Characterizations by Automorphism Groups of some Rank 3 Buildings,

II. A Half Strongly-Transitive Locally finite Triangle building is a Bruhat-Tits Building.

H. Van Maldeghem^{*} K. Van Steen

Abstract

We complete the proof of the fact that every locally finite triangle building Δ with a half strongly-transitive automorphism group G (e.g., this happens when Δ is defined via a (B, N)-pair in G) is a Bruhat-Tits building associated with a classical linear group over a locally finite local skewfield.

1 Introduction and Main Result

In order to show that every half strongly-transitive locally finite triangle building Δ is a Bruhat-Tits building (this is an affine building arising from an algebraic, classical or mixed type group over some local field as in BRUHAT & TITS [4]; see Part I [11]), we prove that the projective Hjelmslev planes of level *n* attached to each vertex of Δ satisfy the Moufang condition, for all positive integers *n*. In Part I [11] of this paper, we proposed a machinery to do so. In particular, a method based on an induction hypothesis was developed and it was shown that only the first step of the induction hypothesis must be verified, along with the construction of a certain type of automorphism (called a ¹*h*-collineation) in each Hjelmslev plane. We briefly summerize these results below, after recalling the main definitions.

Let us first write down the Main Result of this part of the paper:

Theorem I. If Δ is a locally finite triangle building with a half strongly-transitive automorphism group G, and if O is an arbitrary vertex of Δ , then the projective Hjelmslev plane

^{*}The first author is a Research Director of the Fund for Scientific Research – Flanders (Belgium).

 ${}^{n}H(O)$ of level $n, n \geq 1$, attached to O, as in VAN MALDEGHEM [9], satisfies the Moufang condition, i.e., it admits every elation and hence it is a desarguesian Hjelmslev plane.

From this theorem, we will derive the following result, which is stated in Part I [11] as the Main Result of Parts I and II:

Main Result. If Δ is a locally finite triangle building with a half strongly transitive automorphism group G, then Δ^{∞} is associated to a desarguesian projective plane, and hence Δ is a Bruhat-Tits building and arises from a classical group $\mathbf{PSL}_3(\mathbb{K})$ over a locally finite local skewfield \mathbb{K} .

2 Preliminaries

2.1 Definitions

We briefly recall some definitions from Part I [11].

Let Δ be an affine building of type A_2 . If each residue is finite, then Δ is called *locally finite*. If there is a type-preserving automorphism group G acting transitively on the set of pairs of chambers at fixed Weyl-distance from each other, for each such Weyl-distance, then we say that G acts half strongly-transitively on Δ .

Let O be some vertex of Δ . Then we denote by ${}^{n}H(O)$ (or simply ${}^{n}H$ if no confusion is possible) the Hjelmslev plane of level n attached to O (this is the geometry of vertices at distance nfrom O in Δ , see VAN MALDEGHEM [9], or Part I [11]). The point set of ${}^{n}H$ is denoted ${}^{n}\mathcal{P}$, the line set ${}^{n}\mathcal{L}$. The natural epimorphism from ${}^{n}H$ onto ${}^{k}H$, $1 \leq k \leq n$, is denoted by ${}^{k}\pi$. Points (respectively lines) of ${}^{n}H$ with the same image under ${}^{k}\pi$ are called k-neighbouring, 1neighbouring being abbreviated by neighbouring (and denoted \sim). A point and a line whose images under ${}^{k}\pi$ are incident are called k-near (and again, 1-near is simplified to near). Every collineation α of ${}^{n}H$ preserves all neighbour relations and hence induces a collineation $(\alpha)^{*k}$ in ${}^{k}H$, which we call the ()* *k -projection of α . To simplify notation, we denote $(\alpha)^{*k}$ sometimes by α when acting on elements of ${}^{k}H$ (if no confusion is possible).

An elation in ^{*n*}H with axis some line l and center some point P, where P is incident with l, is a collineation of ^{*n*}H fixing all points on l and fixing all lines through P. If the group of all elations with axis l and center P acts transitively on the points not near l incident with some line m (which is itself not neighbouring l, but which is incident with P), then we say that ^{*n*}H is (P, l)-transitive. If ^{*n*}H is (P, l)-transitive for all choices of such P and l, then we say that ^{*n*}H is a Moufang Hjelmslev plane, or that ^{*n*}H satisfies the Moufang condition.

We will use the word *axis* (of a collineation) to denote a line which is pointwise fixed by a collineation. Dually for center.

A collineation δ of "H, $n \ge 2$, is a quasi-elation if a point P and a line l of "H exist such that

- (i) $(\delta)^{\star_{n-1}}$ is an elation with axis ${}^{n-1}\pi(l)$ and center ${}^{n-1}\pi(P)$, ${}^{n-1}\pi(P)$ ${}^{n-1}I$ ${}^{n-1}\pi(l)$;
- (ii) all lines (n-1)-neighbouring l are fixed;
- (iii) all points (n-1)-neighbouring P are fixed.

Every line m, ${}^{n-1}\pi(m) = {}^{n-1}\pi(l)$, that is incident with at least 3 two by two non-neighbouring fixed points is called a *quasi-axis* for δ . Every point Q, ${}^{n-1}\pi(Q) = {}^{n-1}\pi(P)$, that is incident with at least 3 two by two non-neighbouring fixed lines is a *quasi-center* for δ . We have shown in Part I [11](Remark 9) that every quasi-elation has at least one center and, dually, at least one axis. Also, every elation is a quasi-elation (see Lemma 5 of Part I [11]).

In Part I [11], we have proved several elementary properties of quasi-elations. We will use these in the present paper. We now recall the definition of some other types of collineations. For all $k, 1 \leq k \leq n-1$, a ${}^{k}h_{P}^{l}$ -collineation of ${}^{n}H$ is an elation with axis $l \in {}^{n}\mathcal{L}$ and center $P \in {}^{n}\mathcal{P}$, and ()*n-k-projection trivial.

A generalized 1-homology of ${}^{n}\!H$ is a non-trivial collineation of ${}^{n}\!H$ with $()^{\star_{n-1}}$ -projection trivial, and with an axis $l \in {}^{n}\mathcal{L}$ and a center $P \in {}^{n}\mathcal{P}$, with l not near P.

2.2 Some known results

We remind the reader of three important results of Part I [11]. Let G be an automorphism group of a triangle building Δ , and let ${}^{n}\Psi(O)$ (or ${}^{n}\Psi$ if no confusion is possible) be the group of automorphisms of ${}^{n}H(O)$ induced by G.

Proposition 1 Suppose that for every vertex v of Δ , ${}^{1}\!H(v)$ is a Moufang plane (with all elations inherited from G), that there exists at least one ${}^{1}\!h$ -collineation in ${}^{2}\!H(v)$, and that there exists at least one quasi-elation in ${}^{2}\!H(v)$ with non-trivial ()*1-projection. Then ${}^{2}\!H$ is a Moufang projective Hjelmslev plane and all elations belong to ${}^{2}\!\Psi$.

Proposition 2 Let $n \geq 3$ and suppose that ${}^{k}H(v)$ is a Moufang Hjelmslev plane of level k, for every $k \leq n-1$ (and all elations are induced by G) and for all vertices v of Δ , and that for every vertex v of Δ , there exists some non-trivial ${}^{1}h$ -collineation in ${}^{n}H(v)$ (and induced by G). Then there exists a quasi-elation of ${}^{n}H$ in ${}^{n}\Psi$ with non-trivial ()*1 -projection and ${}^{n}H$ is a Moufang projective Hjelmslev plane with all elations belonging to ${}^{n}\Psi$.

A well-formed triangle in the projective Hjelmslev plane ${}^{n}H$ is a set of three pairwise nonneighbouring points $\{P, Q, S\}$ such that ${}^{1}\pi(P), {}^{1}\pi(Q), {}^{1}\pi(S)$ are not collinear in ${}^{1}H$.

Property 3 (transitivity on the well-formed triangles of ^{*n*}*H*) Suppose that G acts half strongly-transitively on Δ . Let $\{P_1, P_2, P_3\}$ and $\{Q_1, Q_2, Q_3\}$ be well-formed triangles of ^{*n*}*H*. Then a collineation α in ^{*n*} Ψ exists such that $\alpha(P_i) = Q_i$, for all $i \in \{1, 2, 3\}$.

Fixed point sets in finite Hjelmslev planes of level n 3

In this section, which is independent of any hypothesis on the automorphism group, we will show that, if ${}^{n}H$ is finite, then every collineation has an equal number of fixed points and fixed lines, just as in the case of a finite projective plane, see for instance HUGHES & PIPER [5]. The method of proof will be a straightforward generalization of the case n = 1 (projective planes). However, for reasons of notation, we will give the proof only for the case of n = 2. The general case is proved in detail in the thesis of the second author, see VAN STEEN [12].

Also, in this section, we temporarily use another notation for points and lines of \mathcal{H} . This will be convenient for the proofs of the next lemmas.

We assume that H is a finite projective plane of order q. We label the points of H arbitrarily by ${}^{1}p_{i}$, $1 \leq i \leq q^{2} + q + 1$, and we label the q^{2} points in every ${}^{1}\pi^{-1}({}^{1}p_{i})$ arbitrarily by ${}^{2}p_{j}$, $1 \leq j \leq q^{2}$. We then label a point P of ${}^{2}H$ by the sequence ${}^{1}p_{i}^{2}p_{j}$ with $1 \leq j \leq q^{2}$, $1 \leq i \leq q^{2} + q + 1$, where ${}^{1}p_{i}$ refers to ${}^{1}\pi(P)$ and ${}^{2}p_{j}$ to P in the obvious way. In the same way we label any line of ${}^{2}H$ by a sequence ${}^{1}l_{i}^{2}l_{j}$, $1 \leq j \leq q^{2}$, $1 \leq i \leq q^{2} + q + 1$,

with ${}^{1}l_{i}$ referring to ${}^{1}\pi(l)$ and ${}^{2}l_{i}$ to l.

Notice that with this labelling we have $\begin{cases} {}^{1}p_{i}{}^{2}p_{j} \sim {}^{1}p_{g}{}^{2}p_{h} & \Leftrightarrow i = g\\ {}^{1}l_{i}{}^{2}l_{i} \sim {}^{1}l_{g}{}^{2}h_{h} & \Leftrightarrow i = g. \end{cases}$

Definition 4 An incidence matrix A for ${}^{2}H$ is said to be *normal* if the point ${}^{1}p_{i}{}^{2}p_{j}$ refers to row $q^{2}(i-1) + j$ of A, and the line ${}^{1}l_{i}{}^{2}l_{j}$ refers to column $q^{2}(i-1) + j$ of A.

We can therefore write $A = (a_{q^2(i-1)+j,q^2(g-1)+h})$ with $a_{q^2(i-1)+j,q^2(g-1)+h} = 1$ if ${}^1p_i {}^2p_j {}^2I {}^1l_g {}^2l_h$, and with $a_{q^2(i-1)+j,q^2(g-1)+h} = 0$ otherwise.

Lemma 5 If ${}^{2}\!H$ is finite, and if A is a normal incidence matrix for ${}^{2}\!H$ and α a collineation in ${}^{2}\Psi$, then α can be represented by 2 permutation matrices B and C satisfying

$$BA = AC.$$

Proof. This is a standard exercise.

Lemma 6 If ²H is finite, and if A is a normal incidence matrix for ²H, then det(A) $\neq 0$ (over \mathbb{Q} , the field of rational numbers).

Proof. Consider the matrix product $B = AA^T$. Then the diagonal elements b_{ii} , $1 \le i \le i$ $v = q^2(q^2 + q + 1)$ are given by

$$b_{ii}$$
 = the number of lines that are incident with a point
= $q(q+1)$.

The non-diagonal elements of B, namely b_{ij} , $i \neq j$, for $1 \leq i, j \leq v$, satisfy

 b_{ij} = the number of lines that are incident with the points P and Q respectively corresponding with the i'th and j'th row of A.

If P and Q are neighbouring points, then $b_{ij} = q$. If P and Q are non-neighbouring points, then $b_{ij} = 1$. Hence, the determinant of the matrix AA^T is equal to

$$det(AA^{T}) = det \begin{pmatrix} q^{2}I_{q^{2}} + qJ_{q^{2}} & J_{q^{2}} & \cdots & J_{q^{2}} \\ J_{q^{2}} & q^{2}I_{q^{2}} + qJ_{q^{2}} & \cdots & J_{q^{2}} \\ \vdots & \vdots & \ddots & \vdots \\ J_{q^{2}} & J_{q^{2}} & \cdots & q^{2}I_{q^{2}} + qJ_{q^{2}} \end{pmatrix},$$

where I_{q^2} denotes the $(q^2 \times q^2)$ -identity matrix and J_{q^2} denotes the $(q^2 \times q^2)$ -matrix with all entries equal to 1. If we denote the rows and columns of the blockmatrix above by respectively R_i , $1 \le i \le q^2 + q + 1$, and K_i , $1 \le i \le q^2 + q + 1$, then, after replacing the rows R_i , $i \ne 1$, by $R_i - R_1$, and afterwards replacing the first column by the sum of all columns, we obtain

$$det(AA^{T}) = det \begin{pmatrix} q^{2}I_{q^{2}} + (2q+q^{2})J_{q^{2}} & J_{q^{2}} & \cdots & J_{q^{2}} \\ 0 & q^{2}I_{q^{2}} + (q-1)J_{q^{2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & q^{2}I_{q^{2}} + (q-1)J_{q^{2}} \end{pmatrix}.$$

Hence

$$det(AA^{T}) = det(q^{2}I_{q^{2}} + (2q + q^{2})J_{q^{2}}) (det(q^{2}I_{q^{2}} + (q - 1)J_{q^{2}}))^{q^{2}+q}.$$

After an elementary calculation, we obtain

$$det(AA^{T}) = (q+1)^{2}q^{(2q^{2}+1)(q^{2}+q)+2q^{2}}$$

Hence $det(AA^T) = 0$ if and only if $q \in \{-1, 0\}$. Since $q \ge 2$ and since $det(A) = det(A^T)$, the lemma follows.

Lemma 6 enables us to formulate the following useful result.

Lemma 7 If ${}^{2}\!H$ is finite, then every collineation of ${}^{2}\!H$ has an equal number of fixed points and fixed lines.

Proof. Suppose α is a collineation of ${}^{2}\!H$. Then, using Lemma 5, α can be represented by permutation matrices B and C with BA = AC and A a normal incidence matrix for ${}^{2}\!H$. By definition of B, the trace tr(B) equals the number of fixed points of α . In the same way

tr(C) gives the number of fixed lines of α .

Using Lemma 5 again together with Lemma 6, which guarantees the existence of A^{-1} , we obtain that $B = ACA^{-1}$. Thus tr(B) = tr(C). Hence α has an equal number of fixed points and fixed lines.

Similarly, one shows:

Lemma 8 Let ^{*n*}H be finite. Then every collineation acting on ^{*n*}H has an equal number of fixed points and fixed lines, $n \ge 1$.

In fact, only the non-singularity of an incidence matrix of ${}^{n}H$ is somewhat harder to prove than in the case n = 2. But this boils down to some calculation which are uninteresting and uniformative for the rest of this paper. As mentioned before, a complete detailed proof can be found in VAN STEEN [12].

4 Proof of Theorem I

In this section we prove Theorem I of the Introduction. So we assume that Δ is a locally finite triangle building with a half strongly-transitive automorphism group G. After some definitions of affine planes and dual affine planes occurring in ${}^{n}H$, we prove first Theorem I for the cases n = 1, 2.

4.1 Affine planes in H

Suppose ${}^{i}\pi(Q)$ is a point of ${}^{i}H(O)$, $1 \leq i \leq n$, for some point $Q \in {}^{n}\mathcal{P}(O)$. Then the projective plane, viewed as a completed affine plane (and which allows us to speak about points at infinity, once we defined a line at infinity), associated with ${}^{i}\pi(Q)$ is denoted by ${}^{i}H({}^{i}\pi(Q))$ and defined as follows.

For i = 1, the vertex O is viewed as the line at infinity.

For i > 1, the point ${}^{i-1}\pi(Q)$ of ${}^{i-1}\mathcal{P}(O)$ corresponds with the line at infinity of ${}^{1}\!H({}^{i}\pi(Q))$.

The projective Hjelmslev plane of level j associated with ${}^{i}\pi(Q)$, $1 \leq j$, is denoted by ${}^{i}H({}^{i}\pi(Q))$ and defined as the projective Hjelmslev plane of level j attached to the vertex ${}^{i}\pi(Q)$ of the triangle building Δ such that ${}^{i}\pi({}^{i}H({}^{i}\pi(Q))) = {}^{i}H({}^{i}\pi(Q))$.

Suppose ${}^{i}\pi(m)$ is a line of ${}^{i}H(O)$, $1 \leq i \leq n$, for some line $m \in {}^{n}\mathcal{L}(O)$. Then the projective plane, viewed as a completed dual affine plane, associated with ${}^{i}\pi(m)$ is denoted by ${}^{i}H({}^{i}\pi(m))$ and is defined in a similar way as ${}^{i}H({}^{i}\pi(Q))$.

For i = 1, we view O as the point at infinity of ${}^{1}\!H({}^{1}\pi(m))$.

For i > 1, the line ${}^{i-1}\pi(m)$ of ${}^{i-1}\mathcal{L}(O)$ corresponds with the point at infinity of the dual projective plane ${}^{l}H({}^{i}\pi(m))$,

The projective Hjelmslev plane of level j associated with ${}^{i}\pi(m)$, $1 \leq j$, is denoted by ${}^{j}H({}^{i}\pi(m))$ and defined as the projective Hjelmslev plane attached to ${}^{i}\pi(m)$ such that ${}^{i}\pi({}^{j}H({}^{i}\pi(m))) = {}^{i}H({}^{i}\pi(m))$.

See also Part I [11] for these definitions.

4.2 The case of levels 1 and 2

In this subsection we show:

Theorem Ia If Δ is a locally finite triangle building with a half strongly-transitive group G, then for all vertices O of δ , the projective plane ${}^{1}\!H(O)$ and the projective Hjelmslev plane ${}^{2}\!H(O)$ satisfy the Moufang condition and both ${}^{1}\!\Psi(O)$ and ${}^{2}\!\Psi(O)$ contain all elations.

Lemma 9 ${}^{h}H(O)$ is a desarguesian projective plane of order $q = p^{s}$, where p is some prime and $s \ge 1$. Also, all elations belong to ${}^{1}\Psi(O)$.

Proof. This is a consequence of Property 3, the Theorem of Ostrom-Wagner (see HUGHES & PIPER [5]) and the locally finiteness assumption. \Box

Note that ${}^{1}\Psi$ contains the little projective group $\mathbf{PSL}(3,q)$. From now on we denote the order of a vertex-residue in Δ by $q = p^{s}$, where p is a fixed prime and s is a fixed positive integer.

Lemma 10 For all lines l of ${}^{2}\!H$, $|{}^{2}\!\Psi_{l}| = kq^{7}(q+1)$, for some positive integer k.

Proof. Suppose $K \in {}^{2}\mathcal{P}$ and $L \in {}^{2}\mathcal{P}$ determine a unique line l (so $K \not\sim L$). Let M be some point of ${}^{2}H$ not near l, and let m be the line defined by M and K. Put $|{}^{2}\Psi_{M,K,L}| = k, k \geq 1$. Then by Property 3, $|{}^{2}\Psi_{l}|$ is equal to k multiplied with the number of possible choices for K, L, M defined as above. An elementary counting argument shows that there are exactly $q^{7}(q+1)$ such choices.

Lemma 11 Suppose $l \in {}^{2}\mathcal{L}$ and $P \in {}^{2}\mathcal{P}$ such that $P^{2}Il$. Then every Sylow p-subgroup Γ of ${}^{2}\Psi_{l,P}$ acts transitively on ${}^{2}\mathcal{P} \setminus \{Q \in {}^{2}\mathcal{P} | Q \text{ is near } l\}$.

Proof. By Lemma 9, ¹*H* is a projective plane of order $q = p^s$. Suppose $p^t | k$ with k as in Lemma 10 and where $t \ge 0$. By Lemma 10 the order of ${}^{2}\Psi_{l,P}$ equals kq^6 . Hence $p | |{}^{2}\Psi_{l,P} |$ and the Sylow *p*-subgroups of ${}^{2}\Psi_{l,P}$ are non-trivial. Let Γ be such a Sylow *p*-subgroup. Then $|\Gamma| = p^{6s+t}$. Suppose now *R* is some point of ${}^{2}H$ with ${}^{1}\pi(R) \not\downarrow {}^{1}\pi(l)$ and put $|R^{\Gamma}| = p^{u}$, the order of the orbit of *R* under the group Γ .

Notice that $|R^{\Gamma}|$ is indeed a power of p, since $|\Gamma| = |\Gamma_R| |R^{\Gamma}|$ and since $|\Gamma| = p^{6s+t}$. Using $|\Gamma| = |\Gamma_R| |R^{\Gamma}|$,

$$|\Gamma_R|$$
 = the order of the subgroup of Γ fixing R
= p^{6s+t-u} .

Since $\Gamma_R \leq {}^{2}\Psi_{l,P,R}$ and, by using Lemma 10 again $(|{}^{2}\Psi_{l,P,R}| = kq^2)$, we obtain that $p^{6s+t-u} | p^{2s+t}$. Hence $6s + t - u \leq 2s + t$ or

$$4s \le u. \tag{1}$$

But there are only q^4 possibilities to pinpoint a point R of H that is not near l. Thus $|R^{\Gamma}| \leq p^{4s}$, which implies that $p^u \leq p^{4s}$ or that

$$u \le 4s. \tag{2}$$

From 1 and 2 we conclude that u = 4s.

Consequently $|R^{\Gamma}| = q^4$. The result is the transitivity of Γ on ${}^2\mathcal{P} \setminus \{Q \in {}^2\mathcal{P} \mid Q \text{ is near } l\}$. \Box

Lemma 12 Suppose $l, m \in {}^{2}\mathcal{L}$, $l \not\sim m$. Suppose P is the point of ${}^{2}H$ determined by l and m, and suppose Q is some point incident with l not neighbouring P. Then every Sylow p-subgroup Γ of ${}^{2}\Psi_{l,m,Q}$ acts transitively on the set $\{S \in {}^{2}\mathcal{P} \mid S {}^{2}I m, {}^{1}\pi(S) \neq {}^{1}\pi(P)\}$.

Proof. Noting that $|{}^{2}\Psi_{l,m,Q}| = kq^{2}$ (consequence of Lemma 10), that $|{}^{2}\Psi_{l,m,Q,R}| = k$, where R is some element of $\{S \in {}^{2}\mathcal{P} \mid S \stackrel{?}{I} m, {}^{1}\pi(S) \neq {}^{1}\pi(P)\}$ (Lemma 10 and Property 3), and that there are q^{2} points of ${}^{2}H$ incident with m that do not neighbour P, the proof of Lemma 11 is easily adapted.

Now we note (see e.g. HUPPERT [6], Hilfssatz 7.7.):

Lemma 13 Suppose Υ is some group and θ an epimorphism

$$\theta: \Upsilon \to \theta(\Upsilon).$$

If Γ is a Sylow p-subgroup of Υ , for some $p \geq 2$, then $\theta(\Gamma)$ is a Sylow p-subgroup of $\theta(\Upsilon)$.

In view of Proposition 1, we have to exibit at least one quasi-elation with non-trivial $()^{\star_1}$ -projection. This will be done in the following lemma.

Lemma 14 At least one quasi-elation exists in ${}^{2}\Psi$ (with a quasi-axis and a quasi-center) with $()^{*_{1}}$ -projection non-trivial.

Proof. Consider some points P and Q of \mathcal{H} , ${}^{1}\pi(P) \neq {}^{1}\pi(Q)$, and a line m not near Q with $P^{2}Im$. Let l be the line in \mathcal{L} incident with P and Q.

By property 3, ${}^{2}\Psi_{P,Q,m}$ acts transitively on the points that are incident with m but which do not neighbour P. So $q^{2} | |^{2}\Psi_{P,Q,m} |$. So it is possible to consider a non-trivial Sylow p-subgroup Γ of ${}^{2}\Psi_{P,Q,m}$. By Lemma 13, $(\Gamma)^{*_{1}}$ is a Sylow p-subgroup of $({}^{2}\Psi_{P,Q,m})^{*_{1}}$.

We claim that $(\Gamma)^{\star_1}$ contains at least one elation with axis $\pi^{1}(l)$. Indeed, if we coordinatize H such that

$${}^{1}\pi(P) := \left(\begin{array}{ccc} 1 & 0 & 0 \end{array} \right)^{T},$$

$${}^{1}\pi(Q) := \left(\begin{array}{ccc} 0 & 1 & 0 \end{array} \right)^{T},$$

$${}^{1}\pi(m) := Y = 0,$$

then $(\Gamma)^{\star_1}$ is contained in the group of semi-linear matrices

$$\left(\begin{array}{rrrr}1 & 0 & d\\0 & b & 0\\0 & 0 & c\end{array}\right)\left(\begin{array}{r}x\\y\\z\end{array}\right)^{\theta}, \ b, c, d \in \mathbf{GF}(q),$$

a group of order $(q-1)^2 qs$ with $q = p^s$ as before. In fact, since $(\Gamma)^{\star_1}$ is a *p*-group, $(\Gamma)^{\star_1}$ is contained in the group of matrices

$$\delta_{d,\theta} := \begin{pmatrix} 1 & 0 & d \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}^{\theta}, \ d \in \mathbf{GF}(q).$$

Suppose there exists for every automorphism θ of $\mathbf{GF}(q)$ that occurs in $(\Gamma)^{\star_1}$ only one $d \in \mathbf{GF}(q) \setminus \{0\}$ to form a matrix $\delta_{d,\theta}$ of $(\Gamma)^{\star_1}$. Then $|(\Gamma)^{\star_1}| \leq s < q$. However, by Lemma 12, we have $q | |(\Gamma)^{\star_1}|$, a contradiction.

Hence, different elements d and $d' \in \mathbf{GF}(q) \setminus \{0\}$ exist, and an automorphism θ of $\mathbf{GF}(q)$ exists such that $\delta_{d,\theta}$ and $\delta_{d',\theta}$ are both elements of $(\Gamma)^{\star_1}$. Thus, since $(\Gamma)^{\star_1}$ is a group, $\delta_{d',\theta}(\delta_{d,\theta})^{-1} = \delta_{d',\theta}\delta_{-d^{\theta-1},\theta^{-1}} = \delta_{d'-d,1} \in (\Gamma)^{\star_1}$ and $d' - d \neq 0$. Consequently, $\delta_{d'-d,1}$ is an elation of $(\Gamma)^{\star_1}$ with axis ${}^{^1}\pi(l)$ and center ${}^{^1}\pi(P)$. The claim follows.

Let α be some element of Γ with $(\alpha)^{*_1}$ a non-trivial elation with axis ${}^{1}\pi(l)$ and center ${}^{1}\pi(P)$. The lines of ${}^{1}H$ that are incident with ${}^{1}\pi(P)$ correspond with the points at infinity of ${}^{1}H({}^{1}\pi(P))$. Hence, in ${}^{1}H({}^{1}\pi(P)) \alpha$ induces a collineation with axis the line at infinity of ${}^{1}H({}^{1}\pi(P))$ and fixes at least one affine point of ${}^{1}H({}^{1}\pi(P))$, namely P. Since the order of α is a power of p (α being an element of a Sylow p-group), α induces the identity collineation in ${}^{1}H({}^{1}\pi(P))$. Dually, α also induces the identity in ${}^{1}H({}^{1}\pi(l))$.

We now consider an arbitrary point ${}^{1}\pi(R) \neq {}^{1}\pi(P)$, $R \in {}^{2}\mathcal{P}$, that is incident with ${}^{1}\pi(l)$. Then the collineation induced by α in ${}^{1}H({}^{1}\pi(R))$ has a center at infinity, corresponding with the line ${}^{1}\pi(l)$ of ${}^{1}\!H$, becaue α induces the identity in ${}^{1}\!H({}^{1}\pi(l))$. Since $(\alpha)^{\star_{1}} \neq 1$ and points at infinity of ${}^{1}\!H({}^{1}\pi(R))$ are in one-one correspondence with the lines in ${}^{1}\!\mathcal{L}$ that are incident with ${}^{1}\pi(R)$, no other point at infinity of ${}^{1}\!H({}^{1}\pi(R))$ can be fixed by α .

Hence α induces in ${}^{1}\!H({}^{1}\pi(R))$ a non-trivial elation with some affine axis determined by an $l' \cap {}^{1}\!H({}^{1}\pi(R))$ $l' \in {}^{2}\!\mathcal{L}$, ${}^{1}\pi(l') = {}^{1}\!\pi(l)$, where $l' \cap {}^{1}\!H({}^{1}\pi(R))$ is the formal notation for the unique vertex in Δ that is adjacent to l', ${}^{1}\pi(l')$ and ${}^{1}\pi(R)$.

Dually, we consider an arbitrary line ${}^{1}\pi(u) \neq {}^{1}\pi(l), u \in {}^{2}\mathcal{L}$, such that ${}^{1}\pi(u) {}^{1}I {}^{1}\pi(P)$. Following the reasoning of the previous paragraph, we obtain that α induces a non-trivial elation in ${}^{1}H({}^{1}\pi(u))$ with some affine center, determined by a $P' \cap {}^{1}H({}^{1}\pi(u)), P' \in {}^{2}\mathcal{P}, P' \sim P$, where again $P' \cap {}^{1}H({}^{1}\pi(u))$ is a formal notation and indicates the unique vertex in Δ that is adjacent to $P', {}^{1}\pi(P')$, and ${}^{1}\pi(u)$.

We conclude that α is a quasi-elation with quasi-axis (quasi-axes) neighbouring l and quasicenter (quasi-centers) neighbouring P, such that $(\alpha)^{\star_1} \neq 1$.

Our next aim is the construction of a non-trivial h-colineation in H. We recall some definitions from Part I [11].

A ${}^{1}h^{l}$ -collineation in ${}^{2}\Psi$ is a ${}^{1}h$ -collineation with axis l. Dually, a ${}^{1}h_{R}$ -collineation in ${}^{2}\Psi$ is a ${}^{1}h^{l}$ -collineation with center R. A ${}^{1}h_{R}^{l}$ -collineation in ${}^{2}\Psi$ is a ${}^{1}h^{l}$ -collineation which is also a ${}^{1}h_{R}$ -collineation.

We denote the sets of ¹*h*-collineations, ¹*h*-collineations with axis l, ¹*h*-collineations with center R, and ¹*h*-collineations with axis l and center R in ² Ψ respectively as ¹*h*C, ¹*h*C^{*l*}, ¹*h*C^{*l*}(R) and ¹*h*C^{*l*}(R).

Now note that, by Lemma 2 of Part I [11], for every point P of ${}^{2}\!H$, a generalized 1-homology induces in ${}^{1}\!H({}^{1}\!\pi(P))$ either the identity or a non-trivial elation with axis at infinity. Since ${}^{1}\!H({}^{1}\!\pi(P))$ is a finite projective plane of order q (by Lemma 9), the order of such an induced non-trivial elation is equal to p. So we may denote the order of the subgroup of ${}^{2}\!\Psi$ consisting of all generalized 1-homologies with an axis l and a center R by $p^{r}(l, R)$, for some specific $r \geq 0$ (or p^{r} if no confusion is possible).

The next theorem is a result about finite projective planes, independent of our hypotheses. We use the notation of HUGHES & PIPER [5]. In particular, for an automorphism group Υ of a projective plane, a point Q and a line l of that plane, we denote by $\Upsilon_{(Q,l)}$ the set of all collineations in Υ with center Q and axis l.

Theorem 15 Let H be a finite projective plane of order $q = p^s$ (p prime, $s \ge 1$), and l some line of H. If Υ is a collineation group of H such that $\Upsilon_{(Q,l)}$ is non-trivial and $|\Upsilon_{(Q,l)}|$ is some fixed power of p, for all points Q of H that are incident with l, then $|\Upsilon_{(Q,l)}| = q$.

Proof. Suppose $|\Upsilon_{(Q,l)}| = p^h$, h > 0. Then $|\Upsilon_{(l,l)}| = (q+1)(p^h-1) + 1$, since there are exactly q+1 points of H incident with l.

Using Theorem 4.16 of HUGHES & PIPER [5], $|\Upsilon_{(l,l)}| | q^2 = p^{2s}$. Hence $(q+1)(p^h-1) + 1 = p^{s+h} + p^h - p^s = p^s(p^h + \frac{p^h}{p^s} - 1) > p^s$, and is a power of p, say p^r (r > s). Consequently, p is a divisor of $p^h + \frac{p^h}{p^s} - 1$, which is only possible for $p^h = p^s = q$. The following lemma is the crux of the proof of Theorem I.

Lemma 16 At least one non-trivial ¹h-collineation exists in ² Ψ .

Proof. By Lemma 14, a quasi-elation α with some quasi-axis $l \in \mathcal{L}$ and quasi-center neighbouring some point $P \in {}^{2}\mathcal{P}$, $P \, \overset{?}{I} \, l$, and with non-trivial ()^{*1}-projection exists. Let $m \, \overset{?}{I} \, P$ be some fixed line in \mathcal{L} for α with ${}^{1}\pi(m) \neq {}^{1}\pi(l)$ (use Property 3 if necessary), and let Q be some point of ${}^{2}\!H$ incident with $l, {}^{1}\pi(Q) \neq {}^{1}\pi(P)$

Part 1:

In this part we prove the claim that there exists a group of collineations fixing all lines neighbouring l, fixing all lines of ${}^{1}\!H$ that are incident with ${}^{1}\!\pi(P)$, and acting transitively on the points that neighbour P and that are also incident with l.

For the moment, let us denote by Υ the subgroup of ${}^{2}\Psi$ generated by all collineations fixing every point in ${}^{2}\mathcal{P}$ that neighbours P, fixing all lines of ${}^{2}H$ that neighbour l (and by considering intersection of such lines, thus fixing all points of ${}^{1}H$ that are incident with ${}^{1}\pi(l)$). Then $\alpha \in \Upsilon$ and $(\Upsilon)^{*_{1}}$ is a set of elations with axis ${}^{1}\pi(l)$ and center ${}^{1}\pi(P)$. Hence

$$|(\Upsilon)^{\star_1}| \le q. \tag{3}$$

If $\Upsilon' \leq \Upsilon$ is the set of collineations of Υ with $()^{\star_1}$ -projection trivial, then

$$\frac{|\Upsilon|}{|\Upsilon'|} = |(\Upsilon)^{\star_1}|. \tag{4}$$

So by (3) and (4),

$$|\Upsilon'| \geq \frac{|\Upsilon|}{q}$$

By the dual of Lemma 11, any Sylow *p*-group Γ of the subgroup of ² Ψ consisting of collineations fixing *l* and *Q*, acts transitively on the lines that are not near *Q* and that are in particular incident with some point $R^{2}Im$, $\pi(R) \downarrow^{1}\pi(l)$. Hence, for every line $m'^{2}R$, and with $\pi(m') =$ $\pi(m)$ some collineation $\delta_{m'}$ of Γ mapping m' to m exists. The collineations $\delta_{m'}^{-1}\alpha\delta_{m'}$ are again elements of Υ because $\pi(P)$ is fixed by $\delta_{m'}$. Since $(\alpha)^{*_{1}} \neq 1$, we also have $(\delta_{m'}^{-1}\alpha\delta_{m'})^{*_{1}} \neq 1$. Suppose m'' and m''' are distinct lines of ²H, satisfying $\pi(m'') = \pi(m''') = \pi(m)$ and $m''^{2}I$ $R^{2}Im'''$. Suppose $\delta_{m''}^{-1}\alpha\delta_{m''} = \delta_{m'''}^{-1}\alpha\delta_{m'''}$. Then $\delta_{m''}^{-1}\alpha\delta_{m''}$ fixes the line $\delta_{m''}^{-1}(m)$ and $\delta_{m'''}^{-1}(m)$. Since both $\delta_{m''}^{-1}(m)$ and $\delta_{m''}^{-1}(m)$ are incident with R and neighbouring, ${}^{1}\pi(R)$ is fixed by $\delta_{m''}^{-1}\alpha\delta_{m''}$. Hence $(\delta_{m''}^{-1}\alpha\delta_{m''})^{\star_{1}} = 1$, using ${}^{1}\pi(R) \not I {}^{1}\pi(l)$, a contradiction.

As a consequence of the previous paragraphs, the q choices for m' as a line of H that neighbours m and that is incident with R, correspond with two by two different collineations $\delta_{m'}^{-1} \alpha \delta_{m'} \in \Upsilon$, with $(\delta_{m'}^{-1} \alpha \delta_{m'})^{*_1}$ a non-trivial elation (of order p) acting on H.

It can now be seen that

$$|\Upsilon| \ge q(p-1) + 1.$$

Consequently

 $|\Upsilon'| > 1,$

which guarantees the existence of a collineation $\eta \in \Upsilon$ such that $(\eta)^{\star_1} = 1$ but $\eta \neq 1$.

Since $\eta \neq 1$, some point U of ${}^{2}\!H$, ${}^{1}\!\pi(U) \neq {}^{1}\!\pi(P)$, exists such that η maps U to some point $U', U' \sim U, U' \neq U$.

By Lemma 2 of Part I [11], η induces in ${}^{l}H({}^{1}\pi(U))$ a non-trivial elation. The center of the induced elation is determined by a line of ${}^{l}H$, say ${}^{1}\pi(v)$, $v \in {}^{2}\mathcal{L}$, such that every line of ${}^{2}H$ incident with both U and U' neighbours v. Notice that ${}^{1}\pi(v)$ might coincide with ${}^{1}\pi(l)$.

The question was whether a group of collineations fixing all lines neighbouring l exists, fixing all lines of ${}^{l}H$ that are incident with ${}^{1}\pi(P)$, and acting transitively on the points that neighbour P and that are also incident with l. Consider the induced collineations in the Hjelmslev plane ${}^{2}H({}^{1}\pi(l))$ of level 2 associated with the vertex ${}^{1}\pi(l)$. We remark that the vertex O is now a point of ${}^{l}H({}^{1}\pi(l))$, that ${}^{1}\pi(P)$ is a line of ${}^{l}H({}^{1}\pi(l))$ incident (in ${}^{l}H({}^{1}\pi(l))$) with O, and that l is a line of ${}^{1}H({}^{1}\pi(l))$ which is different from the line ${}^{1}\pi(P)$ of ${}^{l}H({}^{1}\pi(l))$ and not incident (in ${}^{l}H({}^{1}\pi(l))$) with O. The lines of ${}^{2}H(O)$ that neighbour l correspond with lines of ${}^{l}H({}^{1}\pi(l))$ that are not incident (incidence in ${}^{l}H({}^{1}\pi(l))$) with O.

So dually, and after shifting the problem to ${}^{2}H(O)$, we should show the existence of a set of collineations with $()^{*_{1}}$ -projection trivial, that induce in ${}^{1}H({}^{1}\pi(T))$, for some point T of ${}^{2}H(O)$, q elations.

To prove this existence, we remark that all 'directions', or points at infinity of ${}^{1}\!H({}^{1}\pi(T))$, play the same role, using the transitivity of ${}^{2}\!\Psi$ on the well-formed triangles of ${}^{2}\!H$. Hence the number of elations for some 'fixed direction' (the identity included) acting on ${}^{1}\!H({}^{1}\pi(T))$ equals p^{h} , $0 \leq h \leq s$.

Using earlier results in this proof (concerning η), we know that $1 < p^h$. Hence, applying Theorem 15, we conclude $p^h = q$ and our claim is proved.

Part 2: In this Part we prove the actual occurence of a non-trivial ¹*h*-collineation in ² Ψ . For this purpose we consider the subgroup Υ'' of ² Ψ fixing all points in ² \mathcal{P} fixed by α . Then $|(\Upsilon'')^{\star_1}| \leq q$ and

$$|\Upsilon'''| \ge \frac{|\Upsilon''|}{q},$$

where Υ'' consists of all elements of Υ'' with trivial ()^{*1}-projection.

As proven in Part 1, for every point $P'^{2}Il$, $P' \sim P$, a collineation $\theta_{P'}$ exists that fixes all lines that neighbour l, fixes all lines of H that are incident with $\pi(P)$, and that maps P' to P. The collineations $\theta_{P'}^{-1}\alpha\theta_{P'}$ are again elements of Υ'' with ()*1-projection not trivial.

Notice that the set $\{\theta_{P'}^{-1}\alpha\theta_{P'} | P' \sim P, P'^{2}l\}$ consists of two by two different elements. This can be shown similarly as above (see the argument concerning δ_m in Part 1). Consequently,

$$|\Upsilon''| \ge q(p-1) + 1$$

and so $|\Upsilon''| > 1$. In other words, some non-trivial collineation θ' in ${}^{2}\Psi$ exists with $(\theta')^{\star_{1}} = 1$ and fixing all points of ${}^{2}H$ that are fixed by α . Applying Lemma 2 of Part I [11] of this paper, all points of ${}^{2}H$ that are near l are fixed by θ' (recall that by Lemma 14, α fixes at least one point neighbouring any point near l).

Suppose non-trivial ¹*h*-collineations do not exist. Then by Lemma 16(*ii*) of Part I [11], α is a generalized 1-homology. Hence $p^r > 1$. Consider the subgroup Υ^{iv} of ² Ψ consisting of all collineations fixing every point of ²*H* near *l*, and fixing some arbitrary line *u* not neighbouring *l*. Then every element of this group has a trivial ()^{*1}-projection and the order of the group is $p^r p^z$, where p^z ($z \ge 0$) is the orbit under Υ^{iv} of some point $V^2 I u$, ${}^1\pi(V) \not I {}^1\pi(l)$. We note that the only collineations active on ${}^1\!H({}^1\pi(V))$ are elations, by Lemma 2 or Lemma 16 of Part I [11].

On the other hand, $|\Upsilon^{iv}|$ equals $q(p^r - 1) + 1$. This can be seen as follows. If a collineation $\beta \in \Upsilon^{iv}$ exists such that the only points of 2H that are incident with u and fixed by β neighbour P, then by Lemma 7, and since the number of points fixed by β is $q^2(q + 1)$ in this case, there are $q^2(q + 1)$ fixed lines for β . Moreover, all these lines are near P. Hence $\beta = 1$, a contradiction.

Consequently, every collineation in Υ^{iv} fixes some point $U^{2}I u$, with $U \not\sim P$. Thus Υ^{iv} consists of all possible generalized 1-homologies with axis l that fix u. Continuing, we obtain that

$$p^r p^z = q(p^r - 1) + 1.$$

Since $p^r > 1$, and thus $p \mid p^r p^z$, it follows that $p \mid q(p^r - 1) + 1$, a contradiction.

We conclude that there is at least one non-trivial ${}^{1}h$ -collineation available in ${}^{2}\Psi$.

By Proposition 1, we conclude that ${}^{2}\!H$ is a Moufang Hjelmslev plane and that all elations belong to ${}^{2}\!\Psi$. Whence Theorem Ia. Now we show that in fact we have a Desarguesian Hjelmslev plane.

In 1977, Dugas proved (with corrections made by Bacon) that a finite Moufang (projective) Hjelmslev plane whose canonical image is not $\mathbf{PG}(2, 2)$ is desarguesian. In 1979, this result was extended by Bacon. He showed that a finite punctally cohesive Moufang (projective) Klingenberg plane (and in particular a finite punctally cohesive Moufang (projective) Hjelmslev plane) whose canonical image is not $\mathbf{PG}(2, 2)$ is a desarguesian plane. In BAKER, LANE & LORIMER [1], theorems are formulated and proven in order to eliminate the $\mathbf{PG}(2, 2)$ restriction, as indicated in the proof of Theorem 17. We refer to BAKER, LANE & LORIMER [1], [2], and [3].

Theorem 17 If Δ is a locally finite triangle building with a half strongly-transitive automorphism group, then for each vertex O, ${}^{2}H(O)$ is a desarguesian Hjelmslev plane.

Proof. Since ${}^{2}H$ is a Moufang Hjelmslev plane, it can be coordinatized by a local alternative ring R. Moreover, using BAKER, LANE & LORIMER [1], R must be a projective Hjelmslev ring. By the definition of a projective Hjelmslev ring, R is a right chain ring. Therefore, ${}^{2}H$ is punctally cohesive. Hence so far, ${}^{2}H$ is a finite punctally cohesive Moufang Hjelmslev plane. Using BAKER, LANE & LORIMER [1] again, ${}^{2}H$ is desarguesian.

Recall that, by Theorem 35 of Part I [11], we have:

Theorem 18 The set of elations in ${}^{2}\Psi$ with some fixed axis $l \in {}^{2}\mathcal{L}$ is an abelian group.

4.3 The case $n \ge 3$

In this subsection, we show:

Theorem Ib. If Δ is a locally finite triangle building with a half strongly-transitive group G, then for all vertices O of δ , the projective Hjelmslev plane ${}^{n}H(O)$, $n \geq 3$, satisfies the Moufang condition and ${}^{n}\Psi(O)$ contains all elations.

We assume throughout, by induction, that ${}^{k}H(v)$ is a Moufang projective Hjelmslev plane with all elations in ${}^{k}\Psi(v)$, for $1 \leq k \leq n-1$, $n \geq 3$, and for all vertices v. As for the case n = 2, this implies (and also the proof is similar, see Theorem 17)

Theorem 19 For all $k, 2 \leq k < n$, and all vertices v of Δ , ${}^{k}\!H(v)$ is desarguesian.

Theorem 35 of Part I [11] implies:

Theorem 20 For every vertex v, the set of elations in ${}^{k}\Psi(v)$ with some chosen axis l of ${}^{k}H$ forms a commutative group acting transitively on the set of points of ${}^{k}\mathcal{P} \setminus \{Q \in {}^{k}\mathcal{P} \mid {}^{1}\pi(Q)$ ¹ $I^{-1}\pi(l)\}.$

Also, note that the following lemmas have proofs which are completely similar to Lemma 10 and Lemma 11, respectively. Note that we still have our main assumption: the group G acts strongly-transitively on Δ .

Lemma 21 For every line $l \in {}^{n}\mathcal{P}$, $|^{n}\Psi_{l}|$ is a multiple of $q^{4n-1}(q+1)$.

Lemma 22 Suppose $l \in {}^{n}\mathcal{L}$ and $P \in {}^{n}\mathcal{P}$ such that $P {}^{n}I l$. Then every Sylow p-subgroup Γ of ${}^{n}\Psi_{l,P}$ acts transitively on ${}^{n}\mathcal{P} \setminus \{Q \in {}^{n}\mathcal{P} \mid Q \text{ is near } l\}$.

In view of Proposition 2, we must show that there is a non-trivial ¹*h*-collineation in ^{*n*} Ψ . We need a few lemmas before we can show this. The first lemma slightly generalizes Lemma 16 of Part I [11].

Lemma 23 Suppose l is some line of "H and P some point of "H with P"I $l, n \ge 2$. Suppose γ is a collineation in " Ψ with $(\gamma)^{\star_{n-1}} = 1$, fixing all lines incident with P except maybe for lines that neighbour l and such that all occurring fixed points are near l. Then γ is a "h-collineation in " Ψ with axis l and center P.

Proof. Suppose *m* is an arbitrary line of ${}^{n}H$ that is incident with *P* and for which ${}^{1}\pi(m) \neq {}^{1}\pi(l)$.

We claim that γ induces the identity in ${}^{1}\!H({}^{n-1}\pi(m))$. Indeed, the vertices in $cl({}^{n-1}\pi(m),{}^{1}\pi(T))$, for all ${}^{1}\pi(T)$ ${}^{1}\!I$ ${}^{1}\pi(m)$, that are adjacent to both ${}^{n-1}\pi(m)$ and ${}^{n-2}\pi(m)$, correspond with the lines at infinity of ${}^{1}\!H({}^{n-1}\pi(m))$, where, for n = 2, we set ${}^{n-2}\pi(m) = O$.

The lines m' that are incident with P and for which ${}^{n-1}\pi(m') = {}^{n-1}\pi(m)$, are fixed by γ , and give rise to an affine (affine in the dual projective plane ${}^{1}\!H({}^{n-1}\pi(m))$) center for the by γ induced collineation in ${}^{1}\!H({}^{n-1}\pi(m))$. Thus γ induces a collineation with two centers in ${}^{1}\!H({}^{n-1}\pi(m))$. Necessarily, $\gamma_{{}^{1}\!H({}^{n-1}\pi(m))} = 1$. Hence the claim.

In fact, all lines of ${}^{n}\!H$ that are near P and do not neighbour l, are fixed for γ . Indeed, suppose that m is some line of ${}^{n}\!H(O)$ such that ${}^{1}\pi(P){}^{1}I{}^{1}\pi(m)$, ${}^{n}\pi(m) \neq {}^{1}\pi(l)$, and $P{}^{n}\!I m$. Let T and T' be two non-neighbouring points of ${}^{n}\!H$ satisfying $T{}^{n}T{}m{}^{n}T{}'$ and ${}^{1}\pi(T){}^{1}I{}^{-1}\pi(l){}^{1}I{}^{-1}\pi(l){}^{1}I{}^{-1}\pi(T')$. Then the line m' of ${}^{n}\!H(O)$ that is incident with P and T is a fixed line for γ . The line m'' determined by P and T' is fixed for γ as well. Additionally, $m' \cap {}^{1}\!H({}^{n-1}\pi(T))$ and $m'' \cap {}^{1}\!H({}^{n-1}\pi(T))$ are both fixed by γ . Note again that $(\gamma)^{\star_{n-1}} = 1$. Since $m' \cap {}^{1}\!H({}^{n-1}\pi(T)) = m \cap {}^{1}\!H({}^{n-1}\pi(T'))$, we have $\gamma(m) = m$. Consequently, γ induces the identity collineation in ${}^{n-1}\!H({}^{n}(\pi(P))$.

Thus the number of lines in \mathcal{L} fixed by γ is at least $qq^{2(n-1)} = q^{2n-1}$. Since γ fixes an equal number of lines and points, by Lemma 8, and since there are $q^{2(n-1)}$ points of \mathcal{H} that

neighbour P, some point R exists in ${}^{n}\mathcal{P}$, ${}^{1}\pi(R) \neq {}^{1}\pi(P)$, for which $\gamma(R) = R$. Since all occurring fixed points are near l, ${}^{1}\pi(R)$ ${}^{1}I$ ${}^{1}\pi(l)$.

Since all points of ${}^{n}\!H$ that neighbour P are fixed by γ , every line of ${}^{n}\!H(O)$ that is incident with R and neighbours l is fixed by γ . Using earlier arguments in the proof, it can be seen that γ induces the identity in ${}^{n-1}\!H({}^{1}\pi(l))$.

Under the assumption that all fixed points for γ are near l, and applying Lemma 8 again, there must be $(q+1)q^{2n-2}$ points near l that are fixed by γ . Since there are only $(q+1)q^{2n-2}$ points near l, γ is a ¹h-collineation in ⁿ Ψ with axis l and center P.

Now we recall from Part I [11] (Lemma 18):

Lemma 24 At least one quasi-elation γ in ${}^{n}\Psi$ exists with non-trivial ()^{*1}-projection.

Lemma 25 Let k be some integer $1 \leq k \leq n-1$. If there is a collineation α in ⁿ Ψ fixing all points (n-1)-near some line $l \in {}^{n}\mathcal{L}$, with $(\alpha)^{\star_{n-1}}$ an elation with axis ${}^{n-1}\pi(l)$ and some center ${}^{n-1}\pi(P)$, P ⁿI l, and with $(\alpha)^{\star_{k}} = 1, (\alpha)^{\star_{k+1}} \neq 1$, then a non-trivial ¹h-collineation exists in ${}^{n}\Psi$.

Proof. The lemma is true for k = n - 1 by Lemma 19 of Part I [11]. We proceed by induction as follows. Suppose the statement of the lemma is true for all $k, h \le k \le n - 1$, with h such that $1 < h \le n - 1$. Then we prove the statement holds for h - 1.

So suppose α is a collineation in ${}^{n}\Psi$ fixing all points that are (n-1)-near some line $l \in {}^{n}\mathcal{L}$, with $(\alpha)^{\star_{n-1}}$ an elation with axis ${}^{n-1}\pi(l)$ and some center ${}^{n-1}\pi(P)$, $P {}^{n}I {}^{l}l$, and for which $(\alpha)^{\star_{h-1}} = 1$ but $(\alpha)^{\star_{h}} \neq 1$. Suppose R is some point in ${}^{n}\mathcal{P}, {}^{1}\pi(R) \not\downarrow {}^{1}\pi(l)$. Then $\alpha(R)$ is some point S of ${}^{n}H$, with ${}^{h}\pi(R) \neq {}^{h}\pi(S), {}^{h-1}\pi(R) = {}^{h-1}\pi(S)$. Any line incident with R and Sintersects l in a unique point of ${}^{n}H$, a point which is fixed by α . Thus any line incident with R and S is fixed by α . Suppose $m \in {}^{n}\mathcal{L}$, is some line incident with R and S, and suppose mintersects l in some point Q of ${}^{n}H$. Using Property 3, for every point ${}^{2}\pi(V)$ of ${}^{2}H(O)$, $V \in {}^{n}\mathcal{P}$ and incident with $l, {}^{2}\pi(V) \neq {}^{2}\pi(Q), {}^{1}\pi(V) = {}^{1}\pi(Q)$, a collineation β in ${}^{n}\Psi$ exists, fixing land R, and mapping V to Q.

So $\beta^{-1}\alpha\beta$ is a collineation in ${}^{n}\Psi$ fixing all points that are (n-1)-near l, with $(\beta^{-1}\alpha\beta)^{*_{n-1}}$ an elation with axis ${}^{n-1}\pi(l)$, and such that $(\beta^{-1}\alpha\beta)^{*_{n-1}} = 1$. Since $(\alpha)^{*_{h}} \neq 1$, one has $(\beta^{-1}\alpha\beta)^{*_{h}} \neq 1$. Moreover, both ${}^{h}\pi(R)$ and ${}^{h}\pi(S)$ are incident with $\beta^{-1}\alpha\beta({}^{h}\pi(m))$, because β stabilizes the sets of points incident with m and $\beta(m)$, respectively, and S belongs to both m and $\beta(m)$ (since $\beta(R) = R$ and ${}^{1}\pi(R) = {}^{1}\pi(S)$).

There are only q-1 possible images for ${}^{h}\pi(R)$ incident with ${}^{h}\pi(m)$ by collineations of the form $\beta^{-1}\alpha\beta, (\beta^{-1}\alpha\beta)^{*_{h-1}} = 1, (\beta^{-1}\alpha\beta)^{*_{h}} \neq 1$. But $|\{{}^{2}\pi(V) | V \in {}^{n}\mathcal{P}, V {}^{n}I l, {}^{1}\pi(V) = {}^{1}\pi(Q)\}| = q$. Hence, we may assume that some points V' and V'' of ${}^{n}H$ exist with $V' {}^{n}I l {}^{n}I V'', {}^{2}\pi(V') \neq {}^{2}\pi(V''), {}^{1}\pi(V') = {}^{1}\pi(Q) = {}^{1}\pi(V'')$, some collineation β' in ${}^{n}\Psi$ fixing l and R and mapping

V' to Q, and some collineation β'' in ${}^{n}\Psi$ fixing l and R such that $\beta''(V'') = Q$, such that $(\beta''^{-1}\alpha\beta'')({}^{h}\pi(R)) = (\beta'^{-1}\alpha\beta')({}^{h}\pi(R))$. Since $(\beta''^{-1}\alpha\beta'')^{\star_{h}}$ and $(\beta'^{-1}\alpha\beta')^{\star_{h}}$ are both elations in ${}^{h}\Psi$ with axis ${}^{h}\pi(l)$, and using Theorem 20 $(h \le n-1)$, $((\beta''^{-1}\alpha\beta'')^{-1}(\beta'^{-1}\alpha\beta'))^{\star_{h}}$ is again an elation in ${}^{h}\Psi$ with axis ${}^{h}\pi(l)$. Additionally, ${}^{h}\pi(R)$ is fixed for $(\beta''^{-1}\alpha\beta'')^{-1}(\beta'^{-1}\alpha\beta')$. Hence $((\beta''^{-1}\alpha\beta'')^{-1}(\beta'^{-1}\alpha\beta'))^{\star_{h}} = 1$.

Can we tell more about $\delta = (\beta''^{-1}\alpha\beta'')^{-1}(\beta'^{-1}\alpha\beta')$? From the previous paragraphs, it is already clear that δ fixes every point of ${}^{n}\!H$ that is (n-1)-near l, and that $(\delta)^{\star_{h}} = 1$. Since $(\beta'^{-1}\alpha\beta')^{\star_{n-1}}$ and $(\beta''^{-1}\alpha\beta'')^{\star_{n-1}}$ are both elations with axis ${}^{n-1}\pi(l)$, and since by Theorem 20 the set of elations with axis ${}^{n-1}\pi(l)$ forms a group, $(\delta)^{\star_{n-1}}$ is an elation with axis ${}^{n-1}\pi(l)$.

Suppose $\delta = 1$. Then δ also fixes the line w' of ${}^{n}H$ determined by R and V', and consequently $\beta''^{-1}\alpha\beta''(w') = w'$. Hence $\beta''^{-1}\alpha\beta''$ fixes two 1-neighbouring lines of ${}^{n}H$ that are incident with R: w' and the line w'' of ${}^{n}H$ defined by R and V''. Only the points of ${}^{1}H({}^{n-1}\pi(R))$ in ${}^{n}\mathcal{P}(O)$ are incident with both w' and w''. Thus $\beta''^{-1}\alpha\beta''({}^{n-1}\pi(R)) = {}^{n-1}\pi(R)$. However, $\beta''^{-1}\alpha\beta''$ is a collineation in ${}^{n}\Psi$ for which $(\beta''^{-1}\alpha\beta'')^{*n-1}$ is an elation with axis ${}^{n-1}\pi(l)$ such that $(\beta''^{-1}\alpha\beta'')^{*n} \neq 1$. Since $h \leq n-1$, a contradiction arises. We conclude that $\delta \neq 1$. Using the transitivity of ${}^{n}\Psi$ on the triangles of ${}^{n}H$, we can obtain a non-trivial collineation in ${}^{n}\Psi$ fixing all points (n-1)-near l, with $()^{*n-1}$ -projection an elation with axis ${}^{n-1}\pi(l)$ and center ${}^{n-1}\pi(P)$, and with $()^{*n}$ -projection trivial. Hence, by induction, a non-trivial ${}^{1}h$ -collineation can be constructed.

Lemma 26 The kernel of the $()^{*n-1}$ -projection is not trivial. In fact, there exists a non-trivial element in ker $(()^{*n-1})$ fixing all points of ⁿH that (n-1)-neighbour some point.

Proof. Suppose ${}^{n-1}\pi(l)$, $l \in {}^{n}\mathcal{L}$, is some line of ${}^{n-1}H(O)$ and ${}^{n-1}\pi(P)$, $P \in {}^{n}\mathcal{P}$, some point of ${}^{n-1}H(O)$ incident with ${}^{n-1}\pi(l)$.

Using Lemma 24, at least one quasi-elation δ in ^{*n*} Ψ exists with $()^{*_1}$ -projection not trivial, such that $(\delta)^{*_{n-1}}$ has some center ${}^{n-1}\pi(Q) {}^{n-1}I {}^{n-1}\pi(l), Q \in {}^{n}\mathcal{P}, {}^{1}\pi(Q) \neq {}^{1}\pi(P)$, and some axis ${}^{n-1}\pi(u) {}^{n-1}I {}^{n-1}\pi(Q), u \in {}^{n}\mathcal{L}, {}^{1}\pi(u) \neq {}^{1}\pi(l)$. Let *m* be one of the fixed lines in ${}^{n}\mathcal{L}$ for δ not neighbouring *u* (note that *m* exists since every quasi-elation has a quasi-axis). Notice that by Lemma 7 of Part I [11], *m* is (n-1)-near *Q*. Let *R* be some point of ${}^{n}H$ that is fixed by δ and for which ${}^{1}\pi(R) \neq {}^{1}\pi(Q)$. We can assume that $m {}^{n}I Q {}^{n}I u {}^{n}I R$.

Let us denote by Υ the group generated by all collineations δ' in ${}^{n}\Psi$ having the following properties:

- (i) δ' fixes the points in ${}^{n-1}\mathcal{P}(O)$ that are incident with ${}^{n-1}\pi(u)$;
- (ii) δ' fixes the lines in ${}^{n-1}\mathcal{L}(O)$ that are incident with ${}^{n-1}\pi(Q)$;
- (iii) δ' fixes every point of ^{*n*}H that (n-1)-neighbours Q;

- (iv) δ' fixes every line of "*H* that (n-1)-neighbours *u*;
- (v) $\delta'(R) = R$.

Note that $\delta \in \Upsilon$.

Next we claim that $ker(()^{*_{1}} \gamma) \neq 1$. Property 3 allows collineations $\gamma_{Q'}$ in ⁿ Ψ fixing R, some point T of ⁿH incident with m, ${}^{n}\pi(T) \neq {}^{1}\pi(Q)$, that map Q to any point Q' of ⁿH incident with u, ${}^{n-1}\pi(Q) = {}^{n-1}\pi(Q')$. There are q possible choices for Q' incident with u, ${}^{n-1}\pi(Q)$ $= {}^{n-1}\pi(Q')$, giving rise to q two by two different collineations $\gamma_{Q'}^{-1}\delta\gamma_{Q'}$. Indeed, suppose that Q'' and Q''' are different points of ⁿH satisfying Q'' ⁿI u ⁿI Q''', ${}^{n-1}\pi(Q) = {}^{n-1}\pi(Q'')$ $= {}^{n-1}\pi(Q''')$, such that $\gamma_{Q''}^{-1}\delta\gamma_{Q''} = \gamma_{Q'''}^{-1}\delta\gamma_{Q'''}$. Then two (n-1)-neighbouring fixed lines for $\gamma_{Q''}^{-1}\delta\gamma_{Q''}$ exist, namely $\gamma_{Q''}^{-1}(m)$ and $\gamma_{Q'''}^{-1}(m)$. Since $Q'' \neq Q'''$, some point ${}^{1}\pi(U) \in {}^{1}\mathcal{P}(O), U$ $\in {}^{n}\mathcal{P}(O), {}^{1}\pi(U) {}^{1}\mathcal{V} {}^{1}\pi(u)$, exists that is fixed by $\gamma_{Q''}^{-1}\delta\gamma_{Q''}$. This contradicts $(\gamma_{Q''}^{-1}\delta\gamma_{Q''})^{*_{1}} \neq 1$. All collineations $\gamma_{Q'}^{-1}\delta\gamma_{Q'}, Q' {}^{n}I u$, ${}^{n-1}\pi(Q) = {}^{n-1}\pi(Q')$, have a non-trivial ()*1-projection, and are again elements of Υ . Since 1 belongs to any group, this implies that

$$|\Upsilon| > q$$

On the other hand

$$|\Upsilon| \leq q.$$

Since

$$\frac{|\Upsilon|}{|ker(()^{\star_1} \gamma)|} = |{}^{^{1}}\!\Upsilon|$$

the claim follows.

Consequently, the existence of some non-trivial collineation $\beta \in \Upsilon$ with $(\beta)^{\star_1} = 1$ is guaranteed. We distinguish two cases.

Case 1: $(\beta)^{\star_{n-1}} = 1.$

Then since $\beta \neq 1$, the kernel of the $()^{\star_{n-1}}$ -projection is not trivial.

Case 2: $(\beta)^{\star_{n-1}} \neq 1.$

Then $(\beta)^{\star_{n-1}}$ is a ^kh-collineation (not ^{k-1}h-collineation) in ⁿ⁻¹ Ψ for some $k, 1 \leq k \leq n-2$, since $(\beta)^{\star_{n-1}}$ is an elation in ⁿ⁻¹ Ψ with axis ⁿ⁻¹ $\pi(u)$ and center ⁿ⁻¹ $\pi(Q)$, and since $(\beta)^{\star_1} = 1$ and $(\beta)^{\star_{n-1}} \neq 1$. Using Lemma 14 of Part I [11], all points of ⁿ⁻¹H(O) that are k-near ⁿ⁻¹ $\pi(u)$ are fixed by $(\beta)^{\star_{n-1}}$.

Since all elations of the Moufang projective Hjelmslev plane ${}^{n-1}H$ are in ${}^{n-1}\Psi$, we can consider a collineation α in ${}^{n}\Psi$ such that $(\alpha)^{\star_{n-1}}$ is an elation in ${}^{n-1}\Psi$ with center ${}^{n-1}\pi(P)$ and axis ${}^{n-1}\pi(l)$, and $(\alpha)^{\star_{k}} = 1$, $(\alpha)^{\star_{k+1}} \neq 1$.

Which properties does the collineation $[\alpha, \beta]$ have? It is clear that $([\alpha, \beta])^{\star_{n-1}}$ is an elation with axis ${}^{n-1}\pi(l)$ and center ${}^{n-1}\pi(Q)$. Moreover, $\beta(R) = R$ because $\beta \in \Upsilon$ (and

see condition (v) above), and α maps R to some point S of ${}^{n}H$ (so ${}^{n-1}\pi(R)$ is mapped to ${}^{n-1}\pi(S)$) with ${}^{k}\pi(S) = {}^{k}\pi(R)$. Hence ${}^{n-1}\pi(S)$ is k-near ${}^{n-1}\pi(u)$ and is therefore fixed by β^{-1} . This implies that $[\alpha,\beta]({}^{n-1}\pi(R)) = {}^{n-1}\pi(R)$. Since $([\alpha,\beta])^{*n-1}$ is an elation with axis ${}^{n-1}\pi(l)$ and since ${}^{1}\pi(R) \not I {}^{-1}\pi(l)$, we conclude $([\alpha,\beta])^{*n-1} = 1$.

Let us look at the image of R under $[\alpha, \beta]$. Applying that $(\alpha)^{\star_{n-1}}$ is an elation with axis ${}^{n-1}\pi(l)$ and center ${}^{n-1}\pi(P)$, $(\alpha)^{\star_k} = 1$ and $(\alpha)^{\star_{k+1}} \neq 1$, $S = \alpha(R)$ satisfies ${}^{k+1}\pi(S) \neq {}^{k+1}\pi(R)$, ${}^{k}\pi(S) = {}^{k}\pi(R)$. Suppose S is fixed by β . Then, using $\beta(R) = R$, any line w of ${}^{n}H$ that is incident with R and S is mapped by β to a line $\beta(w)$ of ${}^{n}H$ that is also incident with both R and S. Since ${}^{k+1}\pi(R) \neq {}^{k+1}\pi(S)$, ${}^{k}\pi(R) = {}^{k}\pi(S)$, w and $\beta(w)$ are (n-k)-neighbouring lines. Hence ${}^{n-k}\pi(w)$ is fixed by β . Since $(\beta)^{\star_{n-1}}$ is an elation in ${}^{n-1}\Psi$ with axis ${}^{n-1}\pi(u)$, since $n-k \leq n-1$ and using that w is not near Q, $(\beta)^{\star_{n-k}} = 1$, a contradiction. Therefore $[\alpha, \beta](R) \neq R$. In other words $[\alpha, \beta] \neq 1$.

Hence also in this case, we conclude that the kernel of the $()^{\star_{n-1}}$ -projection is not trivial.

Lemma 27 Suppose U is some point of ⁿH. Then $ker(()^{\star_{n-1}})$ induces all translations in ${}^{^{1}}H({}^{^{n-1}}\pi(U))$.

Proof. By Lemma 26, there exists a non-trivial element in $ker(()^{\star_{n-1}})$, say δ , fixing all points of ${}^{n}H$ that (n-1)-neighbour some point Q of ${}^{n}H$.

Consider an arbitrary point $T \in {}^{n}\mathcal{P}$, T not neighbouring Q. Then we claim that δ cannot induce a non-trivial homology in ${}^{1}\!H({}^{n-1}\pi(T))$. Indeed, suppose δ induces a non-trivial homology in ${}^{1}\!H({}^{n-1}\pi(T))$. Then some point T' of ${}^{n}\!H$, ${}^{n-1}\pi(T) = {}^{n-1}\pi(T')$ exists such that $\delta(T') = T'$. Hence the line u determined by T' and any point $Q' \in {}^{n}\mathcal{P}$ that (n-1)-neighbours Q is fixed by δ . Since $(\delta)^{\star_{n-1}} = 1$, and since for all points ${}^{1}\pi(V)$ of ${}^{1}\!H$, $V \in {}^{n}\!\mathcal{P}$, ${}^{1}\pi(V)$ ${}^{1}\!I$ ${}^{n}\pi(u)$, ${}^{n-1}\pi(u)$ $\cap {}^{n-2}\!H({}^{1}\pi(V))$ corresponds with lines at infinity of ${}^{1}\!H({}^{n-1}\pi(u))$, δ induces a collineation in ${}^{1}\!H({}^{n-1}\pi(u))$ with center at infinity. So δ induces in ${}^{1}\!H({}^{n-1}\pi(u))$ a collineation with an affine center and at the same time a center at infinity. Hence $\delta_{1}_{H({}^{n-1}\pi(u))} = 1$. As a consequence, δ induces an elation in ${}^{1}\!H({}^{n-1}\pi(T))$ with axis at infinity. However, additionally $\delta(T') = T'$. Hence $\delta_{1}_{H({}^{n-1}\pi(T))} = 1$.

Since $\delta \neq 1$, there consequently exists some point $U \in {}^{n}\mathcal{P}$ such that δ induces a non-trivial elation in ${}^{1}\!H({}^{n-1}\pi(U))$. Using Property 3, every point at infinity occurs as a center of some non-trivial translation of ${}^{1}\!H({}^{n-1}\pi(U))$. So $ker(()^{\star_{n-1}})$ induces at least $(q+1)(p^{h}-1)+1$ translations in ${}^{1}\!H({}^{n-1}\pi(U))$, with p^{h} the number of translations induced in ${}^{1}\!H({}^{n-1}\pi(U))$ for some fixed center at infinity. Applying $p^{h} > 1$ and Theorem 15, it follows that $p^{h} = q$. \Box

Lemma 28 A subgroup Υ of ⁿ Ψ exists every element of which fixes all lines of ⁿH that (n-1)-neighbour some line $l \in {}^{n}\mathcal{L}$, all points of ⁿ⁻¹H that are (n-2)-near ⁿ⁻¹ $\pi(l)$, some line ${}^{n-1}\pi(m)$ of ⁿ⁻¹H $(m \in {}^{n}\mathcal{L})$ that is incident with ⁿ⁻¹ $\pi(P)$, ¹ $\pi(m) \neq {}^{1}\pi(l)$, $P^{n}Il$, such that Υ acts transitively on the points of ${}^{1}H({}^{n-1}\pi(P))$ in ⁿ \mathcal{P} that are incident with l.

Proof. Let Σ be an apartment of Δ containing l, P, ${}^{n-1}\pi(m)$ and O. By v we denote the unique vertex in Σ at distance n from ${}^{1}\pi(l)$, corresponding with a line of ${}^{n}H({}^{1}\pi(l))$, and such that ${}^{1}\pi(P) \in cl(v, {}^{1}\pi(l))$. Then ${}^{n-1}\pi(m)$ is the vertex in Σ at distance n-1 from O and adjacent to both v and ${}^{n-1}\pi(v)$, where ${}^{n-1}\pi(v)$ is the unique vertex in $cl(v, {}^{1}\pi(l))$ at distance n-1 from ${}^{1}\pi(l)$.

Let us denote the unique vertex in $cl(l, {}^{n-1}\pi(P))$, corresponding with a point of ${}^{n-1}H({}^{1}\pi(l))$ as U. Then clearly $\alpha(U) = U$, for every potential element of Υ (if Υ exists). From this consideration, it is clear that we are done, whenever we can prove the existence of a subgroup of ${}^{n}\Psi({}^{1}\pi(l))$, consisting of collineations having a trivial action in ${}^{n-1}H({}^{1}\pi(l))$, that additionally acts transitively on the lines of ${}^{n}H({}^{1}\pi(l))$ that are incident with some chosen point X of ${}^{n}H({}^{1}\pi(l))$, and (n-1)-neighbour (with respect to the base-vertex ${}^{1}\pi(l)$) some chosen line of ${}^{n}H({}^{1}\pi(l))$, with X the point of ${}^{n}H({}^{1}\pi(l))$ corresponding with a vertex of Σ which has as canonical image in ${}^{1}H({}^{1}\pi(l))$ the point corresponding with the vertex O.

Shifting the problem to ${}^{n}\Psi(O)$, we need to prove the existence of a subgroup of ${}^{n}\Psi(O)$, consisting of collineations having a trivial $()^{*_{n-1}}$ -projection, acting transitively on the lines of ${}^{n}H(O)$ that are incident with some prechosen point of ${}^{n}H(O)$, and that (n-1)-neighbour some prechosen line of ${}^{n}H(O)$.

Dually, it suffices to prove the existence of a subgroup of $ker(()^{*n-1})$ inducing in ${}^{1}\!H({}^{n-1}\pi(R))$, R some point in ${}^{n}\!\mathcal{P}(O)$, a group of translations acting transitively on the points of ${}^{n}\!H(O)$ that (n-1)-neighbour R and that are incident with some chosen line $r \in {}^{n}\!\mathcal{L}(O), {}^{n-1}\!\pi(R)$ $I = {}^{n-1}\!\pi(r)$.

The existence of such a subgroup is guaranteed by Lemma 27.

Lemma 29 At least one non-trivial ¹h-collineation exists in ⁿ Ψ .

Proof. Using Lemma 24, at least one quasi-elation α in ${}^{n}\Psi$ exists with $()^{*_{1}}$ -projection not trivial. Suppose the induced elation $(\alpha)^{*_{n-1}}$ in ${}^{n-1}H(O)$ has some axis ${}^{n-1}\pi(l)$, $l \in {}^{n}\mathcal{L}$, and some center ${}^{n-1}\pi(P)$, $P {}^{n}I l$. Let $m {}^{n}I P$ be one of the fixed lines for α in ${}^{n}\mathcal{L}$ not neighbouring l (m exists since α has a quasi-center).

Let Υ refer to the subgroup of ${}^{n}\Psi$ generated by all collineations β in ${}^{n}\Psi$ such that the fixed points of ${}^{n}H(O)$ for α that are (n-1)-near l are also fixed points for β , such that the lines of ${}^{n}H$ that (n-1)-neighbour l are fixed by β , and such that $(\beta)^{\star_{n-1}}$ is an elation with axis ${}^{n-1}\pi(l)$ and center ${}^{n-1}\pi(P)$. Note that $\alpha \in \Upsilon$.

By Lemma 28, a collineation γ in ${}^{n}\Psi$ exists, fixing all lines in ${}^{n}\mathcal{L}$ that (n-1)-neighbour l, fixing ${}^{n-1}\pi(m)$ and all points in ${}^{n-1}\mathcal{P}$ that are (n-2)-near ${}^{n-1}\pi(l)$, mapping P to some arbitrary point P' of ${}^{n}H$ different from P, $P'{}^{n}Il$, ${}^{n-1}\pi(P') = {}^{n-1}\pi(P)$. It is clear that $[\alpha, \gamma] \in \Upsilon$. Indeed, clearly $([\alpha, \gamma])^{\star_{n-1}}$ is an elation with axis ${}^{n-1}\pi(l)$ and center ${}^{n-1}\pi(P)$, and γ stabilizes the

set of all points (n-1)-near l fixed by α since α fixes all lines (n-1)-neighbouring l by Lemma 11 of Part I [11].

Suppose $[\alpha, \gamma] = 1$. Then $[\alpha, \gamma](\gamma^{-1}(m)) = \gamma^{-1}(m)$. Hence α fixes both m and $\gamma^{-1}(m)$. Since $m \cap \gamma^{-1}(m) \cap l = \emptyset$ and since m and $\gamma^{-1}(m)$ are (n-1)-neighbouring lines of ${}^{n}\!H$, some point ${}^{1}\!\pi(R)$ not incident with ${}^{1}\!\pi(l), R \in {}^{n}\!\mathcal{P}$, exists such that $\alpha({}^{1}\!\pi(R)) = {}^{1}\!\pi(R)$. Since $(\alpha)^{\star_{1}}$ is a non-trivial elation with axis ${}^{1}\!\pi(l)$, a contradiction arises. Hence $[\alpha, \gamma] \neq 1$.

Since both α and γ induce in ${}^{l}H({}^{n-1}\pi(T))$, for all points T of ${}^{n}H$ incident with l, an elation with the same center at infinity (Lemma 11 of Part I [11] and Lemma 28), and as a consequence of Theorem 4.14 in HUGHES & PIPER [5], $[\alpha, \gamma]$ fixes every point of ${}^{n}H$ that (n-1)-neighbours l. We conclude that the non-trivial collineation $\delta = [\alpha, \gamma]$ fixes all points of ${}^{n}H$ that are (n-1)-near l, that $(\delta)^{\star_1} = 1$, and that $(\delta)^{\star_{n-1}}$ is an elation with axis ${}^{n-1}\pi(l)$ and center ${}^{n-1}\pi(P)$.

Applying Lemma 25 to δ , a non-trivial ¹h-collineation can be constructed.

By Proposition 2, we now have that ${}^{n}\!H$ is a Moufang Hjelmslev plane of level n, and that all elations belong to ${}^{n}\!\Psi$. As in Theorem 19, we conclude that ${}^{n}\!H$ is desarguesian. This completes the proof of Theorem I.

5 Proof of the Main Result

By Theorem I, all projective Hjelmslev planes H(O), $i \ge 1$, are desarguesian. The assertion follows from Theorem 12 of VAN MALDEGHEM [10] and Section 14 of TITS [7].

Alternatively, we can argue as follows. Suppose l^{∞} is some line of Δ^{∞} and let P^{∞} and Q^{∞} be two different points of Δ^{∞} not incident with l^{∞} . Then a vertex O in Δ exists such that for every $k \geq 1$, P^{∞} and Q^{∞} (represented as rays starting in O) determine non-neighbouring points of ${}^{k}\!(O)$, which are not near the line of ${}^{k}\!(O)$ determined by l^{∞} (represented as a ray starting in O). Since ${}^{k}\!H(O)$ is a Moufang projective Hjelmslev plane (Theorem I) for which the 'base-vertex' O was chosen arbitrarily in Δ , it follows that an elation acting on Δ^{∞} exists with axis l^{∞} , mapping P^{∞} to Q^{∞} , that is the inverse limit of elations acting on projective Hjelmslev planes with base-vertex O. Hence Δ^{∞} satisfies the Moufang condition. By VAN MALDEGHEM [8], Δ^{∞} is desarguesian.

References

[1] BAKER C., LANE N. D. and LORIMER J. W., The Artin-Zorn theorem for finite punctually cohesive projective Klingenberg Planes, Ars Combin. 29 (1990), 143 – 149.

- [2] BAKER C., LANE N. D. and LORIMER J. W., Local alternative rings and finite alternative right chain rings, C. R. Math. Rep. Acad. Sci. Canada 12 (1990).
- [3] BAKER C., LANE N. D. and LORIMER J. W., An affine characterization of Moufang projective Klingenberg planes, *Res. in Math.* **17** (1990).
- [4] BRUHAT F. and TITS J., Groupes réductifs sur un corps local. I. Données radicielles valuées, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5 252.
- [5] HUGHES D. R. and PIPER F. C., *Projective planes*, Springer, Berlin-New York (1973).
- [6] HUPPERT B., Endliche Gruppen I, Springer-Verlag Berlin Heidelberg New York 1967.
- [7] TITS J., Immeubles de type affine, in Buildings and the Geometry of Diagrams, Springer Lecture Notes in Mathematics 1181 (L. Rosati, ed.), Springer, Berlin (1986), 159 – 190.
- [8] VAN MALDEGHEM H., On locally finite alternative division rings with valuation, J. Geometry 30 (1987), 42 – 48.
- [9] VAN MALDEGHEM H., Valuations on PTR's induced by triangle buildings, Geom. Dedicata 26 (1988), 29 – 84.
- [10] VAN MALDEGHEM H., Automorphisms of non-classical triangle buildings, *Tijdsch. Belg. Wisk. Gen.* 42 (1990), 201 237.
- [11] VAN MALDEGHEM H. and VAN STEEN K., Characterizations by automorphisms of some rank 3 buildings, I. Some properties of half strongly-transitive triangle buildings, *preprint*.
- [12] VAN STEEN K., Non-spherical Tits-buildings of rank 3, Ph.D.-thesis, University of Ghent, 1996.

Address of the authors: Hendrik Van Maldeghem and Kristel Van Steen, Department of Pure Mathematics and Computer Algebra University of Ghent, Galglaan 2, 9000 Gent BELGIUM email: hvm@@cage.rug.ac.be and kvs@@cage.rug.ac.be