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Abstract

In this paper, we classify all generalized quadrangles weakly embedded in pro-
jective space of degree > 2. More exactly, given a (possibly infinite) generalized
quadrangle Γ = (P,L, I ) and a map π from P (respectively L) to the set of points
(respectively lines) of a projective space PG(d, K), K some skewfield, d ≥ 2 (but
not necessarily finite), such that

(i) π is injective on points,

(ii) if x ∈ P and L ∈ L with x I L, then xπ is incident with Lπ in PG(d, K),

(iii) the set of points {xπ | x ∈ P} generates PG(d, K),

(iv) if x, y ∈ P such that yπ is contained in the subspace of PG(d, K) generated
by the set {zπ | z is collinear with x in Γ}, then y is collinear with x in Γ,

(v) there exists a line of PG(d, K) not in the image of π and which meets Γ in at
least 3 points,

then we show that Γ is a Moufang quadrangle and we can explicitly describe the
weak embedding of Γ in PG(d, K).

1 Introduction

Weakly embedded polar spaces were introduced by Lefèvre-Percsy, see e.g. [4] (al-
though she had a stronger notion of weak embedding, but it was proved to be equivalent
with the present one by Thas & Van Maldeghem [11]). In the same paper, she proves
that the number of points of a weakly embedded polar space Γ on a secant line (i.e., a
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line of the projective space not belonging to the polar space and meeting Γ in at least
two points) is a constant (and hence does not depend on that line). Following Thas &
Van Maldeghem [10], we call this constant the degree of the weak embedding. In [3],
Lefèvre-Percsy classifies the finite weakly embedded generalized quadrangles (which
are the non-degenerate polar spaces of rank 2) in PG(3, q). All those weak embeddings
have automatically degree > 2. In Thas & Van Maldeghem [11], all weakly embedded
quadrangles in finite projective space are classified. In the present paper, we extend the
results of these papers to the infinite case, on the condition that the weak embedding has
degree > 2. Notice that, when the weak embedding is a full embedding, i.e., every point
in PG(d, K) of every line of the quadrangle is also a point of the quadrangle, then the
embedding is one of the known ones by Dienst [2] (the result is that only the classical
Moufang quadrangles turn up with their natural embedding in a (possibly degenerate)
polarity, see Tits [15]). Hence, our Main Result is also a partial generalization of Dienst’s
result. There is yet no hope of further generalization to degree 2 by the methods we use
in this paper.

Note that results of Steinbach [7] and Thas & Van Maldeghem [10] treat the same
kind of question for polar spaces with some additional conditions. In all cases, the as-
sumptions imply that the polar space is classical. In the present paper, we hypothesize
an arbitrary quadrangle and prove that it must belong to the class of so-called Moufang
quadrangles. Then we have to treat several classes (amongst them the classical cases).
An alternative approach not using the classification of Moufang quadrangles is developed
in Steinbach [8], though only a partial answer is given there.

So the eventual determination of all weakly embedded quadrangles of degree > 2 requires
some knowledge about the classification of Moufang quadrangles. We will introduce no-
tation and repeat some known results in the next section.

2 Definitions and Notation

A generalized quadrangle Γ = (P ,L, I ) is a point-line incidence geometry (where P is the
set of points and L the set of lines) satisfying the following two axioms:

(i) Each point is incident with t + 1 lines; each line is incident with s + 1 points; two
distinct points are never incident with two distinct lines (here s, t ≥ 1, possibly
infinite).

(ii) If x is a point and L is a line not incident with x, then there is a unique pair
(y, M) ∈ P × L for which x I M I y I L.

The pair (s, t) is usually called the order of Γ. If s, t > 1, then the quadrangle is said to
be thick. Furthermore, we use standard terminology such as collinear points, concurrent
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lines, etc. Also, there is a duality for generalized quadrangles: every statement has a
dual, i.e., if one interchanges the names point and line (and the numbers s and t), then
a (usually new) statement is obtained. The dual of Γ is denoted by ΓD. Further, the line
M (respectively the point y) of (ii) is called the projection of L onto x (respectively of x
onto L).

Generalized quadrangles were introduced by Tits in [12]. For more information, we refer
to the monograph of Payne & Thas [6], to Thas [9], or Van Maldeghem [19] (in the
latter also the infinite case is covered).

There is no hope of classifying all generalized quadrangles (the situation is more or less the
same as for projective planes), as there are (many variations of) free constructions of such
geometries, see e.g. Tits [14]. Nevertheless, if one imposes some extra conditions, then
classification is possible. Two such conditions are related to our Main Result, namely, the
Moufang condition, and the condition of being weakly embedded in a projective space.

2.1 Moufang quadrangles

Let Γ = (P ,L, I ) be a thick generalized quadrangle. We denote by Γ(a) the set of ele-
ments of Γ incident with the element a (point or line). A point-elation is an automorphism
of Γ fixing the set Γ(x) ∪ Γ(y) ∪ Γ(L) elementwise, where x, y, x &= y, are two collinear
points incident with, say, the line L. Such a collineation is also called an (x, L, y)-elation.
If for some line M I x, M &= L, the group of all (x, L, y)-elations acts transitively on
Γ(M)\{x}, then we say that (x, L, y) is a Moufang path. Dually, one defines line-elations
and Moufang paths (L, x, M). Let x, y ∈ P , L, M ∈ L. If the paths (x, L, y), for all
choices of x I L I y, x &= y (respectively the paths (L, x, M) for all choices of L I x I M ,
L &= M) are Moufang paths, then we say that Γ is a half-Moufang quadrangle and that all
point-elation groups (respectively line-elation groups) act transitively. If all paths (x, L, y)
and all paths (L, x, M) are Moufang paths, then we say that Γ is a Moufang quadrangle.

For fixed x, y, L as above, the group of all (x, L, y)-elations of a Moufang quadrangle is
also called a root group. Let x I L I y I M I z I N , with x &= y &= z, L &= M &= N . Let
U1 respectively U2, U3, U4 be the group of all (x, L, y)-elations, respectively (L, y, M)-
elations, (y, M, z)-elations, (M, z, N)-elations in a Moufang quadrangle Γ. By Tits [17],
the following situations can occur, up to duality.

(i) [U1, U3] = [U2, U4] = {1}. Then we call the corresponding quadrangle a mixed
quadrangle.

(ii) [U1, U3] = {1} and [U2, U4] = U3. Then we say that the quadrangle is strictly of type
C2.
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(iii) [U2, U4] = V3 ⊂ U3, with {1} &= V3 &= U3. These quadrangles are called Moufang
quadrangles of type BC2.

It also follows from Tits [17] that the Moufang quadrangles Γ of type BC2 have subquad-
rangles strictly of type C2 such that the groups U2 respectively U4 in these quadrangles
coincide with each other (with the above notation), and such that the group U3 of the
subquadrangle is equal to the group V3 of Γ. We say that Γ extends that subquadrangle
Γ′. Note that in that case Γ′ is an ideal subquadrangle of Γ, i.e., all lines of Γ incident
with a point of Γ′ belong to Γ′ as well. Dually, one defines a full subquadrangle.

The standard examples of Moufang quadrangles are the classical quadrangles, i.e. gener-
alized quadrangles corresponding with (σ, ε)-hermitian or pseudo-quadratic forms (both
called σ-quadratic forms in Tits [17]), see Tits [15, § 8]. When σ &= 1, then we will
call such a quadrangle a hermitian quadrangle; when σ = 1, then we have an orthogo-
nal quadrangle. The duality class is fixed by requiring that the points of the quadrangle
correspond with the 1-dimensional singular subspaces of the corresponding form.

When Γ is an orthogonal quadrangle or a hermitian quadrangle, we may assume that Γ
is associated to a (left) vector space W over some skewfield L and to one of the following
forms:
(a) a pseudo-quadratic form q on W ,
(b) a (σ, ε)-hermitian form f on W with Λmin := {c − εcσ | c ∈ L} = {c ∈ L | εcσ =
−c} =: Λmax.

The assumption in (b) on L, σ, ε is harmless; in the case where it is not satisfied (which
may only happen when L is a non-perfect field of characteristic 2 or a non-commutative
skewfield of characteristic 2) we pass to an isomorphic quadrangle associated to a pseudo-
quadratic form, see Cohen [1, (3.23), (3.27)]. For example, from the symplectic quad-
rangle in characteristic 2 (dimW = 4, f an alternating form) we pass to an isomorphic
quadrangle associated to an ordinary quadratic form on a vector space of dimension
4 + dimL2L.

The mixed quadrangles are certain subquadrangles of orthogonal quadrangles defined over
a (non-perfect) field of characteristic 2, see (6.1.1). In fact, orthogonal quadrangles are
either strictly of type C2, or isomorphic to mixed quadrangles. Hermitian quadrangles
in vector spaces of dimension 4 are strictly of type C2, the other hermitian quadrangles
are Moufang quadrangles of type BC2 extending hermitian quadrangles in vector spaces
of dimension 4. Finally, exceptional quadrangles are Moufang quadrangles (not related to
σ-quadratic forms) of type BC2 extending orthogonal quadrangles which are not mixed
ones. For all these properties, we refer to Tits [17].

An orthogonal quadrangle in a vector space of dimension 2n will be called a Dn-quadrangle.
Over the quadratic closure of the base field, it is part of a building of type Dn. Note that
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by Tits [17], the exceptional Moufang quadrangles of type E6, E7, E8 contain ideal Dn-
quadrangles (and that fixes their duality class for the rest of the paper) for n = 5, 6, 8,
respectively of type E6, E7, E8. Finally, the exceptional Moufang quadrangles of type F4

contain as full and as ideal subquadrangles orthogonal quadrangles with the property that
the “anisotropic part” of the (σ, ε)-hermitian form f is degenerate, see for instance Van
Maldeghem [19](5.5.5), or Tits & Weiss [18].

Let Γ be a generalized quadrangle and p a point in Γ. If a collineation fixes every point
collinear with p, then we call that collineation a central collineation or a central elation.
Dually, one defines an axial elation or axial collineation. Every Moufang quadrangle
contains, up to duality, non-trivial central elations. This can easily be deduced from the
main result of Tits [16].

2.2 Weak embedding of quadrangles

Let PG(d, K) be some d-dimensional projective space d ≥ 2 (but not necessarily finite),
K any skewfield. Let Γ be a generalized quadrangle with point set P , line set L and
incidence relation I . Then we say that Γ is weakly embedded in PG(d, K) if there exists
a map π from P (respectively L) to the set of points (respectively lines) of PG(d, K),
such that the following conditions are satisfied:

(i) π is injective on points,

(ii) if x ∈ P and L ∈ L with x I L, then xπ is incident with Lπ in PG(d, K),

(iii) the set of points {xπ | x ∈ P} generates PG(d, K),

(iv) if x, y ∈ P such that yπ is contained in the subspace of PG(d, K) generated by the
set {zπ | z is collinear with x in Γ}, then y is collinear with x in Γ.

The map π is called the weak embedding. It will sometimes be convenient to see a weak
embedding as an injective morphism from the point-line geometry Γ to the geometry of
1- and 2-dimensional subspaces of a vector space (and to write π(x) instead of xπ for a
point x). Also, for a given weak embedding π, we will denote by Γπ the quadrangle whose
points and lines are the images under π of the points and lines of Γ. The quadrangle Γπ

is a subgeometry of PG(d, K).

Let π be a weak embedding of Γ. A line of PG(d, K) which intersects the set of points
of Γπ in at least two elements, and which is not a line of Γπ, is called a secant line. It
has been shown by Lefèvre-Percsy [4] that the number of points of Γπ on a secant
line is a constant, and we call that constant the degree. In this paper, we will mainly be
concerned with weakly embedded quadrangles of degree > 2.
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A full embedding π of a generalized quadrangle Γ in PG(d, K) is a weak embedding such
that all points of PG(d, K) on a line of Γπ are also points of Γπ.

3 Main Result

In order to state our Main Result, we need a couple of definitions.

Let L′ be a quaternion skewfield, and let L be its center. Let σ be the standard (anti-)-
involution in L′. The set of points of PG(3, L′) whose coordinates (X0, X1, X2, X3) satisfy
the relation

Xσ
0 X1 −Xσ

1 X0 + Xσ
2 X3 −Xσ

3 X2 = 0,

together with all lines of PG(3, L′) contained in that set, constitutes a hermitian quad-
rangle Γ, which we call the quaternion quadrangle over L. The points of a line are
parametrized by the skewfield L′ ∪ {∞}. We may write L′ = L + Lx + Ly + Lxy in a
standard way. Then there is an ideal subquadrangle for which the points on some line are
parametrized by L+Lx+Ly∪{∞}. We call such a subquadrangle a special subquadrangle
of Γ and the corresponding weak embedding a standard weak embedding.

We now state our Main Result.

Main Result. Let Γ be a thick generalized quadrangle weakly embedded of degree > 2 in
the projective space PG(d, K), d ≥ 2 (but not necessarily finite), K some skewfield. Then
Γ is a Moufang quadrangle. Up to isomorphism, Γ is one of the following:

(1) Γ is an orthogonal quadrangle or a hermitian quadrangle as in Subsection 2.1 and
the weak embedding is induced by a semi-linear mapping (see below).

(2) Γ is a quaternion quadrangle and the composition of some automorphism of Γ and
the weak embedding is induced by a semi-linear mapping (see (5.4.2)).

(3) Γ is a mixed quadrangle and an explicit description of the weak embedding can be
given (see Section 6).

(4) Γ is a special subquadrangle of some quaternion quadrangle and the weak embedding
is a standard weak embedding of Γ in a subspace PG(3, D), where D is a quaternion
subskewfield inside K.

In particular this means that Γ can never be the dual of a hermitian quadrangle, nor can
Γ be isomorphic or dual to an exceptional quadrangle.

In the case where Γ is an orthogonal quadrangle or a hermitian quadrangle weakly em-
bedded (of degree > 2) in PG(d, K), let Γ be associated to a (left) vector space W over
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some skewfield L and to a pseudo-quadratic form q on W or to a (σ, ε)-hermitian form
f on W such that Λmin = Λmax. Further, let V be a (left) vector space over K such
that PG(d, K) * PG(V ). Apart from the exceptions mentioned in the case (2) of the
Main Result, there exists an embedding α : L → K and a (with respect to α) semi-linear
mapping ϕ : W → V such that π(Lw) = Kϕ(w) for all points Lw of Γ (which means that
the weak embedding π : Γ → PG(V ) is induced by a semi-linear mapping). In particular,
Γ is fully embedded in the projective space PG(ϕ(W )), where ϕ(W ) is a vector space
over the subskewfield Lα of K.

In the case where Γ is a dual orthogonal quadrangle (but not a mixed quadrangle)
weakly embedded of degree > 2 in PG(d, K), let ΓD have a standard embedding in a
d′-dimensional projective space. Then d = 3 and we have the following four possibilities:
d′ = 4 and Γ is a symplectic quadrangle, d′ = 5 and Γ is a hermitian quadrangle, d′ = 7
and Γ is a quaternion quadrangle and, finally, d′ = 6 and Γ is a special subquadrangle of
some quaternion quadrangle.

We emphasize the fact that the Main Result is a gluing together of several independent
results which are usually stronger than stated above; for instance once we reduced the
general case to the Moufang case, we must treat classical quadrangles, but at the same
time, we handle classical polar spaces and degree 2.

The paper is organized as follows. In the next section we reduce the problem to Moufang
quadrangles. In Section 5 we classify the weakly embedded orthogonal and hermitian
polar spaces. We remark that also the degree 2 weak embeddings are included here, and
that we consider the more general case of polar spaces, since this does not make the proof
more difficult or longer. In fact, it suffices to generalize the results of Steinbach [7] and
that is also the way we will state the result. The general idea is to prove here that the
weak embedding is full over some subfield, and indeed this is always true except if the
polar space is the unique generalized quadrangle of order (2, 2). For this exceptional weak
embedding, we refer to Thas & Van Maldeghem [11]. Section 6 deals with the mixed
quadrangles. Again the more general case of degree ≥ 2 is treated. Next, in Section 7,
we classify all weak embeddings of degree > 2 of dual hermitian and dual orthogonal
Moufang quadrangles, where the special subquadrangle of a quaternion quadrangle turns
up. Finally, Section 8 takes care of the exceptional Moufang quadrangles.

We remark that the dual orthogonal and exceptional case could also be treated for degree
2, since every weakly embedded quadrangle of degree 2 has regular lines (a line L is called
regular if for every line M not meeting L, the two lines L and M are contained in a full
subquadrangle with two lines per point). Hence dual orthogonal weakly embedded quad-
rangles of degree 2 are mixed quadrangles. Also, the exceptional Moufang quadrangles
do not have regular lines nor regular points (as one can deduce from the commutation
relations of these quadrangles). But we consider these non-existing theorems as minor
remarks (since yet, we cannot reduce the classification of weakly embedded quadrangles
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of degree 2 to the Moufang ones), and hence we do not insist on these results.

4 Reduction to Moufang quadrangles

The next lemma is for d = 3 contained in Van Maldeghem [19].

4.0.1 Lemma. Let Γ be a generalized quadrangle weakly embedded of degree δ > 2 in
PG(d, K), for some skewfield K. Then Γ is a half-Moufang quadrangle. More precisely,
all point-elation groups act transitively.

PROOF. To simplify notation, we identify Γ with Γπ in this proof.

Let p be any point of Γ and let x be any point of Γ opposite p. Then it follows directly
from Lefèvre-Percsy [4] that the group of central collineations of Γ with center p acts
transitively on the set of points of Γ on the line px, except for p. Moreover, every such
central collineation is induced by a perspectivity of PG(d, K). Now let L1 and L2 be two
distinct lines of Γ incident with p and pick a point y of Γ on L1, y &= p, and pick two
points z, z′ of Γ on L2, z &= p &= z′. We establish a (p, L1, y)-elation mapping z to z′. Let
L3 be any line of Γ incident with y, L3 &= L1. Let a be any point of Γ on the secant yz,
y &= a &= z. Also, let z∗ be the projection in Γ of z onto L3. Since y, z belong to the
hyperplane spanned by the points of Γ collinear in Γ with z∗, we have a ⊥ z∗. Let z∗∗ be
the projection of z′ onto az∗, and let y′ be the projection of z∗∗ onto L1. Since a, z′ and y′

all lie in the plane spanned by p, y, z, and since p is not collinear in Γ with z∗∗, we must
have that a, y′, z′ are collinear in PG(d, K). Now we consider the central collineation θy

with center y and mapping z to a. Also, we have a central collineation θy′ with center y′

and mapping a to z′. The collineation θ′ = θyθy′ fixes all points of L1 and it also fixes
the line pz. Moreover, it maps z to z′. Now we consider the action of θ′ on the elements
of PG(d, K), and we still denote that extension by θ′. If we look at the restriction of θ′

to the projective plane pyz, then we see that it is the composition of two elations with
axis py; hence that restriction is an elation itself, clearly with center p since pz is fixed.
Hence all lines of Γ through p inside the plane pyz are fixed. Now suppose some line
L of Γ through p is not fixed by θ′. Then we consider the 4-dimensional subspace U of
PG(d, K) generated by L, L1, L2, L3. We look at the restriction θ′|U of θ′ to U . Notice
that Γ′ = Γ ∩ U is a generalized quadrangle weakly embedded of degree δ in U . Now we
claim that we can choose a different point a1 on the secant yz, i.e., a1 is a point of Γ′ on
the line yz and z &= a1 &= y and a &= a1. Indeed, otherwise δ = 3 and hence, there is a
unique line L′ of Γ in the plane LL1. Clearly Lθy = Lθy′ = L′ and so L is fixed under θ′.
So we may assume that a1 exists. We now replace a in the previous reasoning by a1 and
obtain (with “corresponding” notation) a collineation θ′1 = (θy)1(θy′′)1, where y′′ is the
intersection of L1 and a1z′. Now we consider θ′′ = θ′−1θ′1 = θ−1

y′ [(θy)−1(θy)1](θy′′)1. Since
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both θ′ and θ′1 induce translations with center p on the projective line pz mapping z to z′,
it is clear that θ′′ induces the identity on the plane pyz. We now show that θ′′ does not
fix all points of Γ in U collinear with p. Let, for any point x of Γ, ηx denote the tangent
hyperplane in x. Suppose that ηy ∩ ηp ∩ U = ηy′ ∩ ηp ∩ U . Then θ′|(U ∩ ηp) would be an
elation with axis ηy ∩ ηp ∩U and center p (since pz is fixed), hence also L would be fixed,
a contradiction. Denote ηy ∩ ηp ∩U by π; denote ηy′ ∩ ηp ∩U by π′. We know π &= π′, but
π ∩ π′ = L1. We look at the action of θ′′ on the plane π. Since both θy and (θy)1 induce
the identity in π, this action is given by θ−1

y′ (θy′′)1. Since π &= π′, θy′ induces a non-trivial
elation in π with axis L1. On the other hand, (θy′′)1 induces a (not necessarily non-trivial)
elation in π with axis L1 and center y′′ &= y′. Hence θ′′ induces in π a non-trivial elation
with axis L1. So not all points in U collinear with p in Γ can be fixed by θ′′. Now we use
a central elation with center p to map Lθ′′

3 to L3, and, composing with θ′′, we obtain a
collineation θ∗ that clearly fixes the 3-space L1L2L3 pointwise, but does not fix all points
in U collinear with p in Γ. So θ∗ is a non-trivial elation in U with axis L1L2L3 and some
center c. Clearly θ∗ maps L onto a line in the plane cL (note that c is not on L otherwise
L is preserved by θ∗ and hence also every point on L, hence θ∗ is trivial, a contradiction),
and so c ∈ ηp. Similarly, c ∈ ηy and c ∈ ηy′ . Hence c ∈ π ∩ π′ = L1. But similarly also
c ∈ ηz and this implies that c = p, contradicting an earlier remark that c does not lie on
L.

Hence we have shown that θ′ fixes all lines through p. Now suppose that θy′ maps L3 to
L′

3. If we denote by z′′ the projection of z onto L′
3, then similarly as above, one shows

that p, z′′ and z∗ are collinear (in PG(d, K)). Hence there exists a central collineation θp

with center p mapping z′′ to z∗. The collineation θ = θ′θp fixes all lines through p, all
points on L1 and it maps z to z′. Similarly as above, one shows that it also fixes all lines
through y.

This shows the result. !

4.0.2 Lemma. Let Γ be a generalized quadrangle weakly embedded of degree δ > 2 in
PG(d, K), for some skewfield K. Then Γ is a Moufang quadrangle and the little projective
group of Γ is induced by PSL(d, K).

PROOF. Let L1 I p I L2, with L1, L2 lines of Γ and p a point of Γ. Let a and b be two
points on L1 and L2 respectively with a &= p &= b. Let q, q′, q &= p &= q′, be two points of
Γ collinear with both a and b. We show that there is an (L1, p, L2)-elation mapping q to
q′. Together with the preceding lemma, this will imply the result. For this, let z be any
point on L2, p &= z &= b (and z exists by the thickness of Γ). Let x be the projection of z
onto aq′, and let x′ be the projection of x onto bq. Further, let x′′ be the projection of x′

onto L1. Also, let L be the projection of xx′ onto p and let y be the intersection of L and
xx′.
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Now let θ1 be the (b, L2, p)-elation mapping q to x′. This exists by the preceding lemma,
and by the proof of the preceding lemma we have that θ1 induces on the projective line
L1 an elation mapping a to x′′. Furthermore, θ1 fixes L2 pointwise.

Now let θ2 be the (p, L, y)-elation mapping x′ to x. This again exists by the preceding
lemma, and by the proof of the preceding lemma we have that θ2 induces on the projective
line L1 an elation mapping x′′ to a. Hence θ1θ2 fixes L1 pointwise. Furthermore, θ2 induces
on the projective line L2 an elation mapping b to z.

Finally let θ3 be the (p, L1, a)-elation mapping x to q′. By the proof of the preceding
lemma we again have that θ3 induces on the projective line L2 an elation mapping z to
b. Hence θ1θ2θ3 fixes L2 pointwise. Furthermore, θ3 fixes L1 pointwise, hence θ1θ2θ3 fixes
L1 pointwise.

Clearly θ1θ2θ3 fixes all lines through p, and it maps q to q′. So we obtain an (L1, p, L2)-
elation mapping q to q′. The lemma is proved. !
So we have shown that, in order to prove the Main Result, we have to classify the weak
embeddings of degree > 2 of Moufang quadrangles. We will consider the different classes
of Moufang quadrangles separately.

5 Orthogonal and hermitian quadrangles

In this section, we are concerned with polar spaces associated to a (σ, ε)-hermitian form
or a pseudo-quadratic form. The main purpose of Theorem (5.1.1) is about generalized
quadrangles, but the generalization to polar spaces does not make the proof more difficult
or longer. We generalize the result of Steinbach [7] to the case that Rad(W, f) &= 0, also
including the case where dimW/Rad(W, f) = 4.

5.1 Introduction and statement of the theorem

Before we can state Theorem (5.1.1) we need some preparations. Let L be a skewfield
and W be a (left) vector space over L endowed with a (σ, ε)-hermitian form or a pseudo-
quadratic form q (with associated (σ, ε)-hermitian form f) in the sense of Tits [15, §8].
We may assume that ε = ±1 and σ2 = 1. We let

Rad(W, f) = {w ∈ W | f(w, x) = 0 for all x ∈ W},
x⊥ = {w ∈ W | f(w, x) = 0} for x ∈ W,

Λ := Λmin = {c− εcσ | c ∈ L},
Λmax = {c ∈ L | εcσ = −c}.
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A subspace U of W is called singular, if f(u, u′) = 0 resp. q(u) = 0 for all u, u′ ∈ U .
The 1-, 2- and 3-dimensional subspaces of W are called points, lines, planes respectively.
The geometry S of singular subspaces of W is usually called a classical polar space (that
includes the ordinary non-degenerate and/or non-singular polar spaces). We say that S
is the polar space associated with W and f resp. q, see Cohen [1, Section 3] for example.

Let S be the set of singular points of W . For each subspace U of W , we denote by U ∩ S
the set of singular points in U . The subspace of a vector space which is spanned by a
subset M is denoted by 〈M〉. If x, y ∈ V are singular with f(x, y) = 1 then we call (x, y)
a hyperbolic pair and 〈x, y〉 a hyperbolic line. By a 4+-space we mean the orthogonal sum
of two hyperbolic lines.

For skewfields L and K, a mapping α : L → K is called an embedding (resp. an anti-
embedding) if α is injective, α respects addition and (cd)α = cαdα (resp. (cd)α = dαcα)
for c, d ∈ L.

Weak embeddings of classical polar spaces in projective space are defined as for generalized
quadrangles, see Subsection 2.2. In particular, there is an injective mapping π from S
into the set of points of V . We set π(U ∩ S) := {π(u) | u ∈ U ∩ S} for each subspace U
of W . If N is a singular line of W , then 〈π(N ∩ S)〉 is a line in V . If x, y are singular
points of W with π(y) ⊆ 〈π(x⊥ ∩ S)〉, then y ⊆ x⊥.

We prove the following result:

5.1.1 Theorem. Let L and K be skewfields and let W be a vector space over L. We
assume that there is either a (σ, ε)-hermitian form f on W such that Λmin = Λmax or a
pseudo-quadratic form q on W with corresponding (σ, ε)-hermitian form f . We suppose
W = U ⊥ Rad(W, f) with U containing singular lines. Further, let V be a vector space
over K.

We exclude the following special cases: (1) dimW = 4 and q is an (ordinary) quadratic
form (this case corresponds to non-thick quadrangles) or (2) dimW = 4 and L is a
quaternion skewfield or (3) the quadrangle is isomorphic to the symplectic quadrangle
over GF(2).

If π is a weak embedding of the associated polar space S in PG(V ), then there exists an
embedding α : L → K and a semi-linear (with respect to α) mapping ϕ : W → V such
that π(Lx) = Kϕ(x) for all 0 &= x ∈ W , x singular (i. e. π is induced by a semi-linear
mapping).

The condition on U above just means that S always contains generalized quadrangles as
subgeometries. Theorem (5.1.1) shows that S is fully embedded in the projective space
PG(ϕ(W )), where ϕ(W ) is a vector space over the subskewfield Lα of K. Different as
in Steinbach [7], here the semi-linear mapping ϕ : W → V is not necessarily injective.
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Theorem (5.1.1) does not require finite dimension or rank, commutative fields or non-
degeneracy of forms.

The idea of the proof is to apply the result in Steinbach [7] to the mapping π restricted
to U ∩ S in the case that dimU ≥ 5. Hence there exists an embedding α : L → K and
an injective semi-linear mapping ϕ : U → V with π(Lw) = Kϕ(w) for all 0 &= w ∈ U ,
w singular. We extend ϕ to W as follows: Let (x1, y1) be a hyperbolic pair in U . If
0 &= r ∈ Rad(W, f) and qr ∈ L with εqr

σ = −qr resp. qr + Λ = q(r) (depending on
whether there is a (σ, ε)-hermitian form or a pseudo-quadratic form on W ) then there
exists a unique r′ ∈ 〈π(〈x1, y1〉⊥∩S)〉 such that π(qrx1−y1 +r) = 〈qr

αϕ(x1)−ϕ(y1)+r′〉.
We extend ϕ to W by ϕ(u+ r) := ϕ(u)+ r′, if u ∈ U , 0 &= r ∈ Rad(W, f) and r′ as above.
Then ϕ is semi-linear with respect to α and satisfies π(Lw) = Kϕ(w) for 0 &= w ∈ W , w
singular.

If dimU = 4, then we first have to construct a semi-linear mapping ϕ : U → V which
induces π. Here the cases excluded in Theorem (5.1.1) play a special role, see the intro-
duction to Subsection 5.4.

5.2 General lemmas

5.2.1 Lemma. Let a, b, c be singular points, such that 〈a, b〉 is a singular line with 〈a, b〉∩
Rad(W, f) = 0 and c &⊆ b⊥, and set E := 〈a, b, c〉. Then 〈π(E ∩ S)〉 = 〈π(a), π(b), π(c)〉.

PROOF. Let E ′ := 〈π(E ∩ S)〉. We may write E = 〈b, c〉 ⊥ d for some singular point
d ⊆ 〈a, b〉. Let e be a singular point such that Q := 〈b, c〉 ⊥ 〈d, e〉 is a 4+-space. Then E ′

is properly contained in 〈π(Q∩S)〉, since otherwise π(e) ⊆ E ′ ⊆ 〈π(d⊥∩S)〉 and e ⊆ d⊥, a
contradiction. Hence E ′ has dimension at most 3 by Steinbach [7, (2.4)]. Further, π(a)
is not contained in 〈π(b), π(c)〉, since otherwise π(a) ⊆ 〈π(e⊥ ∩ S)〉 and d ⊆ 〈a, b〉 ⊆ e⊥,
a contradiction. Thus E ′ = 〈π(a), π(b), π(c)〉. !

5.2.2 Lemma. If a, b are singular points in W with H := 〈a, b〉 a hyperbolic line, then
〈π(H ∩ S)〉 = 〈π(a), π(b)〉.

PROOF. Since the line 〈π(a), π(b)〉 is contained in 〈π(H ∩ S)〉, we have to show that
〈π(H ∩S)〉 is a line. Let H = 〈x1, y1〉 ⊆ 〈x1, y1〉 ⊥ 〈x2, y2〉 =: Q with (xi, yi) a hyperbolic
pair (i = 1, 2). With E := 〈x1, y1, x2〉 and E1 := 〈x1, y1, y2〉 we obtain that 〈π(H ∩ S)〉 ⊆
〈π(E ∩ S)〉 ∩ 〈π(E1 ∩ S)〉. By (5.2.1) 〈π(E ∩ S)〉 and 〈π(E1 ∩ S)〉 are different planes of
V , hence the claim holds. !

5.2.3 Lemma. Let (x, y) be a hyperbolic pair in W and H = 〈x, y〉. Then 〈π(x), π(y)〉∩
〈π(H⊥ ∩ S)〉 = 0.
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PROOF. Let π(x) = 〈x′〉, π(y) = 〈y′〉 and c, d ∈ K with cx′ + dy′ ∈ 〈π(H⊥ ∩ S)〉. If
c &= 0, then x′ ∈ 〈π(H⊥ ∩ S)〉+ π(y) ⊆ 〈π(y⊥ ∩ S)〉. This yields x ∈ y⊥, a contradiction.
Hence c = 0 and similarly d = 0. !

5.3 The extension of the semi-linear mapping

Because of W = U ⊥ Rad(W, f) we have Rad(U, f) = 0. If dimU ≥ 5, then by Stein-
bach [7] there exists a semi-linear mapping ϕ : U → V (with respect to the embedding
α : L → K) such that π(Lw) = Kϕ(w) for 0 &= w ∈ U , w singular. We suppose this to be
true also in the case dimU = 4. This assumption will be justified in Subsection 5.4.

5.3.1 Lemma. Let 0 &= r ∈ Rad(W, f) and qr ∈ L with εqr
σ = −qr resp. qr + Λ =

q(r). If (x, y) is a hyperbolic pair in U and H := 〈x, y〉, then there exists a unique
r′ ∈ 〈π(H⊥ ∩ S)〉 such that the following holds:

(a) We have π(qrx− y + r) = 〈qr
αϕ(x)− ϕ(y) + r′〉.

(b) We have π(qrx̃ − ỹ + r) = 〈qr
αϕ(x̃) − ϕ(ỹ) + r′〉 for each hyperbolic pair (x̃, ỹ) in

U ∩H⊥.

(c) We have π(cx − y + r) = 〈cαϕ(x) − ϕ(y) + r′〉 for each c ∈ L with εcσ = −c resp.
c + Λ = q(r). In particular, r′ is independent of the choice of qr.

(d) If r is singular, then π(r) = 〈r′〉.

(e) We have π(qrx− ỹ + r) = 〈qr
αϕ(x)−ϕ(ỹ) + r′〉 for each hyperbolic pair (x, ỹ) in U .

PROOF. (a), (b) For a := qrx− y + r, ã := qrx̃− ỹ + r, we see that a is contained in the
singular line 〈a− ã, ã〉 with a− ã = qrx− y− qrx̃+ ỹ ∈ U . Since π is injective on singular
points, there exists v ∈ V such that π(ã) = 〈v〉, π(a) = 〈qr

αϕ(x) − ϕ(y) − qr
αϕ(x̃) +

ϕ(ỹ) + v〉. With r′ := −qr
αϕ(x̃) + ϕ(ỹ) + v the existence of r′ is clear. The uniqueness of

r′ follows with (5.2.3).

(c) Let r̃ ∈ 〈π(H⊥∩S)〉 such that π(cx− y + r) = 〈cαϕ(x)−ϕ(y)+ r̃〉. Since cx− y + r ∈
〈qrx−y+r, x〉, there exist λ, µ ∈ K with cαϕ(x)−ϕ(y)+r̃ = λ(qr

αϕ(x)−ϕ(y)+r′)+µϕ(x)
by (5.2.2). Now (5.2.3) yields r̃ = r′.

(d) If r is singular, we may choose qr := 0. Since r is contained in the singular line
〈−y + r, y〉, there exist v ∈ V , A ∈ K such that π(r) = 〈v〉, v = −ϕ(y) + r′ + Aϕ(y).
Because of v ∈ 〈π(H⊥ ∩ S)〉, (5.2.3) yields v = r′.

(e) We first handle the case y &= ỹ ∈ y⊥. Let H̃ = 〈x, ỹ〉, a := qrx−y+r and ã := qrx−ỹ+r.
By (a) there exists r̃ ∈ 〈π(H̃⊥∩S)〉 with π(ã) = 〈qr

αϕ(x)−ϕ(ỹ)+ r̃〉. Since ã is contained
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in the singular line 〈a, y − ỹ〉, there exist λ, µ ∈ K such that qr
αϕ(x) − ϕ(ỹ) + r̃ =

λ(qr
αϕ(x)− ϕ(y) + r′) + µϕ(y − ỹ). This yields λϕ(y)− ϕ(ỹ) ∈ 〈π(x⊥ ∩ S)〉 and λ = 1,

since y − ỹ ∈ x⊥. Hence r̃ − r′ = (µ− 1)ϕ(y − ỹ).

Let x∗ ∈ U be singular such that (x∗, y − ỹ) is a hyperbolic pair in H̃⊥ and set H0 :=
〈x∗, y − ỹ〉. Then r̃ ∈ 〈π(H0

⊥ ∩ S)〉. If qr = 0, then (d) yields r′ ∈ π(r) ⊆ 〈π(x∗⊥ ∩ S)〉,
hence (µ−1)ϕ(y− ỹ) = r̃−r′ ∈ 〈π(x∗⊥∩S)〉 and µ = 1. So we may assume qr &= 0. Since
qrx ∈ 〈qrx∗− (y− ỹ)+ r, qr(x∗−x)− (y− ỹ)+ r〉, (b) yields that there exist s, t ∈ K with

qr
αϕ(x) = s(qr

αϕ(x∗)− ϕ(y − ỹ) + r̃) + t(qr
αϕ(x∗ − x)− ϕ(y − ỹ) + r′).

Now (5.2.3) for H0 yields µ = 1 and r̃ = r′.

If ỹ &∈ y⊥, then there exists y∗ ∈ U ∩ y⊥ ∩ ỹ⊥ such that (x, y∗) is a hyperbolic pair. We
may apply the first part of the proof twice and the result follows. !
We extend the mapping ϕ to W = U ⊥ Rad(W, f) as follows. Let (x1, y1) be a hyperbolic
pair in U and H1 = 〈x1, y1〉. For 0 &= r ∈ Rad(W, f), we set ϕ(r) := r′ with r′ of (5.3.1).
Further, let ϕ(u + r) = ϕ(u) + ϕ(r) for u ∈ U, r ∈ Rad(W, f).

5.3.2 Lemma. The mapping ϕ : W → V defined above is semi-linear (with respect to
α).

PROOF. First, we show that ϕ : Rad(W, f) → V respects scalars. Let 0 &= c ∈ L,
0 &= r ∈ Rad(W, f) and qr ∈ L with εqr

σ = −qr respectively qr + Λ = q(r). Let (x2, y2) be
a hyperbolic pair in U ∩H1

⊥. For a := qrx2 − y2 + r and z := qrcσx1 − c−1y1 + r, we see
that z is contained in the singular line 〈a, z − a〉. Hence by (5.3.1)(b), there exists λ ∈ K
such that π(z) = 〈ϕ(a) + λϕ(z − a)〉. Applying (5.2.3) for 〈x2, y2〉 yields λ = 1. Further,
π(z) = π(cqrcσx1 − y1 + cr) = 〈(cqrcσ)αϕ(x1)− ϕ(y1) + ϕ(cr)〉; hence ϕ(cr) = cαϕ(r).

Next, we show that ϕ : Rad(W, f) → V respects addition. Let r1, r2 ∈ Rad(W, f). We
may assume r1, r2, r1 + r2 &= 0. Let qri ∈ L with εqri

σ = −qri respectively qri + Λ =
q(ri) (i = 1, 2). We set a1 := qr1x1 − y1 + r1, a2 := qr2x2 − y2 + r2. Then (qr1 −
qr2)x1 − y1 + r1 + r2 ∈ 〈x1 + x2, y2 + a1, a2〉. We apply (5.2.1) and (5.3.1)(b). Since
ϕ(ri) ∈ 〈π(H1

⊥ ∩ S)〉 ∩ 〈π(H2
⊥ ∩ S)〉, we may compare coefficients by (5.2.3) and we

obtain ϕ(r1 + r2) = ϕ(r1) + λϕ(r2) for some λ ∈ K with λ = 1 if qr2 &= 0. Similarly,
(qr2− qr1)x2− y2 + r1 + r2 ∈ 〈x1 +x2, y1 +a2, a1〉 and ϕ(r1 + r2) = µϕ(r1)+ϕ(r2) for some
µ ∈ K with µ = 1 if qr1 &= 0. Hence we are left with the case qr1 = qr2 = 0. Since we may
assume 〈r1〉 &= 〈r2〉, the vectors ϕ(r1) and ϕ(r2) are linearly independent and λ = µ = 1.

This yields the lemma. !

5.3.3 Lemma. We have π(Lw) = Kϕ(w) for all 0 &= w ∈ W , w singular.
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PROOF. Let 0 &= w ∈ W be singular, w = u + r with u ∈ U , r ∈ Rad(W, f). We may
assume r &= 0. Let qr ∈ L with εqr

σ = −qr respectively qr + Λ = q(r).

First, we assume u &∈ H1 = 〈x1, y1〉. Let 〈x〉 be a singular point in U ∩ H1
⊥ with

f(x, u) = −1. For y := qrx − u, we have w = qrx − y + r with (x, y) a hyperbolic pair.
We choose ỹ ∈ U ∩H1

⊥ such that (x, ỹ) is a hyperbolic pair. Then the definition of ϕ(r)
and (5.3.1)(b) for (x, ỹ), (5.3.1)(e) for (x, y) yields π(w) = 〈ϕ(w)〉.
So we are left with the case u ∈ H1. If u = 0, then w = r and π(r) = 〈ϕ(r)〉 by (5.3.1)(d).
If u = dx1 with 0 &= d ∈ L, then we may choose qr = 0. Since U contains singular lines,
we obtain π(qr(−(εdσ)−1)y1 + dx1 + r) = 〈ϕ(dx1) + ϕ(r)〉 applying (5.3.1)(b) twice.

If finally cu = dx1−y1 with c, d ∈ L, then there exists λ ∈ L such that d = cqrcσ +λ =: qcr

with εqcr
σ = −qcr respectively q(cr) = qcr + Λ. This yields cw = qcrx1 − y1 + cr and

π(cw) = 〈qcr
αϕ(x1)− ϕ(y1) + ϕ(cr)〉 = 〈ϕ(cw)〉. !

5.4 The construction of a semi-linear mapping on a 4+-space

In this subsection, we assume that W = U ⊥ Rad(W, f) with U a 4+-space. Our aim
is to show that the weak embedding π restricted to U ∩ S is induced by a semi-linear
mapping. If L is a quaternion skewfield, we possibly have to apply an automorphism of
the quadrangle first, see (5.4.2). The case where q is not an (ordinary) quadratic form,
may be handled as in Tits [15, (8.19.7)], using translations of a projective line. For
quadratic forms, a 4+-space is just a grid, which does not supply enough structure. In
this case, we assume that Rad(W, f) &= 0. By methods inspired by the first case, we
construct a semi-linear mapping ϕ : U → V which induces π (except for the case that
the quadrangle is isomorphic to the symplectic quadrangle over GF(2), see the example
in Thas & Van Maldeghem [11]).

5.4.1 Remark. Let L be a quaternion skewfield with σ its standard (anti-)involution.
Then the center of L is Z(L) = {c + cσ | c ∈ L}. Let U := {(x1, x2, x3, x4) | xi ∈ L} and
q : U → L/Λ be the pseudo-quadratic form (with associated (σ,−1)-hermitian form f)
defined by q(x1, x2, x3, x4) = x1x3

σ + x2x4
σ + Λ. The mapping δ with

〈(0, 0, 1, 0)〉δ = 〈(0, 0, 1, 0)〉,
〈(0, 0, a, 1)〉δ = 〈(0, 0, aσ, 1)〉,
〈(0, 1, b, m)〉δ = 〈(0, 1, bσ, m)〉,
〈(1, a, l + aa′σ, a′)〉δ = 〈(1, aσ, l + aσa′, a′σ)〉

for a, b, a′ ∈ L, l,m ∈ Z(L) = Λ yields an automorphism of the generalized quadrangle
associated to U and q. This automorphism is the one constructed in Tits [15, (8.15)] (for
right vector spaces).
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5.4.2 Lemma. We exclude the case that q is an (ordinary) quadratic form. Let 〈x1, x2〉
be a singular line in U and let x1

′, x2
′ ∈ V such that π(x1) = 〈x1

′〉, π(x2) = 〈x2
′〉,

π(x1 + x2) = 〈x1
′ + x2

′〉, We define α : L → K by π(cx1 + x2) = 〈α(c)x1
′ + x2

′〉 for c ∈ L.
Then one of the following holds:

(a) The mapping α is an embedding and there exists a semi-linear (with respect to α)
mapping ϕ : U → V such that π(Lw) = Kϕ(w) for 0 &= w ∈ U , w singular.

(b) The mapping α is an anti-embedding, L is a quaternion skewfield, σ is its standard
(anti-)involution and there exists a semi-linear (with respect to ασ) mapping ϕ :
U → V such that πδ(Lw) = Kϕ(w) for 0 &= w ∈ U , w singular, where δ is as in
(5.4.1).

PROOF. The proof is similar to Tits [15, (8.19.7)]. !
In Lemma (5.4.9) below, we show that (5.4.2)(b) does not occur when Rad(W, f) &= 0. In
the following, we handle the case that q is a quadratic form and Rad(W, f) &= 0.

5.4.3 Notation. Let q be a quadratic form. Let U = 〈u1, v1〉 ⊥ 〈u2, v2〉 with (ui, vi) a
hyperbolic pair (i = 1, 2) and set Hi := 〈ui, vi〉 (i = 1, 2). For 0 &= r ∈ Rad(W, f) with
q(r) &= 0 and

a1 := −q(r)u1 + v1 − r, a2 := −u2 − q(r)v2 + r,

〈a1, a2〉 is a singular line. We choose u1
′, v2

′, u2
′, v1

′ ∈ V such that

π(u1) = 〈u1
′〉,

π(v2) = 〈v2
′〉, π(u1 + v2) = 〈u1

′ + v2
′〉,

π(u2) = 〈u2
′〉, π(u1 + u2) = 〈u1

′ + u2
′〉,

π(v1) = 〈v1
′〉, π(u2 − v1) = 〈u2

′ − v1
′〉.

Then u1
′, u2

′, v1
′, v2

′ are linearly independent by (5.2.3). For c ∈ L, there exists a unique
c′ ∈ K with π(cu1 + u2) = 〈c′u1

′ + u2
′〉. We set q′ := q(r)′.

5.4.4 Lemma. We use the notation of (5.4.3). Then the following holds:

(a) We have π(v1 − cv2) = 〈v1
′ − c′v2

′〉 for c ∈ L.

(b) We have π(cu1 + u2 − (v1 − cv2)) = 〈c′u1
′ + u2

′ − (v1
′ − c′v2

′)〉 for c ∈ L.

(c) There exists r′ ∈ V such that

π(a1) = 〈−q′u1
′ + v1

′ − r′〉, π(a2) = 〈−u2
′ − q′v2

′ + r′〉.

In particular, r′ ∈ 〈π(H1
⊥ ∩ S)〉 ∩ 〈π(H2

⊥ ∩ S)〉.
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(d) If α, β, γ, δ, ε ∈ K with αu1
′ + βu2

′ + γv1
′ + δv2

′ + εr′ = 0, then α = β = γ = δ = 0.

We set a1
′ := −q′u1

′ + v1
′ − r′, a2

′ := −u2
′ − q′v2

′ + r′.

PROOF. (a) For c ∈ L, z := v1− cv2 is contained in 〈cu1 +u2, cu1 +u2− (v1− cv2)〉 with
cu1 + u2 − (v1 − cv2) ∈ 〈u1 + v2, u2 − v1〉. Hence π(z) is contained in 〈c′u1

′ + u2
′, u1

′ +
v2
′, u2

′ − v1
′〉 and in 〈v1

′, v2
′〉. Comparing coefficients yields (a).

(b) For c ∈ L, cu1 +u2−(v1−cv2) is contained in the two singular lines 〈cu1 +u2, v1−cv2〉
and 〈u1 + v2, u2 − v1〉. We apply π and obtain (b).

(c) For a := −(a1 + a2), we have a2 ∈ 〈a, a1〉 and hence π(a2) ⊆ 〈π(a), π(a1)〉. Since
π is injective on singular points, there exists v ∈ V such that π(a1) = 〈v〉 and π(a2) =
〈−(q′u1

′ + u2
′ − v1

′ + q′v2
′)− v〉. The claim follows with r′ := −q′u1

′ + v1
′ − v.

(d) This follows from (5.2.3) and (c). !

5.4.5 Lemma. We use the notation of (5.4.3) and (5.4.4). For 0 &= c ∈ L, we have:

π(cu1 − q(r)c−1v1 + r) = 〈c′u1
′ − q′c′−1v1

′ + r′〉,
π(cu1 + a2) = 〈c′u1 + a2

′〉,
π(u2 − q(r)c−1v1) = 〈u2

′ − q′c′−1v1
′〉,

π(u1 + q(r)c−1v2) = 〈u1
′ + q′c′−1v2

′〉,
π((c− q(r))u1 + a2) = 〈(c′ − q′)u1

′ + a2
′〉.

PROOF. Because of z := cu1 − q(r)c−1v1 + r ∈ 〈a2, (cu1 + u2)− q(r)c−1(v1 − cv2)〉 and
z ∈ H2

⊥, (5.2.3) yields the first claim. Since cu1 +a2 is contained in the two singular lines
〈−u2+z, v1−cv2〉 and 〈u1, a2〉, (5.4.4)(d) yields the second one. Similarly, u2−q(r)c−1v1 ∈
〈−q(r)v2 + z, cu1 + a2〉 and u1 + q(r)c−1v2 ∈ 〈u1 + u2 − q(r)c−1(v1 − v2), u2 − q(r)c−1v1〉,
so we may calculate the image points under π.

Since L is commutative, w := q(r)u1 + u2− q(r)c−1(v1− q(r)v2) is contained in 〈q(r)u1 +
u2, v1 − q(r)v2〉 and in 〈u2 − q(r)c−1v1, u1 + q(r)c−1v2〉. We obtain π(w) = 〈q′u1

′ + u2
′ −

q′c′−1v1
′ + q′q′c′−1v2

′〉, since K is not necessarily commutative, Finally, (c− q(r))u1 + a2 ∈
〈z, v2, w〉 and we may use (5.2.1). !

5.4.6 Lemma. If L &= GF(2), then char K = 2 and π((c+ q(r))u1 + a2) = 〈(c′ + q′)u1
′ +

a2
′〉.

PROOF. By (5.4.5) we have (c − q(r))′ = c′ − q′ for 0 &= c ∈ L. Because of q(r) &= 0,
we have char L = 2. If L &= GF(2), then there exists 0, q &= c ∈ L and we obtain
c′ = ((c− q(r))− q(r))′ = c′ − q′ − q′. This shows char K = 2. The second claim follows
from (5.4.5). !
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5.4.7 Lemma. We assume that q is a quadratic form and L &= GF(2). If there exists
r ∈ Rad(W, f) with q(r) &= 0, then there exists an embedding α : L → K and a semi-linear
(with respect to α) mapping ϕ : U → V such that π(Lw) = Kϕ(w) for all 0 &= w ∈ U , w
singular.

PROOF. Let L1 := 〈x1, x2〉 be a singular line in U and choose x1
′, x2

′ ∈ V such that
π(x1) = 〈x1

′〉, π(x2) = 〈x2
′〉, π(x1+x2) = 〈x1

′+x2
′〉. By P (L1) we denote the set of points

of L1, and similarly for other lines. We define τ : L ∪ {∞} → P (L1) by µ 1→ 〈µx1 + x2〉
for µ ∈ L, ∞ 1→ 〈x1〉 and similarly τ ′ : K ∪ {∞} → P (L1

′), where L1
′ = 〈x1

′, x2
′〉. For

α := τ ′−1πτ : L → K, we obtain α(0) = 0, α(1) = 1 and α(∞) = ∞.

We denote by PGL2(L) the set of all invertible mappings γ : L∪{∞}→ L∪{∞}, where
γ is of the form γ : x 1→ (xc + d)−1(xa + b), x ∈ L∪ {∞} with a, b, c, d ∈ L. The elements
of T := {τ(γβγ−1)τ−1 | γ ∈ PGL2(L)}, where β : x 1→ x + 1, are called translations of
P (L1). Similarly, we define T ′ for P (L1

′).

Let t ∈ T and let β0, γ ∈ PGL2(L) with β0 : x 1→ x+q(r), γ : x 1→ (xc+d)−1(xa+b), such
that t = τγβ0γ−1τ−1. We set u1 := ax1 + cx2, u2 := bx1 + dx2. Then {u1, u2} is a basis
of L1 and we have τγ : L ∪ {∞} → P (L1), µ 1→ 〈µu1 + u2〉 (µ ∈ L), ∞ 1→ 〈u1〉. For
u1

′, u2
′ as in (5.4.3), there are a′, b′, c′, d′ ∈ K such that u1

′ = a′x1
′+c′x2

′, u2
′ = b′x1

′+d′x2
′.

We set γ′ : x 1→ (xc′ + d′)−1(xa′ + b′) and β0
′ : x 1→ x + q′ for x ∈ K ∪ {∞}.

We use the notation of (5.4.3), (5.4.4). Let L2 := 〈u1, a2〉, L2
′ := 〈u1

′, a2
′〉. We define

ρ1 : P (L1) → P (L2) by ρ1 : 〈cu1 + u2〉 1→ 〈(c + q(r))u1 + a2〉 (c ∈ L), 〈u1〉 1→ 〈u1〉 and
ρ2 : P (L2) → P (L1) by ρ2 : 〈cu1 + a2〉 1→ 〈cu1 + u2〉 (c ∈ L), 〈u1〉 1→ 〈u1〉. Similarly, we
define ρ1

′ : P (L1
′) → P (L2

′) and ρ2
′ : P (L2

′) → P (L1
′). Then we have πρ2 = ρ2

′π on
P (L2) by (5.4.5) and πρ1 = ρ1

′π on P (L1) by (5.4.6). Hence πρ2ρ1 = ρ2
′ρ1

′π on P (L1).
For t′ := (τ ′γ′)β0

′γ′−1τ ′−1 ∈ T ′, we have t = ρ2ρ1, t′ = ρ2
′ρ1

′. Hence πt = t′π on P (L1).
Since L is commutative, we obtain that α is an embedding as in Tits [15, (8.12.3)].

In (5.4.3) we use the hyperbolic pairs (xi, yi) (i = 1, 2), where U = 〈x1, y1〉 ⊥ 〈x2, y2〉.
Then π(cx1 + x2) = 〈α(c)x1

′ + x2
′〉, π(y1 − cy2) = 〈y1

′ − α(c)y2
′〉 by the definition of

α and (5.4.4)(a). Since q(r) &= 0 and α is an embedding, (5.4.5) yields π(y1 + cx2) =
〈y1

′ + α(c)x2
′〉 and π(y2 − cx1) = 〈y2

′ − α(c)x1
′〉 for c ∈ L. If z is a singular point

in U , which is not contained in 〈x1, x2〉, 〈x1, y2〉, then there exist c, d ∈ L such that
z = 〈cdx1 + y1 + cx2 − dy2〉. Hence z ⊆ 〈dx1 + x2, y1 − dy2〉 ∩ 〈y1 + cx2, y2 − cx1〉. We
apply π and obtain π(z) = 〈α(c)α(d)x1

′ +α(c)x2
′ + y1

′−α(d)y2
′〉. The claim follows with

ϕ : U → V defined by ϕ(c1x1+c2x2+d1y1+d2y2) = α(c1)x1
′+α(c2)x2

′+α(d1)y1
′+α(d2)y2

′.
!

5.4.8 Lemma. We assume that q is a quadratic form. If there exists 0 &= r ∈ Rad(W, f)
with q(r) = 0, then there exists an embedding α : L → K and a semi-linear (with respect
to α) mapping ϕ : U → V such that π(Lw) = Kϕ(w) for all 0 &= w ∈ U , w singular.
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PROOF. : Let r′ ∈ V such that π(r) = 〈r′〉. Let L1 := 〈x1, x2〉 be a singular line in U
and choose x1

′, x2
′ ∈ V such that

π(x2) = 〈x2
′〉, π(x2 + r) = 〈x2

′ + r′〉,
π(x1) = 〈x1

′〉, π(x1 + x2) = 〈x1
′ + x2

′〉.

We define τ, τ ′, α, T, T ′ as in the proof of (5.4.7). Let t ∈ T and let β, γ ∈ PGL2(L) with
β : x 1→ x+1, γ : x 1→ (xc+d)−1(xa+b), such that t = (τγ)βγ−1τ−1. For u1 := ax1 +cx2,
u2 := bx1+dx2, τγ is as in the proof of (5.4.7). We let L2 := 〈u1, u2+r〉, L2

′ = 〈π(L2∩S)〉.
For ρ1 : P (L1) → P (L2) defined by z 1→ 〈z, u1 + r〉 ∩ L2, we have

ρ1 : 〈µu1 + u2〉 1→ 〈(µ + 1)u1 + u2 + r〉 (µ ∈ L), 〈u1〉 1→ 〈u1〉.

Similarly, for ρ2 : P (L2) → P (L1) defined by z 1→ 〈z, r〉 ∩ L1, we have

ρ2 : 〈µu1 + u2 + r〉 1→ 〈µu1 + u2〉 (µ ∈ L), 〈u1〉 1→ 〈u1〉.

This yields t = ρ2ρ1. We choose u1
′, u2

′ ∈ V such that

π(u2) = 〈u2
′〉, π(u2 + r) = 〈u2

′ + r′〉,
π(u1) = 〈u1

′〉, π(u1 + r) = 〈u1
′ + r′〉.

We define γ′ as in the proof of (5.4.7) and ρ1
′, ρ2

′ similarly as ρ1, ρ2. With β′ : x 1→ x + 1
and t′ := (τ ′γ′)β′γ′−1τ ′−1 ∈ T ′ we obtain t′ = ρ2

′ρ1
′.

For a ∈ P (L2), we have πρ2(a) = π(〈a, r〉 ∩L1) = 〈π(a), r′〉 ∩L1
′ = ρ2

′π(a) and similarly,
πρ1(z) = ρ1

′π(z) for z ∈ P (L1). This shows πt = t′π on P (L1). Now α is an embedding
as in the proof of (5.4.7).

Let U = 〈x1, y1〉 ⊥ 〈x2, y2〉 with hyperbolic pairs (xi, yi) (i = 1, 2). We choose y1
′, y2

′ ∈ V
such that

π(y2) = 〈y2
′〉, π(y2 − r) = 〈y2

′ − r′〉,
π(y1) = 〈y1

′〉, π(y1 − y2) = 〈y1
′ − y2

′〉.

Since r′ &= 0, x1
′, x2

′, y1
′, y2

′, r′ are linearly independent as in (5.4.4)(d). Let 0 &= c ∈ L.
Because of y2− cx1 ∈ 〈cx1 + x2, x2 + r, y2− r〉 and (5.2.1), we obtain π(y2− cx1) = 〈y2

′−
α(c)x1

′〉. Similarly, y1 + cx2 ∈ 〈x1 +x2, y1−y2, y2− cx1〉 and π(y1 + cx2) = 〈y1
′+α(c)x2

′〉.
Further, y1 − cy2 ∈ 〈y1 + cx2, y2 − cx1, cx1 + x2〉 and π(y1 − cy2) = 〈y1

′ − α(c)y2
′〉. We

now finish the proof as in (5.4.7). !

5.4.9 Lemma. If dimU = 4 and Rad(W, f) &= 0, then one of the following holds:

(a) There exists an embedding α : L → K and a semi-linear (with respect to α) mapping
ϕ : U → V such that π(Lw) = Kϕ(w) for all 0 &= w ∈ U , w singular.

19



(b) We have L = GF(2), dimW = 5 and q is a quadratic form. The weak embedding
is the so-called universal weak embedding of the symplectic quadrangle over GF(2)
described in Thas & Van Maldeghem [11].

PROOF. Let U = 〈x1, y1〉 ⊥ 〈x2, y2〉 with hyperbolic pairs (xi, yi) (i = 1, 2) and let
0 &= r ∈ Rad(W, f). We lead the assumption that the mapping α : L → K defined in
(5.4.2) is an anti-embedding to a contradiction. For x ∈ {x1, y1, x2, y2} let x′ := ϕ(x)
with ϕ of (5.4.2)(b). Let qr ∈ L with qr + Λ = q(r). We first handle the case qr &= 0. For
a1 := qrx1 − y1 + r and a2 := qr

σx2 − y2 + r, there exists a unique r′ ∈ 〈π(〈x1, y1〉⊥ ∩ S)〉
with π(a1) = 〈α(qr)x1

′−y1
′+r′〉, π(a2) = 〈α(qr

σ)x2
′−y2

′+r′〉 as in (5.3.1). Let 0 &= c ∈ L
and z := qrcσx1 − c−1y1 + r. Because of z ∈ 〈a2, z − a2〉, there exist z′ ∈ V , A, B ∈ K
such that π(z) = 〈z′〉 with

z′ = A(α(qr
σ)x2

′ − y2
′ + r′) + B(α(cσ)α(qr)x1

′ − α(c)−1y1
′ − α(cσ)α(qr

σ)α(c−σ)x2
′ + y2

′).

Since z ∈ 〈x2, y2〉⊥, (5.2.3) yields α(qr
σ) = α(cσ)α(qr

σ)α(c−σ). Hence qr = cqrc−1 for
c ∈ L, i. e. qr ∈ Z(L) = Λ and r is singular.

We now handle the case that r is singular. Let π(r) = 〈r′〉 with π(x1−r) = 〈x1
′−r′〉. For

0 &= c, d ∈ L, we have cx2+dy1 ∈ 〈cx2+r, dy1−r〉 with cx2+r ∈ 〈x1+cx2, x1−r〉, dy1−r ∈
〈dy1− y2, y2− r〉, y2− r ∈ 〈x1− r, y2−x1〉. This yields π(cx2 +dy1) = 〈α(c)x2

′+α(d)y1
′〉.

Further, π(x2 +c−1dy1) = 〈x2
′+α(c−1d)y1

′〉 by (5.4.2)(b). Hence α(c)−1α(d) = α(c−1d) =
α(d)α(c)−1 for 0 &= c, d ∈ L and α is an embedding, a contradiction.

By (5.4.2), (5.4.7), (5.4.8) we are left with the case where q is a quadratic form, L = GF(2)
and dimW = 5 (recall that U is a 4+-space). Hence the polar space associated to W and
q is isomorphic to the symplectic quadrangle over GF(2). If char K = 2, then (a) holds
as in the proof of (5.4.7). It is possible that char K &= 2. In this case the weak embedding
π is as described in Thas & Van Maldeghem [11]. The proof of this can be taken over
without notable change from loc. cit. !

6 Mixed quadrangles

6.1 Introduction and statement of the Theorem

In this section, we show that every weak embedding of any mixed quadrangle Q(L′, L2; Λ′, Λ2)
in a projective space is induced by an embedding α : Λ′ → K and a so-called semi-linear
mapping ϕ : Λ → V ; for definitions see (6.1.3).

6.1.1 Definition of mixed quadrangles. Let L be a (commutative) field of charac-
teristic 2 and let

L2 ⊆ Λ′ ⊆ L′ ⊆ Λ ⊆ L,
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where L′ is a subfield of L, Λ is a subspace of L considered as vector space over L′ and
Λ′ is a subspace of L′ considered as vector space over L2. We suppose that L respectively
L′ are generated as rings by Λ respectively Λ′.

Let W (L′) be the symplectic quadrangle associated to the vector space M := L′×L′×L′×
L′ and the symplectic form b : M ×M → L′ defined by b(x, y) = x1y2 +x2y1 +x3y4 +x4y3

for x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) ∈ M .

Let Q(E, f) be the orthogonal quadrangle associated to the vector space E := L′ × M
with scalar multiplication c(x0; x1, x2, x3, x4) := (c2x0; cx1, cx2, cx3, cx4) for c, xi ∈ L′

(i = 0, . . . , 4) and the quadratic form f : E → L′ defined by f((x0; x1, x2, x3, x4)) =
x0 + x1x2 + x3x4. The dimension of the subspace L′ in the first factor is the dimension of
the field extension L′ : L′2. Then

Q(E, f) * W (L′), (1)

and the isomorphism is induced by the projection of E on the second factor, see Cohen
[1, (3.27)].

Let Q(E0, f) be the subquadrangle Q(E, f) belonging to the subspace E0 := L2 ×M of
E. Then

Q(E0, f) * Q(L×M, q), (2)

where the latter is the orthogonal quadrangle associated to the vector space L×M over L′

with usual scalar multiplication and the (non-degenerate) quadratic form q : L×M → L′

defined by q((x0; x1, x2, x3, x4)) = x0
2 + x1x2 + x3x4 for x0 ∈ L, xi ∈ L′ (i = 1, . . . , 4).

The isomorphism is induced by the bijective linear mapping t : E0 → L × M with
t((x0

2; x1, x2, x3, x4)) = (x0; x1, x2, x3, x4).

Every point in the symplectic quadrangle W (L′) is spanned by a vector of the following
form

(1, 0, 0, 0), (a, 0, 1, 0), (b, 0, k, 1), (l + aa′, 1, a′, a),

where a, b, a′, k, l ∈ L′.

Restricting to a, b, a′ ∈ Λ′, k, l ∈ Λ2 yields a generalized quadrangle, the so-called mixed
quadrangle Q(L′, L2; Λ′, Λ2) first defined in Tits [13], see Van Maldeghem [19, (3.4.2)].
(We may assume that L is not perfect, since otherwise L2 = Λ′ = L′ = Λ = L.)

The image of Q(L′, L2; Λ′, Λ2) in Q(E, f) under the isomorphism in (1) is contained in
Q(E0, f). The image in Q(L × M, q) under the isomorphism in (2) yields the points
spanned by vectors of the form

(0; 1, 0, 0, 0), (0; a, 0, 1, 0), (k; b, 0, k2, 1), (l; l2 + aa′, 1, a′, a),

where a, b, a′ ∈ Λ′, k, l ∈ Λ.
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6.1.2 Notation. We always regard the mixed quadrangle Q := Q(L′, L2; Λ′, Λ2) as
subquadrangle of Q(L ×M, q) as in (6.1.1). Let S be the set of points of Q and W :=
L×M . For each subspace U of W , we denote by U ∩ S the set of points of Q, which are
contained in U .

The 1-, 2- and 3-dimensional subspaces of W are called points, lines, planes respectively.
The subspace of a vector space which is spanned by a subset X is denoted by 〈X〉. For
each subspace U of W , we let U⊥ = {w ∈ W | (w, u) = 0 for u ∈ U}, where ( , ) is the
bilinear form associated to q. A subspace U of W is called singular, if q(u) = 0 for u ∈ U .
A hyperbolic line of W is a line 〈x, y〉, where x, y are singular points and y &⊆ x⊥.

The lines of Q are the singular lines 〈a, b〉 of W , where a and b are points of Q.

6.1.3 Definition. Let L, L′, Λ, Λ′ be as in (6.1.1) and let K be a skewfield and V be a
vector space over K. A mapping α : Λ′ → K is called an embedding, if α has the following
properties:

(a) α is injective, α respects addition,

(b) α(l2c) = α(l2)α(c) for l ∈ L, c ∈ Λ′,

(c) α(c2) = α(c)2 for c ∈ Λ′,

(d) α(c)α(d) = α(d)α(c) for c, d ∈ Λ′.

Let α : Λ′ → K be an embedding. A mapping ϕ : Λ → V is called a semi-linear mapping
(with respect to α), if ϕ(l + k) = ϕ(l) + ϕ(k) and ϕ(cl) = α(c)ϕ(l) for l, k ∈ Λ, c ∈ Λ′.

6.1.4 Remark. If α : Λ′ → K is an embedding, then we have α(c2d) = α(c)2α(d) and
α(c−1) = α(c)−1 for c, d ∈ Λ′, c &= 0. When we regard Λ′ as vector space over L2, then
α : Λ′ → K is a semi-linear mapping (with respect to the embedding α |L2 : L2 → K).

Let ϕ : Λ → V be a semi-linear mapping (with respect to α). If there exists some l0 ∈ Λ
with ϕ(l0) &= 0, then it is possible to extend α : Λ′ → K to L′ = 〈Λ′〉 because of the
equation ϕ(cl) = α(c)ϕ(l) for c ∈ Λ′, l ∈ Λ. Then ϕ : Λ → V is a semi-linear mapping
with respect to the embedding α : L′ → K.

We prove the following result:

6.1.5 Theorem. We use the notation of (6.1.2) with L &= GF(2). Let K be a skewfield
and let V be a vector space over K. We assume that π is a weak embedding of the mixed
quadrangle Q := Q(L′, L2; Λ′, Λ2) into the projective space PG(V ). Then there exists an
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embedding α : Λ′ → K, a decomposition V = V1 ×K4, where K4 = K×K×K×K, and
a semi-linear mapping ϕ : Λ → V1 (in the sense of (6.1.3)) such that

π(L′(0; 1, 0, 0, 0)) = K(1, 0, 0, 0),

π(L′(0; a, 0, 1, 0)) = K(α(a), 0, 1, 0),

π(L′(k; b, 0, k2, 1)) = K(ϕ(k) + (α(b), 0, α(k2), 1)),

π(L′(l; l2 + aa′, 1, a′, a)) = K(ϕ(l) + (α(l2) + α(a′)α(a), 1, α(a′), α(a))),

for a, b, a′ ∈ Λ′, k, l ∈ Λ. Further, the subspace K4 of V is unique and the basis of K4

used in the above description, α and ϕ are unique up to scalar.

6.1.6 Remark. Note that, if the dimension of V is equal to 4, and if Λ′ = L′ (and hence
Λ′ is a field), then the weak embedding of Q into PG(V ) is full over the subfield α(L′) of
K. We will use that result later on in the proof of Theorem 7.2.2.

6.1.7 Main idea of the proof. The idea of the proof of Theorem 6.1.5 is as follows:
If L′w is a point of Q, then we often write π(w) instead of π(L′w). We set π(U ∩ S) :=
{π(u) | u ∈ U ∩ S} for each subspace U of W . Let

x1 = (0; 1, 0, 0, 0), y1 = (0; 0, 1, 0, 0), x2 = (0; 0, 0, 1, 0), y2 = (0; 0, 0, 0, 1).

We choose x1
′, x2

′ ∈ V such that

π(x1) = 〈x1
′〉, π(x2) = 〈x2

′〉, π(x1 + x2) = 〈x1
′ + x2

′〉.

For each c ∈ Λ′ there exists a unique scalar α(c) ∈ K such that π(cx1+x2) = 〈α(c)x1
′+x2

′〉.
This mapping α : Λ′ → K yields the desired embedding. The semi-linear mapping ϕ :
Λ → V is defined by ϕ(l) ∈ 〈π(〈x1, y1〉⊥∩S)〉 and π((l; l2, 1, 0, 0)) = 〈ϕ(l)+α(l2)x1

′+y1
′〉.

The proofs use some ideas of the description of orthogonal quadrangles weakly embedded
in a projective space in Section 5.

6.2 The calculation of some image points

In this subsection, we deduce some first properties of the mapping α : Λ′ → K defined in
(6.1.7). The first two of the following lemmas and the properties of the weak embedding
π (see Subsection 2.2) are used throughout Section 6 for the calculation of images under
π of points of Q. We must take care of the fact that at the beginning we do not know
whether K is commutative or char K = 2.

6.2.1 Lemma. If a, b are points of Q with N = 〈a, b〉 a line of Q, then 〈π(N ∩ S)〉 =
〈π(a), π(b)〉.
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PROOF. Since π is injective on singular points, we see that 〈π(a), π(b)〉 is a line which
is contained in the line 〈π(N ∩ S)〉. !

6.2.2 Lemma. The following holds:

(a) If x, y are points of Q such that H = 〈x, y〉 is a hyperbolic line of W , then 〈π(x), π(y)〉∩
〈π(H⊥ ∩ S)〉 = 0.

(b) Let H1 = 〈x1, y1〉, H2 = 〈x2, y2〉 be hyperbolic lines in W with H2 ⊆ H1
⊥. For

z ∈ {x1, y1, x2, y2}, we choose z′ ∈ V such that π(z) = 〈z′〉. If v ∈ 〈π(H1
⊥ ∩

S)〉 ∩ 〈π(H2
⊥ ∩ S)〉 and a, b, c, d ∈ K with ax1

′ + by1
′ + cx2

′ + dy2
′ = 0, then

a = b = c = d = 0.

PROOF. The proof of (a) is the same as in (5.2.3) and (a) implies (b). !

6.2.3 Notation. Let the vectors x1, y1, x2, y2, x1
′, x2

′ and the mapping α : Λ′ → K be
as introduced in (6.1.7) and set H1 = 〈x1, y1〉, H2 = 〈x2, y2〉. Let 0 &= λ ∈ Λ′ be fixed
throughout Subsection 6.2. We choose y1

′, y2
′ ∈ V such that

π(y1) = 〈y1
′〉, π(y1 − λx2) = 〈y1

′ − α(λ)x2
′〉,

π(y2) = 〈y2
′〉, π(λx1 + y2) = 〈α(λ)x1

′ + y2
′〉.

Then x1
′, y1

′, x2
′, y2

′ are linearly independent by (6.2.2). For c1, c2, c3, c4 ∈ K, we write
(c1, c2, c3, c4) := c1x1

′ + c2y1
′ + c3x2

′ + c4y2
′.

6.2.4 Lemma. For c ∈ Λ′, we have

(a) π((0; 0, 1, 0,−c)) = 〈(0, 1, 0,−α(λ)α(c)α(λ)−1)〉,

(b) π((0;−λc, 1,−λ,−c)) = 〈(−α(λ)α(c), 1,−α(λ),−α(λ)α(c)α(λ)−1)〉.

PROOF. We have y1− cy2 ∈ 〈cx1 +x2, y1−λx2− c(y2 +λx1)〉. Hence there exists A ∈ K
such that π(y1− cy2) is contained in 〈y1

′, y2
′〉 and in 〈α(c)x1

′ +x2
′, y1

′−α(λ)x2
′−A(y2

′ +
α(λ)x1

′)〉. Comparing coefficients yields (a). For (b) we use that −λcx1 + y1 − λx2 − cy2

is contained in 〈cx1 + x2, y1 − cy2〉 and in 〈y1 − λx2, y2 + λx1〉. !

6.2.5 Lemma. There exists r′ ∈ 〈π(H1
⊥ ∩ S)〉 ∩ 〈π(H2

⊥ ∩ S)〉 such that

π(a1) = 〈−α(λ)r′ + (−α(λ)2, 1, 0, 0)〉, for a1 := (−λ;−λ2, 1, 0, 0),

π(a2) = 〈−r′ + (0, 0, 1, 1)〉, for a2 := (−1; 0, 0, 1, 1).
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PROOF. For a := (0;−λ2, 1,−λ,−λ), we have a1 = a + λa2. Hence by (6.2.4)(b) there
exists v ∈ V such that π(a2) = 〈v〉, π(a1) = 〈(−α(λ)2, 1,−α(λ),−α(λ)) + α(λ)v〉. The
claim follows with r′ := (0, 0, 1, 1)− v. !

6.2.6 Lemma. Let a1, a2, r′ be as in (6.2.5). For c ∈ Λ′, we have

(a) π((−c;−c2, 1, 0, 0)) = 〈−α(λ)α(c)α(λ)−1r′ + (−α(λ)α(c)α(λ)−1α(c), 1, 0, 0)〉,

(b) π((1; c, 0,−1,−1)) = 〈r′ + (α(c), 0,−1,−1)〉,

(c) π((0; 0, 1,−c, 0)) = 〈(0, 1,−α(λ)α(c)α(λ)−1, 0)〉,

(d) π((0; c, 0, 0, 1)) = 〈(α(λ)α(c)α(λ)−1, 0, 0, 1)〉.

PROOF. We may assume c &= 0. Since z := (−c;−c2, 1, 0, 0) is contained in the line
〈a2,−c(cx1 + x2) + (y1 − cy2)〉 of Q, there exist by (6.2.4), (6.2.5) z′ ∈ V , A, B ∈ K such
that π(z) = 〈z′〉, z′ = Aα(c)(x2

′ + y2
′− r′)−B(α(c)x1

′ +x2
′)+ (y1

′−α(λ)α(c)α(λ)−1y2
′).

We use (6.2.2)(a) for H2 and (a) follows.

For (b), we use that cx1 − a2 is contained in the line 〈z + cx2, y1 − cy2〉 of Q; for (c) that
y1− cx2 ∈ 〈cx1− a2, z + cy2〉; for (d) that cx1 + y2 ∈ 〈c(x1 + x2)− (y1− y2), y1− cx2〉. !

6.2.7 Lemma. We have α(c)α(λ) = α(λ)α(c) for c ∈ Λ′.

PROOF. Since y1 − cy2 is contained in the line 〈cx1 + x2,−c(x1 + y2) + (y1 − x2)〉 of Q,
there exist A, B, C ∈ K such that

(0, 1, 0,−α(λ)α(c)α(λ)−1) = A(α(c), 0, 1, 0) + B(C, 1,−1, C)

by (6.2.4)(a) and (6.2.6)(c), (d) for scalar 1. Comparing coefficients yields the claim. !

6.2.8 Lemma. Let a1, a2, r′ be as in (6.2.5). For 0 &= c ∈ Λ′, we have

(a) π((0;−cλ, 1,−c,−λ)) = 〈(−α(c)α(λ), 1,−α(c),−α(λ))〉,

(b) π((1; c− λ, 0,−1,−1)) = 〈r′ + (α(c)− α(λ), 0,−1,−1)〉.

PROOF. We apply (6.2.7), (6.2.6) and (6.2.4)(a). For (a), we use that z := −cλx1 +
y1 − cx2 − λy2 is contained in the two lines 〈λx1 + x2, y1 − λy2〉 and 〈cx1 + y2, y1 − cx2〉
of Q. For z0 := (−c;−c2, 1, 0, 0), (c− λ)x1 − a2 is contained in the line 〈z, z0 + (c− λ)y2〉
of Q. !
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6.3 The embedding α : Λ′ → K

We use the notation of (6.2.3) with scalar λ = 1.

6.3.1 Lemma. The mapping α : Λ′ → K introduced in (6.1.7) respects addition. In
particular char K = 2. Further, α(c)α(λ) = α(λ)α(c) for c, λ ∈ Λ′.

PROOF. By (6.2.7), (6.2.6)(c), (d) we have π(cx1 + y2) = 〈α(c)x1
′ + y2

′〉, π(y1 − cx2) =
〈y1

′ − α(c)x2
′〉 for c ∈ Λ′. This shows that y1

′, y2
′ are such that we may apply the

results of Subsection 6.2 for arbitrary 0 &= λ ∈ Λ′. The last statement hence is (6.2.7).
By (6.2.6)(b), (6.2.8)(b) we may calculate π((1; c − λ, 0,−1,−1)) in two ways, hence
α(c − λ) = α(c) − α(λ) for 0 &= c, λ ∈ Λ′. Let 0, 1 &= c ∈ Λ′ (c exists, since L &= GF(2)).
Then α(c) = α((c − 1) − 1) = α(c − 1) − 1 = α(c) − 1 − 1. Hence char K = 2 and α
respects addition. !

6.3.2 Lemma. We have α(λ2) = α(λ)2 for λ ∈ Λ′.

PROOF. For 0 &= λ ∈ Λ′, we have z := (λ; 0, 0, λ2, 1) ∈ 〈(λ; λ2, 1, 0, 0), (0; λ2, 1, λ2, 1)〉.
Hence there exists z′ ∈ V , A ∈ K, such that π(z) = 〈z′〉,

z′ = α(λ)r′ + (α(λ)2, 1, 0, 0) + A(α(λ2), 1, α(λ2), 1)

by (6.2.6)(a), (6.2.8). We apply (6.2.2)(a) for H1 and obtain the claim. !

6.4 The semi-linear mapping ϕ : Λ → V

We use the notation of (6.2.3) with scalar λ = 1.

6.4.1 Lemma. For l ∈ Λ, there exists a unique ϕ(l) ∈ 〈π(H1
⊥∩S)〉 with π((l; l2, 1, 0, 0)) =

〈ϕ(l) + (α(l2), 1, 0, 0)〉. Further, π((l; 0, 0, l2, 1)) = 〈ϕ(l) + (0, 0, α(l2), 1)〉.

PROOF. For z1 := (l; l2, 1, 0, 0), z2 := (l; 0, 0, l2, 1), we see that z1 is contained in the
line 〈z1 − z2, z2〉 of Q. Hence by (6.2.8)(a) there exists v ∈ V such that π(z2) = 〈v〉,
π(z1) = 〈(α(l2), 1, α(l2), 1) + v〉. With ϕ(l) := (0, 0, α(l2), 1) + v the existence of ϕ(l) is
clear. The uniqueness follows with (6.2.2), thus the claim. !

6.4.2 Lemma. For l ∈ Λ, c, d ∈ Λ′, we have α(l2d) = α(l2)α(d) and

(a) π((l; c, 0, l2, 1)) = 〈ϕ(l) + (α(c), 0, α(l2), 1)〉,
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(b) π((l; l2, 1, c, 0)) = 〈ϕ(l) + (α(l2), 1, α(c), 0)〉,

(c) π((l; l2 + cd, 1, c, d)) = 〈ϕ(l) + (α(l2) + α(c)α(d), 1, α(c), α(d))〉.

PROOF. We may assume l &= 0. Since (l; c, 0, l2, 1) is contained in the line

〈(l−1; l−2, 1, 0, 0) + l−2c(0; 0, 0, 0, 1), (0; l−2c + l−2, 1, 1, l−2c + l−2)〉

ofQ, we obtain that π(l; c, 0, l2, 1)) = 〈ϕ(l)+(α(l2)α(l−2c), 0, α(l2), 1)〉. Further, (l; l2, 1, c, 0)
is contained in the line 〈l; c, 0, l2, 1), (0; c+ l2, 1, c+ l2, 1)〉 of Q. This yields α(l2)α(l−2c) =
α(c) and (a), (b). For (c), we use that (l; l2 + cd, 1, c, d) is contained in the lines

〈(l; l2, 1, c, 0), (0; c, 0, 0, 1)〉 and 〈(l; l2d + c, 0, l2, 1) + (0; (l2 + c)(d + 1), 1, l2 + c, d + 1)〉

of Q. This yields α(l2d) = α(l2)α(d) and (c). !

6.4.3 Remark. Since L = 〈Λ〉, we may extend the result of (6.4.2) to α(l2c) = α(l2)α(c)
for l ∈ L, c ∈ Λ′.

6.4.4 Lemma. For l, k ∈ Λ, c ∈ Λ′, we have ϕ(l+k) = ϕ(l)+ϕ(k) and ϕ(cl) = α(c)ϕ(l).

PROOF. The first claim follows from (l + k; l2 + k2, 1, 0, 0) ∈ 〈(k; 0, 0, k2, 1), (l; l2 +
k2, 1, k2, 1)〉 and the second one from (cl; c2l2, 1, 0, 0) ∈ 〈(l; 0, 0, l2, 1), (0; c2l2, 1, cl2, c)〉,
using (6.4.2). !

6.4.5 Proof of Theorem 6.1.5
Let α : Λ′ → K, ϕ : Λ → V be the mappings introduced in (6.1.7). By (6.3.1), (6.3.2),
(6.4.3) α is an embedding. Let V1 be a complement of 〈x1

′, y1
′, x2

′, y2
′〉 in V which contains

π(〈x1, y1〉⊥ ∩ S)∩ π(〈x2, y2〉⊥ ∩ S). By (6.4.4) ϕ : Λ → V1 is a semi-linear mapping in the
sense of (6.1.3). The image points under π are as stated in Theorem (6.1.5), see (6.4.2)(a),
(c).

For the uniqueness of α and ϕ, we first observe that the subspace K4 in Theorem (6.1.5) is
K4 = 〈π(x1), π(y1), π(x2), π(y2)〉. Let B = {x̃1, ỹ1, x̃2, ỹ2} be a second basis of K4 and β :
Λ′ → K be an embedding, ψ : λ → V be a semi-linear mapping such that the conclusion of
Theorem (6.1.5) holds for B, β, ψ. Since 〈x1

′〉 = 〈x̃1〉, 〈x2
′〉 = 〈x̃2〉, 〈x1

′ + x2
′〉 = 〈x̃1 + x̃2〉,

there exists 0 &= c ∈ K such that x̃1 = cx1
′, x̃2 = cx2

′. Similarly, ỹ1 = cy1
′, ỹ2 = cy2

′.
Since 〈α(a)x1

′ + x2
′〉 = 〈β(a)x̃1 + x̃2〉, this implies that β(a) = cα(a)c−1 for a ∈ Λ′. Since

〈ϕ(l) + α(l2)x1
′ + y1

′〉 = 〈ψ(l) + β(l2)x̃1 + ỹ1〉 and ϕ(l), ψ(l) ∈ 〈π(H1
⊥ ∩ S)〉, we obtain

ψ(l) = cϕ(l) for l ∈ Λ by (6.2.2)(a). This proves the Theorem 6.1.5.
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7 Dual hermitian and dual orthogonal quadrangles

7.1 Dual hermitian quadrangles

From now on, it will be convenient to identify a weakly embedded quadrangle Γ with its
image Γπ in PG(d, K). By abuse of language, we will say that Γ is weakly embedded in
PG(d, K).

7.1.1 Lemma. Let Γ be any generalized quadrangle weakly embedded of degree > 2 in
PG(d, K), for some skewfield K. Then Γ admits non-trivial central line-elations.

PROOF. Let p, q, q′ be three mutually opposite points of Γ which are collinear in
PG(d, K). According to Lefèvre-Percsy [4], there exists a central collineation with
center p mapping q to q′. !
Lemma 7.1.1 implies that, if Γ is a dual hermitian quadrangle weakly embedded of de-
gree > 2 in PG(d, K), then the hermitian quadrangle ΓD admits non-trivial axial point-
elations. Now consider the following description of the hermitian quadrangles, see Tits
[17].

Let V be a right vector space over some skewfield K, let g : V × V → K be a (σ, 1)-linear
form for some anti-automorphism σ of K whose square is the identity. Put






Kσ = {tσ − t : t ∈ K},
q : V → K/Kσ : x 1→ g(x, x) + Kσ,
f : V × V → K : (x, y) 1→ g(x, y) + g(y, x)σ

and suppose that q is non-degenerate and has Witt index 2, cp. Tits [15], Section 8. We
know that we can write V as

V = e−2K
⊕

e−1K
⊕

V0

⊕
e1K

⊕
e2K,

such that
q(x−2, x−1, x0, x1, x2) = xσ

−2x2 + xσ
−1x1 + q0(x0),

with xi ∈ eiK, i = −2,−1, 1, 2 and x0 ∈ V0, and where q0 is a non-degenerate anisotropic
σ-quadratic form (so q−1

0 (0) = 0 ∈ V0).

Let R1 = K and put R2 = {(k0, k1) ∈ V0 × K : k1 ∈ −q0(k0)}. We define an addition in
R2, and a scalar multiplication as follows. For (k0, k1), (l0, l1) ∈ R2 and a ∈ K, we put:

(k0, k1)⊕ (l0, l1) = (k0 + l0, k1 + l1 − f(k0, l0)),
a⊗ (k0, k1) = (k0a, aσk1a).
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It is straightforward to check that all these operations are well defined. Also, R2,⊕ is
a group, not necessarily commutative. Now we can introduce intrinsic coordinates for
the dual of the corresponding hermitian quadrangle Γ (see Van Maldeghem [19]). The
points of ΓD are the elements (∞), (a), (k, b), and (a, l, a′), where a, b, a′ ∈ R1, k, l ∈ R2

(with k = (k0, k1) and l = (l0, l1); we will assume this for every element of R2 from now
on) and ∞ is a new symbol; the lines of ΓD are the elements [∞], [k], [a, l] and [k, b, k′]
with a, l ∈ R1 and k, l, k′ ∈ R2. Incidence is given by

[k, b, k′] I (k, b) I (k) I (∞) I [∞] I (a) I [a, l] I (a, l, a′),

with obvious notation, and by (a, l, a′) I [k, b, k′] if and only if

{
(k′0, k

′
1) = (l0, l1)⊕ (aσ ⊗ (k0, k1))⊕ (0, aa′σ − a′aσ),
b = a′ − ak1 + f(l0, k0).

One can easily check that the ((0), [∞], (∞))-elation which maps (0, 0) to (0, B) has the
following action on the lines concurrent with [∞]:

[a, (l0, l1)] 1→ [a, (l0, l1 − aBσ + Baσ)].

For an axial elation, we must have −aBσ + Baσ = 0, for all a ∈ R1 and this implies
readily that σ is the identity, a contradiction. Hence we have shown:

7.1.2 Lemma. No dual hermitian quadrangle is weakly embedded of degree > 2 in pro-
jective space.

Note that the previous lemma is certainly false for degree 2 as there are orthogonal
quadrangles which are the dual of certain hermitian quadrangles (and every orthogonal
quadrangle has a standard embedding of degree 2 in some projective space).

7.2 Dual orthogonal quadrangles

7.2.1 Lemma. A generalized quadrangle Γ which is weakly embedded in PG(d, K) and
for which there exists a line L (of Γ) such that all points of L in PG(d, K) are also points
of Γ is fully embedded. In other words: if a weakly embedded quadrangle contains at least
one full line, then all lines are full and the quadrangle is fully embedded.

PROOF. Suppose first that the degree of the weak embedding is equal to 2. Let L be a
fully embedded line. Since Γ is supposed to be thick, we may assume that there is some
line M of Γ opposite L which is not full. The space generated by L and M meets Γ in
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a weak quadrangle (a grid), and so L and M belong to a regulus R. Every line in the
opposite regulus belongs to Γ because every point in PG(d, K) on L belongs to Γ. Hence
also every point in PG(d, K) on M belongs to Γ.

Now suppose that the degree δ satisfies δ > 2. We may assume that there is a full line
L and a non-full line M of Γ meeting in a point p of Γ. Let N be a third line of Γ in
the plane α := LM of PG(d, K) (then N necessarily contains p). Consider the group U
of root elations fixing every point on N and fixing every line through p and q, where q
is any point of Γ on N different from p. By Lemma 4.0.2, the group U is a subgroup of
PSLd+1(K), and it acts simply-transitively on the points of L distinct from p. Hence U
can be seen as the group of translations in π with axis N and center p. Hence it acts
transitively on the points of M distinct from p. Hence all these points belong to Γ, since
at least one of them does. !
By Section 6, we may assume that the dual orthogonal quadrangle is not a mixed quad-
rangle, i.e., the corresponding bilinear form f0 (see Tits [17]; in fact, in the description
of the hermitian quadrangles in Subsection 7.1 above, we put σ = 1 and then f0 is the
restriction of f to V0 × V0) is not identical zero. Hence it follows that f0 is surjective,
so, with the usual notation, [U1, U3] = U2, where U2 is a root group of (central) line-
elations. Now let p be the center of the line-elations belonging to U2; let U1 be the set
of all (q1, L1, p)-elations, and let U3 be the set of all (p, L3, q3)-elations. Let M be any
line of Γ through q1. Let x be the projection of q3 onto M . We remark that both U1

and U3 preserve the 3-dimensional space W generated by M, L1, L3. Hence also U2 pre-
serves W . Hence {q1, q3}⊥ must be contained in W , which is clearly only possible when
W = PG(d, K), hence d = 3.

Definition. Let us call an orthogonal quadrangle of dimension d′ if it has a standard
embedding in d′-dimensional projective space, and if it is not a mixed quadrangle.

7.2.2 Theorem. If ΓD is a d′-dimensional orthogonal quadrangle, with d′ = 4, 5, 7, and
Γ is weakly embedded of degree > 2 in PG(d, K), then d = 3 and Γ is a symplectic,
hermitian or quaternion quadrangle (and hence fully embedded over some sub(skew)field
of K) by Section 5).

PROOF. If d′ = 4, then Γ is a symplectic quadrangle and the result follows.

Now let d′ = 5. Let q0(x1, x2) = Ax2
1 + Bx1x2 + Cx2

2 be the associated quadratic form.
Then we have as corresponding bilinear form f0((x1, x2), (y1, y2)) = 2Ax1y1 + B(x1y2 +
x2y1) + 2Cx2y2. Since Γ is not a mixed quadrangle, f0 is not identical 0, which means
that B &= 0 in characteristic 2. This implies that q0(x, 1) defines always a quadratic Galois
extension L of the ground field F over which Γ is defined. It is now easy to see that the 3-
dimensional hermitian quadrangle over L with as corresponding involutory automorphism
the unique non-trivial element of the Galois group Gal(L/F) is dual to Γ.
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Note that, if Γ is mixed in the previous paragraph, then q0(x, 1) defines an inseparable
quadratic field extension L of F and we have L2 ⊆ F ⊆ L. Hence the weak embedding
of Γ (= Q(L, F; L, F) * Q(L2, F2; L2, F2) in the notation of (6.1.1)) in PG(3, K) is by
Remark (6.1.6) full over a subfield L′ of K isomorphic to L.

Finally let d′ = 7. Since Γ is not mixed, ΓD contains a 5-dimensional subquadrangle
(Γ∗)D which is not a mixed quadrangle. Indeed, ΓD being mixed is equivalent with all
points of ΓD being regular. So we may assume that, by transitivity, there is no regular
point. This implies that there are points x1, x2, x3, y1, y2, y3 with xi ⊥ yj if and only if
(i, j) &= (3, 3). The 5-dimensional space (in the standard embedding of ΓD) generated
by these six points intersects ΓD in a 5-dimensional subquadrangle which is not a mixed
quadrangle. Every 4-dimensional subquadrangle of (Γ∗)D is the dual of a symplectic one.
We fix such a 4-dimensional subquadrangle ΓD

0 . Then Γ0 is a symplectic quadrangle which
is fully embedded in some subspace PG(3, F) of PG(3, K) for some subfield F of K (see
Section 5). Also, Γ∗ is fully embedded in some subspace PG(3, L∗) for some subfield L∗ of
K and L∗ is a quadratic Galois extension of F. Let {1, x} be a basis of L∗ over F. Let (Γ∗∗)D

be a second subquadrangle of ΓD containing ΓD
0 and such that (Γ∗∗)D is the intersection

of ΓD with a 5-dimensional projective subspace in its standard 7-dimensional orthogonal
embedding. Then Γ∗∗ is fully embedded in some subspace PG(3, L∗∗) of PG(3, K) over
some subfield L∗∗, and L∗∗ is a quadratic (not necessarily Galois) extension of F. Let
{1, y} be a basis of L∗∗ over F.

We now show that F, x, y generate a non-commutative subskewfield D of K which is 4-
dimensional over F. Hence D is a standard quaternion division algebra over F.

We fix a line L of PG(3, K) which is also a line of Γ0. We can coordinatize L with
K∪ {∞} in such a way that the points of Γ0, respectively Γ∗, Γ∗∗, on L are coordinatized
with F ∪ {∞}, respectively L∗ ∪ {∞}, L∗∗ ∪ {∞}. Now note that, if a, b ∈ K are the
coordinates on L of points of Γ, then also a+b is the coordinate of a point on L of Γ (using
the Moufang condition). Also, by considering suitable 5-dimensional subquadrangles of
ΓD containing ΓD

0 , one sees that a−1 and also every element of Fa+Fb corresponds with a
point of Γ, and that every element of F commutes with a (and hence F is in the center of
D). Moreover, F+Fa is a subfield of K and hence every element a of K which corresponds
with a coordinate of a point of L belonging to Γ is quadratic over F, i.e., a satisfies a
quadratic equation with coefficients in F. Now note that the formula

(a−1 + (b−1 − a)−1)−1 = a− aba

of Mendelsohn [5] is also true in the non-commutative case. Applied to a = x and
b = y, this shows that xyx ∈ F + Fx + Fy. It is easily seen that the coefficient of y is not
equal to zero (otherwise y−1 ∈ F + Fx), hence we can write xyx ∈ F + Fx + F×y, where
F× = F\{0}. We now show that D is equal to F+Fx+Fy+Fxy. Suppose that x satisfies
x2 − Ax−B = 0, with A ∈ F and B ∈ F×. Then

yx = (y(xx))x−1 = Ay + Byx−1 ∈ Fy + F×yx−1. (3)
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Also, we have

xy = (xyx)x−1 ∈ Fx−1 + F + Fyx−1 = F + Fx + F×yx−1. (4)

Combining Equations (3) and (4), we see that yx ∈ F + Fx + Fy + Fxy. It now follows
easily that D = F+Fx+Fy +Fxy. Now we show that xy /∈ F+Fx+Fy. Suppose by way
of contradiction that xy = C + Dx + Ey, with C, D,E ∈ F. Multiplying this equation at
the left with x, and substituting Ax + B for x2, we obtain

Axy + By = (C + DA)x + DB + Exy,

hence (A − E)xy = DB + (C + DA)x − By. If A = E, then since 1, x, y are linearly
independent over F (otherwise Γ∗ = Γ∗∗), B = 0, a contradiction to x /∈ F. Hence
A− E &= 0, and we have

E =
−B

A− E
,

which implies E2 = AE+B. Hence the quadratic equation u2−Au−B = 0 in the unknown
u over the field L∗ has two solutions in F and consequently x ∈ F, a contradiction. Hence
D is 4-dimensional over F. It remains to show that D is non-commutative. Suppose on
the contrary that D is commutative. Then xy = yx. Multiplying both sides at the left
with x, we see that x2y = Axy + By = xyx ∈ F + Fx + Fy, hence A = 0. So x2 ∈ F.
Similarly, y2 ∈ F. By interchanging the roles of y and x + y, we also have (x + y)2 ∈ F.
This implies 2xy ∈ F, hence the characteristic of F is equal to 2. This means that L∗ is
a non-Galois extension of F, a contradiction.

It is clear that the points of L with coordinates in F + Fx + Fy ∪ {∞} are precisely the
points on L of a subquadrangle Γ′ of Γ with Γ′D a 6-dimensional subquadrangle of ΓD

(this follows immediately from consideration of the subquadrangle generated by (Γ∗)D

and the line M of ΓD corresponding to the point with coordinate y, noting that every
line of that subquadrangle which is incident with the point of ΓD corresponding with
the line L of Γ, can be obtained from the line corresponding with the coordinate 0 by
applying an elation fixing the line corresponding with the coordinate ∞ and generated by
the elations in (Γ∗)D and (Γ∗∗)D). Hence there exists a coordinate z corresponding with
a point of Γ on L with z /∈ F + Fx + Fy. If z ∈ D, then it follows easily that the set of
coordinates of points on L belonging to Γ is precisely D ∪ {∞}. Suppose now z /∈ D. We
seek a contradiction. Note that F, x, z generate a skewfield which is 4-dimensional over
its center F, and similarly for F, y, z. Consider the subskewfield O of K generated by D
and z. We claim that O is equal to the subspace S over F with

S = F + Fx + Fy + Fxy + Fz + Fxz + Fyz + Fxyz.

For this, we only have to show that xS = yS = zS = Sx = Sy = Sz. Since x2yz =
(ax + B)yz, we immediately have xS = S. Similarly for Sz = S. For yS, we note that
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y(xz) = (yx)z ∈ Dz ⊆ S and also y(xyz) = (yxy)z ∈ Dz, hence yS = S. Similarly Sy = S.
For Sx, we have to show that yzx ∈ S and xyzx ∈ S. But yzx = y(zx) ∈ yS = S and
xyzx = x(yzx) ∈ xS = S. Similarly for zS = S. Hence we have shown that O = S.

Similarly as above, one shows that xyz /∈ F + Fx + Fy + Fxy + Fz + Fxz + Fyz. Hence
the dimension of O over F is equal to 8. Since O is a skewfield, and F is easily seen to be
the center of O, this is a contradiction (the dimension should be a perfect square).

Hence we have proved that z ∈ D and so the set of all coordinates of points of L in Γ is
equal to D ∪ {∞}.
Now let L′ be a line of Γ0 opposite L, and let M, M ′ be the lines of Γ0 concurrent with
L′ and meeting L in the points with respective coordinates 0 and ∞. Then L, M, L′, M ′

are the sides of an apartment of Γ0. We can take as points of a reference system the
intersections L ∩M = e1, M ∩ L′ = e2, L′ ∩M ′ = e3 and M ′ ∩ L = e4. We choose the
unit point e in the space PG(3, F) in which Γ0 is fully embedded. Since the dual of every
5-dimensional subquadrangle of ΓD containing Γ0 is fully embedded in some PG(3, L)
over some subfield L containing F and such that PG(s, F) is contained in PG(3, L), we
see that the points of Γ on L together with e2, e3 and e generate a subspace PG(3, D)
which contains all points of Γ on the lines L, L′, M, M ′. Let p be an arbitrary point of Γ
not collinear with ei, i = 1, 2, 3, 4. Let N be the line of PG(3, K) meeting both L and L′

and incident with p. Put L ∩ N = {q} and L′ ∩ N = {q′}. Let r respectively r′ be the
point on L respectively L′ collinear in Γ with p. Let q0 respectively q′0 be the point of Γ
on L respectively L′ collinear in Γ with r′ respectively r. Then clearly p must lie in the
planes q0, q′0, r and q0, q′0, r

′. Hence q0, q′0 and p are collinear in PG(3, K) and so q0 = q
and q′0 = q′. Similarly, p lies on a line which meets both M and M ′ in points of PG(3, D).
Hence p lies in PG(3, D). It is now easily seen that all points of Γ lie in PG(3, D) (by
varying the points with coordinates 0 and ∞ on L) and hence Γ is weakly embedded in
PG(3, D). But it has at least one full line, namely, L. Hence it is fully embedded in
PG(3, D). Clearly, Γ is a quaternion quadrangle. !

7.2.3 Theorem. If ΓD is a d′-dimensional orthogonal quadrangle, with d′ ≥ 4, and Γ is
weakly embedded of degree > 2 in PG(d, K), then d = 3 and d′ ≤ 7.

PROOF. We have already shown that d = 3. Suppose now d′ > 7. By taking a suitable
subquadrangle, we may assume that d′ = 8. Let L be as in the proof of Theorem 7.2.2,
and also choose x and y similarly. Since d′ > 7, we can now find z not belonging to
F + Fx + Fy + Fxy, where F is also defined similarly as in the previous proof. But, as in
that proof, this leads to a contradiction (a skewfield of dimension 8 over its center). !
The last case that remains is the case d′ = 6. We use the notation of Section 3.

7.2.4 Theorem. If ΓD is a 6-dimensional orthogonal quadrangle over some field F and Γ
is weakly embedded of degree > 2 in PG(d, K), then d = 3 and Γ is a standard embedding
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in subspace PG(3, L) of a special subquadrangle of some quaternion quadrangle over F, F
a subfield of K, L a quaternion skewfield over F inside K, i.e., there exists a 7-dimensional
orthogonal (dual quaternion) quadrangle Γ∗ over F with corresponding quaternion skewfield
L such that the points and lines of Γ are points and lines of a full embedding of ΓD

∗ over
a subskewfield D of K isomorphic to L.

PROOF. We can copy the proof of Theorem 7.2.2, case d′ = 7, up to the points where
we obtain a 6-dimensional subquadrangle Γ′D, which coincides now with Γ. Also the last
part of that proof can be copied: Γ lies in PG(3, D), which is a subspace of PG(d, K)
(implying d = 3) over the subskewfield D, which is a quaternion skewfield over F. We
take the same notation as in that last paragraph. If we have two collinear points r and r′

of Γ with r on L and r′ on L′, then a little calculation inside the dual of the orthogonal or
mixed quadrangle defined by the 4-dimensional orthogonal quadrangle Γ0 and the line of
ΓD corresponding with r shows that, if (1, 0, 0, 1) and (0, 1, 1, 0) are two collinear points
in Γ (and we can always choose the coordinates as such), the coordinates (x1, 0, 0, x4) and
(0, x2, x3, 0) of r and r′ are related by (if x1 &= 0 &= x4) x2 = x−σ

4 and x3 = x−σ
1 , where

σ is the identity in F, and also in every field F(t) if F(t) is a non-Galois extension of F;
and where σ is the unique non-trivial element of the Galois group of F(t) if the latter is a
Galois extension of F. For this calculation, see also Dienst [2], or Van Maldeghem [19].
But then one sees that σ is the restriction of the standard involution in D. Also, under the
same assumptions, the coordinates (x1, x2, 0, 0), x1 &= 0 &= x2, and (0, 0, x3, x4) of collinear
points on M respectively M ′ satisfy x3 = x−σ

1 and x4 = −x−σ
2 . So if p = (x1, x2, x3, x4)

is a point in PG(3, D) of Γ, then, by the argument of the last paragraph of the proof
of Theorem 7.2.2, and since p lies on the lines determined by (x1, 0, 0, x4), (0, x2, x3, 0)
respectively (x1, x2, 0, 0), (0, 0, x3, x4), p is in Γ collinear with the points (0, x−σ

4 , x−σ
1 , 0),

(x−σ
3 , 0, 0, x−σ

2 ), (0, 0, x−σ
1 ,−x−σ

2 ) and with (x−σ
3 ,−x−σ

3 , 0, 0). All points collinear with
p must lie in a plane. If we use (x1, x2, x3, x4), (0, x−σ

4 , x−σ
1 , 0), (0, 0, x−σ

1 ,−x−σ
2 ) and

(x−σ
3 ,−x−σ

4 , 0, 0) to express this, then we obtain after a short calculation

xσ
1x3 − xσ

3x1 + xσ
2x4 − xσ

4x2 = 0, (∗)

for all x1, x2, x3, x4 all different from 0. But this relation is easily extended to the other
cases (if only one coordinate is zero, e.g., x3 = 0, then the above calculation still holds
noting that (0, 0, x3, x4) = (0, 0, 0, x4) is collinear in Γ with (1, 0, 0, 0); if at least two
coordinates are zero, then either p lies on L ∪ L′ ∪M ∪M ′ and the result follows, or p
has some coordinates (x1, 0, x3, 0) or (0, x2, 0, x4). Assume for instance p = (x1, 0, x3, 0).
Then p is collinear with (0, 1, 0, 0) in Γ, and hence there is some point p′ = (x1, x2, x3, 0)
of Γ with x2 &= 0. The assertion now follows by applying the previous results to p′).

So we have shown that Γ is a subquadrangle of the hermitian quadrangle defined by the
equation (∗) above, which is clearly the quaternion quadrangle over D. The points on the
line L are parametrized by F + Fx + Fy ∪ {∞} (with the notation of the previous proof).
This completes the proof. !
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8 Exceptional Moufang quadrangles

8.1 Exceptional quadrangles of type Ei, i = 6, 7, 8

The exceptional quadrangles will be treated as a class of Moufang quadrangles of type
BC2 extending the orthogonal quadrangles which are not mixed quadrangles. As such, our
approach is independent of the classification of exceptional Moufang quadrangles, except
that we will assume that there is no exceptional quadrangle extending an orthogonal
quadrangle of dimension d ≤ 7. Indeed, the classification implies that only orthogonal
quadrangles of dimension d ≥ 8 can be extended, see Tits & Weiss [18]); for the types
Ei, u = 6, 7, 8, this is obvious, for type F4, this follows from the observation that the ideal
full subquadrangles are on a C4-building, see Van Maldeghem [19], Appendix C.

Let Γ be an exceptional Moufang quadrangle. Then Γ contains an ideal orthogonal sub-
quadrangle Γ′ of dimension d > 7. Since Γ′D is not weakly embedded of degree > 2 in
some projective space by the previous section, and since, if Γ′D is weakly embedded of
degree 2 in some projective space, then obviously, all the lines of Γ′D are regular and thus
Γ′ is a mixed quadrangle (a contradiction), ΓD cannot be weakly embedded of degree > 2
in some projective space. If Γ is of type F4, the dual argument implies that neither Γ can
be weakly embedded of degree > 2 in some projective space. Also, since the point-elation
groups of the exceptional quadrangles of type Ei, i = 6, 7, 8, are non-commutative, Γ
cannot be weakly embedded of degree > 2 in projective space (because the point-elation
groups can be seen as groups of elations in projective planes with a fixed axis and fixed
center, see above).

So we have shown:

8.1.1 Theorem. If Γ is an exceptional Moufang quadrangle, then neither Γ nor ΓD

admits a weak embedding of degree > 2 in some projective space.

References

[1] A. M. Cohen, Point–line spaces related to buildings. In: F. Buekenhout, editor,
Handbook of Incidence Geometry, Buildings and Foundations, Chapter 12, North-
Holland, Amsterdam (1995), 647 – 737.

[2] K. J. Dienst, Verallgemeinerte Vierecke in projektiven Räumen, Arch. Math. (Basel)
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79 – 95.

[18] J. Tits & R. Weiss, Classification of Moufang Polygons, book in preparation.

[19] H. Van Maldeghem, Generalized Polygons, A Geometric Approach, Birkhäuser,
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