number of points fixed by 3 is ¢*(¢ + 1) in this case,
there are ¢*(¢ + 1) fixed lines for 3. Moreover, all these lines are near P. Hence § = 1, a
contradiction.

Consequently, every collineation in Y% fixes some point U T u, with U ¢ P. Thus Y% consists
of all possible generalized 1-homologies with axis [ that fix u. Continuing, we obtain that

PP =q@@ —1)+1.

Since p” > 1, and thus p|p"p?, it follows that p|q(p” — 1) + 1, a contradiction.
We conclude that there is at least one non-trivial h-collineation available in ‘0. O

By Proposition 1, we conclude that H is a Moufang Hjelmslev plane and that all elations
belong to “U. Whence Theorem Ia. Now we show that in fact we have a Desarguesian
Hjelmslev plane.
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In 1977, Dugas proved (with corrections made by Bacon) that a finite Moufang (projective)
Hjelmslev plane whose canonical image is not PG(2,2) is desarguesian. In 1979, this result
was extended by Bacon. He showed that a finite punctally cohesive Moufang (projective)
Klingenberg plane (and in particular a finite punctally cohesive Moufang (projective) Hjelm-
slev plane) whose canonical image is not PG(2, 2) is a desarguesian plane. In BAKER, LANE
& LORIMER [1], theorems are formulated and proven in order to eliminate the PG(2,2) re-
striction, as indicated in the proof of Theorem 17. We refer to BAKER, LANE & LORIMER [1],
2], and [3].

Theorem 17 If A is a locally finite triangle building with a half strongly-transitive auto-
morphism group, then for each vertex O, ?](O) 15 a desarguesian Hjelmslev plane.

Proof. Since H is a Moufang Hjelmslev plane, it can be coordinatized by a local alternative
ring R. Moreover, using BAKER, LANE & LORIMER [1], R must be a projective Hjelmslev
ring. By the definition of a projective Hjelmslev ring, R is a right chain ring. Therefore,
H is punctally cohesive. Hence so far, H is a finite punctally cohesive Moufang Hjelmslev
plane. Using BAKER, LANE & LORIMER [1] again, H is desarguesian. !

Recall that, by Theorem 35 of Part I [11], we have:

Theorem 18 The set of elations in U with some fized azis | € L is an abelian group.

4.3 The casen >3

In this subsection, we show:

Theorem Ib. If A is a locally finite triangle building with a half strongly-transitive group
G, then for all vertices O of §, the projective Hjelmslev plane 'H(O), n > 3, satisfies the
Moufang condition and "V(O) contains all elations.

We assume throughout, by induction, that IH(U) is a Moufang projective Hjelmslev plane
with all elations in "W (v), for 1 < k < n—1, n > 3, and for all vertices v. As for the case
n = 2, this implies (and also the proof is similar, see Theorem 17)

Theorem 19 For all k, 2 < k < n, and all vertices v of A, IH(’U) 18 desarqguesian.
Theorem 35 of Part I [11] implies:

Theorem 20 For every vertex v, the set of elations in k\If(v) with some chosen axis [ of}TI
forms a commutative group acting transitively on the set of points of P \{Q € P | 17T(Q) y

T
(D)}

14



Also, note that the following lemmas have proofs which are completely similar to Lemma 10
and Lemma 11, respectively. Note that we still have our main assumption: the group G acts
strongly-transitively on A.

Lemma 21 For every line |l € "P, |"U,| is a multiple of ¢*"*(q+1).

Lemma 22 Suppose | € 'L and P € "P such that P'Tl. Then every Sylow p-subgroup I of
"W, p acts transitively on "P\ {Q € "P|Q is near l}. O

In view of Proposition 2, we must show that there is a non-trivial 'h-collineation in "U. We
need a few lemmas before we can show this. The first lemma slightly generalizes Lemma 16
of Part T [11].

Lemma 23 Suppose [ is some line of H and P some point of H with P'T1, n > 2. Suppose
v is a collineation in "U with (y)*~' = 1, fizing all lines incident with P except maybe
for lines that neighbour | and such that all occurring fixed points are near I. Then 7 is a
1 . . . n, . .

h-collineation in "V with axis | and center P.

Proof. Suppose m is an arbitrary line of "H that is incident with P and for which 17T(m) #
w(l).

We claim that ~ induces the identity in H(" m(m)). Indeed, the vertices in cl(" ‘7w (m), =(T)),
for all 'w(T) T 'm(m), that are adjacent to both " '7(m) and " “r(m), correspond with the
lines at infinity of H(" '7(m)), where, for n = 2, we set " 7(m) = O.

The lines m/ that are incident with P and for which " ‘mw(m/) = " w(m), are fixed by ~,
and give rise to an affine (affine in the dual projective plane H (" '7(m))) center for the by
~ induced collineation in H (" 'm(m)). Thus ~ induces a collineation with two centers in
H(" 'm(m)). Necessarily, Vi (v te(my) = 1. Hence the claim.

In fact, all lines of 'H that are near P and do not neighbour [, are fixed for 7. Indeed,
suppose that m is some line of "H(O) such that ‘7(P) T 'w(m), w(m) # =(l), and P "I m.
Let T and T be two non-neighbouring points of "H satisfying T Tm T T and ‘=(T) I '=(l)
7 '7(T"). Then the line m’ of "H(O) that is incident with P and T is a fixed line for ~. The
line m” determined by P and T" is fixed for v as well. Additionally, m’ N 'H(" '=(T)) and m”
N H(" '7(T")) are both fixed by 7. Note again that (y)*»~* = 1. Since m' N"'H(" =(T)) =
mNH(" '7(T)) and m"NH(" '7n(T")) = mN'H(" =(T")), we have v(m) = m. Consequently,
~ induces the identity collineation in "~ H ('r(P)).

Thus the number of lines in L fixed by v is at least ¢¢>™ " = ¢*>"~1. Since v fixes an
equal number of lines and points, by Lemma 8, and since there are ¢>™~1) points of "H that
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neighbour P, some point R exists in "P, 'm(R) # m(P), for which v(R) = R. Since all
. . 1 1 1
occurring fixed points are near I, w(R) I =(l).

Since all points of 'H that neighbour P are fixed by 7, every line of "H(O) that is incident
with R and neighbours [ is fixed by ~. Using earlier arguments in the proof, it can be seen
that ~ induces the identity in " H (‘7 (1)).

Under the assumption that all fixed points for + are near [, and applying Lemma 8 again,
there must be (¢+ 1)¢?" 2 points near [ that are fixed by 7. Since there are only (¢+ 1)g*" 2
points near [, v is a 'h-collineation in "W with axis [ and center P. 0

Now we recall from Part I [11] (Lemma 18):
Lemma 24 At least one quasi-elation v in "V exists with non-trivial ()** -projection.

Lemma 25 Let k be some integer 1 < k < n — 1. If there is a collineation o in "V fizing
all points (n — 1)-near some line | € 'L, with (&)™ an elation with axis " 7 (1) and some
center " w(P), P T 1, and with (a)* = 1,(a)*+ # 1, then a non-trivial 'h-collineation
exists in V.

Proof. The lemma is true for & = n — 1 by Lemma 19 of Part I [11]. We proceed by
induction as follows. Suppose the statement of the lemma is true for all £k, h < k <n —1,
with h such that 1 <h < n — 1. Then we prove the statement holds for A — 1.

So suppose « is a collineation in "W fixing all points that are (n — 1)-near some line [ € L,
with (a)*' an elation with axis " '7(l) and some center " 7(P), P T [, and for which
(a)*»=1 =1 but (@)* # 1. Suppose R is some point in “P, w(R) / 'm(l). Then a(R) is
some point S of "H, with "r(R) # "n(S), " '7(R) = "'x(S). Any line incident with R and S
intersects [ in a unique point of 'H, a point which is fixed by «. Thus any line incident with
R and S is fixed by a. Suppose m € 'L, is some line incident with R and S, and suppose m
intersects | in some point Q of "H. Using Property 3, for every point ‘m(V) of H(O), V €
"P and incident with I, 7(V) # 7(Q), 7(V) = 7(Q), a collineation 3 in "¥ exists, fixing I
and R, and mapping V' to Q).

So 37 'a3 is a collineation in "V fixing all points that are (n — 1)-near I, with (3 !a8)*-1
an elation with axis "~ 7(l), and such that (3 'aB)*-* = 1. Since (a)* # 1, one has
(3~ 'af)* # 1. Moreover, both "m(R) and "7(S) are incident with S~ a3("r(m)), because
(3 stabilizes the sets of points incident with m and 3(m), respectively, and S belongs to both
m and B(m) (since B(R) = R and 7(R) =" 7(9)).

There are only g—1 possible images for "r(R) incident with " (m) by collineations of the form
B lag, (B aB) 1 =1, (B 'aB)™ #1. But |[{n(V)|V e "P,V T, n(V)= 1(Q)} =q.
Hence, we may assume that some points V' and V" of "H exist with V' T 1 T V", “n(V")
£ °n(V"), (V') = 7(Q) = w(V"), some collineation #' in "¥ fixing [ and R and mapping
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V' to Q, and some collineation 3” in "V fixing [ and R such that 3”(V”) = Q, such that
(B o) ("r(R)) = (8 'aB)("n(R)). Since (8" 'aB”)* and (8 'aB')* are both elations
in "0 with axis “7(l), and using Theorem 20 (h < n—1), (8" af”)" (8 a3))* is again
an elation in "U with axis "7({). Additionally, "7(R) is fixed for (8" o3")"1(8 " o3'). Hence
((ﬂ”ilaﬂ”)_l(ﬂ’flaﬁ/))*h — 1.

Can we tell more about § = (3" 'af”)"Y(# 'af)? From the previous paragraphs, it is
already clear that § fixes every point of H that is (n — 1)-near [, and that (§)* = 1.
Since (8 'aB)*-1 and (8" 'af”)*~' are both elations with axis " '7(l), and since by
Theorem 20 the set of elations with axis " 7(l) forms a group, (§)*! is an elation with
axis " 7 (1).

Suppose 6 = 1. Then § also fixes the line w’ of "H determined by R and V', and consequently
B rap"(w') = w'. Hence 3" a3 fixes two 1-neighbouring lines of "H that are incident with
R: w' and the line w” of "H defined by R and V”. Only the points of H(" 7(R)) in "P(O)
are incident with both w’ and w”. Thus 3’ 'af"(" '=(R)) = " 7(R). However, 8" 'af"
is a collineation in "¥ for which (3" 'af”)*—' is an elation with axis " 'm(l) such that
(ﬁ”_laﬁ”)*h # 1. Since h < n — 1, a contradiction arises. We conclude that § # 1. Using
the transitivity of "0 on the triangles of "H, we can obtain a non-trivial collineation in "¥
fixing all points (n — 1)-near [, with ()*—' -projection an elation with axis "_lﬂ(l) and center
""'w(P), and with ()*» -projection trivial. Hence, by induction, a non-trivial 'h-collineation
can be constructed. 0J

Lemma 26 The kernel of the ()*—' -projection is not trivial. In fact, there exists a non-
trivial element in ker(()™-1) fizing all points of "H that (n — 1)-neighbour some point.

Proof. Suppose " (1), | € 'L, is some line of ""H(O) and " '7(P), P € "P, some point of
""H(O) incident with "7 (1).

Using Lemma 24, at least one quasi-elation ¢ in "¥ exists with ()* -projection not trivial,
such that (§)*»~* has some center " 7(Q) "I "'n(l), Q € "P, 7(Q) # w(P), and some
axis " w(u) T " m(Q), uw € L, 'w(u) # w(l). Let m be one of the fixed lines in L for
not neighbouring u (note that m exists since every quasi-elation has a quasi-axis). Notice
that by Lemma 7 of Part I [11], m is (n — 1)-near Q. Let R be some point of "H that is fixed
by & and for which w(R) # '7(Q). We can assume that mTQ T T R.

Let us denote by T the group generated by all collineations ¢ in “¥ having the following
properties:

(i) ¢ fixes the points in "~ P(0) that are incident with " 7 (u);
(i) &' fixes the lines in " £(0) that are incident with " 7 (Q);

(iii) ¢’ fixes every point of "H that (n — 1)-neighbours Q;
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(iv) ¢ fixes every line of 'H that (n — 1)-neighbours u;
(v) 0'(R) = R.

Note that § € T.

Next we claim that ker(()*' v) # 1. Property 3 allows collineations 7o/ in "V fixing R, some
point T of "H incident with m, '7(T) # 7(Q), that map Q to any point Q' of "H incident
with u, " 7(Q) = " 7(Q'). There are ¢ possible choices for Q' incident with u, " '7(Q)

n—1

= w(Q), giving rise to ¢ two by two different collineations %5/15%% Indeed, suppose

that Q" and Q" are different points of "H satisfying Q" T v T Q", " n(Q) = " '7(Q")
= ""'1(Q"™), such that 75,1,5%2” = 7{2,1,,57@". Then two (n — 1)-neighbouring fixed lines for

75,1,5%2// exist, namely 752,1, (m) and vé,l,,(m). Since Q" # Q" some point ‘©(U) € P(O), U
e "P(0), n(U) 7 'n(u), exists that is fixed by 75,1/57@/. This contradicts (7&1,57@//)*1 # 1.

All collineations ’yé,léﬂyQ/, Q T u, " 7(Q) =" n(Q), have a non-trivial ()*' -projection,
and are again elements of T. Since 1 belongs to any group, this implies that
IT| > q.
On the other hand
1,
[Tl <4q.
Since 1|
1,
()]~
|ker(()* v)|

the claim follows.

Consequently, the existence of some non-trivial collineation § € T with (3)** = 1 is guar-
anteed. We distinguish two cases.

Case 1: () ! =1.
Then since # # 1, the kernel of the ()*~* -projection is not trivial.

Case 2: ()™ # 1.
Then (8)*~ is a "h-collineation (not * 'h-collineation) in "~ ' for some k, 1 < k <
n — 2, since (B)*™ ' is an elation in "W with axis " '7(u) and center " '7(Q), and
since (3)*' =1 and (3)** # 1. Using Lemma 14 of Part I [11], all points of " H(O)
that are k-near " m(u) are fixed by (8)** .

Since all elations of the Moufang projective Hjelmslev plane "~ H are in "N, we can
consider a collineation o in "W such that (a)*' is an elation in "W with center
""'n(P) and axis "7 (I), and (a)* =1, (a)* # 1.

Which properties does the collineation [a, §] have? It is clear that ([a, 5])*™! is an
elation with axis "~ 7(I) and center " 7(Q). Moreover, 3(R) = R because § € T (and
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see condition (v) above), and o maps R to some point S of "H (so " 7(R) is mapped
to " '7(S)) with “7(S) = “r(R). Hence " '7(S) is k-near " m(u) and is therefore fixed
by 37!. This implies that [o, 3](" 7(R)) = " w(R). Since ([a,B])* " is an elation
with axis " '7(l) and since w(R) J w(l), we conclude ([a, 3])* = 1.

Let us look at the image of R under [, §]. Applying that («)*-* is an elation with
axis " 'w(l) and center "~ '7(P), (a)* =1 and (a)*+ # 1, S = a(R) satisfies "' (S)
+ kHﬂ'(R), kﬂ'(S) = kﬂ'(R). Suppose S is fixed by 5. Then, using G(R) = R, any line
w of "H that is incident with R and S is mapped by 3 to a line 3(w) of 'H that is also
incident with both R and S. Since " '7(R) # ""'7(S), "n(R) = "n(S), w and S(w) are
(n — k)-neighbouring lines. Hence " ‘m(w) is fixed by . Since (3)*~ is an elation in
"N with axis " 7(u), since n—k < n—1 and using that w is not near Q, (3)*—+ = 1,
a contradiction. Therefore [a, B](R) # R. In other words [a, 3] # 1.

Hence also in this case, we conclude that the kernel of the ()*~!-projection is not
trivial. ]

Lemma 27 Suppose U is some point of 'H. Then ker(()™-1) induces all translations in
1

H("m(U)).
Proof. By Lemma 26, there exists a non-trivial element in ker(()*!), say ¢, fixing all
points of "H that (n — 1)-neighbour some point @Q of H.

Consider an arbitrary point 7' € "P, T not neighbouring Q. Then we claim that § cannot
induce a non-trivial homology in H (" '7(T)). Indeed, suppose ¢ induces a non-trivial homol-
ogy in H(" 'w(T)). Then some point T" of "H, " 'n(T) =" 'n(T") exists such that §(T") = T".
Hence the line u determined by 7" and any point Q' € "P that (n — 1)-neighbours @ is fixed
by 8. Since (§)*' = 1, and since for all points (V) of H, V € "P, n(V) I 'n(u)," 7(u)
N "H('w(V)) corresponds with lines at infinity of H (" m(u)), & induces a collineation in
H(" 'm(u)) with center at infinity. So ¢ induces in H(" '7(u)) a collineation with an affine
center and at the same time a center at infinity. Hence 51H(n717_r(u)) = 1. As a consequence,
§ induces an elation in H(" '7(T)) with axis at infinity. However, additionally §(7") = T".
Hence 0y n-1, 7)) = 1.

Since § # 1, there consequently exists some point U € “P such that ¢ induces a non-trivial
elation in 1H(n_lw(U )). Using Property 3, every point at infinity occurs as a center of some
non-trivial translation of H(" 7w (U)). So ker(()') induces at least (¢ + 1)(p" — 1) + 1
translations in H(" ‘w(U)), with p” the number of translations induced in H (" '7(U)) for
some fixed center at infinity. Applying p" > 1 and Theorem 15, it follows that p"* =¢. O

Lemma 28 A subgroup Y of "U emists every element of which fizes all lines of 'H that
(n — 1)-neighbour some line | € 'L, all points of " H that are (n —2)-near ™ w(l), some line
"n(m) of " H (m € L) that is incident with " w(P), w(m) # w(l), PTI, such that Y
acts transitively on the points of H(" 'm(P)) in "P that are incident with 1.
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Proof. Let ¥ be an apartment of A containing [, P, nflﬁ(m) and O. By v we denote the
unique vertex in X at distance n from ‘7(l), corresponding with a line of "H('r (1)), and such
that ‘7(P) € cl(v, w(1)). Then " 7(m) is the vertex in ¥ at distance n — 1 from O and
adjacent to both v and " 7 (v), where " m(v) is the unique vertex in cl(v, m(1)) at distance

n — 1 from ‘7 (l).

Let us denote the unique vertex in cl(l," m(P)), corresponding with a point of " H('w (1))
as U. Then clearly a(U) = U, for every potential element of T (if T exists). From this
consideration, it is clear that we are done, whenever we can prove the existence of a subgroup
of "U('7(1)), consisting of collineations having a trivial action in "~ H('r(l)), that additionally
acts transitively on the lines of "H('w(l)) that are incident with some chosen point X of
"H('n(l)), and (n — 1)-neighbour (with respect to the base-vertex () some chosen line
of "H('m(l)), with X the point of "H('r(l)) corresponding with a vertex of ¥ which has as
canonical image in H('7(l)) the point corresponding with the vertex O.

Shifting the problem to "¥(0), we need to prove the existence of a subgroup of "¥(O),
consisting of collineations having a trivial ()*—! -projection, acting transitively on the lines
of "H(O) that are incident with some prechosen point of "H(O), and that (n — 1)-neighbour
some prechosen line of "H(O).

Dually, it suffices to prove the existence of a subgroup of ker(()*—* ) inducing in H(" 'm(R)),
R some point in “P(0), a group of translations acting transitively on the points of 7—[( )
that (n — 1)-neighbour R and that are incident with some chosen line r € "£(O), " '7(R)
n—1, n-—1

I w(r).

The existence of such a subgroup is guaranteed by Lemma 27. 0]
Lemma 29 At least one non-trivial 'h-collineation exists in "U.

Proof. Using Lemma 24, at least one quasi-elation « in "U exists with ()*! -projection not
trivial. Suppose the induced elation (a)*~ in " H(O) has some axis " (), [ € L, and
some center " 7(P), P'Tl. Let m'T P be one of the fixed lines for o in L not neighbouring
[ (m exists since «a has a quasi-center).

Let Y refer to the subgroup of "W generated by all collineations 3 in "W such that the fixed
points of 'H(O) for a that are (n — 1)-near [ are also fixed points for 3, such that the lines
of "H that (n — 1)-neighbour [ are fixed by 3, and such that (8)*—! is an elation with axis
""'n(l) and center " '7(P). Note that o € Y.

By Lemma 28, a collineation ~y in "W exists, fixing all lines in 'L that (n—1)-neighbour [, fixing
"“'w(m) and all points in " P that are (n — 2)-near " '7(l), mapping P to some arbitrary
point P’ of "H different from P, P'T1," 'm(P') =" =(P). It is clear that [o, 7] € Y. Indeed,
clearly ([, 7])*~* is an elation with axis "~ m(l) and center " 7(P), and ~ stabilizes the
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set of all points (n — 1)-near [ fixed by « since « fixes all lines (n — 1)-neighbouring [ by
Lemma 11 of Part T [11].

Suppose [o,7] = 1. Then [o,7](y}(m)) = v '(m). Hence a fixes both m and v~ '(m).
Since mN~y~(m) Nl = 0 and since m and vy~ (m) are (n — 1)-neighbouring lines of "H, some
point 7(R) not incident with '7({), R € "P, exists such that a('7(R)) = 7(R). Since (a)*
is a non-trivial elation with axis 7(l), a contradiction arises. Hence [a,~] # 1.

Since both a and v induce in H(" 7 (T')), for all points T of "H incident with [, an elation with
the same center at infinity (Lemma 11 of Part I [11] and Lemma 28), and as a consequence of
Theorem 4.14 in HUGHES & PIPER [5], [a, 7] fixes every point of 'H that (n — 1)-neighbours
. We conclude that the non-trivial collineation § = [a, ] fixes all points of 'H that are
(nl— 1)-near [, that (§) = 1, and that (§)*' is an elation with axis " 7(l) and center
" w(P).

Applying Lemma 25 to §, a non-trivial 'h-collineation can be constructed. 0

By Proposition 2, we now have that 'H is a Moufang Hjelmslev plane of level n, and that
all elations belong to "W. As in Theorem 19, we conclude that H is desarguesian. This
completes the proof of Theorem I.

5 Proof of the Main Result

By Theorem I, all projective Hjelmslev planes H(O), 1 > 1, are desarguesian. The assertion
follows from Theorem 12 of VAN MALDEGHEM [10] and Section 14 of T1TS [7].

Alternatively, we can argue as follows. Suppose [*° is some line of A* and let P> and Q>
be two different points of A* not incident with [°°. Then a vertex O in A exists such that
for every k > 1, P> and Q> (represented as rays starting in O) determine non-neighbouring
points of 'H(O), which are not near the line of 'H(0) determined by [* (represented as a
ray starting in Q). Since 'H(O) is a Moufang projective Hjelmslev plane (Theorem I) for
which the ‘base-vertex’ O was chosen arbitrarily in A, it follows that an elation acting on
A exists with axis [*°, mapping P> to QQ°, that is the inverse limit of elations acting on
projective Hjelmslev planes with base-vertex O. Hence A™ satisfies the Moufang condition.
By VAN MALDEGHEM [8], A* is desarguesian. O
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