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building is a Bruhat-Tits Building.
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Abstract

We complete the proof of the fact that every locally finite triangle building ∆ with
a half strongly-transitive automorphism group G (e.g., this happens when ∆ is defined
via a (B,N)-pair in G) is a Bruhat-Tits building associated with a classical linear
group over a locally finite local skewfield.

1 Introduction and Main Result

In order to show that every half strongly-transitive locally finite triangle building ∆ is a
Bruhat-Tits building (this is an affine building arising from an algebraic, classical or mixed
type group over some local field as in Bruhat & Tits [4]; see Part I [11]), we prove that
the projective Hjelmslev planes of level n attached to each vertex of ∆ satisfy the Moufang
condition, for all positive integers n. In Part I [11] of this paper, we proposed a machinery to
do so. In particular, a method based on an induction hypothesis was developed and it was
shown that only the first step of the induction hypothesis must be verified, along with the
construction of a certain type of automorphism (called a

1
h-collineation) in each Hjelmslev

plane. We briefly summerize these results below, after recalling the main definitions.

Let us first write down the Main Result of this part of the paper:

Theorem I. If ∆ is a locally finite triangle building with a half strongly-transitive automor-
phism group G, and if O is an arbitrary vertex of ∆, then the projective Hjelmslev plane
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n
H(O) of level n, n ≥ 1, attached to O, as in Van Maldeghem [9], satisfies the Moufang
condition, i.e., it admits every elation and hence it is a desarguesian Hjelmslev plane.

From this theorem, we will derive the following result, which is stated in Part I [11] as the
Main Result of Parts I and II:

Main Result. If ∆ is a locally finite triangle building with a half strongly transitive au-
tomorphism group G, then ∆∞ is associated to a desarguesian projective plane, and hence
∆ is a Bruhat-Tits building and arises from a classical group PSL3(K) over a locally finite
local skewfield K.

2 Preliminaries

2.1 Definitions

We briefly recall some definitions from Part I [11].

Let ∆ be an affine building of type Ã2. If each residue is finite, then ∆ is called locally finite.
If there is a type-preserving automorphism group G acting transitively on the set of pairs of
chambers at fixed Weyl-distance from each other, for each such Weyl-distance, then we say
that G acts half strongly-transitively on ∆.

Let O be some vertex of ∆. Then we denote by
n
H(O) (or simply

n
H if no confusion is possible)

the Hjelmslev plane of level n attached to O (this is the geometry of vertices at distance n
from O in ∆, see Van Maldeghem [9], or Part I [11]). The point set of

n
H is denoted

nP ,
the line set

nL. The natural epimorphism from
n
H onto

k
H, 1 ≤ k ≤ n, is denoted by kπ.

Points (respectively lines) of
n
H with the same image under kπ are called k-neighbouring, 1-

neighbouring being abbreviated by neighbouring (and denoted ∼). A point and a line whose
images under kπ are incident are called k-near (and again, 1-near is simplified to near).
Every collineation α of

n
H preserves all neighbour relations and hence induces a collineation

(α)!k in
k
H, which we call the ()!k -projection of α. To simplify notation, we denote (α)!k

sometimes by α when acting on elements of
k
H (if no confusion is possible).

An elation in
n
H with axis some line l and center some point P , where P is incident with l,

is a collineation of
n
H fixing all points on l and fixing all lines through P . If the group of

all elations with axis l and center P acts transitively on the points not near l incident with
some line m (which is itself not neighbouring l, but which is incident with P ), then we say
that

n
H is (P, l)-transitive. If

n
H is (P, l)-transitive for all choices of such P and l, then we

say that
n
H is a Moufang Hjelmslev plane, or that

n
H satisfies the Moufang condition.

We will use the word axis (of a collineation) to denote a line which is pointwise fixed by a
collineation. Dually for center.

A collineation δ of
n
H, n ≥ 2, is a quasi-elation if a point P and a line l of

n
H exist such that
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(i) (δ)!n−1 is an elation with axis
n−1

π(l) and center
n−1

π(P ),
n−1

π(P )
n−1

I
n−1

π(l);

(ii) all lines (n− 1)-neighbouring l are fixed;

(iii) all points (n− 1)-neighbouring P are fixed.

Every line m,
n−1

π(m) =
n−1

π(l), that is incident with at least 3 two by two non-neighbouring
fixed points is called a quasi-axis for δ. Every point Q,

n−1
π(Q) =

n−1
π(P ), that is incident

with at least 3 two by two non-neighbouring fixed lines is a quasi-center for δ. We have
shown in Part I [11](Remark 9) that every quasi-elation has at least one center and, dually,
at least one axis. Also, every elation is a quasi-elation (see Lemma 5 of Part I [11]).

In Part I [11], we have proved several elementary properties of quasi-elations. We will use
these in the present paper. We now recall the definition of some other types of collineations.

For all k, 1 ≤ k ≤ n− 1, a
k
hl

P -collineation of
n
H is an elation with axis l ∈ nL and center P

∈ nP , and ()!n−k -projection trivial.

A generalized 1-homology of
n
H is a non-trivial collineation of

n
H with ()!n−1 -projection

trivial, and with an axis l ∈nL and a center P ∈n P , with l not near P .

2.2 Some known results

We remind the reader of three important results of Part I [11]. Let G be an automorphism
group of a triangle building ∆, and let

n
Ψ(O) (or

n
Ψ if no confusion is possible) be the group

of automorphisms of
n
H(O) induced by G.

Proposition 1 Suppose that for every vertex v of ∆,
1
H(v) is a Moufang plane (with all

elations inherited from G), that there exists at least one
1
h-collineation in

2
H(v), and that

there exists at least one quasi-elation in
2
H(v) with non-trivial ()!1 -projection. Then

2
H is a

Moufang projective Hjelmslev plane and all elations belong to
2
Ψ.

Proposition 2 Let n ≥ 3 and suppose that
k
H(v) is a Moufang Hjelmslev plane of level k,

for every k ≤ n− 1 (and all elations are induced by G) and for all vertices v of ∆, and that
for every vertex v of ∆, there exists some non-trivial

1
h-collineation in

n
H(v) (and induced

by G). Then there exists a quasi-elation of
n
H in

n
Ψ with non-trivial ()!1 -projection and

n
H

is a Moufang projective Hjelmslev plane with all elations belonging to
n
Ψ.

A well-formed triangle in the projective Hjelmslev plane
n
H is a set of three pairwise non-

neighbouring points {P, Q, S} such that
1
π(P ),

1
π(Q),

1
π(S) are not collinear in

1
H.

Property 3 (transitivity on the well-formed triangles of
n
H) Suppose that G acts half

strongly-tranisitively on ∆. Let {P1, P2, P3} and {Q1, Q2, Q3} be well-formed triangles of
n
H.

Then a collineation α in
n
Ψ exists such that α(Pi) = Qi, for all i ∈ {1, 2, 3}.
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3 Fixed point sets in finite Hjelmslev planes of level n

In this section, which is independent of any hypothesis on the automorphism group, we will
show that, if

n
H is finite, then every collineation has an equal number of fixed points and fixed

lines, just as in the case of a finite projective plane, see for instance Hughes & Piper [5].
The method of proof will be a straightforward generalization of the case n = 1 (projective
planes). However, for reasons of notation, we will give the proof only for the case of n = 2.
The general case is proved in detail in the thesis of the second author, see Van Steen [12].

Also, in this section, we temporarily use another notation for points and lines of
2
H. This

will be convenient for the proofs of the next lemmas.

We assume that
1
H is a finite projective plane of order q. We label the points of

1
H arbitrarily

by
1
pi, 1 ≤ i ≤ q2 + q + 1, and we label the q2 points in every 1π−1(

1
pi) arbitrarily by

2
pj,

1 ≤ j ≤ q2. We then label a point P of
2
H by the sequence

1
pi

2
pj with 1 ≤ j ≤ q2,

1 ≤ i ≤ q2 + q + 1, where
1
pi refers to

1
π(P ) and

2
pj to P in the obvious way.

In the same way we label any line of
2
H by a sequence

1
li

2
lj, 1 ≤ j ≤ q2, 1 ≤ i ≤ q2 + q + 1,

with
1
li referring to

1
π(l) and

2
lj to l.

Notice that with this labelling we have

{ 1
pi

2
pj ∼

1
pg

2
ph ⇔ i = g

1
li

2
lj ∼

1
lg

2
lh ⇔ i = g.

Definition 4 An incidence matrix A for
2
H is said to be normal if the point

1
pi

2
pj refers to

row q2(i− 1) + j of A, and the line
1
li

2
lj refers to column q2(i− 1) + j of A.

We can therefore write A = (aq2(i−1)+j,q2(g−1)+h) with aq2(i−1)+j,q2(g−1)+h = 1 if
1
pi

2
pj

2
I

1
lg

2
lh,

and with aq2(i−1)+j,q2(g−1)+h = 0 otherwise.

Lemma 5 If
2
H is finite, and if A is a normal incidence matrix for

2
H and α a collineation

in
2
Ψ, then α can be represented by 2 permutation matrices B and C satisfying

BA = AC.

Proof. This is a standard exercise. !

Lemma 6 If
2
H is finite, and if A is a normal incidence matrix for

2
H, then det(A) (= 0

(over Q, the field of rational numbers).

Proof. Consider the matrix product B = AAT . Then the diagonal elements bii, 1 ≤ i ≤
v = q2(q2 + q + 1) are given by

bii = the number of lines that are incident with a point
= q(q + 1).
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The non-diagonal elements of B, namely bij, i (= j, for 1 ≤ i, j ≤ v, satisfy

bij = the number of lines that are incident with the points P and Q
respectively corresponding with the i’th and j’th row of A.

If P and Q are neighbouring points, then bij = q. If P and Q are non-neighbouring points,
then bij = 1. Hence, the determinant of the matrix AAT is equal to

det(AAT ) = det





q2Iq2 + qJq2 Jq2 · · · Jq2

Jq2 q2Iq2 + qJq2 · · · Jq2

...
...

. . .
...

Jq2 Jq2 · · · q2Iq2 + qJq2




,

where Iq2 denotes the (q2 × q2)-identity matrix and Jq2 denotes the (q2 × q2)-matrix with
all entries equal to 1. If we denote the rows and columns of the blockmatrix above by
respectively Ri, 1 ≤ i ≤ q2 + q +1, and Ki, 1 ≤ i ≤ q2 + q +1, then, after replacing the rows
Ri, i (= 1, by Ri −R1, and afterwards replacing the first column by the sum of all columns,
we obtain

det(AAT ) = det





q2Iq2 + (2q + q2)Jq2 Jq2 · · · Jq2

0 q2Iq2 + (q − 1)Jq2 · · · 0
...

...
. . .

...
0 0 · · · q2Iq2 + (q − 1)Jq2




.

Hence
det(AAT ) = det(q2Iq2 + (2q + q2)Jq2) (det(q2Iq2 + (q − 1)Jq2))q2+q.

After an elementary calculation, we obtain

det(AAT ) = (q + 1)2q(2q2+1)(q2+q)+2q2
.

Hence det(AAT ) = 0 if and only if q ∈ {−1, 0}. Since q ≥ 2 and since det(A) = det(AT ), the
lemma follows. !
Lemma 6 enables us to formulate the following useful result.

Lemma 7 If
2
H is finite, then every collineation of

2
H has an equal number of fixed points

and fixed lines.

Proof. Suppose α is a collineation of
2
H. Then, using Lemma 5, α can be represented by

permutation matrices B and C with BA = AC and A a normal incidence matrix for
2
H.

By definition of B, the trace tr(B) equals the number of fixed points of α. In the same way
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tr(C) gives the number of fixed lines of α.
Using Lemma 5 again together with Lemma 6, which guarantees the existence of A−1, we
obtain that B = ACA−1. Thus tr(B) = tr(C). Hence α has an equal number of fixed points
and fixed lines. !
Similarly, one shows:

Lemma 8 Let
n
H be finite. Then every collineation acting on

n
H has an equal number of

fixed points and fixed lines, n ≥ 1. !

In fact, only the non-singularity of an incidence matrix of
n
H is somewhat harder to prove

than in the case n = 2. But this boils down to some calculation which are uninteresting and
uniformative for the rest of this paper. As mentioned before, a complete detailed proof can
be found in Van Steen [12].

4 Proof of Theorem I

In this section we prove Theorem I of the Introduction. So we assume that ∆ is a locally
finite triangle building with a half strongly-transitive automorphism group G. After some
definitions of affine planes and dual affine planes occurring in

n
H, we prove first Theorem I

for the cases n = 1, 2.

4.1 Affine planes in
n
H

Suppose
i
π(Q) is a point of

i
H(O), 1 ≤ i ≤ n, for some point Q ∈ nP(O). Then the

projective plane, viewed as a completed affine plane (and which allows us to speak about
points at infinity, once we defined a line at infinity), associated with

i
π(Q) is denoted by

1
H(

i
π(Q)) and defined as follows.

For i = 1, the vertex O is viewed as the line at infinity.
For i > 1, the point

i−1
π(Q) of

i−1P(O) corresponds with the line at infinity of
1
H(

i
π(Q)).

The projective Hjelmslev plane of level j associated with
i
π(Q), 1 ≤ j, is denoted by

j
H(

i
π(Q))

and defined as the projective Hjelmslev plane of level j attached to the vertex
i
π(Q) of the

triangle building ∆ such that
1
π(

j
H(

i
π(Q))) =

1
H(

i
π(Q)).

Suppose
i
π(m) is a line of

i
H(O), 1 ≤ i ≤ n, for some line m ∈ nL(O). Then the projective

plane, viewed as a completed dual affine plane, associated with
i
π(m) is denoted by

1
H(

i
π(m))

and is defined in a similar way as
1
H(

i
π(Q)).

For i = 1, we view O as the point at infinity of
1
H(

1
π(m)).

For i > 1, the line
i−1

π(m) of
i−1L(O) corresponds with the point at infinity of the dual

projective plane
1
H(

i
π(m)),
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The projective Hjelmslev plane of level j associated with
i
π(m), 1 ≤ j, is denoted by

j
H(

i
π(m))

and defined as the projective Hjelmslev plane attached to
i
π(m) such that

1
π(

j
H(

i
π(m))) =

1
H(

i
π(m)).

See also Part I [11] for these definitions.

4.2 The case of levels 1 and 2

In this subsection we show:

Theorem Ia If ∆ is a locally finite triangle building with a half strongly-transitive group
G, then for all vertices O of δ, the projective plane

1
H(O) and the projective Hjelmslev plane

2
H(O) satisfy the Moufang condition and both

1
Ψ(O) and

2
Ψ(O) contain all elations.

Lemma 9
1
H(O) is a desarguesian projective plane of order q = ps, where p is some prime

and s ≥ 1. Also, all elations belong to
1
Ψ(O).

Proof. This is a consequence of Property 3, the Theorem of Ostrom-Wagner (see Hughes
& Piper [5]) and the locally finiteness assumption. !
Note that

1
Ψ contains the little projective group PSL(3, q). From now on we denote the

order of a vertex-residue in ∆ by q = ps, where p is a fixed prime and s is a fixed positive
integer.

Lemma 10 For all lines l of
2
H, |2Ψl| = kq7(q + 1), for some positive integer k.

Proof. Suppose K ∈ 2P and L ∈ 2P determine a unique line l (so K (∼ L). Let M be some
point of

2
H not near l, and let m be the line defined by M and K. Put |2ΨM,K,L| = k, k ≥ 1.

Then by Property 3, |2Ψl| is equal to k multiplied with the number of possible choices for
K, L, M defined as above. An elementary counting argument shows that there are exactly
q7(q + 1) such choices. !

Lemma 11 Suppose l ∈ 2L and P ∈ 2P such that P
2
I l. Then every Sylow p-subgroup Γ of

2
Ψl,P acts transitively on

2P \ {Q ∈ 2P |Q is near l}.

Proof. By Lemma 9,
1
H is a projective plane of order q = ps. Suppose pt | k with k as in

Lemma 10 and where t ≥ 0. By Lemma 10 the order of
2
Ψl,P equals kq6. Hence p | |2Ψl,P |

and the Sylow p-subgroups of
2
Ψl,P are non-trivial. Let Γ be such a Sylow p-subgroup. Then

|Γ| = p6s+t. Suppose now R is some point of
2
H with

1
π(R) ( 1I 1

π(l) and put |RΓ| = pu, the
order of the orbit of R under the group Γ.
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Notice that |RΓ| is indeed a power of p, since |Γ| = |ΓR||RΓ| and since |Γ| = p6s+t.
Using |Γ| = |ΓR||RΓ|,

|ΓR| = the order of the subgroup of Γ fixing R

= p6s+t−u.

Since ΓR ≤
2
Ψl,P,R and, by using Lemma 10 again (|2Ψl,P,R| = kq2), we obtain that p6s+t−u | p2s+t.

Hence 6s + t− u ≤ 2s + t or
4s ≤ u. (1)

But there are only q4 possibilities to pinpoint a point R of
2
H that is not near l. Thus

|RΓ| ≤ p4s, which implies that pu ≤ p4s or that

u ≤ 4s. (2)

From 1 and 2 we conclude that u = 4s.

Consequently |RΓ| = q4. The result is the transitivity of Γ on
2P \ {Q ∈ 2P |Q is near l}. !

Lemma 12 Suppose l,m ∈ 2L, l (∼ m. Suppose P is the point of
2
H determined by l and

m, and suppose Q is some point incident with l not neighbouring P . Then every Sylow
p-subgroup Γ of

2
Ψl,m,Q acts transitively on the set {S ∈ 2P |S 2

I m,
1
π(S) (= 1

π(P )}.

Proof. Noting that |2Ψl,m,Q| = kq2 (consequence of Lemma 10), that |2Ψl,m,Q,R| = k, where
R is some element of {S ∈ 2P |S 2

I m,
1
π(S) (= 1

π(P )} (Lemma 10 and Property 3), and that
there are q2 points of

2
H incident with m that do not neighbour P , the proof of Lemma 11

is easily adapted. !
Now we note (see e.g. Huppert [6], Hilfssatz 7.7.):

Lemma 13 Suppose Υ is some group and θ an epimorphism

θ : Υ → θ(Υ).

If Γ is a Sylow p-subgroup of Υ, for some p ≥ 2, then θ(Γ) is a Sylow p-subgroup of θ(Υ).

In view of Proposition 1, we have to exibit at least one quasi-elation with non-trivial ()!1 -
projection. This will be done in the following lemma.

Lemma 14 At least one quasi-elation exists in
2
Ψ (with a quasi-axis and a quasi-center)

with ()!1 -projection non-trivial.
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Proof. Consider some points P and Q of
2
H,

1
π(P ) (= 1

π(Q), and a line m not near Q with
P

2
I m. Let l be the line in

2L incident with P and Q.

By property 3,
2
ΨP,Q,m acts transitively on the points that are incident with m but which do

not neighbour P . So q2 | |2ΨP,Q,m|. So it is possible to consider a non-trivial Sylow p-subgroup
Γ of

2
ΨP,Q,m. By Lemma 13, (Γ)!1 is a Sylow p-subgroup of (

2
ΨP,Q,m)!1 .

We claim that (Γ)!1 contains at least one elation with axis
1
π(l). Indeed, if we coordinatize

1
H such that

1
π(P ) :=

(
1 0 0

)T
,

1
π(Q) :=

(
0 1 0

)T
,

1
π(m) := Y = 0,

then (Γ)!1 is contained in the group of semi-linear matrices




1 0 d
0 b 0
0 0 c








x
y
z




θ

, b, c, d ∈ GF(q),

a group of order (q − 1)2qs with q = ps as before. In fact, since (Γ)!1 is a p-group, (Γ)!1 is
contained in the group of matrices

δd,θ :=




1 0 d
0 1 0
0 0 1








x
y
z




θ

, d ∈ GF(q).

Suppose there exists for every automorphism θ of GF(q) that occurs in (Γ)!1 only one
d ∈ GF(q) \ {0} to form a matrix δd,θ of (Γ)!1 . Then |(Γ)!1 | ≤ s < q. However, by
Lemma 12, we have q | |(Γ)!1 |, a contradiction.
Hence, different elements d and d′ ∈ GF(q) \ {0} exist, and an automorphism θ of GF(q)
exists such that δd,θ and δd′,θ are both elements of (Γ)!1 . Thus, since (Γ)!1 is a group,
δd′,θ(δd,θ)−1 = δd′,θδ−dθ−1 ,θ−1 = δd′−d,1 ∈ (Γ)!1 and d′ − d (= 0. Consequently, δd′−d,1 is an

elation of (Γ)!1 with axis
1
π(l) and center

1
π(P ). The claim follows.

Let α be some element of Γ with (α)!1 a non-trivial elation with axis
1
π(l) and center

1
π(P ). The lines of

1
H that are incident with

1
π(P ) correspond with the points at infinity

of
1
H(

1
π(P )). Hence, in

1
H(

1
π(P )) α induces a collineation with axis the line at infinity of

1
H(

1
π(P )) and fixes at least one affine point of

1
H(

1
π(P )), namely P . Since the order of α is

a power of p (α being an element of a Sylow p-group), α induces the identity collineation in
1
H(

1
π(P )). Dually, α also induces the identity in

1
H(

1
π(l)).

We now consider an arbitrary point
1
π(R) (= 1

π(P ), R ∈ 2P , that is incident with
1
π(l). Then

the collineation induced by α in
1
H(

1
π(R)) has a center at infinity, corresponding with the
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line
1
π(l) of

1
H, becaue α induces the identity in

1
H(

1
π(l)). Since (α)!1 (= 1 and points at

infinity of
1
H(

1
π(R)) are in one-one correspondence with the lines in

1L that are incident with
1
π(R), no other point at infinity of

1
H(

1
π(R)) can be fixed by α.

Hence α induces in
1
H(

1
π(R)) a non-trivial elation with some affine axis determined by an

l′∩ 1
H(

1
π(R)) l′ ∈ 2L,

1
π(l′) =

1
π(l), where l′∩ 1

H(
1
π(R)) is the formal notation for the unique

vertex in ∆ that is adjacent to l′,
1
π(l′) and

1
π(R).

Dually, we consider an arbitrary line
1
π(u) (= 1

π(l), u ∈ 2L, such that
1
π(u)

1
I

1
π(P ). Following

the reasoning of the previous paragraph, we obtain that α induces a non-trivial elation in
1
H(

1
π(u)) with some affine center, determined by a P ′ ∩ 1

H(
1
π(u)), P ′ ∈ 2P , P ′ ∼ P , where

again P ′∩ 1
H(

1
π(u)) is a formal notation and indicates the unique vertex in ∆ that is adjacent

to P ′,
1
π(P ′), and

1
π(u).

We conclude that α is a quasi-elation with quasi-axis (quasi-axes) neighbouring l and quasi-
center (quasi-centers) neighbouring P , such that (α)!1 (= 1. !
Our next aim is the construction of a non-trivial

1
h-colineation in

2
H. We recall some defini-

tions from Part I [11].

A
1
hl-collineation in

2
Ψ is a

1
h-collineation with axis l. Dually, a

1
hR-collineation in

2
Ψ is a

1
h-collineation with center R. A

1
hl

R-collineation in
2
Ψ is a

1
hl-collineation which is also a

1
hR-collineation.

We denote the sets of
1
h-collineations,

1
h-collineations with axis l,

1
h-collineations with center

R, and
1
h-collineations with axis l and center R in

2
Ψ respectively as

1
hC,

1
hCl,

1
hC(R) and

1
hCl

(R).

Now note that, by Lemma 2 of Part I [11], for every point P of
2
H, a generalized 1-homology

induces in
1
H(

1
π(P )) either the identity or a non-trivial elation with axis at infinity. Since

1
H(

1
π(P )) is a finite projective plane of order q (by Lemma 9), the order of such an induced

non-trivial elation is equal to p. So we may denote the order of the subgroup of
2
Ψ consisting

of all generalized 1-homologies with an axis l and a center R by pr(l, R), for some specific
r ≥ 0 (or pr if no confusion is possible).

The next theorem is a result about finite projective planes, independent of our hypotheses.
We use the notation of Hughes & Piper [5]. In particular, for an automorphism group Υ
of a projective plane, a point Q and a line l of that plane, we denote by Υ(Q,l) the set of all
collineations in Υ with center Q and axis l.

Theorem 15 Let H be a finite projective plane of order q = ps (p prime, s ≥ 1), and l
some line of H. If Υ is a collineation group of H such that Υ(Q,l) is non-trivial and |Υ(Q,l)|
is some fixed power of p, for all points Q of H that are incident with l, then |Υ(Q,l)| = q.

Proof. Suppose |Υ(Q,l)| = ph, h > 0. Then |Υ(l,l)| = (q + 1)(ph − 1) + 1, since there are
exactly q + 1 points of H incident with l.
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Using Theorem 4.16 of Hughes & Piper [5], |Υ(l,l)| | q2 = p2s. Hence (q + 1)(ph − 1) + 1 =

ps+h + ph − ps = ps(ph + ph

ps − 1) > ps, and is a power of p, say pr (r > s).

Consequently, p is a divisor of ph + ph

ps − 1, which is only possible for ph = ps = q. !
The following lemma is the crux of the proof of Theorem I.

Lemma 16 At least one non-trivial
1
h-collineation exists in

2
Ψ.

Proof. By Lemma 14, a quasi-elation α with some quasi-axis l ∈ 2L and quasi-center
neighbouring some point P ∈ 2P , P

2
I l, and with non-trivial ()!1 -projection exists. Let

m
2
I P be some fixed line in

2L for α with
1
π(m) (= 1

π(l) (use Property 3 if necessary), and let
Q be some point of

2
H incident with l,

1
π(Q) (= 1

π(P )

Part 1:

In this part we prove the claim that there exists a group of collineations fixing all lines
neighbouring l, fixing all lines of

1
H that are incident with

1
π(P ), and acting transitively on

the points that neighbour P and that are also incident with l.

For the moment, let us denote by Υ the subgroup of
2
Ψ generated by all collineations fixing

every point in
2P that neighbours P , fixing all lines of

2
H that neighbour l (and by considering

intersection of such lines, thus fixing all points of
1
H that are incident with

1
π(l)).

Then α ∈ Υ and (Υ)!1 is a set of elations with axis
1
π(l) and center

1
π(P ). Hence

|(Υ)!1 | ≤ q. (3)

If Υ′ ≤Υ is the set of collineations of Υ with ()!1 -projection trivial, then

|Υ|
|Υ′| = |(Υ)!1 |. (4)

So by (3) and (4),

|Υ′| ≥ |Υ|
q

.

By the dual of Lemma 11, any Sylow p-group Γ of the subgroup of
2
Ψ consisting of collineations

fixing l and Q, acts transitively on the lines that are not near Q and that are in particular in-
cident with some point R

2
I m,

1
π(R) ( 1I 1

π(l). Hence, for every line m′ 2
I R, and with

1
π(m′) =

1
π(m) some collineation δm′ of Γ mapping m′ to m exists. The collineations δ−1

m′ αδm′ are again
elements of Υ because

1
π(P ) is fixed by δm′ . Since (α)!1 (= 1, we also have (δ−1

m′ αδm′)!1 (= 1.

Suppose m′′ and m′′′ are distinct lines of
2
H, satisfying

1
π(m′′) =

1
π(m′′′) =

1
π(m) and m′′ 2

I
R

2
I m′′′. Suppose δ−1

m′′αδm′′ = δ−1
m′′′αδm′′′ . Then δ−1

m′′αδm′′ fixes the line δ−1
m′′(m) and δ−1

m′′′(m).

11



Since both δ−1
m′′(m) and δ−1

m′′′(m) are incident with R and neighbouring,
1
π(R) is fixed by

δ−1
m′′αδm′′ . Hence (δ−1

m′′αδm′′)!1 = 1, using
1
π(R) ( 1I 1

π(l), a contradiction.

As a consequence of the previous paragraphs, the q choices for m′ as a line of
2
H that

neighbours m and that is incident with R, correspond with two by two different collineations
δ−1
m′ αδm′ ∈ Υ, with (δ−1

m′ αδm′)!1 a non-trivial elation (of order p) acting on
1
H.

It can now be seen that
|Υ| ≥ q(p− 1) + 1.

Consequently
|Υ′| > 1,

which guarantees the existence of a collineation η ∈ Υ such that (η)!1 = 1 but η (= 1.

Since η (= 1, some point U of
2
H,

1
π(U) (= 1

π(P ), exists such that η maps U to some point
U ′, U ′ ∼ U , U ′ (= U .

By Lemma 2 of Part I [11], η induces in
1
H(

1
π(U)) a non-trivial elation. The center of the

induced elation is determined by a line of
1
H, say

1
π(v), v ∈ 2L, such that every line of

2
H

incident with both U and U ′ neighbours v. Notice that
1
π(v) might coincide with

1
π(l).

The question was whether a group of collineations fixing all lines neighbouring l exists,
fixing all lines of

1
H that are incident with

1
π(P ), and acting transitively on the points that

neighbour P and that are also incident with l. Consider the induced collineations in the
Hjelmslev plane

2
H(

1
π(l)) of level 2 associated with the vertex

1
π(l). We remark that the

vertex O is now a point of
1
H(

1
π(l)), that

1
π(P ) is a line of

1
H(

1
π(l)) incident (in

1
H(

1
π(l)) )

with O, and that l is a line of
1
H(

1
π(l)) which is different from the line

1
π(P ) of

1
H(

1
π(l)) and

not incident (in
1
H(

1
π(l))) with O. The lines of

2
H(O) that neighbour l correspond with lines

of
1
H(

1
π(l)) that are not incident (incidence in

1
H(

1
π(l))) with O.

So dually, and after shifting the problem to
2
H(O), we should show the existence of a set

of collineations with ()!1 -projection trivial, that induce in
1
H(

1
π(T )), for some point T of

2
H(O), q elations.

To prove this existence, we remark that all ‘directions’, or points at infinity of
1
H(

1
π(T )),

play the same role, using the transitivity of
2
Ψ on the well-formed triangles of

2
H. Hence

the number of elations for some ‘fixed direction’ (the identity included) acting on
1
H(

1
π(T ))

equals ph, 0 ≤ h ≤ s.

Using earlier results in this proof (concerning η), we know that 1 < ph. Hence, applying
Theorem 15, we conclude ph = q and our claim is proved.

Part 2: In this Part we prove the actual occurence of a non-trivial
1
h-collineation in

2
Ψ.

For this purpose we consider the subgroup Υ′′ of
2
Ψ fixing all points in

2P fixed by α. Then

12



|(Υ′′)!1 | ≤ q and

|Υ′′′| ≥ |Υ′′|
q

,

where Υ′′′ consists of all elements of Υ′′ with trivial ()!1 -projection.
As proven in Part 1, for every point P ′ 2

I l, P ′ ∼ P , a collineation θP ′ exists that fixes all
lines that neighbour l, fixes all lines of

1
H that are incident with

1
π(P ), and that maps P ′ to

P . The collineations θ−1
P ′ αθP ′ are again elements of Υ′′ with ()!1 -projection not trivial.

Notice that the set {θ−1
P ′ αθP ′ |P ′ ∼ P, P ′ 2

I l} consists of two by two different elements. This
can be shown similarly as above (see the argument concerning δm in Part 1). Consequently,

|Υ′′| ≥ q(p− 1) + 1

and so |Υ′′′| > 1. In other words, some non-trivial collineation θ′ in
2
Ψ exists with (θ′)!1 = 1

and fixing all points of
2
H that are fixed by α. Applying Lemma 2 of Part I [11] of this paper,

all points of
2
H that are near l are fixed by θ′ (recall that by Lemma 14, α fixes at least one

point neigbouring any point near l).

Suppose non-trivial
1
h-collineations do not exist. Then by Lemma 16(ii) of Part I [11], α is

a generalized 1-homology. Hence pr > 1. Consider the subgroup Υiv of
2
Ψ consisting of all

collineations fixing every point of
2
H near l, and fixing some arbitrary line u not neighbouring

l. Then every element of this group has a trivial ()!1 -projection and the order of the group
is prpz, where pz (z ≥ 0) is the orbit under Υiv of some point V

2
I u,

1
π(V ) ( 1I 1

π(l). We note
that the only collineations active on

1
H(

1
π(V )) are elations, by Lemma 2 or Lemma 16 of

Part I [11].

On the other hand, |Υiv| equals q(pr− 1)+1. This can be seen as follows. If a collineation β
∈Υiv exists such that the only points of

2
H that are incident with u and fixed by β neighbour

P , then by Lemma 7, and since the number of points fixed by β is q2(q + 1) in this case,
there are q2(q + 1) fixed lines for β. Moreover, all these lines are near P . Hence β = 1, a
contradiction.

Consequently, every collineation inΥiv fixes some point U
2
I u, with U (∼ P . ThusΥiv consists

of all possible generalized 1-homologies with axis l that fix u. Continuing, we obtain that

prpz = q(pr − 1) + 1.

Since pr > 1, and thus p | prpz, it follows that p | q(pr − 1) + 1, a contradiction.

We conclude that there is at least one non-trivial
1
h-collineation available in

2
Ψ. !

By Proposition 1, we conclude that
2
H is a Moufang Hjelmslev plane and that all elations

belong to
2
Ψ. Whence Theorem Ia. Now we show that in fact we have a Desarguesian

Hjelmslev plane.
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In 1977, Dugas proved (with corrections made by Bacon) that a finite Moufang (projective)
Hjelmslev plane whose canonical image is not PG(2, 2) is desarguesian. In 1979, this result
was extended by Bacon. He showed that a finite punctally cohesive Moufang (projective)
Klingenberg plane (and in particular a finite punctally cohesive Moufang (projective) Hjelm-
slev plane) whose canonical image is not PG(2, 2) is a desarguesian plane. In Baker, Lane
& Lorimer [1], theorems are formulated and proven in order to eliminate the PG(2, 2) re-
striction, as indicated in the proof of Theorem 17. We refer to Baker, Lane & Lorimer [1],
[2], and [3].

Theorem 17 If ∆ is a locally finite triangle building with a half strongly-transitive auto-
morphism group, then for each vertex O,

2
H(O) is a desarguesian Hjelmslev plane.

Proof. Since
2
H is a Moufang Hjelmslev plane, it can be coordinatized by a local alternative

ring R. Moreover, using Baker, Lane & Lorimer [1], R must be a projective Hjelmslev
ring. By the definition of a projective Hjelmslev ring, R is a right chain ring. Therefore,
2
H is punctally cohesive. Hence so far,

2
H is a finite punctally cohesive Moufang Hjelmslev

plane. Using Baker, Lane & Lorimer [1] again,
2
H is desarguesian. !

Recall that, by Theorem 35 of Part I [11], we have:

Theorem 18 The set of elations in
2
Ψ with some fixed axis l ∈ 2L is an abelian group.

4.3 The case n ≥ 3

In this subsection, we show:

Theorem Ib. If ∆ is a locally finite triangle building with a half strongly-transitive group
G, then for all vertices O of δ, the projective Hjelmslev plane

n
H(O), n ≥ 3, satisfies the

Moufang condition and
n
Ψ(O) contains all elations.

We assume throughout, by induction, that
k
H(v) is a Moufang projective Hjelmslev plane

with all elations in
k
Ψ(v), for 1 ≤ k ≤ n − 1, n ≥ 3, and for all vertices v. As for the case

n = 2, this implies (and also the proof is similar, see Theorem 17)

Theorem 19 For all k, 2 ≤ k < n, and all vertices v of ∆,
k
H(v) is desarguesian.

Theorem 35 of Part I [11] implies:

Theorem 20 For every vertex v, the set of elations in
k
Ψ(v) with some chosen axis l of

k
H

forms a commutative group acting transitively on the set of points of
kP \{Q ∈ kP | 1

π(Q)
1
I

1
π(l)}.
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Also, note that the following lemmas have proofs which are completely similar to Lemma 10
and Lemma 11, respectively. Note that we still have our main assumption: the group G acts
strongly-transitively on ∆.

Lemma 21 For every line l ∈ nP, |nΨl| is a multiple of q4n−1(q + 1).

Lemma 22 Suppose l ∈ nL and P ∈ nP such that P
n
I l. Then every Sylow p-subgroup Γ of

n
Ψl,P acts transitively on

nP \ {Q ∈ nP |Q is near l}. !

In view of Proposition 2, we must show that there is a non-trivial
1
h-collineation in

n
Ψ. We

need a few lemmas before we can show this. The first lemma slightly generalizes Lemma 16
of Part I [11].

Lemma 23 Suppose l is some line of
n
H and P some point of

n
H with P

n
I l, n ≥ 2. Suppose

γ is a collineation in
n
Ψ with (γ)!n−1 = 1, fixing all lines incident with P except maybe

for lines that neighbour l and such that all occurring fixed points are near l. Then γ is a
1
h-collineation in

n
Ψ with axis l and center P .

Proof. Suppose m is an arbitrary line of
n
H that is incident with P and for which

1
π(m) (=

1
π(l).

We claim that γ induces the identity in
1
H(

n−1
π(m)). Indeed, the vertices in cl(

n−1
π(m),

1
π(T )),

for all
1
π(T )

1
I

1
π(m), that are adjacent to both

n−1
π(m) and

n−2
π(m), correspond with the

lines at infinity of
1
H(

n−1
π(m)), where, for n = 2, we set

n−2
π(m) = O.

The lines m′ that are incident with P and for which
n−1

π(m′) =
n−1

π(m), are fixed by γ,
and give rise to an affine (affine in the dual projective plane

1
H(

n−1
π(m))) center for the by

γ induced collineation in
1
H(

n−1
π(m)). Thus γ induces a collineation with two centers in

1
H(

n−1
π(m)). Necessarily, γ1H(n−1π(m)) = 1. Hence the claim.

In fact, all lines of
n
H that are near P and do not neighbour l, are fixed for γ. Indeed,

suppose that m is some line of
n
H(O) such that

1
π(P )

1
I

1
π(m),

1
π(m) (= 1

π(l), and P (nI m.
Let T and T ′ be two non-neighbouring points of

n
H satisfying T

n
I m

n
I T ′ and

1
π(T ) ( 1I 1

π(l)
( 1I 1

π(T ′). Then the line m′ of
n
H(O) that is incident with P and T is a fixed line for γ. The

line m′′ determined by P and T ′ is fixed for γ as well. Additionally, m′ ∩ 1
H(

n−1
π(T )) and m′′

∩ 1
H(

n−1
π(T ′)) are both fixed by γ. Note again that (γ)!n−1 = 1. Since m′ ∩1

H(
n−1

π(T )) =
m∩1

H(
n−1

π(T )) and m′′∩1
H(

n−1
π(T ′)) = m∩1

H(
n−1

π(T ′)), we have γ(m) = m. Consequently,
γ induces the identity collineation in

n−1
H(

1
π(P )).

Thus the number of lines in
nL fixed by γ is at least qq2(n−1) = q2n−1. Since γ fixes an

equal number of lines and points, by Lemma 8, and since there are q2(n−1) points of
n
H that
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neighbour P , some point R exists in
nP ,

1
π(R) (= 1

π(P ), for which γ(R) = R. Since all
occurring fixed points are near l,

1
π(R)

1
I

1
π(l).

Since all points of
n
H that neighbour P are fixed by γ, every line of

n
H(O) that is incident

with R and neighbours l is fixed by γ. Using earlier arguments in the proof, it can be seen
that γ induces the identity in

n−1
H(

1
π(l)).

Under the assumption that all fixed points for γ are near l, and applying Lemma 8 again,
there must be (q +1)q2n−2 points near l that are fixed by γ. Since there are only (q +1)q2n−2

points near l, γ is a
1
h-collineation in

n
Ψ with axis l and center P . !

Now we recall from Part I [11] (Lemma 18):

Lemma 24 At least one quasi-elation γ in
n
Ψ exists with non-trivial ()!1 -projection.

Lemma 25 Let k be some integer 1 ≤ k ≤ n − 1. If there is a collineation α in
n
Ψ fixing

all points (n− 1)-near some line l ∈ nL, with (α)!n−1 an elation with axis
n−1

π(l) and some
center

n−1
π(P ), P

n
I l, and with (α)!k = 1,(α)!k+1 (= 1, then a non-trivial

1
h-collineation

exists in
n
Ψ.

Proof. The lemma is true for k = n − 1 by Lemma 19 of Part I [11]. We proceed by
induction as follows. Suppose the statement of the lemma is true for all k, h ≤ k ≤ n − 1,
with h such that 1 < h ≤ n− 1. Then we prove the statement holds for h− 1.

So suppose α is a collineation in
n
Ψ fixing all points that are (n− 1)-near some line l ∈ nL,

with (α)!n−1 an elation with axis
n−1

π(l) and some center
n−1

π(P ), P
n
I l, and for which

(α)!h−1 = 1 but (α)!h (= 1. Suppose R is some point in
nP ,

1
π(R) ( 1I 1

π(l). Then α(R) is
some point S of

n
H, with

h
π(R) (= h

π(S),
h−1

π(R) =
h−1

π(S). Any line incident with R and S
intersects l in a unique point of

n
H, a point which is fixed by α. Thus any line incident with

R and S is fixed by α. Suppose m ∈ nL, is some line incident with R and S, and suppose m
intersects l in some point Q of

n
H. Using Property 3, for every point

2
π(V ) of

2
H(O), V ∈

nP and incident with l,
2
π(V ) (= 2

π(Q),
1
π(V ) =

1
π(Q), a collineation β in

n
Ψ exists, fixing l

and R, and mapping V to Q.
So β−1αβ is a collineation in

n
Ψ fixing all points that are (n − 1)-near l, with (β−1αβ)!n−1

an elation with axis
n−1

π(l), and such that (β−1αβ)!h−1 = 1. Since (α)!h (= 1, one has
(β−1αβ)!h (= 1. Moreover, both

h
π(R) and

h
π(S) are incident with β−1αβ(

h
π(m)), because

β stabilizes the sets of points incident with m and β(m), respectively, and S belongs to both
m and β(m) (since β(R) = R and

1
π(R) =

1
π(S)).

There are only q−1 possible images for
h
π(R) incident with

h
π(m) by collineations of the form

β−1αβ, (β−1αβ)!h−1 = 1, (β−1αβ)!h (= 1. But |{2
π(V ) |V ∈ nP , V

n
I l,

1
π(V ) =

1
π(Q)}| = q.

Hence, we may assume that some points V ′ and V ′′ of
n
H exist with V ′ n

I l
n
I V ′′,

2
π(V ′)

(= 2
π(V ′′),

1
π(V ′) =

1
π(Q) =

1
π(V ′′), some collineation β′ in

n
Ψ fixing l and R and mapping
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V ′ to Q, and some collineation β′′ in
n
Ψ fixing l and R such that β′′(V ′′) = Q, such that

(β′′−1αβ′′)(
h
π(R)) = (β′−1αβ′)(

h
π(R)). Since (β′′−1αβ′′)!h and (β′−1αβ′)!h are both elations

in
h
Ψ with axis

h
π(l), and using Theorem 20 (h ≤ n− 1), ((β′′−1αβ′′)−1(β′−1αβ′))!h is again

an elation in
h
Ψ with axis

h
π(l). Additionally,

h
π(R) is fixed for (β′′−1αβ′′)−1(β′−1αβ′). Hence

((β′′−1αβ′′)−1(β′−1αβ′))!h = 1.

Can we tell more about δ = (β′′−1αβ′′)−1(β′−1αβ′)? From the previous paragraphs, it is
already clear that δ fixes every point of

n
H that is (n − 1)-near l, and that (δ)!h = 1.

Since (β′−1αβ′)!n−1 and (β′′−1αβ′′)!n−1 are both elations with axis
n−1

π(l), and since by
Theorem 20 the set of elations with axis

n−1
π(l) forms a group, (δ)!n−1 is an elation with

axis
n−1

π(l).

Suppose δ = 1. Then δ also fixes the line w′ of
n
H determined by R and V ′, and consequently

β′′−1αβ′′(w′) = w′. Hence β′′−1αβ′′ fixes two 1-neighbouring lines of
n
H that are incident with

R: w′ and the line w′′ of
n
H defined by R and V ′′. Only the points of

1
H(

n−1
π(R)) in

nP(O)
are incident with both w′ and w′′. Thus β′′−1αβ′′(

n−1
π(R)) =

n−1
π(R). However, β′′−1αβ′′

is a collineation in
n
Ψ for which (β′′−1αβ′′)!n−1 is an elation with axis

n−1
π(l) such that

(β′′−1αβ′′)!h (= 1. Since h ≤ n − 1, a contradiction arises. We conclude that δ (= 1. Using
the transitivity of

n
Ψ on the triangles of

n
H, we can obtain a non-trivial collineation in

n
Ψ

fixing all points (n− 1)-near l, with ()!n−1 -projection an elation with axis
n−1

π(l) and center
n−1

π(P ), and with ()!h -projection trivial. Hence, by induction, a non-trivial
1
h-collineation

can be constructed. !

Lemma 26 The kernel of the ()!n−1 -projection is not trivial. In fact, there exists a non-
trivial element in ker(()!n−1 ) fixing all points of

n
H that (n− 1)-neighbour some point.

Proof. Suppose
n−1

π(l), l ∈ nL, is some line of
n−1

H(O) and
n−1

π(P ), P ∈ nP , some point of
n−1

H(O) incident with
n−1

π(l).

Using Lemma 24, at least one quasi-elation δ in
n
Ψ exists with ()!1 -projection not trivial,

such that (δ)!n−1 has some center
n−1

π(Q)
n−1

I
n−1

π(l), Q ∈ nP ,
1
π(Q) (= 1

π(P ), and some
axis

n−1
π(u)

n−1
I

n−1
π(Q), u ∈ nL,

1
π(u) (= 1

π(l). Let m be one of the fixed lines in
nL for δ

not neighbouring u (note that m exists since every quasi-elation has a quasi-axis). Notice
that by Lemma 7 of Part I [11], m is (n− 1)-near Q. Let R be some point of

n
H that is fixed

by δ and for which
1
π(R) (= 1

π(Q). We can assume that m
n
I Q

n
I u

n
I R.

Let us denote by Υ the group generated by all collineations δ′ in
n
Ψ having the following

properties:

(i) δ′ fixes the points in
n−1P(O) that are incident with

n−1
π(u);

(ii) δ′ fixes the lines in
n−1L(O) that are incident with

n−1
π(Q);

(iii) δ′ fixes every point of
n
H that (n− 1)-neighbours Q;
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(iv) δ′ fixes every line of
n
H that (n− 1)-neighbours u;

(v) δ′(R) = R.

Note that δ ∈ Υ.

Next we claim that ker(()!1
Υ) (= 1. Property 3 allows collineations γQ′ in

n
Ψ fixing R, some

point T of
n
H incident with m,

1
π(T ) (= 1

π(Q), that map Q to any point Q′ of
n
H incident

with u,
n−1

π(Q) =
n−1

π(Q′). There are q possible choices for Q′ incident with u,
n−1

π(Q)
=

n−1
π(Q′), giving rise to q two by two different collineations γ−1

Q′ δγQ′ . Indeed, suppose

that Q′′ and Q′′′ are different points of
n
H satisfying Q′′ n

I u
n
I Q′′′,

n−1
π(Q) =

n−1
π(Q′′)

=
n−1

π(Q′′′), such that γ−1
Q′′δγQ′′ = γ−1

Q′′′δγQ′′′ . Then two (n − 1)-neighbouring fixed lines for

γ−1
Q′′δγQ′′ exist, namely γ−1

Q′′(m) and γ−1
Q′′′(m). Since Q′′ (= Q′′′, some point

1
π(U) ∈ 1P(O), U

∈ nP(O),
1
π(U) (1I 1

π(u), exists that is fixed by γ−1
Q′′δγQ′′ . This contradicts (γ−1

Q′′δγQ′′)!1 (= 1.

All collineations γ−1
Q′ δγQ′ , Q′ n

I u,
n−1

π(Q) =
n−1

π(Q′), have a non-trivial ()!1 -projection,
and are again elements of Υ. Since 1 belongs to any group, this implies that

|Υ| > q.

On the other hand
|1Υ| ≤ q.

Since
|Υ|

|ker(()!1
Υ)| = |1Υ|,

the claim follows.

Consequently, the existence of some non-trivial collineation β ∈ Υ with (β)!1 = 1 is guar-
anteed. We distinguish two cases.

Case 1: (β)!n−1 = 1.
Then since β (= 1, the kernel of the ()!n−1 -projection is not trivial.

Case 2: (β)!n−1 (= 1.
Then (β)!n−1 is a

k
h-collineation (not

k−1
h-collineation) in

n−1
Ψ for some k, 1 ≤ k ≤

n − 2, since (β)!n−1 is an elation in
n−1

Ψ with axis
n−1

π(u) and center
n−1

π(Q), and
since (β)!1 = 1 and (β)!n−1 (= 1. Using Lemma 14 of Part I [11], all points of

n−1
H(O)

that are k-near
n−1

π(u) are fixed by (β)!n−1 .

Since all elations of the Moufang projective Hjelmslev plane
n−1

H are in
n−1

Ψ, we can
consider a collineation α in

n
Ψ such that (α)!n−1 is an elation in

n−1
Ψ with center

n−1
π(P ) and axis

n−1
π(l), and (α)!k = 1, (α)!k+1 (= 1.

Which properties does the collineation [α, β] have? It is clear that ([α, β])!n−1 is an
elation with axis

n−1
π(l) and center

n−1
π(Q). Moreover, β(R) = R because β ∈Υ (and
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see condition (v) above), and α maps R to some point S of
n
H (so

n−1
π(R) is mapped

to
n−1

π(S)) with
k
π(S) =

k
π(R). Hence

n−1
π(S) is k-near

n−1
π(u) and is therefore fixed

by β−1. This implies that [α, β](
n−1

π(R)) =
n−1

π(R). Since ([α, β])!n−1 is an elation
with axis

n−1
π(l) and since

1
π(R) ( 1I 1

π(l), we conclude ([α, β])!n−1 = 1.

Let us look at the image of R under [α, β]. Applying that (α)!n−1 is an elation with
axis

n−1
π(l) and center

n−1
π(P ), (α)!k = 1 and (α)!k+1 (= 1, S = α(R) satisfies

k+1
π(S)

(= k+1
π(R),

k
π(S) =

k
π(R). Suppose S is fixed by β. Then, using β(R) = R, any line

w of
n
H that is incident with R and S is mapped by β to a line β(w) of

n
H that is also

incident with both R and S. Since
k+1

π(R) (= k+1
π(S),

k
π(R) =

k
π(S), w and β(w) are

(n− k)-neighbouring lines. Hence
n−k

π(w) is fixed by β. Since (β)!n−1 is an elation in
n−1

Ψ with axis
n−1

π(u), since n−k ≤ n−1 and using that w is not near Q, (β)!n−k = 1,
a contradiction. Therefore [α, β](R) (= R. In other words [α, β] (= 1.

Hence also in this case, we conclude that the kernel of the ()!n−1 -projection is not
trivial. !

Lemma 27 Suppose U is some point of
n
H. Then ker(()!n−1 ) induces all translations in

1
H(

n−1
π(U)).

Proof. By Lemma 26, there exists a non-trivial element in ker(()!n−1 ), say δ, fixing all
points of

n
H that (n− 1)-neighbour some point Q of

n
H.

Consider an arbitrary point T ∈ nP , T not neighbouring Q. Then we claim that δ cannot
induce a non-trivial homology in

1
H(

n−1
π(T )). Indeed, suppose δ induces a non-trivial homol-

ogy in
1
H(

n−1
π(T )). Then some point T ′ of

n
H,

n−1
π(T ) =

n−1
π(T ′) exists such that δ(T ′) = T ′.

Hence the line u determined by T ′ and any point Q′ ∈ nP that (n− 1)-neighbours Q is fixed
by δ. Since (δ)!n−1 = 1, and since for all points

1
π(V ) of

1
H, V ∈ nP ,

1
π(V )

1
I

1
π(u),

n−1
π(u)

∩ n−2
H(

1
π(V )) corresponds with lines at infinity of

1
H(

n−1
π(u)), δ induces a collineation in

1
H(

n−1
π(u)) with center at infinity. So δ induces in

1
H(

n−1
π(u)) a collineation with an affine

center and at the same time a center at infinity. Hence δ1H(n−1π(u)) = 1. As a consequence,

δ induces an elation in
1
H(

n−1
π(T )) with axis at infinity. However, additionally δ(T ′) = T ′.

Hence δ1H(n−1π(T )) = 1.

Since δ (= 1, there consequently exists some point U ∈ nP such that δ induces a non-trivial
elation in

1
H(

n−1
π(U)). Using Property 3, every point at infinity occurs as a center of some

non-trivial translation of
1
H(

n−1
π(U)). So ker(()!n−1 ) induces at least (q + 1)(ph − 1) + 1

translations in
1
H(

n−1
π(U)), with ph the number of translations induced in

1
H(

n−1
π(U)) for

some fixed center at infinity. Applying ph > 1 and Theorem 15, it follows that ph = q. !

Lemma 28 A subgroup Υ of
n
Ψ exists every element of which fixes all lines of

n
H that

(n− 1)-neighbour some line l ∈ nL, all points of
n−1

H that are (n− 2)-near
n−1

π(l), some line
n−1

π(m) of
n−1

H (m ∈ nL) that is incident with
n−1

π(P ),
1
π(m) (= 1

π(l), P
n
I l, such that Υ

acts transitively on the points of
1
H(

n−1
π(P )) in

nP that are incident with l.

19



Proof. Let Σ be an apartment of ∆ containing l, P ,
n−1

π(m) and O. By v we denote the
unique vertex in Σ at distance n from

1
π(l), corresponding with a line of

n
H(

1
π(l)), and such

that
1
π(P ) ∈ cl(v,

1
π(l)). Then

n−1
π(m) is the vertex in Σ at distance n − 1 from O and

adjacent to both v and
n−1

π(v), where
n−1

π(v) is the unique vertex in cl(v,
1
π(l)) at distance

n− 1 from
1
π(l).

Let us denote the unique vertex in cl(l,
n−1

π(P )), corresponding with a point of
n−1

H(
1
π(l))

as U . Then clearly α(U) = U , for every potential element of Υ (if Υ exists). From this
consideration, it is clear that we are done, whenever we can prove the existence of a subgroup
of

n
Ψ(

1
π(l)), consisting of collineations having a trivial action in

n−1
H(

1
π(l)), that additionally

acts transitively on the lines of
n
H(

1
π(l)) that are incident with some chosen point X of

n
H(

1
π(l)), and (n − 1)-neighbour (with respect to the base-vertex

1
π(l)) some chosen line

of
n
H(

1
π(l)), with X the point of

n
H(

1
π(l)) corresponding with a vertex of Σ which has as

canonical image in
1
H(

1
π(l)) the point corresponding with the vertex O.

Shifting the problem to
n
Ψ(O), we need to prove the existence of a subgroup of

n
Ψ(O),

consisting of collineations having a trivial ()!n−1 -projection, acting transitively on the lines
of

n
H(O) that are incident with some prechosen point of

n
H(O), and that (n− 1)-neighbour

some prechosen line of
n
H(O).

Dually, it suffices to prove the existence of a subgroup of ker(()!n−1 ) inducing in
1
H(

n−1
π(R)),

R some point in
nP(O), a group of translations acting transitively on the points of

n
H(O)

that (n − 1)-neighbour R and that are incident with some chosen line r ∈ nL(O),
n−1

π(R)
n−1

I
n−1

π(r).

The existence of such a subgroup is guaranteed by Lemma 27. !

Lemma 29 At least one non-trivial
1
h-collineation exists in

n
Ψ.

Proof. Using Lemma 24, at least one quasi-elation α in
n
Ψ exists with ()!1 -projection not

trivial. Suppose the induced elation (α)!n−1 in
n−1

H(O) has some axis
n−1

π(l), l ∈ nL, and
some center

n−1
π(P ), P

n
I l. Let m

n
I P be one of the fixed lines for α in

nL not neighbouring
l (m exists since α has a quasi-center).

Let Υ refer to the subgroup of
n
Ψ generated by all collineations β in

n
Ψ such that the fixed

points of
n
H(O) for α that are (n− 1)-near l are also fixed points for β, such that the lines

of
n
H that (n− 1)-neighbour l are fixed by β, and such that (β)!n−1 is an elation with axis

n−1
π(l) and center

n−1
π(P ). Note that α ∈ Υ.

By Lemma 28, a collineation γ in
n
Ψ exists, fixing all lines in

nL that (n−1)-neighbour l, fixing
n−1

π(m) and all points in
n−1P that are (n − 2)-near

n−1
π(l), mapping P to some arbitrary

point P ′ of
n
H different from P , P ′ n

I l,
n−1

π(P ′) =
n−1

π(P ). It is clear that [α, γ] ∈ Υ. Indeed,
clearly ([α, γ])!n−1 is an elation with axis

n−1
π(l) and center

n−1
π(P ), and γ stabilizes the
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set of all points (n − 1)-near l fixed by α since α fixes all lines (n − 1)-neighbouring l by
Lemma 11 of Part I [11].

Suppose [α, γ] = 1. Then [α, γ](γ−1(m)) = γ−1(m). Hence α fixes both m and γ−1(m).
Since m∩γ−1(m)∩ l = ∅ and since m and γ−1(m) are (n−1)-neighbouring lines of

n
H, some

point
1
π(R) not incident with

1
π(l), R ∈ nP , exists such that α(

1
π(R)) =

1
π(R). Since (α)!1

is a non-trivial elation with axis
1
π(l), a contradiction arises. Hence [α, γ] (= 1.

Since both α and γ induce in
1
H(

n−1
π(T )), for all points T of

n
H incident with l, an elation with

the same center at infinity (Lemma 11 of Part I [11] and Lemma 28), and as a consequence of
Theorem 4.14 in Hughes & Piper [5], [α, γ] fixes every point of

n
H that (n−1)-neighbours

l. We conclude that the non-trivial collineation δ = [α, γ] fixes all points of
n
H that are

(n − 1)-near l, that (δ)!1 = 1, and that (δ)!n−1 is an elation with axis
n−1

π(l) and center
n−1

π(P ).

Applying Lemma 25 to δ, a non-trivial
1
h-collineation can be constructed. !

By Proposition 2, we now have that
n
H is a Moufang Hjelmslev plane of level n, and that

all elations belong to
n
Ψ. As in Theorem 19, we conclude that

n
H is desarguesian. This

completes the proof of Theorem I.

5 Proof of the Main Result

By Theorem I, all projective Hjelmslev planes
i
H(O), i ≥ 1, are desarguesian. The assertion

follows from Theorem 12 of Van Maldeghem [10] and Section 14 of Tits [7].

Alternatively, we can argue as follows. Suppose l∞ is some line of ∆∞ and let P∞ and Q∞

be two different points of ∆∞ not incident with l∞. Then a vertex O in ∆ exists such that
for every k ≥ 1, P∞ and Q∞ (represented as rays starting in O) determine non-neighbouring
points of

k
H(O), which are not near the line of

k
H(O) determined by l∞ (represented as a

ray starting in O). Since
k
H(O) is a Moufang projective Hjelmslev plane (Theorem I) for

which the ‘base-vertex’ O was chosen arbitrarily in ∆, it follows that an elation acting on
∆∞ exists with axis l∞, mapping P∞ to Q∞, that is the inverse limit of elations acting on
projective Hjelmslev planes with base-vertex O. Hence ∆∞ satisfies the Moufang condition.
By Van Maldeghem [8], ∆∞ is desarguesian. !
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[4] Bruhat F. and Tits J., Groupes réductifs sur un corps local. I. Données radicielles
valuées, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5 – 252.

[5] Hughes D. R. and Piper F. C., Projective planes, Springer, Berlin-New York (1973).

[6] Huppert B., Endliche Gruppen I, Springer-Verlag Berlin Heidelberg New York 1967.

[7] Tits J., Immeubles de type affine, in Buildings and the Geometry of Diagrams, Springer
Lecture Notes in Mathematics 1181 (L. Rosati, ed.), Springer, Berlin (1986), 159 – 190.

[8] Van Maldeghem H., On locally finite alternative division rings with valuation, J.
Geometry 30 (1987), 42 – 48.

[9] Van Maldeghem H., Valuations on PTR’s induced by triangle buildings, Geom.
Dedicata 26 (1988), 29 – 84.

[10] Van Maldeghem H., Automorphisms of non-classical triangle buildings, Tijdsch.
Belg. Wisk. Gen. 42 (1990), 201 – 237.

[11] Van Maldeghem H. and Van Steen K., Characterizations by automorphisms of
some rank 3 buildings, I. Some properties of half strongly-transitive triangle buildings,
preprint.

[12] Van Steen K., Non-spherical Tits-buildings of rank 3, Ph.D.-thesis, University of
Ghent, 1996.

Address of the authors:
Hendrik Van Maldeghem and Kristel Van Steen,
Department of Pure Mathematics and Computer Algebra
University of Ghent,
Galglaan 2,
9000 Gent
BELGIUM
email: hvm@@cage.rug.ac.be and kvs@@cage.rug.ac.be

22


