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Abstract

A polar space S with point set P is laxly embedded in the projective space
PG(d, q), d ≥ 2, if the following conditions are satisfied : (i) P is a point set of
PG(d, q) which generates PG(d, q), and (ii) each line L of S is a subset of a line L′ of
PG(d, q), and distinct lines L1, L2 of S define distinct lines L′

1, L
′
2 of PG(d, q). In this

paper we determine all polar spaces of rank at least three which are laxly embedded
in PG(d, q), where d ≥ 4 if S is isomorphic to the polar space W (2m + 1, s),m ≥ 2
and s odd, arising from a symplectic polarity in PG(2m + 1, s), and where d ≥ 3
in all other cases. Laxly embedded generalized quadrangles were considered in a
foregoing paper.

1991 Mathematics Subject Classification: 51A50.

1 Introduction

The geometry of points and lines of a non-singular quadric of projective Witt-index at
least one in PG(n, q) is a polar space denoted by Q+(n, q) if n is odd and the quadric is
hyperbolic, by Q−(n, q) if n is odd and the quadric is elliptic, and by Q(n, q) if n is even;
the quadric will be denoted by Q+, Q− and Q, respectively. The geometry of all points
of PG(2m + 1, q), m ≥ 1, together with all totally isotropic lines of a symplectic polarity
in PG(2m + 1, q) is a polar space denoted by W (2m + 1, q). Finally, the geometry of
points and lines of a non-singular hermitian variety H of projective Witt-index at least
one in PG(n, q2) is a polar space H(n, q2). For q even, the polar space W (2m + 1, q) is
isomorphic to the polar space Q(2m + 2, q).

∗The second author is a Research Director of the Fund for Scientific Research – Flanders (Belgium),
FWO
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A polar space S isomorphic to one of Q+(n, q), Q−(n, q), Q(n, q), W (2m+1, q), H(n, q2) is
called a finite classical polar space. Any non-degenerate finite polar space (non-degenerate
means that no point of the polar space is collinear with all points of the polar space)
of projective Witt-index at least two, is classical; for more details see Buekenhout and
Cameron [1995]. The following table gives the ranks (the rank is one more than the
projective Witt-index) of these classical polar spaces.

S is isomorphic to rank

Q+(2m + 1, q) m + 1
Q−(2m + 1, q) m
Q(2m, q) m
H(2m + 1, q2) m + 1
H(2m, q2) m
W (2m + 1, q) m + 1.

If S is isomorphic to either one of Q+(n, q), Q−(n, q), Q(n, q), H(n, q2), or to W (n, q)
with q odd, then n is called the universal embedding dimension of S; if S is isomorphic to
W (n, q) with q even, then n+1 is the universal embedding dimension of S. The universal
embedding dimension of S will be denoted by ued(S).

Any polar space considered in this paper is assumed to be non-degenerate, unless explicitly
mentioned otherwise.

In this paper we will identify a line L of a polar space S with the set of points incident
with L. This way, we view the lines of S as subsets of the point set P of S. This will
be especially convenient for the purpose of this paper. Likewise, we view the lines of any
projective space as subsets of the point set.

Definition 1 A polar space S with point set P is laxly embedded in the projective space
PG(d, q), d ≥ 2, if the following conditions are satisfied:

(i) P is a point set of PG(d, q) which generates PG(d, q);

(ii) each line L of S is a subset of a line L′ of PG(d, q), and distinct lines L1, L2 of S
define distinct lines L′

1, L
′
2 of PG(d, q).

A lax embedding is called full if in (ii) above L = L′. Note that the description of
the finite classical polar spaces above yields full embeddings of these. We call these
full embeddings natural embeddings of the finite classical polar spaces (and consequently
W (2n + 1, q) ∼= (2n + 2, q), q even, has two non-isomorphic natural embeddings).
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Definition 2 A lax embedding of a polar space S is called weak if the set of points of S
collinear in S with any given point is contained in a hyperplane of PG(d, q).

In [1981a] Lefèvre-Percsy defined “weakly embedded polar space” and in [1996] Thas and
Van Maldeghem defined “sub-weakly embedded polar space”. Further, in [1996], Thas
and Van Maldeghem proved that these two notions are equivalent. In Section 2 we will
show that a weakly embedded polar space in the sense of Definition 2 is the same as a
weakly embedded (or equivalently sub-weakly embedded) polar space in the sense of Thas
and Van Maldeghem [1996]

All full embeddings of finite polar spaces were classified by Buekenhout and Lefèvre [1974],
[1976] and Lefèvre-Percsy [1977]. Only the natural embeddings of the classical finite polar
spaces turn up. All weak embeddings in PG(3, q) of finite thick generalized quadrangles (a
generalized quadrangle is a polar space of rank 2) are classified by Lefèvre-Percsy [1981a]
and in PG(d, q), with d > 3, by Thas and Van Maldeghem [19**]; all weak embeddings in
PG(d, q) of polar spaces of rank at least 3 were determined by Thas and Van Maldeghem
[1996]. Every weak embedding in PG(d, q) of a polar space either turns out to be full in
a subspace PG(d, q′) over a subfield GF(q′) of GF(q), or is the universal weak embedding
of W (3, 2) in a projective 4-space over an odd characteristic finite field.

In [19**] Thas and Van Maldeghem consider lax embeddings of generalized quadrangles
in finite projective spaces. In particular they classify all finite thick Moufang generalized
quadrangles, that is, all finite thick classical and dual classical generalized quadrangles,
laxly embedded in PG(d, q), d > 2, with the exception of the lax embeddings of W (3, s),
s odd, in PG(3, q). We just mention here the part of their Main Theorem that will be
used in the present paper.

If the generalized quadrangle S with parameters s and t (that is, each line contains s + 1
points and each point is on t + 1 lines), s $= 1, is laxly embedded in PG(d, q), then d ≤ 5.
Also,

(i) If d = 5, then S ∼= Q−(5, s). Also, if s $= 2 for q odd, then S is fully and naturally
embedded in some subspace PG(5, s) of PG(5, q).

(ii) If d = 4, then s ≤ t.

(a) If s = t, then S ∼= Q(4, s). Also, if s $= 2 for q odd, and s $= 3 for q ≡ 1
(mod 3), then S is fully and naturally embedded in some subspace PG(4, s) of
PG(4, q).

(b) If t2 = s3, then S ∼= H(4, s) and it is fully and naturally embedded in some
subspace PG(4, s) of PG(4, q).
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(c) If S ∼= Q−(5, s) and s $= 2 for q odd, then there exists a PG(5, q) containing
PG(4, q) and a point x ∈PG(5, q)\PG(4, q) such that S is the projection from
x onto PG(4, q) of a generalized quadrangle S̃ ∼= Q(5, s) which is fully and
naturally embedded in some subspace PG(5, s) of PG(5, q).

(iii) d = 3.

(a) If t = 1, then S is a subgrid of order (s, 1) of some Q+(3, q) (trivial case).

(b) If s = t2, then S ∼= H(3, s) and S is fully and naturally embedded in some
subspace PG(3, s) of PG(3, q).

(c) If S ∼= H(4, s), then there exists a PG(4, q) containing PG(3, q) and a point
x ∈PG(4, q)\PG(3, q) such that S is the projection from x onto PG(3, q) of a
generalized quadrangle S̃ ∼= H(4, s) which is fully and naturally embedded in
a subspace PG(4, s) of PG(4, q).

(d) If S ∼= Q(4, s), with s $= 2 for q odd and s $= 3 for q ≡ 1 (mod 3), then
there exists a PG(4, q) containing PG(3, q) and a point x ∈PG(4, q)\PG(3, q)
such that S is the projection from x onto PG(3, q) of a generalized quadrangle
S̃ ∼= Q(4, s) which is fully and naturally embedded in a subspace PG(4, s) of
PG(4, q).

(e) If S ∼= Q−(5, s), with s $= 2 for q odd, then there exists a PG(5, q) containing
PG(3, q) and a line L of PG(5, q) skew to PG(3, q) such that S is the projection
from L onto PG(3, q) of a generalized quadrangle S̃ ∼= Q−(5, s) which is fully
and naturally embedded in a subspace PG(5, s) of PG(5, q).

Remark 1 The lax embeddings of the generalized quadrangles S ∼= W (s), s odd, in
PG(3, q) are not yet classified.

Definition 3 A full polar subspace S ′ of a polar space S is a polar subspace of S whose
lines are full lines of S and any two points of which are collinear in S ′ if and only if they
are collinear in S.

Main Result. Assume that S is a polar space of rank at least three which is laxly
embedded in PG(d, q).

(i) If d ≥ 3 and if S is isomorphic either to one of Q+(n, s), Q−(n, s), Q(n, s), H(n, s),
or to W (n, s) with s even, then there exists a PG(n, q) containing PG(d, q) and a
PG(n − d − 1, q) of PG(n, q) skew to PG(d, q) such that S is the projection from
PG(n− d− 1, q) onto PG(d, q) of a polar space S̃ ∼= S which is fully and naturally
embedded in a subspace PG(n, s) of PG(n, q).

4



(ii) If d ≥ 4 and if S is isomorphic to W (2m+1, s), m ≥ 2 and s odd, then there exists
a PG(2m + 1, q) containing PG(d, q) and a PG(2m − d, q) of PG(2m + 1, q) skew
to PG(d, q) such that S is the projection from PG(2m − d, q) onto PG(d, q) of a
polar space S̃ ∼= W (2m + 1, s) which is fully and naturally embedded in a subspace
PG(2m + 1, s) of PG(2m + 1, q).

We prove the Main Result in a sequence of theorems and lemmas.

2 Weak is weak

If S is a laxly embedded polar space in PG(d, q), then for each line L of S, we denote by
L′ the (set of points on the) corresponding line of PG(d, q). In particular, we have L ⊆ L′.

Lemma 1 If the polar space S is laxly embedded in PG(d, q), d ≥ 2, and if L is any
line of S, then the points of L are the only points of S on the corresponding line L′ of
PG(d, q).

Proof. Assume, by way of contradiction, that x is a point of S on L′\L. If M is a line of
S through x and concurrent with L, then also M ⊆ L′, contradicting (ii) in the definition
of lax embedding. !

In Thas and Van Maldeghem [1996] a polar space S is said to be weakly embedded in
PG(d, q), d ≥ 2, if the following three conditions are satisfied:

(WE1) S is laxly embedded in PG(d, q),

(WE2) for any point x of S, the subspace generated by x⊥ = { all points of S which are
collinear in S with x} meets S precisely in x⊥,

(WE3) if for two lines L1 and L2 of S the corresponding lines L′
1 and L′

2 of PG(d, q) meet
in some point x, then x belongs to S.

This is nothing else than the original definition of Lefèvre-Percsy [1981a], [1981b]. Thas
and Van Maldeghem [1996] say that the polar space S is sub-weakly embedded in PG(d, q)
if (WE1) and (WE2) are satisfied; in the same paper they prove that S is weakly embedded
in PG(d, q) if and only if it is sub-weakly embedded in PG(d, q).

In the Introduction the polar space S was defined to be weakly embedded in PG(d, q),
d ≥ 2, if it is laxly embedded in PG(d, q) and for any point x of S the set x⊥ is contained
in a hyperplane of PG(d, q). In the next theorem we will prove that the two definitions
of weak are equivalent.
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Theorem 1 Let S be a polar space which is laxly embedded in PG(d, q), d ≥ 2. Then for
any point x of S the subspace generated by x⊥ meets S precisely in x⊥ if and only if for
any point x of S the set x⊥ is contained in a hyperplane of PG(d, q).

Proof. First, assume that for any point x of S the subspace 〈x⊥〉 generated by x meets
S precisely in x⊥. If x⊥ is not contained in a hyperplane of PG(d, q), then 〈x⊥〉 is not
contained in a hyperplane, so 〈x⊥〉 =PG(d, q), hence 〈x⊥〉 contains S, a contradiction.

Next, suppose that for any point x of S the set x⊥ is contained in a hyperplane of PG(d, q).
Assume, by way of contradiction, that the subspace 〈x⊥〉 generated by x contains a point
y of S not in x⊥. As every line of S through y contains a point of x⊥, we have that
y⊥ ⊆ 〈x⊥〉. Let z be a point of S not in x⊥ ∪ y⊥ and assume that there is a line of S
through z which does not contain a point of x⊥ ∩ y⊥. As L contains exactly one point
of x⊥ and exactly one point of y⊥, it follows that L belongs to 〈x⊥〉, so z ∈ 〈x⊥〉. Next,
assume that z is a point of S not in x⊥ ∪ y⊥ and that every line of S through z contains
a point of x⊥ ∩ y⊥. Let M be a line of S containing z and let m be the unique point of
x⊥∩ y⊥ on M . If S has rank 2, then for any point u ∈ (x⊥∩ y⊥)\{m} we have u /∈ m⊥; if
S has rank at least 3, then x⊥∩y⊥ together with the lines of S in x⊥∩y⊥ form a classical
polar space, and so (x⊥ ∩ y⊥)\{m} contains a point u not belonging to m⊥. Assume,
by way of contradiction, that u and z are not collinear in S. The line uy of S contains
exactly one point u1 collinear with z. The line u1z of S contains exactly one point u2

of x⊥ ∩ y⊥. As u1 $= u2 the point z belongs to y⊥ a contradiction. Hence u and z are
collinear in S. It follows that any point r $= z of S on the line mz, is not collinear with u.
By a preceding case we now have r ∈ 〈x⊥〉 (the line of S through r and containing a point
of mx does not contain a point of x⊥ ∩ y⊥). As also m ∈ 〈x⊥〉, the line mr of S belongs
to 〈x⊥〉 , and so z ∈ 〈x⊥〉. Hence every point of S belongs to 〈x⊥〉, a contradiction as
〈x⊥〉 $=PG(d, q). We conclude that 〈x⊥〉 does not contain a point y of S not in x⊥. !

Lemma 2 If the polar space S is weakly embedded in PG(d, q), d ≥ 2, then for any point
x of S the subspace 〈x⊥〉 is a hyperplane of PG(d, q).

Proof. Assume that the polar space S is weakly embedded in PG(d, q), d ≥ 2, and that
x is a point of S for which 〈x⊥〉 is not a hyperplane of PG(d, q). Let y be a point of S not
in x⊥, and let PG(d− 1, q) be a hyperplane of PG(d, q) containing 〈x⊥〉 and y. As in the
second part of the proof of Theorem 1 it now follows that S is contained in PG(d− 1, q),
clearly a contradiction. We conclude that for any point x of S the subspace 〈x⊥〉 is a
hyperplane. !
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3 The classical polar space is not isomorphic to W (n, s),
with s odd

In this section we assume that the finite classical polar space S has rank at least three,
is laxly embedded in PG(d, q), with d ≥ 3, and is not isomorphic to W (n, s), with s odd.
Further, let ued(S) = n. Here no full polar subspace of S is of type W (l, s), with s odd.

Lemma 3 Any line L of S is a subline over GF(s) of the corresponding line L′ of
PG(d, q). In particular, GF(s) is a subfield of GF(q).

Proof. Let L be a line of S. Now consider a plane π of S containing L. Then π is a
subplane of a plane 〈π〉 = π′ of PG(d, q), and so π is a plane over GF(s) of π′. It follows
that L is a subline over GF(s) of L′. In particular GF(s) is a subfield of GF(q). !

Theorem 2 We have d ≤ n.

Proof. Let S ′ be a full polar subspace of S with ued(S ′) = n− 1.
If S ′ is a (classical) generalized quadrangle, then by Section 1 we have that S ′ generates
a PG(d′, q) with d′ ≤ n − 1; if S ′ has rank at least three, then we asssume by induction
on n that S ′ generates a PG(d′, q) with d′ ≤ n − 1. Let x be a point of S not in S ′.
If z is a point of S with z ∈ x⊥\{x}, then the line zx of S contains a point u of S ′,
and so z ∈ 〈PG(d′, q), x〉. Now assume that y is a point of S not in S ′, with y /∈ x⊥.
First, suppose that x⊥ ∩ y⊥ does not belong to S ′. Let v be a point of x⊥ ∩ y⊥ which is
not contained in S ′. Then the line vy of S contains a point w of S ′ and so vy belongs
to 〈PG(d′, q), x〉. Hence y is a point of 〈PG(d′, q), x〉. Next, suppose that x⊥ ∩ y⊥ is
contained in S ′. Let L be any line of S through y and let u be the common point of
S ′ and L. Then u ∈ x⊥. Now let t ∈ L\{y, u}. Assume, by way of contradiction, that
t⊥ ∩ x⊥ belongs to S ′. Then any point of S ′ in x⊥, is also in t⊥ and in y⊥, so belongs to
u⊥. So the polar space formed by the points of x⊥ in S ′, together with the lines of S ′ in
x⊥, is degenerate, a contradiction. Hence t⊥ ∩ x⊥ is not contained in S ′. By a preceding
case t ∈ 〈PG(d′, q), x〉. Now it is clear that also y ∈ 〈PG(d′, q), x〉. It follows that S is
contained in 〈PG(d′, q), x〉, and consequently d′ ≥ d− 1, that is, d ≤ n. !

Theorem 3 If d = n, then S is fully and naturally embedded in some subspace PG(d, s)
of PG(d, q).

Proof. Let y be any point of S. Then on each line of S through y we can choose a
point z, such that the set P of these points z together with the lines of S in P form a
full polar subspace S ′ of S (of the same type as S), with ued(S ′) = n − 2. By Theorem
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2 the point set P generates a subspace PG(d′, q) of PG(d, q), with d′ ≤ n− 2. Hence the
projective space 〈y⊥〉 is at most (n−1)-dimensional. It follows that S is weakly embedded
in PG(d, q), and the result follows. !

Lemma 4 If d < n, then S contains a full polar subspace S ′ with ued(S ′) = n − 1 and
which generates PG(d, q).

Proof. Let S ′ be a full polar subspace of S with ued(S ′) = n − 1. If x is a point of S
not in S ′, then analogously as in the proof of Theorem 2 we show that S is contained in
〈PG(d′, q), x〉, with PG(d′, q) the projective space generated by S ′. Hence d′ ≥ d − 1. If
d′ = d we are done, so assume that d′ = d− 1. By induction on d we may assume that S ′

contains a full polar subspace S ′′ with ued(S ′′) = n− 2 and which generates PG(d− 1, q).
Let y be a point of S ′′.

First, suppose that all lines of S containing y are in PG(d− 1, q). Let z be a point of S
collinear with y, but not contained in S ′. Similarly as in the proof of Theorem 2 we then
obtain that S is contained in 〈PG(d − 1, q), z〉 =PG(d − 1, q), a contradiction. So there
is a line L of S through y not in PG(d− 1, q). Let π be a plane of S containing L which
intersects S ′ in a line M which does not belong to S ′′. Then in the plane π there is a line
N $= M of S through y, such that S ′′ and N define a non-degenerate full polar subspace
S ′

1 of S , with ued(S ′
1) = n− 1. Clearly S ′

1 generates PG(d, q).

As first step in the induction let us consider a polar space S ′ which is laxly embedded
in PG(3, q). Let S ′′ be a full polar subspace of S ′, with ued(S ′′) = ued(S ′) − 1. If S ′′

generates PG(3, q) we are done. So assume that S ′′ generates a plane PG(2, q). If u is
a point of S ′′, then there is a line L of S ′ through u not contained in PG(2, q). Now we
choose a line M of S ′′ in π such that no plane of S ′ containing L intersects M . Then
any full polar subspace S ′′

1 of S ′, with ued(S ′′
1 ) = ued(S ′)− 1, generates PG(3, q) (by the

choice of L and M such a polar subspace S ′′
1 exists).

We conclude that S always contains a full polar subspace S ′, with ued(S ′) = n − 1 and
which generates PG(d, q). !

Theorem 4 If d < n, then there exists a PG(n, q) containing PG(d, q) and a PG(n −
d− 1, q) of PG(n, q) skew to PG(d, q) such that S is the projection from PG(n− d− 1, q)
onto PG(d, q) of a polar space S̃ ∼= S which is fully and naturally embedded in a subspace
PG(n, s) of PG(n, q).

Proof. By Lemma 4 the polar space S contains a full polar subspace S ′ with ued(S ′) =
n − 1 and where S ′ generates PG(d, q). Proceeding by induction on n and also relying
on Theorem 3, we may assume that there is a PG(n − 1, q) containing PG(d, q) and a
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PG(n − d − 2, q) of PG(n − 1, q) skew to PG(d, q) such that S ′ is the projection from
PG(n − d − 2, q) onto PG(d, q) of a polar space S̃ ′ ∼= S ′ which is fully and naturally
embedded in a subspace PG(n− 1, s) of PG(n− 1, q).

Let L be a line of S not in S ′, and let y be the common point of L and S ′. Suppose that
the point ỹ of S̃ ′ is projected from PG(n−d−2, q) onto y. Now we embed PG(n−1, q) in
a PG(n, q). Further, let PG(n− d− 1, q) be a projective subspace of PG(n, q) containing
PG(n− d− 2, q), with PG(n− d− 1, q) $⊂PG(n− 1, q). In PG(n− d + 1, q) = 〈PG(n−
d − 1, q), L〉 we now consider a line L̃ over GF(s) containing ỹ and not contained in
PG(n − 1, q), whose projection from PG(n − d − 1, q) onto PG(d, q) coincides with L.
Then PG(n− 1, s) and L̃ are contained in a unique subspace PG(n, s) of PG(n, q).

Let u be a point of S not in S ′, with u /∈ L and u /∈ y⊥. Further, let v be the unique point
of L which is collinear with u, and let u′ be the unique common point of S ′ and the line
uv of S. The point of L̃ which is projected from PG(n− d− 1, q) onto v is denoted by ṽ,
and the point of S̃ ′ which is projected from PG(n−d−1, q) (or PG(n−d−2, q)) onto u′ is
denoted by ũ′. Now let us define ũ as the intersection of 〈ũ′, ṽ〉 and 〈PG(n− d− 1, q), u〉.
Next, let u be a point of S not in S ′, with u /∈ L and where u and L are in a common
plane π of S. If M is the common line of S ′ and π, then let M̃ be the line of S̃ ′ which
is projected onto M . Then, by definition, {ũ} = 〈L̃, M̃〉 ∩ 〈PG(n − d − 1, q), u〉. It is

clear that ũ belongs to the plane over GF(s) containing L̃ and M̃ . Hence ũ is a point of
PG(n, s).

Let u be again a point of S not in S ′, with u /∈ L and u /∈ y⊥. As before, let v be the
unique point of L which is collinear with u, and let u′ be the unique point of S ′ and the
line uv of S. Now choose planes π, π′ of S through v, where π contains L, π ∩ π′ is a
line U of S, and π′ contains u. Then u′ ∈ π′. Let Ũ be the line of PG(n, s) consisting
of all points w̃, with w̃ corresponding to w ∈ U , and let T̃ be the line of S̃ ′ which is
projected onto the common line T of π′ and S ′. The plane π̃′ over GF(s) defined by T̃
and Ũ , is projected onto the plane π′; clearly π̃′ is a plane of PG(n, s). As u′, v, u ∈ π′

and ũ′, ṽ ∈ π̃′, it is now easily follows that ũ ∈ π̃′. It follows that ũ ∈PG(n, s). Let π1 be
a plane of S containing L, let U be the common line of S ′ and π1,and let L1 be a line of S
in π1 distinct from L and U . Further, let y1 be the point of S ′ on L1. We will show that
if r is any point of S not in S ′, and not in L ∪ L1, for which r and L are in a common
plane of S if r ∈ y⊥, and for which r and L1 are in a common plane of S if r ∈ y⊥1 , then
interchanging roles of L and L1 the point r̃ is the same element of PG(n, s) (this claim
is clear if r ∈ L ∪ L1). First, assume that r and L , and also r and L1, are in a common
plane of S. If r ∈ π1, then it is clear that r̃ remains the same if the roles of L and L1 are
interchanged. So we may assume that r /∈ π1. Let γ be the plane of S containing r and
L, and let γ1 be the plane of S containing r and L1. Further, let N be the line of S ′ in γ,
and let N1 be the line of S ′ in γ1. If {t} = N ∩N1 and {w} = L∩L1, then r ∈ 〈t, w〉 and
r̃ is the unique common point of 〈t̃, w̃〉 and 〈PG(n− d− 1, q), r〉. So r̃ remains the same
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by interchanging L and L1. Next, assume that r and L are in a common plane γ of S,
and that r /∈ y⊥1 . If {w} = L ∩ L1 and t is the common point of S ′ and the line wr of S,
then r̃ is the unique common point of 〈t̃, w̃〉 and 〈PG(n− d− 1, q), r〉. If we interchange
roles of L and L1, then r̃ is also obtained by intersecting 〈t̃, w̃〉 and 〈PG(n− d− 1, q), r〉.
Finally, assume that r /∈ y⊥ and r /∈ y⊥1 . Let L∩L1 = {w}. If r ∈ w⊥, then it is clear that
r̃ remains the same if we interchange the roles of L and L1. So assume that r⊥ ∩L = {z}
and r⊥ ∩ L1 = {z1}, with z $= z1. Then r̃ is the same if it is constructed using either L
or the line zz1 of S, and also it is the same if it is constructed using either L2 or the line
zz1 of S. Hence again we may interchange L and L1.

Next, let L1 be a line of S which has a point w in common with L, with w not in S ′, and
assume that L and L1 are not in a common plane of S. Let y1 be the point of L1 in S ′.
Again we will show that if r is any point of S not in S ′, and not in L ∪ L1, for which r
and L are in a common plane of S if r ∈ y⊥, and for which r and L1 are in a common
plane of S if r ∈ y⊥1 , then interchanging roles of L and L1 the point r̃ is the same element
of PG(n, s) (this claim is clear if r ∈ L ∪ L1). Choose a plane π of S containing L and a
plane π1 of S containing L1, in such a way that π ∩ π1 is a line L2 of S. Then w ∈ L2.
The common point of L2 and S ′ is denoted by y2. Assume first that if r ∈ y⊥2 , then also
r ∈ w⊥. Applying two times the previous section, we then see that r̃ is the same if we
interchange the roles of L and L1. Now assume that r ∈ y⊥2 and r /∈ w⊥. Then choose a
plane π∗ $= π of S containing L and a plane π∗1 $= π1 of S containing L1 , in such a way
that π∗ ∩ π∗1 is a line L∗

2 of S. The common point of L∗
2 and S ′ is denoted by y∗2. The

planes π∗1 and π∗ can be chosen in such a way that y∗2 /∈ y⊥2 . If r /∈ y∗⊥2 , then interchanging
L2 and L∗

2 we are done. So let r ∈ y∗⊥2 . Choose a point z $= y1, y2 on the line y1y2 of S,
and let z∗ be the common point of z⊥ and the line yy∗2 of S. Let M be the line zw of
S, and let M∗ be the line z∗w of S. As r /∈ y⊥1 we have r /∈ z⊥, and as v /∈ y⊥ we have
r /∈ z∗⊥. Then r̃ is the same if it is constructed using either L or M∗, using either M∗ or
M , and using either M or L1. So again r̃ is the same if we interchange the roles of L and
L1.

Now let u be a point of S not in S ′, with u /∈ L, u and L not in a common plane of
S, and u ∈ y⊥. Now we choose a line L1 of S not in S ′ in such a way that L and L1

intersect, and u /∈ y⊥1 with y1 the unique common point of L1 and S ′ (it is easy to show
that such a line L1 of S always exists). Now we construct ũ with respect to the line L1

and we show that ũ is independent of the choice of L1. So we choose a second line L2

of S not in S ′, in such a way that L and L2 intersect, and u /∈ y⊥2 with y2 the unique
common point of L2 and S ′. If L ∩ L1 = L ∩ L2, then from the foregoing two sections it
is clear that L1 and L2 define the same point ũ. Next, let L ∩ L1 $= L ∩ L2, but assume
that L1∩L2 $= ∅. If L1∩L2 $= {y1}, then again L1 and L2 define the same point ũ. So let
L1 ∩L2 = {y1}. Choose a line L3 of S not in S ′, intersecting L1 and L2, and intersecting
yy1 in a point distinct from y, y1. Then L1 and L3 define the same point ũ, and also L2

and L3 define the same point ũ. Hence L1 and L2 define the same point ũ. Now, we
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suppose that L ∩ L1 $= L ∩ L2 and L1 ∩ L2 = ∅. Let π be a plane of S containing L, let
L3 $= L be a line of S in π for which L ∩ L1 = L ∩ L3, let L4 $= L be a line of S in π for
which L ∩ L2 = L ∩ L4, and choose L3 and L4 in such a way that the common point of
these lines does not belong to u⊥. By foregoing cases the lines L1 and L3 define the same
point ũ, the lines L2 and L4 define the same point ũ, and also the lines L3 and L4 define
the same point ũ. It follows that L1 and L2 define the same point ũ. We conclude that ũ
is independent of the choice of the line ũ. Also, ũ is a point of PG(n, s).

So for any point u of S the point ũ is defined, and ũ always belongs to PG(n, s).

Clearly θ : u 0→ ũ is an injection of the point set of S into PG(n, s). Now let u1, u2, u3 be
distinct collinear points of S.

If at least two of these points belong to S ′, then clearly ũ1, ũ2, ũ3 are also collinear in
PG(n, s).

Next, assume that u1 is in S ′, and that u2, u3 are not in S ′. If the line M of S containing
u1, u2, u3 also contains a point of L\{y}, then it is clear that ũ1, ũ2, ũ3 are collinear in
PG(n, s). So we may assume that the line M does not contain a point of L\{y}. First,
suppose that u1 /∈ y⊥. Then we may assume that also u2 /∈ y⊥. Let L1 be the line of
S which contains u2 and a point of L. By the foregoing we may construct ũ2, ũ3 with
respect to L1, and then it is clear that ũ1, ũ2, ũ3 are collinear in PG(n, s). Next, suppose
that u1 ∈ y⊥\{y}. If u2 /∈ y⊥, then let L1 be again the line of S which contains u2 and
a point of L. Again we may construct ũ2, ũ3 with respect to L1, and so it is clear that
ũ1, ũ2, ũ3 are collinear in PG(n, s). If u2 ∈ y⊥, then let N be a line of S through u1 in the
plane π of S containing y, u1, u2, u3, but distinct from the lines yu1 and u1u2 of S. Now
let π1 $= π be a plane of S through N , but not in a 3-dimensional projective subspace of
S containing N . Let N1 be the common line of π1 and S ′. Then neither N1, y, u1, nor
N1, u1, u2, are in a common plane of S. Further, let y1 ∈ N1\{u1} and let L1 be the line
of S which contains y1 and a point of L. Now we may construct ũ1, ũ2, ũ3 with respect to
L1, and by a foregoing case we conclude that ũ1, ũ2, ũ3 are collinear in PG(n, s). Finally,
we assume that u1 = y. If L, u2, u3 are in a common plane of S, then it is clear that
ũ1, ũ2, ũ3 are collinear in PG(n, s). So assume that u⊥2 does not contain L. Let π be a
plane of S containing y, u2, u3, and let D be the common line of π and S ′. Further, let
y2, y3 ∈ D\{y}, y2 $= y3, and let y2u2 ∩ y3u3 = {u}. Then ỹ, ỹ2, ỹ3, respectively ỹ2, ũ2, ũ,
respectively ỹ3, ũ3, ũ, are collinear in PG(n, s). So ỹ, ỹ2, ỹ3, ũ2, ũ3, ũ are in a common plane
π̃ of PG(n, s). Now we consider a second plane π1 of S containing y, u2, u3, and let D1 be
the common line of π1 and S ′. As the line D̃1 of PG(n, s) has no point in common with
the line ỹ2ũ2 of PG(n, s), the plane π̃1 of PG(n, s) which corresponds with the plane π1 is
distinct from the plane π̃. As ũ1, ũ2, ũ3 belong to π̃∩ π̃1, the points ũ1, ũ2, ũ3 are collinear
in PG(n, s).

Finally, assume that u1, u2, u3 are not in S ′. Let u be the common point of S ′ and the
line u2u3 of S. By the foregoing cases the points ũ, ũ1, ũ2 are collinear in PG(n, s), and
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also the points ũ, ũ1, ũ3 are collinear in PG(n, s). It follows that ũ1, ũ2, ũ3 are collinear in
PG(n, s).

If S̃ is the incidence structure having as points all points ũ, with u any point of S and
having as lines all lines Ñ , with N any line of S (incidence is the natural one), then it is
now clear that S̃ ∼= S is a polar space which is fully (and hence naturally) embedded in
PG(n, s), whose projection from PG(n− d− 1, q) onto PG(d, q) is the given polar space
S.

Now by induction, by Theorem 3, and by the fact that Theorems 3 and 4 are valid for
rank two, the theorem is completely proved. !

4 The polar space is isomorphic to W (2m+1, s), m ≥ 2
and s odd

In this section we assume that the finite classical polar space S is laxly embedded in
PG(d, q), with d ≥ 4, and is isomorphic to W (2m + 1, s), with m ≥ 2 and s odd.

Lemma 5 Any line L of S is a subline over GF(s) of the corresponding line L′ of
PG(d, q). In particular, GF(s) is a subfield of GF(q).

Proof. See proof of Lemma 3. !

Theorem 5 We have d ≤ 2m + 1.

Proof. Let S ′ be a full polar subspace of S, with S ′ ∼= W (2m− 1, s). If m = 2, then by
Section 1 we have that S ′ generates a PG(d′, q) with d′ ≤ 3; if S ′ has rank at least three,
then we assume by induction on m that S ′ generates a PG(d′, q) with d′ ≤ 2m − 1. Let
x and y be distinct points of S, where x⊥ and y⊥ contain all points of S ′. Let z be a
point of S not in S ′, with z⊥ not containing all points of S ′. Then there is a line L of S
containing z, but containing no point of S ′. This line L intersects x⊥ and y⊥ in distinct
points, and so z ∈ 〈PG(d′, q), x, y〉. Let V be the set of all points v of S, for which v⊥

contains all points of S ′. Then |V | = s + 1, and no two points of V are collinear in S.
Let w ∈ V \{x, y} and let M be a line of S through w. Then at least two points of M are
not in V , so M belongs to 〈PG(d′, q), x, y〉, and hence w is a point of 〈PG(d′, q), x, y〉. It
follows that S is contained in 〈PG(d′, q), x, y〉, and so d′ ≥ d− 2, that is, d ≤ 2m + 1. !

Theorem 6 If d = 2m + 1, then S is fully und naturally embedded in some subspace
PG(d, s) of PG(d, q).
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Proof. Let y be any point of S. Then on each line of S through y we can choose a
point z, such that the set of these points z together with the lines of S in P form a
full polar subspace S ′ ∼= W (2m − 1, s) of S. By Theorem 5 the point set P generates a
subspace PG(d′, q) of PG(d, q), with d′ ≤ 2m − 1. Hence the projective space 〈y⊥〉 is at
most 2m-dimensional. It follows that S is weakly embedded in PG(d, q) and the result
follows. !

Theorem 7 If (d,m) = (4, 2), then there exists a PG(5, q) containing PG(4, q) and a
point p of PG(5, q) not in PG(4, q) such that S is the projection from p onto PG(4, q)
of a polar space S̃ ∼= S which is fully and naturally embedded in a subspace PG(5, s) of
PG(5, q).

Proof. Assume that S ′′ ∼= W (3, s) is a full polar subspace of S which contains given
intersecting lines L, M of S, with L and M not belonging to a common plane of S.
Then S ′′ either generates a plane or a 3-dimensional space in PG(4, q). Assume that S ′′

generates a plane π of PG(4, q). Choose a point x of S ′′ on L\M . By the second part of
the proof of Theorem 1, the set x⊥ is not contained in π. Let L1 be a line of S through
x, but not contained in the plane π. Assume that every plane of S containing L1, also
contains a line of S ′′ through x. Then let M1 be a line of S ′′ through x, distinct from
L, and let L2 be a line of S through x in the plane of S defined by L1 and M1, where
M1 $= L2 $= L1. Then L and L2 are not in a common plane of S. So without loss of
generality we may assume that L and L1 do not belong to a common plane of S. Then
M⊥ ∩ L1 = ∅, with M⊥ = ∩z∈Mz⊥. From the theory of classical polar spaces it now
follows that L1 and M are lines of a full polar subspace S ′ ∼= W (3, s) of S. Clearly L is
a line of S ′.

From the foregoing section it follows that S always contains a full polar subspace S ′ ∼=
W (3, s) which contains the given lines L, M of S and generates a subspace PG(3, q) of
PG(4, q).

So let S ′ ∼= W (3, s) be a full polar subspace of S which generates a 3-dimensional subspace
PG(3, q) of PG(4, q). Let x be a point of S ′ and let L, M, N be three distinct lines of S ′

containing x. Assume, by way of contradiction, that L, M, N are not coplanar in PG(3, q).
Consider now a full polar subspace S ′′ ∼= W (3, s) of S, with S ′′ $= S ′, containing L, M, N
as lines. Then S ′ and S ′′ are contained in a common PG(3, q). It follows that the points
and lines of S in PG(3, q) form a degenerate full polar subspace of S. The point set of
this degenerate polar space is necessarily a set of type y⊥, with y some point of S. Let S
be a naturally embedded polar space isomorphic to W (5, s) and let γ be an isomorphism
of S onto S. Then (S ′)γ and (S ′′)γ belong to the PG(4, s) with point set (y⊥)γ. Hence
every full polar subspace of S isomorphic to W (3, s) and containing the coplanar lines
Lγ, Mγ, Nγ belongs to the hyperplane PG(4, s), clearly a contradiction. It follows that
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L, M, N are coplanar in PG(3, q). Consequently, S ′ is weakly embedded in PG(3, q). From
Section 1 we now conclude that the point set of S ′ is a subspace PG(3, s) of PG(3, q).

Let V be the set of the s + 1 points z of S, for which z⊥ contains each point of S ′. As S
is not contained in PG(3, q), the set V contains at most one point of PG(3, q). Let y be
a point of V which is not contained in PG(3, q). Further, let L be a line of S containing
y and let PG(4, s) be the subspace of PG(4, q) defined by PG(3, s) and L. Consider a
line M of S through y , with M $= L. If L, M belong to a common plane π of S, then
π contains a line of S ′, so π is a plane of PG(4, s), hence M is a line of PG(4, s). Now
suppose that L, M do not belong to a common plane of S. Let u be the common point of
L and S ′, let v be the common point of M and S ′, and let w be a point of S ′ in u⊥ ∩ v⊥.
The line of S containing w and y will be denoted by N . By the foregoing N is a line
of PG(4, s), and then, by interchanging roles of L and N , also M is a line of PG(4, s).
It follows that y⊥ is a point set of PG(4, s). As |y⊥| = s4 + s3 + s2 + s + 1, the set y⊥

coincides with the point set of PG(4, s).

Let y1 ∈ V , with y1 $= y and y1 not in PG(3, q), and let L1 be the line of S through u
and y1. Now we consider a projective space PG(5, q) containing PG(4, q) and a line L̃1

over GF(s) in PG(5, q) which passes through u but is not contained in PG(4, q), such that
L1 is the projection of L̃1 from some point p ∈PG(5, q)\PG(4, q) onto PG(4, q). Then
there is exactly one subspace PG(5, s) of PG(5, q) which contains L̃1 and PG(4, s). As
y1 /∈ PG(4, s) it is clear that p /∈ PG(5, s). The subspace PG(1)(4, s) defined by L̃1 and
PG(3, s) is projected from p onto the subspace with point set y⊥1 of PG(4, q). Let r1, r2 be
points of S ′, with r2 /∈ r⊥1 , and such that 〈r1, r2, y, y1〉 is 3-dimensional. Then S contains a
full polar subspace S∗ ∼= W (3, s) which contains r1, r2, y, y1. From the foregoing it follows
that S∗ is naturally embedded in some 3-dimensional projective space over GF(s). The
set V = {y, y1}⊥⊥ = ∩x∈y⊥∩y⊥1

x⊥ of S coincides with the set {y, y1}⊥
∗⊥∗ of S∗ (here “⊥∗”

means perpendicularity in S∗). Hence V is a subline over GF(s). Let z ∈ V \{y, y1} and
consider the line Z of S passing through z and r, with r any point of S ′. Putting r = r1

and considering again S∗, it follows that the lines ry, ry1, rz of S belong to a common
plane π1 over GF(s). Let ỹ1 be the point of L̃1 which corresponds to y1 and let π̃1 be the
subplane of PG(5, s) containing r, y, ỹ1. As π̃1 is projected from p onto π1, the plane π̃1

contains a point z̃ which is projected from p onto z; the line rz̃ of π̃1 is projected from p
onto the line rz of S. The point set of the polar space S is the union of the lines rz of S,
with r in S ′ and z in V . Hence each point of S is the projection from p onto PG(4, q) of
a point of PG(5, s). As the number of points of PG(5, s) is also the number of points of
S, it is clear that for each point w of S there is exactly one point w̃ of PG(5, s) which is
projected from p onto w.

Let N be any line of S and let Ñ be the corresponding point set of PG(5, s). If 〈N, p〉∩
PG(5, s) is not a line over GF(s), then it is a subplane over GF(s). So if 〈N, p〉∩ PG(5, s)
is not a line over GF(s), then on the line N ′ of PG(4, q) containing N there are s2 points
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of S not on N , contradicting Lemma 1. So 〈N, p〉∩ PG(5, s) is a line over GF(s), that
is, Ñ is a line over GF(s). It follows that S is the projection from p onto PG(4, q) of a
S̃ ∼= W (5, s) which is fully (and hence naturally) embedded in PG(5, s). !

Theorem 8 If d = 2m, with m > 2, then there exists a PG(2m + 1, q) containing
PG(2m, q) and a point p of PG(2m + 1, q) not in PG(2m, q) such that S is the projection
from p onto PG(2m, q) of a polar space S̃ ∼= S which is fully and naturally embedded in a
subspace PG(2m + 1, s) of PG(2m + 1, q).

Proof. Let L and M be distinct intersecting lines of S, where L and M do not lie in a
common plane of S. Further, let S ′′ be a full polar subspace of S which contains L and
M , and which is isomorphic to W (2m − 1, s). Assume that S ′′ generates the projective
subspace PG(l, q) of PG(2m, q). By Theorem 5 we have l ≤ 2m − 1. Let x and y be
distinct points of S for which x⊥ and y⊥ contain all points of S ′′. Then by the second part
of the proof of Theorem 1 S is contained in 〈x⊥, y⊥〉 = 〈PG(l, q), x, y〉. Hence l ≥ 2m−2.
It follows that l ∈ {2m−1, 2m−2}. Suppose that l = 2m−2 . Proceeding by induction on
m, we assume that S ′′ contains a full polar subspace S ′′′ ∼= W (2m−3, s) which contains L
and M , and generates a PG(2m−3, s). Let x be a point of S ′′ for which x⊥ contains each
point of S ′′′. If any such point x would be a point of PG(2m− 3, q), then by the second
part of the proof of Theorem 1 the polar space S ′′ would be contained in PG(2m− 3, q),
clearly a contradiction. Hence we may assume that x /∈ PG(2m − 3, q). Now consider a
full polar subspace S ′′

1
∼= W (2m− 1, s) of S, S ′′

1 $= S ′′, which contains x and S ′′′. Assume
that S ′′

1 does not generate a (2m − 1)-dimensional space. So it necessarily generates
PG(2m− 2, q). As S ′′ and S ′′

1 belong to PG(2m− 2, q), it follows that all points and lines
of S in PG(2m−2, q) form a necessarily degenerate full polar subspace S∗ of S; the point
set of S∗ is a set z⊥, with z some point of S. Let S be a naturally embedded polar space
isomorphic to W (2m + 1, s) and let γ be an isomorphism of S onto S. Then (S ′′)γ and
(S ′′

1 )γ belong to the PG(2m, s) with point set (z⊥)γ. Now we choose a full polar subspace
S ′′

2
∼= W (2m − 1, s) of S which contains x and S ′′′, such that (S ′′

2 )γ does not belong to
PG(2m, s). Then S ′′

2 generates a (2m− 1)-dimensional space. Also, S ′′
2 contains the lines

L and M . Relying on the first part of the proof of Theorem 7, we now conclude that
any two intersecting lines L and M of S, with L and M not lying in a common plane
of S, are contained in a full polar subspace S ′ ∼= W (2m − 1, s) of S which generates a
PG(2m−1, q). By Theorem 6 S ′ is fully and hence naturally embedded in some subspace
PG(2m−1, s) of PG(2m−1, q), and so the point set of S ′ is the point set of PG(2m−1, s).

Let V be the set of the s + 1 points z of S, for which z⊥ contains each point of S ′. As S
is not contained in PG(2m− 1, q), the set V contains at most one point of PG(2m− 1, q).
Let y be a point of V which is not contained in PG(2m− 1, q). Further, let L be a line of
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S containing y and let PG(2m, s) be the subspace of PG(2m, q) defined by PG(2m−1, s)
and L. Exactly as in the proof of Theorem 7 we now have that y⊥ coincides with the
point set of PG(2m, s).

Let y1 ∈ V , with y1 $= y and y1 not in PG(2m− 1, q), and let L1 be the line of S through
u and y1, where u is the common point of L and S ′. Now we consider a projective space
PG(2m + 1, q) containing PG(2m, q) and a line L̃1 over GF(s) in PG(2m + 1, q) which
passes through u but is not contained in PG(2m, q), such that L1 is the projection of L̃1

from some point p ∈PG(2m+1, q)\PG(2m, q) onto PG(2m, q). Then there is exactly one
subspace PG(2m + 1, s) of PG(2m + 1, q) which contains L̃1 and PG(2m, s). As y1 /∈
PG(2m, s), it is clear that p /∈ PG(2m + 1, s). The subspace PG(1)(2m, s) defined by L̃1

and PG(2m− 1, s) is projected from p onto the subspace with point set y⊥1 of PG(2m, q).
Let r be any point of S ′. By the first part of the proof the lines ry and ry1 of S are
contained in a full polar subspace S∗ ∼= W (2m − 1, s) of S which is naturally embedded
in some subspace PG∗(2m − 1, s) of PG(2m, q). The set V = {y, y1}⊥⊥ =

⋂
x∈y⊥∩y⊥1

x⊥

of S coincides with the set {y, y1}⊥
∗⊥∗ of S∗ (here “⊥∗” means perpendicularity in S∗).

Hence V is a subline over GF(s). Exactly as in the proof of Theorem 7 we now show that
for each point w of S there is exactly one point w̃ of PG(2m + 1, s) which is projected
from p onto w.

Finally, let N be any line of S and let Ñ be the corresponding point set of PG(2m+1, s).
As in the proof of Theorem 7 we prove that Ñ is a line of PG(2m+1, s). It follows that S
is the projection from p onto PG(2m, q) of a S̃ ∼= W (2m + 1, s) which is fully (and hence
naturally) embedded in PG(2m + 1, s). !

Lemma 6 If d ≤ 2m − 1, with m ≥ 3, then S contains a full polar subspace S ′ ∼=
W (2m− 1, s) which generates PG(d, q) and which contains two given intersecting lines of
S, not contained in a common plane of S.

Proof. Let L and M be two given intersecting lines of S which are not contained in
a common plane of S. Now choose a full polar subspace S ′ ∼= W (2m − 1, s) of S for
which L and M are lines. Assume that S ′ generates a projective subspace PG(l, q) of
PG(d, q). Let x and y be distinct points of S for which x⊥ and y⊥ contain all points of
S ′. Then by the reasoning in the second part of the proof of Theorem 1 S is contained in
〈x⊥, y⊥〉 = 〈PG(l, q), x, y〉. Hence l ≥ d− 2.

If l = d, then S ′ generates PG(d, q) and we are finished.

Next, assume that l = d − 1 = 2m − 2. Then by the first part of proofs of Theorems
7 and 8 S ′ contains a full polar subspace S ′′ ∼= W (2m − 3, s) which contains L and M
and which generates a subspace PG(2m− 3, q) of PG(d− 1, q) = PG(2m− 2, q). If V is

16



the set of all points x in S such that x⊥ contains all points of S ′′, then V together with
all lines of S in V is a full polar subspace S ′′′ ∼= W (3, s) of S. Also, as every point of S
belongs to a line of S intersecting S ′′ and S ′′′, we have that the union of the point sets
of S ′′ and S ′′′ generates PG(d, q). Consider a point p of S ′′′ which does not belong to
PG(2m− 3, q) = PG(d− 2, q); then p and S ′′ generate a PG(d− 1, q). Assume, by way of
contradiction, that every point p′ of S ′′′ which does not belong to PG(d − 1, q) is in p⊥.
Choose hyperbolic lines R and R′ in S ′′′ with R′ ⊂ R⊥ (in S), such that p /∈ R∪R′. Then
p is on a unique line N of S ′′′ intersecting R and R′. As each point of S ′′′ is on a line of
S ′′′ intersecting R and R′, it follows easily that each point of S ′′′ not on N is contained
in PG(d− 1, q), clearly a contradiction. Hence S ′′′ contains a point p′ not in PG(d− 1, q)
with p′ /∈ p⊥. Now S has a unique full polar subspace S ′

1
∼= W (2m− 1, s) containing S ′′

and {p, p′}; clearly S ′
1 generates PG(d, q).

Next, assume that l = d − 1 ≤ 2m − 3, with d ≥ 5. Now we proceed by induction on
d. So we may assume that S ′ contains a full polar subspace S ′′ ∼= W (2m − 3, s) which
generates PG(d − 1, q) and for which L and M are lines. If V is the set of all points x
in S such that x⊥ contains all points of S ′′, then V together with all lines of S in V is a
full polar subspace S ′′′ ∼= W (3, s) of S. Also, the union of the point sets of S ′′ and of S ′′′

generates PG(d, q). Consider a point of S ′′′ which does not belong to PG(d− 1, q); then
p and S ′′ generate PG(d, q). Now let S ′

1 be any full polar subspace of S isomorphic to
W (2m− 1, s) which contains S ′′ and p. Clearly any such S ′

1 generates PG(d, q).

Now, assume that l = d − 2. Then l ≤ 2m − 3. Suppose that d ≥ 6 and proceed by
induction on d. So we may assume that S ′ contains a full polar subspace S ′′ ∼= W (2m−3, s)
which generates PG(d− 2, q) and for which L and M are lines. Then by a previous case
(the case l = d− 1 = 2m− 2) S has a full polar subspace S ′

1
∼= W (2m− 1, s) containing

S ′′ and generating PG(d, q).

Finally, we consider the “small” cases d = 4, 5. First, let d = 4. We have to handle
the cases l = 3 and l = 2. We must prove that S contains a full polar subspace S ′

1
∼=

W (2m− 1, s) which generates PG(4, q) and contains the lines L and M . First, let l = 3.
As in the section on the case l = d − 1 ≤ 2m − 3, with d ≥ 5, it is sufficient to prove
that S ′ contains a full polar subspace S ′′ ∼= W (2m − 3, s) which generates PG(3, q) and
for which L and M are lines. Let x be the common point of L and M , and assume, by
way of contradiction, that each point of S ′ not in x⊥ belongs to the plane 〈L, M〉. Let
z be a point of S ′ not in x⊥ and let N be a line of S ′ through x but not in 〈L, M〉 (N
exists as S ′ generates PG(3, q)). Let U be the unique line of S ′ containing z and a point
of N . Then on U there are s points not in 〈L, M〉 or x⊥, a contradiction. So S ′ has a
point y not in 〈L, M〉 or x⊥. If {u} = L∩y⊥ and {v} = M ∩y⊥, then {u, v}⊥⊥∪{x, y}⊥⊥
belongs to a full polar subspace S ′′ ∼= W (2m−3, s) of S ′ which generates PG(3, q) and for
which L and M are lines. Next, let l = 2. Suppose that S ′′ ∼= W (2m− 3, s) is a full polar
subspace of S ′ for which L and M are lines. Now we proceed as in the case l = d − 2,
with l ≤ 2m − 3 and d ≥ 6. Finally, the case d = 5 with l = 3 is completely similar to
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the case d = 4 with l = 3 at the beginning of this section.

Now the lemma is completely proved. !

Theorem 9 If d ≤ 2m − 1, with d ≥ 4, then there exists a PG(2m + 1, q) containing
PG(d, q) and a PG(2m − d, q) of PG(2m + 1, q) skew to PG(d, q) such that S is the
projection from PG(2m − d, q) onto PG(d, q) of a polar space S̃ ∼= S which is fully and
naturally embedded in a subspace PG(2m + 1, s) of PG(2m + 1, q).

Proof. By Lemma 6, S contains a full polar subspace S ′ ∼= W (2m−1, s) which generates
PG(d, q). Proceeding by induction on m and taking account of Theorems 6, 7 and 8,
we may assume that there exists a PG(2m − 1, q) containing PG(d, q) and a subspace
PG(2m− d− 2, q) of PG(2m− 1, q) skew to PG(d, q) such that S ′ is the projection from
PG(2m − d − 2, q) onto PG(d, q) of a polar space S̃ ′ ∼= S ′ which is fully and naturally
embedded in a subspace PG(2m − 1, s) of PG(2m − 1, q) (if d = 2m − 1, then we put
S ′ = S̃ ′). Clearly the point sets of S̃ ′ and PG(2m− 1, s) coincide.

Let V be the set of all points u of S such that u⊥ contains the point set of S ′; then
|V | = s + 1. Let x ∈ V , let z ∈ x⊥ with z a point of S ′, and let z̃ be the point of S̃ ′

which is projected from PG(2m − d − 2, q) onto z. The line of S containing z and x
will be denoted by L. Embed PG(2m − 1, q) into a projective space PG(2m, q), and let
PG(2m − d − 1, q) be a subspace of PG(2m, q) which contains PG(2m − d − 2, q) but
does not belong to PG(2m − 1, q). In PG(2m − d + 1, q) = 〈PG(2m − d − 1, q), L〉 we
now consider a line L̃ over GF(s) containing z̃ whose projection from PG(2m− d− 1, q)
onto PG(d, q) is L, and which is not in PG(2m − 1, q). Then there is a unique subspace
PG(2m, s) of PG(2m, q) which contains PG(2m− 1, s) and L̃.

Let u be a point of S ′, with u ∈ z⊥\{z}. With u there corresponds the point ũ of S̃ ′.
If π is the plane of S containing the points u, z, x, and if π̃ is the plane of PG(2m, s)
containing the points ũ, z̃, x̃, then π is the projection of π̃ from PG(2m − d − 1, q) onto
PG(d, q). So the line ũx̃ of PG(2m, s) is projected from PG(2m− d− 1, q) onto the line
of S containing the points u and x. Next, let u1 be a point of S which does not belong
to z⊥. Further, let u2 be a point of S with u2 ∈ u⊥1 ∩ z⊥, and let ũ2 be the corresponding
point of S̃ ′. Interchanging roles of z and u2 we then see that the line of S through u1 and
x is the projection of the line ũ1x̃ of PG(2m, s) from PG(2m− d− 1, q) onto PG(d, q). It
follows that the point set of PG(2m, s) is projected from PG(2m− d− 1, q) onto x⊥.

Now let y ∈ V \{x}; the line of S through y and z will be denoted by M . Embed PG(2m, q)
in a projective space PG(2m+1, q) and let PG(2m−d, q) be a subspace of PG(2m+1, q)
containing PG(2m− d− 1, q), with PG(2m− d, q) $⊂ PG(2m, q). In PG(2m− d + 2, q) =

〈PG(2m− d, q), M〉 we now consider a line M̃ over GF(s) containing z̃ whose projection
from PG(2m − d, q) onto PG(d, q) is M , and which is not in PG(2m, q). Then there is
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a unique subspace PG(2m + 1, s) of PG(2m + 1, q) containing PG(2m, s) and M̃ . As in
the previous section we show that the point set of the projective subspace PG(1)(2m, s)

of PG(2m+1, q) containing PG(2m− 1, s) and M̃ , is projected from PG(1)(2m−d− 1, q)
onto y⊥, where PG(1)(2m− d− 1, q) =PG(1)(2m, q)∩PG(2m− d, q) with PG(1)(2m, q) =

〈PG(2m− 1, q), M̃〉; hence the point set of PG(1)(2m, s) is also projected from PG(2m−
d, q) onto y⊥.

By Lemma 6 S contains a full polar subspace S∗ ∼= W (2m−1, s) which generates PG(d, q)
and contains the lines L and M and S. Again by induction and the Theorems 6, 7 and 8,
S∗ can be obtained as projection of some naturally embedded S̃∗. So the set {x, y}⊥∗⊥∗

in S∗ is the projection of some line over GF(s), hence also {x, y}⊥∗⊥∗ is a line over GF(s);
also, L, M, {x, y}⊥∗⊥∗ and all lines of S∗ containing z and a point of {x, y}⊥∗⊥∗ , are lines
of a common plane over GF(s). As V coincides with {x, y}⊥∗⊥∗ , we see that V is a line
over GF(s) and that L, M, V and all lines of S containing z and a point of V are lines of
a common plane on GF(s).

Let w be any point of S not in S ′. Then w is on a line tv of S, with t ∈ V and v
in S ′. Interchanging roles of z and v, we see that the lines vx, vy, vt of S belong to a com-
mon plane π over GF(s). Let ṽ be the point of S̃ ′ which corresponds to v. Then the line
vx, respectively vy, of S is the projection from PG(2m−d, q) onto PG(d, q) of the line ṽx̃,
respectively ṽỹ, of PG(2m+1, s). So π is the projection from PG(2m−d, q) onto PG(d, q)
of the plane π̃ of PG(2m+1, s) containing ṽ, x̃, ỹ. As w is a point of π, it is the projection
of a point of π̃, so the projection of a point of PG(2m + 1, s). As the number of points
of PG(2m + 1, s) is also the number of points of S, it is clear that for each point w of S
there is exactly one point w̃ of PG(2m+1, s) which is projected from PG(2m−d, q) onto w.

Let N be any line of S and let w1 and w2 be distinct points of N . Then the line w̃1w̃2

of PG(2m + 1, s) is projected from PG(2m − d, q) onto a set R of size s + 1 of S. As
the line N ′ = 〈N〉 of PG(d, q) intersects the point set of S exactly in N , we necessarily
have N = R. It follows that S is the projection from PG(2m − d, q) onto PG(d, q) of a
S̃ ∼= W (2m + 1, s) which is fully (and hence naturally) embedded in PG(2m + 1, s).

Finally, the induction argument is complete by Theorems 6, 7 and 8 (the smallest values
of m for given d). !

5 The open cases

For laxly embedded polar spaces of rank r ≥ 3, the following cases are still open :

(a) determine all polar spaces S of rank r ≥ 3, with S $∼= W (n, s) for s odd, which are
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laxly embedded in PG(2, q);

(b) determine all polar spaces S ∼= W (n, s), with n ≥ 5 and s odd, which are laxly
embedded in PG(d, q), d ∈ {2, 3}.
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