Characterizations by Automorphism Groups of some Rank 3 Buildings, II. A Half Strongly-Transitive Locally finite Triangle building is a Bruhat-Tits Building.

H. Van Maldeghem* K. Van Steen

Abstract

We complete the proof of the fact that every locally finite triangle building Δ with a half strongly-transitive automorphism group G (e.g., this happens when Δ is defined via a (B, N)-pair in G) is a Bruhat-Tits building associated with a classical linear group over a locally finite local skewfield.

1 Introduction and Main Result

In order to show that every half strongly-transitive locally finite triangle building Δ is a Bruhat-Tits building (this is an affine building arising from an algebraic, classical or mixed type group over some local field as in Bruhat \& Tits [4]; see Part I [11]), we prove that the projective Hjelmslev planes of level n attached to each vertex of Δ satisfy the Moufang condition, for all positive integers n. In Part I [11] of this paper, we proposed a machinery to do so. In particular, a method based on an induction hypothesis was developed and it was shown that only the first step of the induction hypothesis must be verified, along with the construction of a certain type of automorphism (called a ${ }^{1} h$-collineation) in each Hjelmslev plane. We briefly summerize these results below, after recalling the main definitions.

Let us first write down the Main Result of this part of the paper:
Theorem I. If Δ is a locally finite triangle building with a half strongly-transitive automorphism group G, and if O is an arbitrary vertex of Δ, then the projective Hjelmslev plane

[^0]${ }^{n} H(O)$ of level n, $n \geq 1$, attached to O, as in Van Maldeghem [9], satisfies the Moufang condition, i.e., it admits every elation and hence it is a desarguesian Hjelmslev plane.

From this theorem, we will derive the following result, which is stated in Part I [11] as the Main Result of Parts I and II:

Main Result. If Δ is a locally finite triangle building with a half strongly transitive automorphism group G, then Δ^{∞} is associated to a desarguesian projective plane, and hence Δ is a Bruhat-Tits building and arises from a classical group $\mathbf{P S L}_{3}(\mathbb{K})$ over a locally finite local skewfield \mathbb{K}.

2 Preliminaries

2.1 Definitions

We briefly recall some definitions from Part I [11].
Let Δ be an affine building of type \tilde{A}_{2}. If each residue is finite, then Δ is called locally finite. If there is a type-preserving automorphism group G acting transitively on the set of pairs of chambers at fixed Weyl-distance from each other, for each such Weyl-distance, then we say that G acts half strongly-transitively on Δ.
Let O be some vertex of Δ. Then we denote by ${ }^{n} H(O)$ (or simply ${ }^{n} H$ if no confusion is possible) the Hjelmslev plane of level n attached to O (this is the geometry of vertices at distance n from O in Δ, see Van Maldeghem [9], or Part I [11]). The point set of ${ }^{n} H$ is denoted ${ }^{n} \mathcal{P}$, the line set ${ }^{n} \mathcal{L}$. The natural epimorphism from ${ }^{n} H$ onto ${ }^{k} H, 1 \leq k \leq n$, is denoted by ${ }^{k} \pi$. Points (respectively lines) of ${ }^{n} H$ with the same image under ${ }^{k} \pi$ are called k-neighbouring, 1neighbouring being abbreviated by neighbouring (and denoted \sim). A point and a line whose images under ${ }^{k} \pi$ are incident are called k-near (and again, 1-near is simplified to near). Every collineation α of ${ }^{n} H$ preserves all neighbour relations and hence induces a collineation $(\alpha)^{\star_{k}}$ in ${ }^{k} H$, which we call the ()$^{\star_{k}}$-projection of α. To simplify notation, we denote $(\alpha)^{\star_{k}}$ sometimes by α when acting on elements of ${ }^{k} H$ (if no confusion is possible).
An elation in ${ }^{n} H$ with axis some line l and center some point P, where P is incident with l, is a collineation of ${ }^{n} H$ fixing all points on l and fixing all lines through P. If the group of all elations with axis l and center P acts transitively on the points not near l incident with some line m (which is itself not neighbouring l, but which is incident with P), then we say that ${ }^{n} H$ is (P, l)-transitive. If ${ }^{n} H$ is (P, l)-transitive for all choices of such P and l, then we say that ${ }^{n} H$ is a Moufang Hjelmslev plane, or that ${ }^{n} H$ satisfies the Moufang condition.
We will use the word axis (of a collineation) to denote a line which is pointwise fixed by a collineation. Dually for center.

A collineation δ of ${ }^{n} H, n \geq 2$, is a quasi-elation if a point P and a line l of ${ }^{n} H$ exist such that
(i) $(\delta)^{\star_{n-1}}$ is an elation with axis ${ }^{n-1} \pi(l)$ and center ${ }^{n-1} \pi(P),{ }^{n-1} \pi(P){ }^{n-1} I{ }^{n-1} \pi(l)$;
(ii) all lines $(n-1)$-neighbouring l are fixed;
(iii) all points $(n-1)$-neighbouring P are fixed.

Every line $m,{ }^{n-1} \pi(m)={ }^{n-1} \pi(l)$, that is incident with at least 3 two by two non-neighbouring fixed points is called a quasi-axis for δ. Every point $Q,{ }^{n-1} \pi(Q)={ }^{n-1} \pi(P)$, that is incident with at least 3 two by two non-neighbouring fixed lines is a quasi-center for δ. We have shown in Part I [11](Remark 9) that every quasi-elation has at least one center and, dually, at least one axis. Also, every elation is a quasi-elation (see Lemma 5 of Part I [11]).
In Part I [11], we have proved several elementary properties of quasi-elations. We will use these in the present paper. We now recall the definition of some other types of collineations. For all $k, 1 \leq k \leq n-1$, a ${ }^{k} h_{P}^{l}$-collineation of ${ }^{n} H$ is an elation with axis $l \in{ }^{n} \mathcal{L}$ and center P $\in{ }^{n} \mathcal{P}$, and ()$^{\star_{n-k}}$-projection trivial.
A generalized 1-homology of ${ }^{n} H$ is a non-trivial collineation of ${ }^{n} H$ with ($)^{\star_{n-1}}$-projection trivial, and with an axis $l \in^{n} \mathcal{L}$ and a center $P \in^{n} \mathcal{P}$, with l not near P.

2.2 Some known results

We remind the reader of three important results of Part I [11]. Let G be an automorphism group of a triangle building Δ, and let ${ }^{n} \Psi(O)$ (or ${ }^{n} \Psi$ if no confusion is possible) be the group of automorphisms of ${ }^{n} H(O)$ induced by G.

Proposition 1 Suppose that for every vertex v of $\Delta,{ }^{1} H(v)$ is a Moufang plane (with all elations inherited from G), that there exists at least one ${ }^{1} h$-collineation in ${ }^{2} H(v)$, and that there exists at least one quasi-elation in ${ }^{2} H(v)$ with non-trivial ()*-projection. Then ${ }^{2} H$ is a Moufang projective Hjelmslev plane and all elations belong to ${ }^{2} \Psi$.

Proposition 2 Let $n \geq 3$ and suppose that ${ }^{k} H(v)$ is a Moufang Hjelmslev plane of level k, for every $k \leq n-1$ (and all elations are induced by G) and for all vertices v of Δ, and that for every vertex v of Δ, there exists some non-trivial ${ }^{1} h$-collineation in ${ }^{n} H(v)$ (and induced by G). Then there exists a quasi-elation of ${ }^{n} H$ in ${ }^{n} \Psi$ with non-trivial ()$^{\star_{1}}$-projection and ${ }^{n} H$ is a Moufang projective Hjelmslev plane with all elations belonging to ${ }^{n} \Psi$.

A well-formed triangle in the projective Hjelmslev plane ${ }^{n} H$ is a set of three pairwise nonneighbouring points $\{P, Q, S\}$ such that ${ }^{1} \pi(P),{ }^{1} \pi(Q),{ }^{1} \pi(S)$ are not collinear in ${ }^{1} H$.

Property 3 (transitivity on the well-formed triangles of ${ }^{n} H$) Suppose that G acts half strongly-tranisitively on Δ. Let $\left\{P_{1}, P_{2}, P_{3}\right\}$ and $\left\{Q_{1}, Q_{2}, Q_{3}\right\}$ be well-formed triangles of ${ }^{n} H$. Then a collineation α in ${ }^{n} \Psi$ exists such that $\alpha\left(P_{i}\right)=Q_{i}$, for all $i \in\{1,2,3\}$.

3 Fixed point sets in finite Hjelmslev planes of level n

In this section, which is independent of any hypothesis on the automorphism group, we will show that, if " H is finite, then every collineation has an equal number of fixed points and fixed lines, just as in the case of a finite projective plane, see for instance Hughes \& Piper [5]. The method of proof will be a straightforward generalization of the case $n=1$ (projective planes). However, for reasons of notation, we will give the proof only for the case of $n=2$. The general case is proved in detail in the thesis of the second author, see Van Steen [12].
Also, in this section, we temporarily use another notation for points and lines of ${ }^{2} H$. This will be convenient for the proofs of the next lemmas.
We assume that ${ }^{1} H$ is a finite projective plane of order q. We label the points of ${ }^{1} H$ arbitrarily by ${ }^{1} p_{i}, 1 \leq i \leq q^{2}+q+1$, and we label the q^{2} points in every ${ }^{1} \pi^{-1}\left({ }^{1} p_{i}\right)$ arbitrarily by ${ }^{2} p_{j}$, $1 \leq j \leq q^{2}$. We then label a point P of ${ }^{2} H$ by the sequence ${ }^{1} p_{i}{ }^{2} p_{j}$ with $1 \leq j \leq q^{2}$, $1 \leq i \leq q^{2}+q+1$, where ${ }^{1} p_{i}$ refers to ${ }^{1} \pi(P)$ and ${ }^{2} p_{j}$ to P in the obvious way.
In the same way we label any line of ${ }^{2} H$ by a sequence ${ }^{1} l_{i}{ }^{2} l_{j}, 1 \leq j \leq q^{2}, 1 \leq i \leq q^{2}+q+1$, with ${ }^{1} l_{i}$ referring to ${ }^{1} \pi(l)$ and ${ }^{2} l_{j}$ to l.
Notice that with this labelling we have $\begin{cases}{ }^{1} p_{i}{ }^{2} p_{j} \sim{ }^{1} p_{g}{ }^{2} p_{h} & \Leftrightarrow i=g \\ { }^{1} l_{i}{ }^{2} l_{j} \sim{ }^{1} l_{g}{ }^{2} l_{h} & \Leftrightarrow \quad i=g .\end{cases}$
Definition 4 An incidence matrix A for ${ }^{2} H$ is said to be normal if the point ${ }^{1} p_{i}{ }^{2} p_{j}$ refers to row $q^{2}(i-1)+j$ of A, and the line ${ }^{1} l_{i}{ }^{2} l_{j}$ refers to column $q^{2}(i-1)+j$ of A.

We can therefore write $A=\left(a_{q^{2}(i-1)+j, q^{2}(g-1)+h}\right)$ with $a_{q^{2}(i-1)+j, q^{2}(g-1)+h}=1$ if ${ }^{1} p_{i}{ }^{2} p_{j}{ }^{2}{ }^{1} l_{g}{ }^{2} l_{h}$, and with $a_{q^{2}(i-1)+j, q^{2}(g-1)+h}=0$ otherwise.

Lemma 5 If ${ }^{2} H$ is finite, and if A is a normal incidence matrix for ${ }^{2} H$ and α a collineation in ${ }^{2} \Psi$, then α can be represented by 2 permutation matrices B and C satisfying

$$
B A=A C .
$$

Proof. This is a standard exercise.
Lemma 6 If ${ }^{2} H$ is finite, and if A is a normal incidence matrix for ${ }^{2} H$, then $\operatorname{det}(A) \neq 0$ (over \mathbb{Q}, the field of rational numbers).

Proof. Consider the matrix product $B=A A^{T}$. Then the diagonal elements $b_{i i}, 1 \leq i \leq$ $v=q^{2}\left(q^{2}+q+1\right)$ are given by

$$
\begin{aligned}
b_{i i} & =\text { the number of lines that are incident with a point } \\
& =q(q+1) .
\end{aligned}
$$

The non-diagonal elements of B, namely $b_{i j}, i \neq j$, for $1 \leq i, j \leq v$, satisfy

$$
\begin{aligned}
b_{i j}= & \text { the number of lines that are incident with the points } P \text { and } Q \\
& \text { respectively corresponding with the i'th and j'th row of } A .
\end{aligned}
$$

If P and Q are neighbouring points, then $b_{i j}=q$. If P and Q are non-neighbouring points, then $b_{i j}=1$. Hence, the determinant of the matrix $A A^{T}$ is equal to

$$
\operatorname{det}\left(A A^{T}\right)=\operatorname{det}\left(\begin{array}{cccc}
q^{2} I_{q^{2}}+q J_{q^{2}} & J_{q^{2}} & \cdots & J_{q^{2}} \\
J_{q^{2}} & q^{2} I_{q^{2}}+q J_{q^{2}} & \cdots & J_{q^{2}} \\
\vdots & \vdots & \ddots & \vdots \\
J_{q^{2}} & J_{q^{2}} & \cdots & q^{2} I_{q^{2}}+q J_{q^{2}}
\end{array}\right),
$$

where $I_{q^{2}}$ denotes the $\left(q^{2} \times q^{2}\right)$-identity matrix and $J_{q^{2}}$ denotes the $\left(q^{2} \times q^{2}\right)$-matrix with all entries equal to 1 . If we denote the rows and columns of the blockmatrix above by respectively $R_{i}, 1 \leq i \leq q^{2}+q+1$, and $K_{i}, 1 \leq i \leq q^{2}+q+1$, then, after replacing the rows $R_{i}, i \neq 1$, by $R_{i}-R_{1}$, and afterwards replacing the first column by the sum of all columns, we obtain

$$
\operatorname{det}\left(A A^{T}\right)=\operatorname{det}\left(\begin{array}{cccc}
q^{2} I_{q^{2}}+\left(2 q+q^{2}\right) J_{q^{2}} & J_{q^{2}} & \cdots & J_{q^{2}} \\
0 & q^{2} I_{q^{2}}+(q-1) J_{q^{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & q^{2} I_{q^{2}}+(q-1) J_{q^{2}}
\end{array}\right)
$$

Hence

$$
\operatorname{det}\left(A A^{T}\right)=\operatorname{det}\left(q^{2} I_{q^{2}}+\left(2 q+q^{2}\right) J_{q^{2}}\right)\left(\operatorname{det}\left(q^{2} I_{q^{2}}+(q-1) J_{q^{2}}\right)\right)^{q^{2}+q}
$$

After an elementary calculation, we obtain

$$
\operatorname{det}\left(A A^{T}\right)=(q+1)^{2} q^{\left(2 q^{2}+1\right)\left(q^{2}+q\right)+2 q^{2}}
$$

Hence $\operatorname{det}\left(A A^{T}\right)=0$ if and only if $q \in\{-1,0\}$. Since $q \geq 2$ and since $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$, the lemma follows.

Lemma 6 enables us to formulate the following useful result.
Lemma 7 If ${ }^{2} H$ is finite, then every collineation of ${ }^{2} H$ has an equal number of fixed points and fixed lines.

Proof. Suppose α is a collineation of ${ }^{2} H$. Then, using Lemma 5, α can be represented by permutation matrices B and C with $B A=A C$ and A a normal incidence matrix for ${ }^{2} H$. By definition of B, the trace $\operatorname{tr}(B)$ equals the number of fixed points of α. In the same way
$\operatorname{tr}(C)$ gives the number of fixed lines of α.
Using Lemma 5 again together with Lemma 6 , which guarantees the existence of A^{-1}, we obtain that $B=A C A^{-1}$. Thus $\operatorname{tr}(B)=\operatorname{tr}(C)$. Hence α has an equal number of fixed points and fixed lines.

Similarly, one shows:
Lemma 8 Let ${ }^{n} H$ be finite. Then every collineation acting on ${ }^{n} H$ has an equal number of fixed points and fixed lines, $n \geq 1$.

In fact, only the non-singularity of an incidence matrix of ${ }^{n} H$ is somewhat harder to prove than in the case $n=2$. But this boils down to some calculation which are uninteresting and uniformative for the rest of this paper. As mentioned before, a complete detailed proof can be found in Van Steen [12].

4 Proof of Theorem I

In this section we prove Theorem I of the Introduction. So we assume that Δ is a locally finite triangle building with a half strongly-transitive automorphism group G. After some definitions of affine planes and dual affine planes occurring in ${ }^{n} H$, we prove first Theorem I for the cases $n=1,2$.

4.1 Affine planes in ${ }^{1} H$

Suppose ${ }^{i} \pi(Q)$ is a point of ${ }^{i} H(O), 1 \leq i \leq n$, for some point $Q \in{ }^{n} \mathcal{P}(O)$. Then the projective plane, viewed as a completed affine plane (and which allows us to speak about points at infinity, once we defined a line at infinity), associated with ${ }^{i} \pi(Q)$ is denoted by ${ }^{1} H(\pi(Q))$ and defined as follows.
For $i=1$, the vertex O is viewed as the line at infinity.
For $i>1$, the point ${ }^{i-1} \pi(Q)$ of ${ }^{i-1} \mathcal{P}(O)$ corresponds with the line at infinity of ${ }^{1} H\left({ }^{i} \pi(Q)\right)$.
The projective Hjelmslev plane of level j associated with ${ }^{i} \pi(Q), 1 \leq j$, is denoted by ${ }^{j} H\left({ }^{i} \pi(Q)\right)$ and defined as the projective Hjelmslev plane of level j attached to the vertex ${ }^{i} \pi(Q)$ of the triangle building Δ such that ${ }^{1} \pi\left({ }^{j} H\left({ }^{i} \pi(Q)\right)\right)={ }^{1} H\left({ }^{i} \pi(Q)\right)$.
Suppose ${ }^{i} \pi(m)$ is a line of ${ }^{i} H(O), 1 \leq i \leq n$, for some line $m \in{ }^{n} \mathcal{L}(O)$. Then the projective plane, viewed as a completed dual affine plane, associated with ${ }^{i} \pi(m)$ is denoted by ${ }^{1} H\left({ }^{i} \pi(m)\right)$ and is defined in a similar way as ${ }^{1} H\left({ }^{i} \pi(Q)\right)$.
For $i=1$, we view O as the point at infinity of ${ }^{1} H\left({ }^{1} \pi(m)\right)$.
For $i>1$, the line ${ }^{i-1} \pi(m)$ of ${ }^{i-1} \mathcal{L}(O)$ corresponds with the point at infinity of the dual projective plane ${ }^{1} H\left({ }^{i} \pi(m)\right)$,

The projective Hjelmslev plane of level j associated with ${ }^{i} \pi(m), 1 \leq j$, is denoted by ${ }^{j} H\left({ }^{i} \pi(m)\right)$ and defined as the projective Hjelmslev plane attached to ${ }^{i} \pi(m)$ such that ${ }^{1} \pi\left({ }^{3} H\left({ }^{i} \pi(m)\right)\right)=$ ${ }^{1} H\left({ }^{i} \pi(m)\right)$.
See also Part I [11] for these definitions.

4.2 The case of levels 1 and 2

In this subsection we show:
Theorem Ia If Δ is a locally finite triangle building with a half strongly-transitive group G, then for all vertices O of δ, the projective plane ${ }^{1} H(O)$ and the projective Hjelmslev plane ${ }^{2} H(O)$ satisfy the Moufang condition and both ${ }^{1} \Psi(O)$ and ${ }^{2} \Psi(O)$ contain all elations.

Lemma $9{ }^{1} H(O)$ is a desarguesian projective plane of order $q=p$, where p is some prime and $s \geq 1$. Also, all elations belong to ${ }^{1} \Psi(O)$.

Proof. This is a consequence of Property 3, the Theorem of Ostrom-Wagner (see Hughes \& Piper [5]) and the locally finiteness assumption.
Note that ${ }^{1} \Psi$ contains the little projective group $\operatorname{PSL}(3, q)$. From now on we denote the order of a vertex-residue in Δ by $q=p^{s}$, where p is a fixed prime and s is a fixed positive integer.

Lemma 10 For all lines l of ${ }^{2} H,\left.\right|^{2} \Psi_{l} \mid=k q^{7}(q+1)$, for some positive integer k.
Proof. Suppose $K \in{ }^{2} \mathcal{P}$ and $L \in{ }^{2} \mathcal{P}$ determine a unique line l (so $K \nsim L$). Let M be some point of ${ }^{2} H$ not near l, and let m be the line defined by M and K. Put $\left|{ }^{2} \Psi_{M, K, L}\right|=k, k \geq 1$. Then by Property $3,\left.\right|^{2} \Psi_{l} \mid$ is equal to k multiplied with the number of possible choices for K, L, M defined as above. An elementary counting argument shows that there are exactly $q^{7}(q+1)$ such choices.

Lemma 11 Suppose $l \in{ }^{2} \mathcal{L}$ and $P \in{ }^{2} \mathcal{P}$ such that $P^{2} I l$. Then every Sylow p-subgroup Γ of ${ }^{2} \Psi_{l, P}$ acts transitively on ${ }^{2} \mathcal{P} \backslash\left\{Q \in{ }^{2} \mathcal{P} \mid Q\right.$ is near $\left.l\right\}$.

Proof. By Lemma $9,{ }^{1} H$ is a projective plane of order $q=p^{s}$. Suppose $p^{t} \mid k$ with k as in Lemma 10 and where $t \geq 0$. By Lemma 10 the order of ${ }^{2} \Psi_{l, P}$ equals $k q^{6}$. Hence $p \|\left.\right|^{2} \Psi_{l, P} \mid$ and the Sylow p-subgroups of ${ }^{2} \Psi_{l, P}$ are non-trivial. Let Γ be such a Sylow p-subgroup. Then $|\Gamma|=p^{6 s+t}$. Suppose now R is some point of ${ }^{2} H$ with ${ }^{1} \pi(R){ }^{1}{ }^{1} \pi(l)$ and put $\left|R^{\Gamma}\right|=p^{u}$, the order of the orbit of R under the group Γ.

Notice that $\left|R^{\Gamma}\right|$ is indeed a power of p, since $|\Gamma|=\left|\Gamma_{R}\right|\left|R^{\Gamma}\right|$ and since $|\Gamma|=p^{6 s+t}$.
Using $|\Gamma|=\left|\Gamma_{R}\right|\left|R^{\Gamma}\right|$,

$$
\begin{aligned}
\left|\Gamma_{R}\right| & =\text { the order of the subgroup of } \Gamma \text { fixing } R \\
& =p^{6 s+t-u} .
\end{aligned}
$$

Since $\Gamma_{R} \leq{ }^{2} \Psi_{l, P, R}$ and, by using Lemma 10 again $\left(\left|{ }^{2} \Psi_{l, P, R}\right|=k q^{2}\right)$, we obtain that $p^{6 s+t-u} \mid p^{2 s+t}$. Hence $6 s+t-u \leq 2 s+t$ or

$$
\begin{equation*}
4 s \leq u \tag{1}
\end{equation*}
$$

But there are only q^{4} possibilities to pinpoint a point R of ${ }^{2} H$ that is not near l. Thus $\left|R^{\Gamma}\right| \leq p^{4 s}$, which implies that $p^{u} \leq p^{4 s}$ or that

$$
\begin{equation*}
u \leq 4 s \tag{2}
\end{equation*}
$$

From 1 and 2 we conclude that $u=4 s$.
Consequently $\left|R^{\Gamma}\right|=q^{4}$. The result is the transitivity of Γ on ${ }^{2} \mathcal{P} \backslash\left\{Q \in{ }^{2} \mathcal{P} \mid Q\right.$ is near $\left.l\right\}$.
Lemma 12 Suppose $l, m \in{ }^{2} \mathcal{L}, l \nsim m$. Suppose P is the point of ${ }^{2} H$ determined by l and m, and suppose Q is some point incident with l not neighbouring P. Then every Sylow p-subgroup Γ of ${ }^{2} \Psi_{l, m, Q}$ acts transitively on the set $\left\{S \in{ }^{2} \mathcal{P} \mid S{ }^{2} I m,{ }^{1} \pi(S) \neq{ }^{1} \pi(P)\right\}$.

Proof. Noting that $\left|\Psi^{2} \Psi_{l, m, Q}\right|=k q^{2}$ (consequence of Lemma 10), that $\left.\right|^{2} \Psi_{l, m, Q, R} \mid=k$, where R is some element of $\left\{S \in{ }^{2} \mathcal{P} \mid S^{2} I m,{ }^{1} \pi(S) \neq{ }^{1} \pi(P)\right\}$ (Lemma 10 and Property 3), and that there are q^{2} points of ${ }^{2} H$ incident with m that do not neighbour P, the proof of Lemma 11 is easily adapted.

Now we note (see e.g. Huppert [6], Hilfssatz 7.7.):

Lemma 13 Suppose Υ is some group and θ an epimorphism

$$
\theta: \Upsilon \rightarrow \theta(\Upsilon)
$$

If Γ is a Sylow p-subgroup of Υ, for some $p \geq 2$, then $\theta(\Gamma)$ is a Sylow p-subgroup of $\theta(\Upsilon)$.

In view of Proposition 1, we have to exibit at least one quasi-elation with non-trivial ($)^{\star_{1}}$ projection. This will be done in the following lemma.

Lemma 14 At least one quasi-elation exists in ${ }^{2} \Psi$ (with a quasi-axis and a quasi-center) with () ${ }^{\star_{1}}$-projection non-trivial.

Proof. Consider some points P and Q of ${ }^{2} H,{ }^{1} \pi(P) \neq{ }^{1} \pi(Q)$, and a line m not near Q with $P^{2} I m$. Let l be the line in ${ }^{2} \mathcal{L}$ incident with P and Q.
By property $3,{ }^{2} \Psi_{P, Q, m}$ acts transitively on the points that are incident with m but which do not neighbour P. So $q^{2}| |^{2} \Psi_{P, Q, m} \mid$. So it is possible to consider a non-trivial Sylow p-subgroup Γ of ${ }^{2} \Psi_{P, Q, m}$. By Lemma 13, $(\Gamma)^{\star_{1}}$ is a Sylow p-subgroup of $\left({ }^{2} \Psi_{P, Q, m}\right)^{\star_{1}}$.
We claim that $(\Gamma)^{\star_{1}}$ contains at least one elation with axis ${ }^{1} \pi(l)$. Indeed, if we coordinatize ${ }^{1} H$ such that

$$
\begin{aligned}
{ }^{1} \pi(P) & :=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)^{T}, \\
{ }^{1} \pi(Q) & :=\left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right)^{T}, \\
{ }^{1} \pi(m) & :=Y=0,
\end{aligned}
$$

then $(\Gamma)^{\star_{1}}$ is contained in the group of semi-linear matrices

$$
\left(\begin{array}{ccc}
1 & 0 & d \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)^{\theta}, b, c, d \in \mathbf{G F}(q)
$$

a group of order $(q-1)^{2} q s$ with $q=p^{s}$ as before. In fact, since $(\Gamma)^{\star_{1}}$ is a p-group, $(\Gamma)^{\star_{1}}$ is contained in the group of matrices

$$
\delta_{d, \theta}:=\left(\begin{array}{ccc}
1 & 0 & d \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)^{\theta}, d \in \mathbf{G F}(q) .
$$

Suppose there exists for every automorphism θ of $\mathbf{G F}(q)$ that occurs in $(\Gamma)^{\star_{1}}$ only one $d \in \mathbf{G F}(q) \backslash\{0\}$ to form a matrix $\delta_{d, \theta}$ of $(\Gamma)^{\star 1}$. Then $\left|(\Gamma)^{\star 1}\right| \leq s<q$. However, by Lemma 12, we have $q\left|\left|(\Gamma)^{\star_{1}}\right|\right.$, a contradiction.
Hence, different elements d and $d^{\prime} \in \mathbf{G F}(q) \backslash\{0\}$ exist, and an automorphism θ of $\mathbf{G F}(q)$ exists such that $\delta_{d, \theta}$ and $\delta_{d^{\prime}, \theta}$ are both elements of $(\Gamma)^{\star 1}$. Thus, since $(\Gamma)^{\star_{1}}$ is a group, $\delta_{d^{\prime}, \theta}\left(\delta_{d, \theta}\right)^{-1}=\delta_{d^{\prime}, \theta} \delta_{-d^{\theta-1}, \theta^{-1}}=\delta_{d^{\prime}-d, 1} \in(\Gamma)^{\star 1}$ and $d^{\prime}-d \neq 0$. Consequently, $\delta_{d^{\prime}-d, 1}$ is an elation of $(\Gamma)^{\star_{1}}$ with axis ${ }^{1} \pi(l)$ and center ${ }^{1} \pi(P)$. The claim follows.
Let α be some element of Γ with $(\alpha)^{\star_{1}}$ a non-trivial elation with axis ${ }^{1} \pi(l)$ and center ${ }^{1} \pi(P)$. The lines of ${ }^{1} H$ that are incident with ${ }^{1} \pi(P)$ correspond with the points at infinity of ${ }^{1} H\left({ }^{1} \pi(P)\right)$. Hence, in ${ }^{1} H\left({ }^{1} \pi(P)\right) \alpha$ induces a collineation with axis the line at infinity of ${ }^{1} H\left({ }^{1} \pi(P)\right)$ and fixes at least one affine point of ${ }^{1} H\left({ }^{1} \pi(P)\right)$, namely P. Since the order of α is a power of p (α being an element of a Sylow p-group), α induces the identity collineation in ${ }^{1} H\left({ }^{1} \pi(P)\right)$. Dually, α also induces the identity in ${ }^{1} H\left({ }^{1} \pi(l)\right)$.
We now consider an arbitrary point ${ }^{1} \pi(R) \neq{ }^{1} \pi(P), R \in{ }^{2} \mathcal{P}$, that is incident with ${ }^{1} \pi(l)$. Then the collineation induced by α in ${ }^{1} H\left({ }^{1} \pi(R)\right)$ has a center at infinity, corresponding with the
line ${ }^{1} \pi(l)$ of ${ }^{1} H$, becaue α induces the identity in ${ }^{1} H\left({ }^{1} \pi(l)\right)$. Since $(\alpha)^{\star_{1}} \neq 1$ and points at infinity of ${ }^{1} H\left({ }^{1} \pi(R)\right)$ are in one-one correspondence with the lines in ${ }^{1} \mathcal{L}$ that are incident with ${ }^{1} \pi(R)$, no other point at infinity of ${ }^{1} H\left({ }^{1} \pi(R)\right)$ can be fixed by α.
Hence α induces in ${ }^{1} H\left({ }^{1} \pi(R)\right)$ a non-trivial elation with some affine axis determined by an $l^{\prime} \cap{ }^{1} H\left({ }^{1} \pi(R)\right) l^{\prime} \in{ }^{2} \mathcal{L},{ }^{1} \pi\left(l^{\prime}\right)={ }^{1} \pi(l)$, where $l^{\prime} \cap{ }^{1} H\left({ }^{1} \pi(R)\right)$ is the formal notation for the unique vertex in Δ that is adjacent to $l^{\prime},{ }^{1} \pi\left(l^{\prime}\right)$ and ${ }^{1} \pi(R)$.
Dually, we consider an arbitrary line ${ }^{1} \pi(u) \neq{ }^{1} \pi(l), u \in{ }^{2} \mathcal{L}$, such that ${ }^{1} \pi(u)^{1} I^{1} \pi(P)$. Following the reasoning of the previous paragraph, we obtain that α induces a non-trivial elation in ${ }^{1} H\left({ }^{1} \pi(u)\right)$ with some affine center, determined by a $P^{\prime} \cap{ }^{1} H\left({ }^{1} \pi(u)\right), P^{\prime} \in{ }^{2} \mathcal{P}, P^{\prime} \sim P$, where again $P^{\prime} \cap{ }^{1} H\left({ }^{1} \pi(u)\right)$ is a formal notation and indicates the unique vertex in Δ that is adjacent to $P^{\prime},{ }^{1} \pi\left(P^{\prime}\right)$, and ${ }^{1} \pi(u)$.
We conclude that α is a quasi-elation with quasi-axis (quasi-axes) neighbouring l and quasicenter (quasi-centers) neighbouring P, such that $(\alpha)^{\star^{1}} \neq 1$.
Our next aim is the construction of a non-trivial ${ }^{1} h$-colineation in ${ }^{2} H$. We recall some definitions from Part I [11].
A ${ }^{1} h^{l}$-collineation in ${ }^{2} \Psi$ is a ${ }^{1} h$-collineation with axis l. Dually, a ${ }^{1} h_{R}$-collineation in ${ }^{2} \Psi$ is a ${ }^{1} h$-collineation with center R. A ${ }^{1} h_{R}^{l}$-collineation in ${ }^{2} \Psi$ is a ${ }^{1} h^{l}$-collineation which is also a ${ }^{1} h_{R^{-}}$collineation.
We denote the sets of ${ }^{1} h$-collineations, ${ }^{1} h$-collineations with axis $l,{ }^{1} h$-collineations with center R, and ${ }^{1} h$-collineations with axis l and center R in ${ }^{2} \Psi$ respectively as ${ }^{1} h \mathcal{C},{ }^{1} h \mathcal{C}^{l},{ }^{1} h \mathcal{C}_{(R)}$ and ${ }^{1} h \mathcal{C}_{(R)}^{l}$.
Now note that, by Lemma 2 of Part I [11], for every point P of ${ }^{2} H$, a generalized 1-homology induces in ${ }^{1} H\left({ }^{1} \pi(P)\right)$ either the identity or a non-trivial elation with axis at infinity. Since ${ }^{1} H\left({ }^{1} \pi(P)\right)$ is a finite projective plane of order q (by Lemma 9), the order of such an induced non-trivial elation is equal to p. So we may denote the order of the subgroup of ${ }^{2} \Psi$ consisting of all generalized 1-homologies with an axis l and a center R by $p^{r}(l, R)$, for some specific $r \geq 0$ (or p^{r} if no confusion is possible).

The next theorem is a result about finite projective planes, independent of our hypotheses. We use the notation of Hughes \& PiPER [5]. In particular, for an automorphism group Υ of a projective plane, a point Q and a line l of that plane, we denote by $\Upsilon_{(Q, l)}$ the set of all collineations in Υ with center Q and axis l.

Theorem 15 Let H be a finite projective plane of order $q=p^{s}$ (p prime, $s \geq 1$), and l some line of H. If Υ is a collineation group of H such that $\Upsilon_{(Q, l)}$ is non-trivial and $\left|\Upsilon_{(Q, l)}\right|$ is some fixed power of p, for all points Q of H that are incident with l, then $\left|\Upsilon_{(Q, l)}\right|=q$.

Proof. Suppose $\left|\Upsilon_{(Q, l)}\right|=p^{h}, h>0$. Then $\left|\Upsilon_{(l, l)}\right|=(q+1)\left(p^{h}-1\right)+1$, since there are exactly $q+1$ points of H incident with l.

Using Theorem 4.16 of Hughes \& Piper [5], $\left|\Upsilon_{(l, l)}\right| \mid q^{2}=p^{2 s}$. Hence $(q+1)\left(p^{h}-1\right)+1=$ $p^{s+h}+p^{h}-p^{s}=p^{s}\left(p^{h}+\frac{p^{h}}{p^{s}}-1\right)>p^{s}$, and is a power of p, say $p^{r}(r>s)$.
Consequently, p is a divisor of $p^{h}+\frac{p^{h}}{p^{s}}-1$, which is only possible for $p^{h}=p^{s}=q$.
The following lemma is the crux of the proof of Theorem I.
Lemma 16 At least one non-trivial ${ }^{1} h$-collineation exists in ${ }^{2} \Psi$.
Proof. By Lemma 14, a quasi-elation α with some quasi-axis $l \in{ }^{2} \mathcal{L}$ and quasi-center neighbouring some point $P \in{ }^{2} \mathcal{P}, P^{2} I l$, and with non-trivial ($)^{\star_{1}}$-projection exists. Let $m^{2} I P$ be some fixed line in ${ }^{2} \mathcal{L}$ for α with ${ }^{1} \pi(m) \neq{ }^{1} \pi(l)$ (use Property 3 if necessary), and let Q be some point of ${ }^{2} H$ incident with $l,{ }^{1} \pi(Q) \neq{ }^{1} \pi(P)$

Part 1:

In this part we prove the claim that there exists a group of collineations fixing all lines neighbouring l, fixing all lines of ${ }^{1} H$ that are incident with ${ }^{1} \pi(P)$, and acting transitively on the points that neighbour P and that are also incident with l.
For the moment, let us denote by Υ the subgroup of ${ }^{2} \Psi$ generated by all collineations fixing every point in ${ }^{2} \mathcal{P}$ that neighbours P, fixing all lines of ${ }^{2} H$ that neighbour l (and by considering intersection of such lines, thus fixing all points of ${ }^{1} H$ that are incident with $\left.{ }^{1} \pi(l)\right)$.
Then $\alpha \in \Upsilon$ and $(\Upsilon)^{\star 1}$ is a set of elations with axis ${ }^{1} \pi(l)$ and center ${ }^{1} \pi(P)$. Hence

$$
\begin{equation*}
\left|(\Upsilon)^{\star_{1}}\right| \leq q . \tag{3}
\end{equation*}
$$

If $\Upsilon^{\prime} \leq \Upsilon$ is the set of collineations of Υ with ()$^{\star_{1}}$-projection trivial, then

$$
\begin{equation*}
\frac{|\Upsilon|}{\left|\Upsilon^{\prime}\right|}=\left|(\Upsilon)^{\star_{1}}\right| . \tag{4}
\end{equation*}
$$

So by (3) and (4),

$$
\left|\Upsilon^{\prime}\right| \geq \frac{|\Upsilon|}{q}
$$

By the dual of Lemma 11, any Sylow p-group Γ of the subgroup of ${ }^{2} \Psi$ consisting of collineations fixing l and Q, acts transitively on the lines that are not near Q and that are in particular incident with some point $R{ }^{2} I m,{ }^{1} \pi(R){ }^{1} \not{ }^{1} \pi(l)$. Hence, for every line $m^{\prime} I R$, and with ${ }^{1} \pi\left(m^{\prime}\right)=$ ${ }^{1} \pi(m)$ some collineation $\delta_{m^{\prime}}$ of Γ mapping m^{\prime} to m exists. The collineations $\delta_{m^{\prime}}^{-1} \alpha \delta_{m^{\prime}}$ are again elements of Υ because ${ }^{1} \pi(P)$ is fixed by $\delta_{m^{\prime}}$. Since $(\alpha)^{\star_{1}} \neq 1$, we also have $\left(\delta_{m^{\prime}}^{-1} \alpha \delta_{m^{\prime}}\right)^{\star_{1}} \neq 1$. Suppose $m^{\prime \prime}$ and $m^{\prime \prime \prime}$ are distinct lines of ${ }^{2} H$, satisfying ${ }^{1} \pi\left(m^{\prime \prime}\right)={ }^{1} \pi\left(m^{\prime \prime \prime}\right)={ }^{1} \pi(m)$ and $m^{\prime \prime}{ }^{2} I$ $R \xlongequal{2} m^{\prime \prime \prime}$. Suppose $\delta_{m^{\prime \prime}}^{-1} \alpha \delta_{m^{\prime \prime}}=\delta_{m^{\prime \prime}}^{-1} \alpha \delta_{m^{\prime \prime \prime}}$. Then $\delta_{m^{\prime \prime}}^{-1} \alpha \delta_{m^{\prime \prime}}$ fixes the line $\delta_{m^{\prime \prime}}^{-1}(m)$ and $\delta_{m^{\prime \prime \prime}}^{-1}(m)$.

Since both $\delta_{m^{\prime \prime}}^{-1}(m)$ and $\delta_{m^{\prime \prime \prime}}^{-1}(m)$ are incident with R and neighbouring, ${ }^{1} \pi(R)$ is fixed by $\delta_{m^{\prime \prime}}^{-1} \alpha \delta_{m^{\prime \prime}}$. Hence $\left(\delta_{m^{\prime \prime}}^{-1} \alpha \delta_{m^{\prime \prime}}\right)^{\star_{1}}=1$, using ${ }^{1} \pi(R){ }^{1}{ }^{1} \pi(l)$, a contradiction.
As a consequence of the previous paragraphs, the q choices for m^{\prime} as a line of ${ }^{2} H$ that neighbours m and that is incident with R, correspond with two by two different collineations $\delta_{m^{\prime}}^{-1} \alpha \delta_{m^{\prime}} \in \Upsilon$, with $\left(\delta_{m^{\prime}}^{-1} \alpha \delta_{m^{\prime}}\right)^{\star_{1}}$ a non-trivial elation (of order p) acting on ${ }^{1} H$.
It can now be seen that

$$
|\Upsilon| \geq q(p-1)+1
$$

Consequently

$$
\left|\Upsilon^{\prime}\right|>1
$$

which guarantees the existence of a collineation $\eta \in \Upsilon$ such that $(\eta)^{\star_{1}}=1$ but $\eta \neq 1$.
Since $\eta \neq 1$, some point U of ${ }^{2} H,{ }^{1} \pi(U) \neq{ }^{1} \pi(P)$, exists such that η maps U to some point $U^{\prime}, U^{\prime} \sim U, U^{\prime} \neq U$.
By Lemma 2 of Part I [11], η induces in ${ }^{1} H\left({ }^{1} \pi(U)\right)$ a non-trivial elation. The center of the induced elation is determined by a line of ${ }^{1} H$, say ${ }^{1} \pi(v), v \in{ }^{2} \mathcal{L}$, such that every line of ${ }^{2} H$ incident with both U and U^{\prime} neighbours v. Notice that ${ }^{1} \pi(v)$ might coincide with ${ }^{1} \pi(l)$.
The question was whether a group of collineations fixing all lines neighbouring l exists, fixing all lines of ${ }^{1} H$ that are incident with ${ }^{1} \pi(P)$, and acting transitively on the points that neighbour P and that are also incident with l. Consider the induced collineations in the Hjelmslev plane ${ }^{2} H\left({ }^{1} \pi(l)\right)$ of level 2 associated with the vertex ${ }^{1} \pi(l)$. We remark that the vertex O is now a point of ${ }^{1} H\left({ }^{1} \pi(l)\right)$, that ${ }^{1} \pi(P)$ is a line of ${ }^{1} H\left({ }^{1} \pi(l)\right)$ incident $\left(\right.$ in $\left.{ }^{1} H\left({ }^{1} \pi(l)\right)\right)$ with O, and that l is a line of ${ }^{1} H\left({ }^{1} \pi(l)\right)$ which is different from the line ${ }^{1} \pi(P)$ of ${ }^{1} H\left({ }^{1} \pi(l)\right)$ and not incident (in ${ }^{1} H\left({ }^{1} \pi(l)\right)$) with O. The lines of ${ }^{2} H(O)$ that neighbour l correspond with lines of ${ }^{1} H\left({ }^{1} \pi(l)\right)$ that are not incident (incidence in ${ }^{1} H\left({ }^{1} \pi(l)\right)$) with O.
So dually, and after shifting the problem to ${ }^{2} H(O)$, we should show the existence of a set of collineations with ()$^{\star_{1}}$-projection trivial, that induce in $\left.{ }^{1} H{ }^{1} \pi(T)\right)$, for some point T of ${ }^{2} H(O), q$ elations.
To prove this existence, we remark that all 'directions', or points at infinity of ${ }^{1} H\left({ }^{1} \pi(T)\right)$, play the same role, using the transitivity of ${ }^{2} \Psi$ on the well-formed triangles of ${ }^{2} H$. Hence the number of elations for some 'fixed direction' (the identity included) acting on ${ }^{1} H\left({ }^{1} \pi(T)\right)$ equals $p^{h}, 0 \leq h \leq s$.
Using earlier results in this proof (concerning η), we know that $1<p^{h}$. Hence, applying Theorem 15, we conclude $p^{h}=q$ and our claim is proved.

Part 2: In this Part we prove the actual occurence of a non-trivial ${ }^{1} h$-collineation in ${ }^{2} \Psi$. For this purpose we consider the subgroup $\Upsilon^{\prime \prime}$ of ${ }^{2} \Psi$ fixing all points in ${ }^{2} \mathcal{P}$ fixed by α. Then
$\left|\left(\Upsilon^{\prime \prime}\right)^{\star_{1}}\right| \leq q$ and

$$
\left|\Upsilon^{\prime \prime \prime}\right| \geq \frac{\left|\Upsilon^{\prime \prime}\right|}{q}
$$

where $\Upsilon^{\prime \prime \prime}$ consists of all elements of $\Upsilon^{\prime \prime}$ with trivial ($)^{\star_{1}}$ - projection.
As proven in Part 1, for every point $P^{\prime} I l, P^{\prime} \sim P$, a collineation $\theta_{P^{\prime}}$ exists that fixes all lines that neighbour l, fixes all lines of ${ }^{1} H$ that are incident with ${ }^{1} \pi(P)$, and that maps P^{\prime} to P. The collineations $\theta_{P^{\prime}}^{-1} \alpha \theta_{P^{\prime}}$ are again elements of $\Upsilon^{\prime \prime}$ with ()$^{\star_{1}}$ - projection not trivial.
Notice that the set $\left\{\theta_{P^{\prime}}^{-1} \alpha \theta_{P^{\prime}} \mid P^{\prime} \sim P, P^{\prime} I l\right\}$ consists of two by two different elements. This can be shown similarly as above (see the argument concerning δ_{m} in Part 1). Consequently,

$$
\left|\Upsilon^{\prime \prime}\right| \geq q(p-1)+1
$$

and so $\left|\Upsilon^{\prime \prime \prime}\right|>1$. In other words, some non-trivial collineation θ^{\prime} in ${ }^{2} \Psi$ exists with $\left(\theta^{\prime}\right)^{\star 1}=1$ and fixing all points of ${ }^{2} H$ that are fixed by α. Applying Lemma 2 of Part I [11] of this paper, all points of ${ }^{2} H$ that are near l are fixed by θ^{\prime} (recall that by Lemma 14, α fixes at least one point neigbouring any point near l).
Suppose non-trivial ${ }^{1} h$-collineations do not exist. Then by Lemma 16(ii) of Part I [11], α is a generalized 1-homology. Hence $p^{r}>1$. Consider the subgroup $\Upsilon^{i v}$ of ${ }^{2} \Psi$ consisting of all collineations fixing every point of ${ }^{2} H$ near l, and fixing some arbitrary line u not neighbouring l. Then every element of this group has a trivial ()$^{\star 1}$-projection and the order of the group is $p^{r} p^{z}$, where $p^{z}(z \geq 0)$ is the orbit under $\Upsilon^{i v}$ of some point $V^{2} I u,{ }^{1} \pi(V){ }^{1}{ }^{1} \pi(l)$. We note that the only collineations active on ${ }^{1} H\left({ }^{1} \pi(V)\right)$ are elations, by Lemma 2 or Lemma 16 of Part I [11].

On the other hand, $\left|\Upsilon^{i v}\right|$ equals $q\left(p^{r}-1\right)+1$. This can be seen as follows. If a collineation β $\in \Upsilon^{i v}$ exists such that the only points of ${ }^{2} H$ that are incident with u and fixed by β neighbour P, then by Lemma 7, and since the number of points fixed by β is $q^{2}(q+1)$ in this case, there are $q^{2}(q+1)$ fixed lines for β. Moreover, all these lines are near P. Hence $\beta=1$, a contradiction.

Consequently, every collineation in $\Upsilon^{i v}$ fixes some point $U^{2} I u$, with $U \nsim P$. Thus $\Upsilon^{i v}$ consists of all possible generalized 1-homologies with axis l that fix u. Continuing, we obtain that

$$
p^{r} p^{z}=q\left(p^{r}-1\right)+1 .
$$

Since $p^{r}>1$, and thus $p \mid p^{r} p^{z}$, it follows that $p \mid q\left(p^{r}-1\right)+1$, a contradiction.
We conclude that there is at least one non-trivial ${ }^{1} h$-collineation available in ${ }^{2} \Psi$.
By Proposition 1, we conclude that ${ }^{2} H$ is a Moufang Hjelmslev plane and that all elations belong to ${ }^{2} \Psi$. Whence Theorem Ia. Now we show that in fact we have a Desarguesian Hjelmslev plane.

In 1977, Dugas proved (with corrections made by Bacon) that a finite Moufang (projective) Hjelmslev plane whose canonical image is not $\mathbf{P G}(2,2)$ is desarguesian. In 1979, this result was extended by Bacon. He showed that a finite punctally cohesive Moufang (projective) Klingenberg plane (and in particular a finite punctally cohesive Moufang (projective) Hjelmslev plane) whose canonical image is not $\mathbf{P G}(2,2)$ is a desarguesian plane. In Baker, Lane \& Lorimer [1], theorems are formulated and proven in order to eliminate the $\mathbf{P G}(2,2)$ restriction, as indicated in the proof of Theorem 17. We refer to Baker, Lane \& Lorimer [1], [2], and [3].

Theorem 17 If Δ is a locally finite triangle building with a half strongly-transitive automorphism group, then for each vertex $O,{ }^{2} H(O)$ is a desarguesian Hjelmslev plane.

Proof. Since ${ }^{2} H$ is a Moufang Hjelmslev plane, it can be coordinatized by a local alternative ring R. Moreover, using Baker, Lane \& Lorimer [1], R must be a projective Hjelmslev ring. By the definition of a projective Hjelmslev ring, R is a right chain ring. Therefore, ${ }^{2} H$ is punctally cohesive. Hence so far, ${ }^{2} H$ is a finite punctally cohesive Moufang Hjelmslev plane. Using Baker, Lane \& Lorimer [1] again, ${ }^{2} H$ is desarguesian.
Recall that, by Theorem 35 of Part I [11], we have:
Theorem 18 The set of elations in ${ }^{2} \Psi$ with some fixed axis $l \in{ }^{2} \mathcal{L}$ is an abelian group.

4.3 The case $n \geq 3$

In this subsection, we show:
Theorem Ib. If Δ is a locally finite triangle building with a half strongly-transitive group G, then for all vertices O of δ, the projective Hjelmslev plane ${ }^{n} H(O), n \geq 3$, satisfies the Moufang condition and ${ }^{n} \Psi(O)$ contains all elations.
We assume throughout, by induction, that ${ }^{k} H(v)$ is a Moufang projective Hjelmslev plane with all elations in ${ }^{k} \Psi(v)$, for $1 \leq k \leq n-1, n \geq 3$, and for all vertices v. As for the case $n=2$, this implies (and also the proof is similar, see Theorem 17)

Theorem 19 For all $k, 2 \leq k<n$, and all vertices v of $\Delta,{ }^{k} H(v)$ is desarguesian.
Theorem 35 of Part I [11] implies:
Theorem 20 For every vertex v, the set of elations in ${ }^{k} \Psi(v)$ with some chosen axis l of ${ }^{k} H$ forms a commutative group acting transitively on the set of points of ${ }^{k} \mathcal{P} \backslash\left\{\left.Q \in{ }^{k} \mathcal{P}\right|^{1} \pi(Q){ }^{1} I\right.$ $\left.{ }^{1} \pi(l)\right\}$.

Also, note that the following lemmas have proofs which are completely similar to Lemma 10 and Lemma 11, respectively. Note that we still have our main assumption: the group G acts strongly-transitively on Δ.

Lemma 21 For every line $l \in{ }^{n} \mathcal{P},\left|{ }^{n} \Psi_{l}\right|$ is a multiple of $q^{4 n-1}(q+1)$.

Lemma 22 Suppose $l \in{ }^{n} \mathcal{L}$ and $P \in{ }^{n} \mathcal{P}$ such that $P^{n} I l$. Then every Sylow p-subgroup Γ of ${ }^{n} \Psi_{l, P}$ acts transitively on ${ }^{n} \mathcal{P} \backslash\left\{Q \in{ }^{n} \mathcal{P} \mid Q\right.$ is near $\left.l\right\}$.

In view of Proposition 2, we must show that there is a non-trivial ${ }^{1} h$-collineation in ${ }^{n} \Psi$. We need a few lemmas before we can show this. The first lemma slightly generalizes Lemma 16 of Part I [11].

Lemma 23 Suppose l is some line of ${ }^{n} H$ and P some point of ${ }^{n} H$ with $P^{n} I l, n \geq 2$. Suppose γ is a collineation in ${ }^{n} \Psi$ with $(\gamma)^{\star_{n-1}}=1$, fixing all lines incident with P except maybe for lines that neighbour l and such that all occurring fixed points are near l. Then γ is a ${ }^{1} h$-collineation in ${ }^{n} \Psi$ with axis l and center P.

Proof. Suppose m is an arbitrary line of ${ }^{n} H$ that is incident with P and for which ${ }^{1} \pi(m) \neq$ ${ }^{1} \pi(l)$.
We claim that γ induces the identity in ${ }^{1} H\left({ }^{n-1} \pi(m)\right)$. Indeed, the vertices in $\operatorname{cl}\left({ }^{n-1} \pi(m),{ }^{1} \pi(T)\right)$, for all ${ }^{1} \pi(T){ }^{1} I{ }^{1} \pi(m)$, that are adjacent to both ${ }^{n-1} \pi(m)$ and ${ }^{n-2} \pi(m)$, correspond with the lines at infinity of ${ }^{1} H\left({ }^{n-1} \pi(m)\right)$, where, for $n=2$, we set ${ }^{n-2} \pi(m)=O$.
The lines m^{\prime} that are incident with P and for which ${ }^{n-1} \pi\left(m^{\prime}\right)={ }^{n-1} \pi(m)$, are fixed by γ, and give rise to an affine (affine in the dual projective plane ${ }^{1} H\left({ }^{n-1} \pi(m)\right)$) center for the by γ induced collineation in ${ }^{1} H\left({ }^{n-1} \pi(m)\right)$. Thus γ induces a collineation with two centers in ${ }^{1} H\left({ }^{n-1} \pi(m)\right)$. Necessarily, $\gamma_{1_{H}\left({ }^{n-1} \pi(m)\right)}=1$. Hence the claim.
In fact, all lines of ${ }^{n} H$ that are near P and do not neighbour l, are fixed for γ. Indeed, suppose that m is some line of ${ }^{n} H(O)$ such that ${ }^{1} \pi(P){ }^{1} I^{1} \pi(m),{ }^{1} \pi(m) \neq{ }^{1} \pi(l)$, and $P^{n} \not{ }^{n} m$. Let T and T^{\prime} be two non-neighbouring points of ${ }^{n} H$ satisfying $T^{n} I m^{n} I T^{\prime}$ and ${ }^{1} \pi(T){ }^{1}{ }^{1}{ }^{1} \pi(l)$ ${ }^{1}{ }^{1} \pi\left(T^{\prime}\right)$. Then the line m^{\prime} of ${ }^{n} H(O)$ that is incident with P and T is a fixed line for γ. The line $m^{\prime \prime}$ determined by P and T^{\prime} is fixed for γ as well. Additionally, $m^{\prime} \cap{ }^{1} H\left({ }^{n-1} \pi(T)\right)$ and $m^{\prime \prime}$ $\cap{ }^{1} H\left({ }^{n-1} \pi\left(T^{\prime}\right)\right)$ are both fixed by γ. Note again that $(\gamma)^{\star_{n-1}}=1$. Since $m^{\prime} \cap^{1} H\left({ }^{n-1} \pi(T)\right)=$ $m \cap^{1} H\left({ }^{n-1} \pi(T)\right)$ and $m^{\prime \prime} \cap^{1} H\left({ }^{n-1} \pi\left(T^{\prime}\right)\right)=m \cap^{1} H\left({ }^{n-1} \pi\left(T^{\prime}\right)\right)$, we have $\gamma(m)=m$. Consequently, γ induces the identity collineation in ${ }^{n-1} H\left({ }^{1} \pi(P)\right)$.
Thus the number of lines in ${ }^{n} \mathcal{L}$ fixed by γ is at least $q q^{2(n-1)}=q^{2 n-1}$. Since γ fixes an equal number of lines and points, by Lemma 8, and since there are $q^{2(n-1)}$ points of ${ }^{n} H$ that
neighbour P, some point R exists in ${ }^{n} \mathcal{P},{ }^{1} \pi(R) \neq{ }^{1} \pi(P)$, for which $\gamma(R)=R$. Since all occurring fixed points are near $l,{ }^{1} \pi(R){ }^{1} I^{1} \pi(l)$.
Since all points of ${ }^{n} H$ that neighbour P are fixed by γ, every line of ${ }^{n} H(O)$ that is incident with R and neighbours l is fixed by γ. Using earlier arguments in the proof, it can be seen that γ induces the identity in ${ }^{n-1} H\left({ }^{1} \pi(l)\right)$.
Under the assumption that all fixed points for γ are near l, and applying Lemma 8 again, there must be $(q+1) q^{2 n-2}$ points near l that are fixed by γ. Since there are only $(q+1) q^{2 n-2}$ points near l, γ is a ${ }^{1} h$-collineation in ${ }^{n} \Psi$ with axis l and center P.
Now we recall from Part I [11] (Lemma 18):

Lemma 24 At least one quasi-elation γ in ${ }^{n} \Psi$ exists with non-trivial ($)^{\star 1}$-projection.

Lemma 25 Let k be some integer $1 \leq k \leq n-1$. If there is a collineation α in ${ }^{n} \Psi$ fixing all points $(n-1)$-near some line $l \in{ }^{n} \mathcal{L}$, with $(\alpha)^{\star n-1}$ an elation with axis ${ }^{n-1} \pi(l)$ and some center ${ }^{n-1} \pi(P), P^{n} I \quad$, and with $(\alpha)^{\star_{k}}=1,(\alpha)^{\star_{k+1}} \neq 1$, then a non-trivial ${ }^{1} h$-collineation exists in ${ }^{n} \Psi$.

Proof. The lemma is true for $k=n-1$ by Lemma 19 of Part I [11]. We proceed by induction as follows. Suppose the statement of the lemma is true for all $k, h \leq k \leq n-1$, with h such that $1<h \leq n-1$. Then we prove the statement holds for $h-1$.
So suppose α is a collineation in ${ }^{n} \Psi$ fixing all points that are $(n-1)$-near some line $l \in{ }^{n} \mathcal{L}$, with $(\alpha)^{\star_{n-1}}$ an elation with axis ${ }^{n-1} \pi(l)$ and some center ${ }^{n-1} \pi(P), P{ }^{n} I l$, and for which $(\alpha)^{\star_{h-1}}=1$ but $(\alpha)^{\star_{h}} \neq 1$. Suppose R is some point in ${ }^{n} \mathcal{P},{ }^{1} \pi(R){ }^{1}{ }^{1} \pi(l)$. Then $\alpha(R)$ is some point S of ${ }^{n} H$, with ${ }^{h} \pi(R) \neq{ }^{h} \pi(S),{ }^{h-1} \pi(R)={ }^{h-1} \pi(S)$. Any line incident with R and S intersects l in a unique point of ${ }^{n} H$, a point which is fixed by α. Thus any line incident with R and S is fixed by α. Suppose $m \in{ }^{n} \mathcal{L}$, is some line incident with R and S, and suppose m intersects l in some point Q of ${ }^{n} H$. Using Property 3 , for every point ${ }^{2} \pi(V)$ of ${ }^{2} H(O), V \in$ ${ }^{n} \mathcal{P}$ and incident with $l,{ }^{2} \pi(V) \neq{ }^{2} \pi(Q),{ }^{1} \pi(V)={ }^{1} \pi(Q)$, a collineation β in ${ }^{n} \Psi$ exists, fixing l and R, and mapping V to Q.
So $\beta^{-1} \alpha \beta$ is a collineation in ${ }^{n} \Psi$ fixing all points that are $(n-1)$-near l, with $\left(\beta^{-1} \alpha \beta\right)^{\star_{n-1}}$ an elation with axis ${ }^{n-1} \pi(l)$, and such that $\left(\beta^{-1} \alpha \beta\right)^{\star_{h-1}}=1$. Since $(\alpha)^{\star_{h}} \neq 1$, one has $\left(\beta^{-1} \alpha \beta\right)^{\star h} \neq 1$. Moreover, both ${ }^{h} \pi(R)$ and ${ }^{h} \pi(S)$ are incident with $\beta^{-1} \alpha \beta{ }^{h} \pi(m)$), because β stabilizes the sets of points incident with m and $\beta(m)$, respectively, and S belongs to both m and $\beta(m)$ (since $\beta(R)=R$ and ${ }^{1} \pi(R)={ }^{1} \pi(S)$).
There are only $q-1$ possible images for ${ }^{h} \pi(R)$ incident with ${ }^{h} \pi(m)$ by collineations of the form $\beta^{-1} \alpha \beta,\left(\beta^{-1} \alpha \beta\right)^{\star_{h-1}}=1,\left(\beta^{-1} \alpha \beta\right)^{\star h} \neq 1$. But $\left|\left\{^{2} \pi(V) \mid V \in{ }^{n} \mathcal{P}, V^{n} I l,{ }^{1} \pi(V)={ }^{1} \pi(Q)\right\}\right|=q$. Hence, we may assume that some points V^{\prime} and $V^{\prime \prime}$ of ${ }^{n} H$ exist with $V^{\prime}{ }^{n} I l^{n} I V^{\prime \prime},{ }^{2} \pi\left(V^{\prime}\right)$ $\neq{ }^{2} \pi\left(V^{\prime \prime}\right),{ }^{1} \pi\left(V^{\prime}\right)={ }^{1} \pi(Q)={ }^{1} \pi\left(V^{\prime \prime}\right)$, some collineation β^{\prime} in ${ }^{n} \Psi$ fixing l and R and mapping
V^{\prime} to Q, and some collineation $\beta^{\prime \prime}$ in ${ }^{n} \Psi$ fixing l and R such that $\beta^{\prime \prime}\left(V^{\prime \prime}\right)=Q$, such that $\left.\left(\beta^{\prime \prime-1} \alpha \beta^{\prime \prime}\right)\left({ }^{h} \pi(R)\right)=\left(\beta^{\prime-1} \alpha \beta^{\prime}\right){ }^{h} \pi(R)\right)$. Since $\left(\beta^{\prime \prime-1} \alpha \beta^{\prime \prime}\right)^{\star_{h}}$ and $\left(\beta^{\prime-1} \alpha \beta^{\prime}\right)^{\star_{h}}$ are both elations in ${ }^{h} \Psi$ with axis ${ }^{h} \pi(l)$, and using Theorem $20(h \leq n-1),\left(\left(\beta^{\prime \prime-1} \alpha \beta^{\prime \prime}\right)^{-1}\left(\beta^{\prime-1} \alpha \beta^{\prime}\right)\right)^{\star_{h}}$ is again an elation in ${ }^{h} \Psi$ with axis ${ }^{h} \pi(l)$. Additionally, ${ }^{h} \pi(R)$ is fixed for $\left(\beta^{\prime \prime-1} \alpha \beta^{\prime \prime}\right)^{-1}\left(\beta^{\prime-1} \alpha \beta^{\prime}\right)$. Hence $\left(\left(\beta^{\prime \prime-1} \alpha \beta^{\prime \prime}\right)^{-1}\left(\beta^{\prime-1} \alpha \beta^{\prime}\right)\right)^{\star_{h}}=1$.
Can we tell more about $\delta=\left(\beta^{\prime \prime-1} \alpha \beta^{\prime \prime}\right)^{-1}\left(\beta^{\prime-1} \alpha \beta^{\prime}\right)$? From the previous paragraphs, it is already clear that δ fixes every point of ${ }^{n} H$ that is $(n-1)$-near l, and that $(\delta)^{\star_{h}}=1$. Since $\left(\beta^{\prime-1} \alpha \beta^{\prime}\right)^{\star_{n-1}}$ and $\left(\beta^{\prime \prime-1} \alpha \beta^{\prime \prime}\right)^{\star_{n-1}}$ are both elations with axis ${ }^{n-1} \pi(l)$, and since by Theorem 20 the set of elations with axis ${ }^{n-1} \pi(l)$ forms a group, $(\delta)^{\star_{n-1}}$ is an elation with axis ${ }^{n-1} \pi(l)$.
Suppose $\delta=1$. Then δ also fixes the line w^{\prime} of ${ }^{n} H$ determined by R and V^{\prime}, and consequently $\beta^{\prime \prime-1} \alpha \beta^{\prime \prime}\left(w^{\prime}\right)=w^{\prime}$. Hence $\beta^{\prime \prime-1} \alpha \beta^{\prime \prime}$ fixes two 1-neighbouring lines of ${ }^{n} H$ that are incident with R : w^{\prime} and the line $w^{\prime \prime}$ of ${ }^{n} H$ defined by R and $V^{\prime \prime}$. Only the points of ${ }^{1} H\left({ }^{n-1} \pi(R)\right)$ in ${ }^{n} \mathcal{P}(O)$ are incident with both w^{\prime} and $w^{\prime \prime}$. Thus $\beta^{\prime \prime-1} \alpha \beta^{\prime \prime}\left({ }^{n-1} \pi(R)\right)={ }^{n-1} \pi(R)$. However, $\beta^{\prime \prime-1} \alpha \beta^{\prime \prime}$ is a collineation in ${ }^{n} \Psi$ for which $\left(\beta^{\prime \prime-1} \alpha \beta^{\prime \prime}\right)^{\star_{n-1}}$ is an elation with axis ${ }^{n-1} \pi(l)$ such that $\left(\beta^{\prime \prime-1} \alpha \beta^{\prime \prime}\right)^{\star h} \neq 1$. Since $h \leq n-1$, a contradiction arises. We conclude that $\delta \neq 1$. Using the transitivity of ${ }^{n} \Psi$ on the triangles of ${ }^{n} H$, we can obtain a non-trivial collineation in ${ }^{n} \Psi$ fixing all points $(n-1)$-near l, with ()$^{\star_{n-1}}$-projection an elation with axis ${ }^{n-1} \pi(l)$ and center ${ }^{n-1} \pi(P)$, and with ($)^{\star}$-projection trivial. Hence, by induction, a non-trivial ${ }^{1} h$-collineation can be constructed.

Lemma 26 The kernel of the ($)^{\star^{\star-1}}$-projection is not trivial. In fact, there exists a nontrivial element in $\operatorname{ker}\left(()^{\star_{n-1}}\right)$ fixing all points of ${ }^{n} H$ that $(n-1)$-neighbour some point.

Proof. Suppose ${ }^{n-1} \pi(l), l \in{ }^{n} \mathcal{L}$, is some line of ${ }^{n-1} H(O)$ and ${ }^{n-1} \pi(P), P \in{ }^{n} \mathcal{P}$, some point of ${ }^{n-1} H(O)$ incident with ${ }^{n-1} \pi(l)$.

Using Lemma 24, at least one quasi-elation δ in ${ }^{n} \Psi$ exists with ($)^{\star_{1}}$-projection not trivial, such that $(\delta)^{\star_{n-1}}$ has some center ${ }^{n-1} \pi(Q){ }^{n-1} I{ }^{n-1} \pi(l), Q \in{ }^{n} \mathcal{P},{ }^{1} \pi(Q) \neq{ }^{1} \pi(P)$, and some axis ${ }^{n-1} \pi(u){ }^{n-1} I{ }^{n-1} \pi(Q), u \in{ }^{n} \mathcal{L},{ }^{1} \pi(u) \neq{ }^{1} \pi(l)$. Let m be one of the fixed lines in ${ }^{n} \mathcal{L}$ for δ not neighbouring u (note that m exists since every quasi-elation has a quasi-axis). Notice that by Lemma 7 of Part I [11], m is $(n-1)$-near Q. Let R be some point of ${ }^{n} H$ that is fixed by δ and for which ${ }^{1} \pi(R) \neq{ }^{1} \pi(Q)$. We can assume that $m^{n} I Q^{n} I u^{n} I R$.
Let us denote by Υ the group generated by all collineations δ^{\prime} in ${ }^{n} \Psi$ having the following properties:
(i) δ^{\prime} fixes the points in ${ }^{n-1} \mathcal{P}(O)$ that are incident with ${ }^{n-1} \pi(u)$;
(ii) δ^{\prime} fixes the lines in ${ }^{n-1} \mathcal{L}(O)$ that are incident with ${ }^{n-1} \pi(Q)$;
(iii) δ^{\prime} fixes every point of ${ }^{n} H$ that $(n-1)$-neighbours Q;
(iv) δ^{\prime} fixes every line of ${ }^{n} H$ that $(n-1)$-neighbours u;
(v) $\delta^{\prime}(R)=R$.

Note that $\delta \in \Upsilon$.
Next we claim that $\operatorname{ker}\left(()^{\star_{1}} \Upsilon\right) \neq 1$. Property 3 allows collineations $\gamma_{Q^{\prime}}$ in ${ }^{n} \Psi$ fixing R, some point T of ${ }^{n} H$ incident with $m,{ }^{1} \pi(T) \neq{ }^{1} \pi(Q)$, that map Q to any point Q^{\prime} of ${ }^{n} H$ incident with $u,{ }^{n-1} \pi(Q)={ }^{n-1} \pi\left(Q^{\prime}\right)$. There are q possible choices for Q^{\prime} incident with $u,{ }^{n-1} \pi(Q)$ $={ }^{n-1} \pi\left(Q^{\prime}\right)$, giving rise to q two by two different collineations $\gamma_{Q^{\prime}}^{-1} \delta \gamma_{Q^{\prime}}$. Indeed, suppose that $Q^{\prime \prime}$ and $Q^{\prime \prime \prime}$ are different points of ${ }^{n} H$ satisfying $Q^{\prime \prime}{ }^{n} u^{n} I \quad Q^{\prime \prime \prime},{ }^{n-1} \pi(Q)={ }^{n-1} \pi\left(Q^{\prime \prime}\right)$ $={ }^{n-1} \pi\left(Q^{\prime \prime \prime}\right)$, such that $\gamma_{Q^{\prime \prime}}^{-1} \delta \gamma_{Q^{\prime \prime}}=\gamma_{Q^{\prime \prime \prime}}^{-1} \delta \gamma_{Q^{\prime \prime \prime}}$. Then two $(n-1)$-neighbouring fixed lines for $\gamma_{Q^{\prime \prime}}^{-1} \delta \gamma_{Q^{\prime \prime}}$ exist, namely $\gamma_{Q^{\prime \prime}}^{-1}(m)$ and $\gamma_{Q^{\prime \prime \prime}}^{-1}(m)$. Since $Q^{\prime \prime} \neq Q^{\prime \prime \prime}$, some point ${ }^{1} \pi(U) \in{ }^{1} \mathcal{P}(O), U$ $\in{ }^{n} \mathcal{P}(O),{ }^{1} \pi(U){ }^{1} V^{1} \pi(u)$, exists that is fixed by $\gamma_{Q^{\prime \prime}}^{-1} \delta \gamma_{Q^{\prime \prime}}$. This contradicts $\left(\gamma_{Q^{\prime \prime}}^{-1} \delta \gamma_{Q^{\prime \prime}}\right)^{\star_{1}} \neq 1$. All collineations $\gamma_{Q^{\prime}}^{-1} \delta \gamma_{Q^{\prime}}, Q^{\prime} I \quad u,{ }^{n-1} \pi(Q)={ }^{n-1} \pi\left(Q^{\prime}\right)$, have a non-trivial ()$^{\star_{1}}$-projection, and are again elements of Υ. Since 1 belongs to any group, this implies that

$$
|\Upsilon|>q .
$$

On the other hand

$$
\left.\right|^{1} \Upsilon \mid \leq q
$$

Since

$$
\left.\frac{|\Upsilon|}{\left|k e r\left(()^{\star_{1}} \Upsilon\right)\right|}=\left.\right|^{1} \Upsilon \right\rvert\,
$$

the claim follows.
Consequently, the existence of some non-trivial collineation $\beta \in \Upsilon$ with $(\beta)^{\star_{1}}=1$ is guaranteed. We distinguish two cases.

Case 1: $(\beta)^{\star_{n-1}}=1$.
Then since $\beta \neq 1$, the kernel of the ()$^{\star_{n-1}}$-projection is not trivial.
Case 2: $(\beta)^{\star_{n-1}} \neq 1$.
Then $(\beta)^{\star_{n-1}}$ is a ${ }^{k} h$-collineation (not ${ }^{k-1} h$-collineation) in ${ }^{n-1} \Psi$ for some $k, 1 \leq k \leq$ $n-2$, since $(\beta)^{\star_{n}-1}$ is an elation in ${ }^{n-1} \Psi$ with axis ${ }^{n-1} \pi(u)$ and center ${ }^{n-1} \pi(Q)$, and since $(\beta)^{\star_{1}}=1$ and $(\beta)^{\star_{n-1}} \neq 1$. Using Lemma 14 of Part I [11], all points of ${ }^{n-1} H(O)$ that are k-near ${ }^{n-1} \pi(u)$ are fixed by $(\beta)^{\star_{n-1}}$.
Since all elations of the Moufang projective Hjelmslev plane ${ }^{n-1} H$ are in ${ }^{n-1} \Psi$, we can ${ }_{n-1}^{c o n s i d e r ~ a ~ c o l l i n e a t i o n ~} \alpha$ in ${ }^{n} \Psi$ such that $(\alpha)^{\star_{n-1}}$ is an elation in ${ }^{n-1} \Psi$ with center ${ }^{n-1} \pi(P)$ and axis ${ }^{n-1} \pi(l)$, and $(\alpha)^{\star_{k}}=1,(\alpha)^{\star_{k+1}} \neq 1$.
Which properties does the collineation $[\alpha, \beta]$ have? It is clear that $([\alpha, \beta])^{\star_{n-1}}$ is an elation with axis ${ }^{n-1} \pi(l)$ and center ${ }^{n-1} \pi(Q)$. Moreover, $\beta(R)=R$ because $\beta \in \Upsilon$ (and
see condition (v) above), and α maps R to some point S of ${ }^{n} H$ (so ${ }^{n-1} \pi(R)$ is mapped to ${ }^{n-1} \pi(S)$) with ${ }^{k} \pi(S)={ }^{k} \pi(R)$. Hence ${ }^{n-1} \pi(S)$ is k-near ${ }^{n-1} \pi(u)$ and is therefore fixed by β^{-1}. This implies that $[\alpha, \beta]\left({ }^{n-1} \pi(R)\right)={ }^{n-1} \pi(R)$. Since $([\alpha, \beta])^{\star_{n-1}}$ is an elation with axis ${ }^{n-1} \pi(l)$ and since ${ }^{1} \pi(R){ }^{1}{ }^{1} \pi(l)$, we conclude $([\alpha, \beta])^{\star_{n-1}}=1$.
Let us look at the image of R under $[\alpha, \beta]$. Applying that $(\alpha)^{\star_{n-1}}$ is an elation with axis ${ }^{n-1} \pi(l)$ and center ${ }^{n-1} \pi(P),(\alpha)^{\star_{k}}=1$ and $(\alpha)^{\star_{k+1}} \neq 1, S=\alpha(R)$ satisfies ${ }^{k+1} \pi(S)$ $\neq{ }^{k+1} \pi(R),{ }^{k} \pi(S)={ }^{k} \pi(R)$. Suppose S is fixed by β. Then, using $\beta(R)=R$, any line w of ${ }^{n} H$ that is incident with R and S is mapped by β to a line $\beta(w)$ of ${ }^{n} H$ that is also incident with both R and S. Since ${ }^{k+1} \pi(R) \neq{ }^{k+1} \pi(S),{ }^{k} \pi(R)={ }^{k} \pi(S), w$ and $\beta(w)$ are $(n-k)$-neighbouring lines. Hence ${ }^{n-k} \pi(w)$ is fixed by β. Since $(\beta)^{\star_{n-1}}$ is an elation in ${ }^{n-1} \Psi$ with axis ${ }^{n-1} \pi(u)$, since $n-k \leq n-1$ and using that w is not near $Q,(\beta)^{\star_{n-k}}=1$, a contradiction. Therefore $[\alpha, \beta](R) \neq R$. In other words $[\alpha, \beta] \neq 1$.
Hence also in this case, we conclude that the kernel of the ($)^{\star_{n-1}}$-projection is not trivial.

Lemma 27 Suppose U is some point of ${ }^{n} H$. Then $\operatorname{ker}\left(()^{\star_{n-1}}\right)$ induces all translations in ${ }^{1} H\left({ }^{n-1} \pi(U)\right)$.

Proof. By Lemma 26, there exists a non-trivial element in $\operatorname{ker}\left(()^{\star_{n-1}}\right)$, say δ, fixing all points of ${ }^{n} H$ that $(n-1)$-neighbour some point Q of ${ }^{n} H$.
Consider an arbitrary point $T \in{ }^{n} \mathcal{P}, T$ not neighbouring Q. Then we claim that δ cannot induce a non-trivial homology in ${ }^{1} H\left({ }^{n-1} \pi(T)\right)$. Indeed, suppose δ induces a non-trivial homology in ${ }^{1} H\left({ }^{n-1} \pi(T)\right)$. Then some point T^{\prime} of ${ }^{n} H,{ }^{n-1} \pi(T)={ }^{n-1} \pi\left(T^{\prime}\right)$ exists such that $\delta\left(T^{\prime}\right)=T^{\prime}$. Hence the line u determined by T^{\prime} and any point $Q^{\prime} \in{ }^{n} \mathcal{P}$ that $(n-1)$-neighbours Q is fixed by δ. Since $(\delta)^{\star_{n-1}}=1$, and since for all points ${ }^{1} \pi(V)$ of ${ }^{1} H, V \in{ }^{n} \mathcal{P},{ }^{1} \pi(V){ }^{1} I{ }^{1} \pi(u),{ }^{n-1} \pi(u)$ $\cap^{n-2} H\left({ }^{1} \pi(V)\right)$ corresponds with lines at infinity of ${ }^{1} H\left({ }^{n-1} \pi(u)\right), \delta$ induces a collineation in ${ }^{1} H\left({ }^{n-1} \pi(u)\right)$ with center at infinity. So δ induces in ${ }^{1} H\left({ }^{n-1} \pi(u)\right)$ a collineation with an affine center and at the same time a center at infinity. Hence $\delta_{\left.1_{H(~}^{n-1} \pi(u)\right)}=1$. As a consequence, δ induces an elation in ${ }^{1} H\left({ }^{n-1} \pi(T)\right)$ with axis at infinity. However, additionally $\delta\left(T^{\prime}\right)=T^{\prime}$. Hence $\delta_{1_{H}\left({ }^{n-1} \pi(T)\right)}=1$.
Since $\delta \neq 1$, there consequently exists some point $U \in{ }^{n} \mathcal{P}$ such that δ induces a non-trivial elation in ${ }^{1} H\left({ }^{n-1} \pi(U)\right)$. Using Property 3 , every point at infinity occurs as a center of some non-trivial translation of ${ }^{1} H\left({ }^{n-1} \pi(U)\right)$. So $\operatorname{ker}\left(()^{\star_{n-1}}\right)$ induces at least $(q+1)\left(p^{h}-1\right)+1$ translations in ${ }^{1} H\left({ }^{n-1} \pi(U)\right)$, with p^{h} the number of translations induced in ${ }^{1} H\left({ }^{n-1} \pi(U)\right)$ for some fixed center at infinity. Applying $p^{h}>1$ and Theorem 15, it follows that $p^{h}=q$.

Lemma $28 A$ subgroup Υ of ${ }^{n} \Psi$ exists every element of which fixes all lines of ${ }^{n} H$ that $(n-1)$-neighbour some line $l \in{ }^{n} \mathcal{L}$, all points of ${ }^{n-1} H$ that are $(n-2)$-near ${ }^{n-1} \pi(l)$, some line ${ }^{n-1} \pi(m)$ of ${ }^{n-1} H\left(m \in{ }^{n} \mathcal{L}\right)$ that is incident with ${ }^{n-1} \pi(P),{ }^{1} \pi(m) \neq{ }^{1} \pi(l), P^{n} I l$, such that Υ acts transitively on the points of ${ }^{1} H\left({ }^{n-1} \pi(P)\right)$ in ${ }^{n} \mathcal{P}$ that are incident with l.

Proof. Let Σ be an apartment of Δ containing $l, P,{ }^{n-1} \pi(m)$ and O. By v we denote the unique vertex in Σ at distance n from ${ }^{1} \pi(l)$, corresponding with a line of ${ }^{n} H\left({ }^{1} \pi(l)\right)$, and such that ${ }^{1} \pi(P) \in \operatorname{cl}\left(v,{ }^{1} \pi(l)\right)$. Then ${ }^{n-1} \pi(m)$ is the vertex in Σ at distance $n-1$ from O and adjacent to both v and ${ }^{n-1} \pi(v)$, where ${ }^{n-1} \pi(v)$ is the unique vertex in $\operatorname{cl}\left(v,{ }^{1} \pi(l)\right)$ at distance $n-1$ from ${ }^{1} \pi(l)$.
Let us denote the unique vertex in $c l\left(l,{ }^{n-1} \pi(P)\right)$, corresponding with a point of ${ }^{n-1} H\left({ }^{1} \pi(l)\right)$ as U. Then clearly $\alpha(U)=U$, for every potential element of Υ (if Υ exists). From this consideration, it is clear that we are done, whenever we can prove the existence of a subgroup of ${ }^{n} \Psi\left({ }^{1} \pi(l)\right)$, consisting of collineations having a trivial action in ${ }^{n-1} H\left({ }^{1} \pi(l)\right)$, that additionally acts transitively on the lines of ${ }^{n} H\left({ }^{1} \pi(l)\right)$ that are incident with some chosen point X of ${ }^{n} H\left({ }^{1} \pi(l)\right)$, and $(n-1)$-neighbour (with respect to the base-vertex $\left.{ }^{1} \pi(l)\right)$ some chosen line of ${ }^{n} H\left({ }^{1} \pi(l)\right)$, with X the point of ${ }^{n} H\left({ }^{1} \pi(l)\right)$ corresponding with a vertex of Σ which has as canonical image in ${ }^{1} H\left({ }^{1} \pi(l)\right)$ the point corresponding with the vertex O.
Shifting the problem to ${ }^{n} \Psi(O)$, we need to prove the existence of a subgroup of ${ }^{n} \Psi(O)$, consisting of collineations having a trivial ($)^{\star_{n-1}}$-projection, acting transitively on the lines of ${ }^{n} H(O)$ that are incident with some prechosen point of ${ }^{n} H(O)$, and that $(n-1)$-neighbour some prechosen line of ${ }^{n} H(O)$.
Dually, it suffices to prove the existence of a subgroup of $\operatorname{ker}\left(()^{\star_{n-1}}\right)$ inducing in $H\left({ }^{1} \pi(R)\right)$, R some point in ${ }^{n} \mathcal{P}(O)$, a group of translations acting transitively on the points of ${ }^{n} H(O)$ that ($n-1$)-neighbour R and that are incident with some chosen line $r \in{ }^{n} \mathcal{L}(O),{ }^{n-1} \pi(R)$ ${ }^{n-1} I{ }^{n-1} \pi(r)$.
The existence of such a subgroup is guaranteed by Lemma 27 .
Lemma 29 At least one non-trivial ${ }^{1} h$-collineation exists in ${ }^{n} \Psi$.

Proof. Using Lemma 24, at least one quasi-elation α in ${ }^{n} \Psi$ exists with ($)^{\star_{1}}$-projection not trivial. Suppose the induced elation $(\alpha)^{\star_{n-1}}$ in ${ }^{n-1} H(O)$ has some axis ${ }^{n-1} \pi(l), l \in{ }^{n} \mathcal{L}$, and some center ${ }^{n-1} \pi(P), P^{n} I l$. Let $m^{n} I P$ be one of the fixed lines for α in ${ }^{n} \mathcal{L}$ not neighbouring l (m exists since α has a quasi-center).
Let Υ refer to the subgroup of ${ }^{n} \Psi$ generated by all collineations β in ${ }^{n} \Psi$ such that the fixed points of ${ }^{n} H(O)$ for α that are $(n-1)$-near l are also fixed points for β, such that the lines of ${ }^{n} H$ that $(n-1)$-neighbour l are fixed by β, and such that $(\beta)^{\star_{n-1}}$ is an elation with axis ${ }^{n-1} \pi(l)$ and center ${ }^{n-1} \pi(P)$. Note that $\alpha \in \Upsilon$.
By Lemma 28, a collineation γ in ${ }^{n} \Psi$ exists, fixing all lines in ${ }^{n} \mathcal{L}$ that ($n-1$)-neighbour l, fixing ${ }^{n-1} \pi(m)$ and all points in ${ }^{n-1} \mathcal{P}$ that are $(n-2)$-near ${ }^{n-1} \pi(l)$, mapping P to some arbitrary point P^{\prime} of ${ }^{n} H$ different from $P, P^{\prime} I l,{ }^{n-1} \pi\left(P^{\prime}\right)={ }^{n-1} \pi(P)$. It is clear that $[\alpha, \gamma] \in \Upsilon$. Indeed, clearly $([\alpha, \gamma])^{\star_{n-1}}$ is an elation with axis ${ }^{n-1} \pi(l)$ and center ${ }^{n-1} \pi(P)$, and γ stabilizes the
set of all points $(n-1)$-near l fixed by α since α fixes all lines $(n-1)$-neighbouring l by Lemma 11 of Part I [11].

Suppose $[\alpha, \gamma]=1$. Then $[\alpha, \gamma]\left(\gamma^{-1}(m)\right)=\gamma^{-1}(m)$. Hence α fixes both m and $\gamma^{-1}(m)$. Since $m \cap \gamma^{-1}(m) \cap l=\emptyset$ and since m and $\gamma^{-1}(m)$ are ($n-1$)-neighbouring lines of ${ }^{n} H$, some point ${ }^{1} \pi(R)$ not incident with ${ }^{1} \pi(l), R \in{ }^{n} \mathcal{P}$, exists such that $\alpha\left({ }^{1} \pi(R)\right)={ }^{1} \pi(R)$. Since $(\alpha)^{\star_{1}}$ is a non-trivial elation with axis ${ }^{1} \pi(l)$, a contradiction arises. Hence $[\alpha, \gamma] \neq 1$.
Since both α and γ induce in ${ }^{1} H\left({ }^{n-1} \pi(T)\right)$, for all points T of ${ }^{n} H$ incident with l, an elation with the same center at infinity (Lemma 11 of Part I [11] and Lemma 28), and as a consequence of Theorem 4.14 in Hughes \& Piper [5], $[\alpha, \gamma]$ fixes every point of ${ }^{n} H$ that $(n-1)$-neighbours l. We conclude that the non-trivial collineation $\delta=[\alpha, \gamma]$ fixes all points of ${ }^{n} H$ that are $(n-1)$-near l, that $(\delta)^{\star_{1}}=1$, and that $(\delta)^{\star_{n-1}}$ is an elation with axis ${ }^{n-1} \pi(l)$ and center ${ }^{n-1} \pi(P)$.
Applying Lemma 25 to δ, a non-trivial ${ }^{1} h$-collineation can be constructed.
By Proposition 2, we now have that ${ }^{n} H$ is a Moufang Hjelmslev plane of level n, and that all elations belong to ${ }^{n} \Psi$. As in Theorem 19 , we conclude that ${ }^{n} H$ is desarguesian. This completes the proof of Theorem I.

5 Proof of the Main Result

By Theorem I, all projective Hjelmslev planes ${ }^{i} H(O), i \geq 1$, are desarguesian. The assertion follows from Theorem 12 of Van Maldeghem [10] and Section 14 of Tits [7].
Alternatively, we can argue as follows. Suppose l^{∞} is some line of Δ^{∞} and let P^{∞} and Q^{∞} be two different points of Δ^{∞} not incident with l^{∞}. Then a vertex O in Δ exists such that for every $k \geq 1, P^{\infty}$ and Q^{∞} (represented as rays starting in O) determine non-neighbouring points of ${ }^{k} H(O)$, which are not near the line of ${ }^{k} H(O)$ determined by l^{∞} (represented as a ray starting in O). Since ${ }^{k} H(O)$ is a Moufang projective Hjelmslev plane (Theorem I) for which the 'base-vertex' O was chosen arbitrarily in Δ, it follows that an elation acting on Δ^{∞} exists with axis l^{∞}, mapping P^{∞} to Q^{∞}, that is the inverse limit of elations acting on projective Hjelmslev planes with base-vertex O. Hence Δ^{∞} satisfies the Moufang condition. By Van Maldeghem [8], Δ^{∞} is desarguesian.

References

[1] Baker C., Lane N. D. and Lorimer J. W., The Artin-Zorn theorem for finite punctually cohesive projective Klingenberg Planes, Ars Combin. 29 (1990), 143 - 149.
[2] Baker C., Lane N. D. and Lorimer J. W., Local alternative rings and finite alternative right chain rings, C. R. Math. Rep. Acad. Sci. Canada 12 (1990).
[3] Baker C., Lane N. D. and Lorimer J. W., An affine characterization of Moufang projective Klingenberg planes, Res. in Math. 17 (1990).
[4] Bruhat F. and Tits J., Groupes réductifs sur un corps local. I. Données radicielles valuées, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5 - 252.
[5] Hughes D. R. and Piper F. C., Projective planes, Springer, Berlin-New York (1973).
[6] Huppert B., Endliche Gruppen I, Springer-Verlag Berlin Heidelberg New York 1967.
[7] Tits J., Immeubles de type affine, in Buildings and the Geometry of Diagrams, Springer Lecture Notes in Mathematics 1181 (L. Rosati, ed.), Springer, Berlin (1986), 159-190.
[8] Van Maldeghem H., On locally finite alternative division rings with valuation, J. Geometry 30 (1987), 42 - 48.
[9] Van Maldeghem H., Valuations on PTR's induced by triangle buildings, Geom. Dedicata 26 (1988), 29 - 84.
[10] Van Maldeghem H., Automorphisms of non-classical triangle buildings, Tijdsch. Belg. Wisk. Gen. 42 (1990), 201 - 237.
[11] Van Maldeghem H. and Van Steen K., Characterizations by automorphisms of some rank 3 buildings, I. Some properties of half strongly-transitive triangle buildings, preprint.
[12] Van Steen K., Non-spherical Tits-buildings of rank 3, Ph.D.-thesis, University of Ghent, 1996.

Address of the authors:
Hendrik Van Maldeghem and Kristel Van Steen,
Department of Pure Mathematics and Computer Algebra
University of Ghent,
Galglaan 2,
9000 Gent
BELGIUM
email: hvm@@cage.rug.ac.be and kvs@@cage.rug.ac.be

[^0]: *The first author is a Research Director of the Fund for Scientific Research - Flanders (Belgium).

