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Exceptional Moufang Quadrangles of Type F4

Bernhard Mühlherr and Hendrik Van Maldeghem

Abstract. In this paper, we present a geometric construction of the Moufang quadrangles discovered by
Richard Weiss (see Tits & Weiss [18] or Van Maldeghem [19]). The construction uses fixed point free in-
volutions in certain mixed quadrangles, which are then extended to involutions of certain buildings of type
F4. The fixed flags of each such involution constitute a generalized quadrangle. This way, not only the new
exceptional quadrangles can be constructed, but also some special type of mixed quadrangles.

1 Introduction

1.1 Generalized Polygons and the Moufang Condition

Generalized polygons were introduced by Tits in [9]. They can be defined as the rank 2
geometries whose incidence graph has girth 2n and diameter n, for some natural number
n ≥ 2 (in which case the generalized polygon is also called a generalized n-gon). In fact, gen-
eralized polygons can be seen as the rank 2 (weak) spherical buildings. All (thick) spherical
buildings of rank ≥ 3 are classified by Tits [10]. In the rank 2 case, it seems reasonable to
accept that no classification is possible, since there are (many variations of) free contruc-
tions (well-known for projective planes, which are essentially the generalized 3-gons), see
Tits [13]. However, it was observed by Tits in the addenda of [10] that under the hypothesis
of the so-called Moufang condition, there is reasonable hope to classify all (Moufang) gen-
eralized n-gons (with n ≥ 3, excluding the more or less trivial case n = 2). For projective
planes, this classification follows from the combined results of Moufang [5], Kleinfeld [4]
and Bruck & Kleinfeld [1]. For generalized hexagons, the classification was carried out by
Jacques Tits already in the 1960s, although it was never published. Furthermore, Tits [12],
[14] and Weiss [20] show that for a Moufang generalized n-gon, one has n ∈ {2, 3, 4, 6, 8}
(assuming thickness, i.e., all points and lines are incident with at least 3 elements). For gen-
eralized octagons, the classification is contained in Tits [15]. That leaves the case n = 4. It
was conjectured by Tits [10], [11] that all Moufang generalized quadrangles arise from clas-
sical groups, algebraic groups or mixed groups of type B2, and an explicit enumeration is
contained in Tits [11]. Recently, the classification of Moufang quadrangles was completed,
and the classification of Moufang polygons revised by Tits & Weiss [18]. It turned out that
the list of Moufang generalized quadrangles as given by Tits [11] was incomplete, and a new
class of examples (discovered in February 1997 by Richard Weiss, to appear in [18]) had to
be added. This class of examples was defined by Weiss in terms of commutation relations.
In this paper, we show that it is related to mixed groups of type F4, and so Tits’ conjecture
stated above remains true if one rephrases it as
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all Moufang generalized quadrangles arise from classical groups, algebraic groups or
mixed groups. Hence every Moufang quadrangle is of “algebraic origin”.

For convenience, we shall call the recently discovered Moufang quadrangles the new
Moufang quadrangles. Only after our construction, one can call them exceptional Moufang
quadrangles of type F4.

1.2 Main Result

Let M be a spherical Coxeter diagram over a set I, let ∆ be a building of type M and
let typ : ∆ → P(I) by a type function (where P(I) denotes the set of all subsets of I).
We are interested in type preserving involutions τ ∈ Aut∆ with the property that ∆̃ :=
Fix∆(τ ), the fixed point structure of τ in ∆, is a thick building. We call such involutions
homogeneous.

Given a homogeneous involution τ in Aut(∆), then typ(A) = typ(B) for any two max-
imal simplices of ∆̃; the Tits diagram of τ is the pair

(
M, typ(A)

)
where A is a maximal

simplex in ∆̃. It is a fact that the Tits diagram of τ determines the type (i.e. the Coxeter
diagram) of ∆̃. In the particular case where M = F4 (labelled by I := {1, 2, 3, 4} in a linear
order) and the Tits diagram of τ is (F4, {1, 4}) it turns out that the diagram of ∆̃ is equal
to C2; in other words: ∆̃ is a generalized quadrangle. Moreover, if the building∆ is thick,
then ∆̃ is a Moufang quadrangle because∆ is a Moufang building.

There is a very special sort of buildings of type F4 — namely those which are associated
to ‘mixed algebraic groups’ of type F4. The main goal of the present paper is to give the
commutation relations for all Moufang quadrangles which arise as sets of fixed points of a
homogeneous involution which acts on a building arising from mixed algebraic groups of
type F4 and which has Tits diagram (F4, {1, 4}). The motivation for our investigations is
that we obtain the following result as a consequence:

Theorem The new Moufang quadrangles arise as sets of fixed points of homogeneous involu-
tions acting on buildings of mixed type F4.

Our guess that the theorem above might be true was based on the observation that there
are subquadrangles of the new quadrangles which are related to buildings of type D4, mixed
type C4 and mixed type B4, and that all these buildings can be embedded into a building
of mixed type F4. The appearence of these subquadrangles had been already mentioned by
Tits [17].

Our original proof of the theorem above was based on these observations: we used the
Extension Theorem (Theorem 4.1.2 in Tits [10]) in order to construct the desired homoge-
neous involutions on certain mixed F4-buildings; the fact that the fixed point quadrangles
are the ‘right’ ones was verified by showing the existence of certain subquadrangles related
to certain D4- and mixed C4-buildings.

In our present approach we establish the desired homogeneous involutions as automor-
phisms of the corresponding group; this approach provides the commutation relations of
the fixed point quadrangle directly and it is therefore more efficient for our purposes. How-
ever, the geometric evidence is not transparent in our new proof. In the last section of this
paper we will describe these geometric aspects of our main result by an a posteriori expla-
nation.
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Contents

As already mentioned above, a generalized Moufang quadrangle is uniquely determined if
one knows the commutation relations for the positive root groups. In Section 2, we men-
tion several examples of Moufang quadrangles which will be of interest in the sequel by
giving their commutation relations. In Section 3, we consider type preserving automor-
phisms of spherical Moufang buildings whose set of fixed points is again a thick building;
these automorphisms are called homogeneous. We discuss the Moufang structure of the
fixed point building and we draw special attention to homogeneous involutions acting on
Moufang buildings of characteristic 2. In Section 4, we introduce a set of involutions I for a
given building of mixed type (namely, those with diagram C2,B4,C4 and F4). The elements
of I are given by certain parameters and it will turn out that each homogeneous involution
which is of interest for our purposes is conjugate to an element of I. In Section 5 we restrict
to buildings of mixed type F4: assuming that an element of I is indeed homogeneous we
calculate the commutation relations of the fixed point quadrangle in terms of its parame-
ters. In Section 6 we characterize those parameters which are actually the parameters of the
homogeneous involutions in I. In order to do this we have to consider fixed point free invo-
lutions acting on certain buildings of mixed type C2; we obtain two conditions which turn
out to be equivalent in the situation in which we are mainly interested. Sections 4 and 6
provide a ‘classification’ of the homogeneous involutions of type (F4, {1, 4}) and Section 5
gives the fixed point quadrangles. Therefore it remains to put things together and give a
precise statement of our results. This will be done in Section 7 whereas in Section 8 we give
some geometric background of the whole procedure.

2 Moufang Quadrangles and Commutation Relations

2.1 Definitions and Notation

We give some definitions in order to fix notation and terminology.
A generalized quadrangle Γ = (P,L, I) is a rank 2 geometry with point set P, line set L

and (symmetric) incidence relation I, such that the following axioms are satisfied:

(GQ1) every point lies on at least two, but not on all lines; dually, every line carries at least
two, but not all points;

(GQ2) for any given pair (p, L) ∈ P×L, with p not incident with L, there exists a unique
pair (q,M) ∈ P× L such that p I M I q I L.

A subquadrangle of Γ is a subgeometry Γ ′ = (P ′,L ′, I ′), P ′ ⊆ P, L ′ ⊆ L, where I′ is
the restriction of I to P ′×L ′∪L ′×P ′, which is a generalized quadrangle. A subquadrangle
Γ ′ is called full, respectively ideal, if every element of Γ incident with any line, respectively
point, of Γ ′, is an element of Γ ′. A generalized quadrangle is called thick if every element is
incident with at least 3 elements. An apartment is a subquadrangle such that every element
is incident with exactly 2 elements, hence an apartment is an ordinary quadrangle. For
a given element x of Γ, we denote by Γ(x) the set of elements of Γ incident with x. A
collineation of Γ is a permutation of P inducing via the incidence relation a permutation
of L.

Now letΣ be an apartment of some generalized quadrangle Γ, and name the elements of
Σ as xi , i = 0, 1, 2, . . . , 6, 7 mod 8, with xi I xi+1. The Moufang condition states that, for all
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i, the group Ui of collineations fixing Γ(xi) ∪ Γ(xi+1) ∪ Γ(xi+2) acts transitively (and hence
regulary) on the set Γ(xi+3) \ {xi+2} (or, equivalently, on the set Γ(xi−1) \ {xi}). Put U+ =
〈U1,U2,U3,U4〉. Then Tits, Section 4 of [11], shows that U+ determines Γ completely and
that U+ = U1U2U3U4 (and this decomposition is unique, i.e., every element u of U+ can
be written in a unique way as u1u2u3u4, with ui ∈ Ui , i = 1, 2, 3, 4). Hence the Moufang
quadrangle Γ is determined by the groups U1,U2,U3,U4 and the commutators [ui , u j],
1 ≤ i < j ≤ 4.

2.2 Examples

Our first example is taken from Tits [11]. Let K be a field of characteristic 2, and let K ′

be a subfield of K containing all squares of K. Let L be a subspace of the vector space K
over K ′, and let L ′ be a subspace of the vector space K ′ over K2 (the subfield of all squares).
Suppose that 1 ∈ L ∩ L ′ and that L and L′ generate K and K ′, respectively, as rings (these
conditions are just needed for a canonical description). Then we define the groups U1 and
U3 as copies of the additive group of L ′, and U2 and U4 are copies of the additive group of
L. We denote the embeddings by Ui → K : xi 7→ x. The commutation relations now are:

[U1,U2] = [U2,U3] = [U3,U4] = [U1,U3] = [U2,U4] = {0},

where we denote the trivial element of each Ui by 0, and

[x1, y4] = (xy)2(xy2)3.

The Moufang quadrangles thus defined are exactly the mixed quadrangles Q(K,K ′; L, L ′).
As we remarked, the conditions on L and L ′ generating K and K ′ respectively are there

for a canonical notation. In fact, it is enough to ask that L and L′ are additive subgroups of
some field F of characteristic 2, that 1 ∈ L ∩ L ′, that L generates some subfield K of F (as a
ring), and that LL ′ ⊆ L, L2L ′ ⊆ L ′. It is then clear that L ′ generates some subfield K ′ (as
a ring) containing K2, that L ′L ′ ⊆ L and hence K ′ ⊆ L. Consequently L can be viewed as
a vector space over K ′, and similarly, L ′ is a vector space over K2. So we obtain the mixed
quadrangle Q(K,K ′; L, L ′).

We give a second example. Let K be a field of characteristic 2 and let L be a separable
quadratic extension of K. Denote by x 7→ x the non-trivial (involutory) field automor-
phism of L fixing K pointwise. Let K ′ be a subfield of K containing the field K2 of all squares
of K and let L ′ be the subfield of L generated by L2 and K ′. We then have L2 ⊆ L ′ ⊆ L and
L ′ is a separable quadratic extension of K ′ (because the map x 7→ x restricts to an auto-
morphism of L ′ and the fixed subfield is exactly K ′). Now let there be given two elements
α ∈ K ′ and β ∈ K such that, for all u, v ∈ L, and all a ∈ K ′,

uu + αvv + βa = 0(1)

implies that u = v = a = 0, and, for all x, y ∈ L ′, and all b ∈ K,

xx + β2 y ȳ + αb2 = 0(2)
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implies that x = y = b = 0. We identify U1 and U3 with the direct product L ′ × L ′ × K
(additively), and U2 and U4 with L × L × K ′. We define the quadrangle Q(K, L,K ′, α, β)
as the Moufang quadrangle with commutation relations (see Tits & Weiss [18]):

[U1,U2] = [U2,U3] = [U3,U4] = {0}

and

[
(x, y, b)1, (x ′, y ′, b ′)3

]
=
(

0, 0, α
(
xx ′ + x ′x + β2(y ȳ ′ + y ′ ȳ)

))
2[

(u, v, a)2, (u ′, v ′, a ′)4

]
=
(

0, 0, β−1
(
uu ′ + u ′u + α(vv ′ + v ′v)

))
3[

(x, y, b)1, (u, v, a)4

]
=
(

bu + α(xv + βyv), bv + xu + βyu, b2a + aα(xx + β2 y ȳ)

+ α
(
u2xȳ + u2xy + α(v2xy + v2xȳ)

))
2

·
(

ax + u2 y + αv2 ȳ, ay + β−2(u2x + αv2x), ab

+ bβ−1(uu + αvv)

+ α
(
β−1(xuv + xuv) + yuv + ȳuv

))
3
.

These are the new Moufang quadrangles as discovered by Richard Weiss, and which we
would like to give the name: exceptional Moufang quadrangles of type F4, as opposed to the
exceptional Moufang quadrangles of type Ei , i = 6, 7, 8, see Tits [11], [16].

Now we restrict in the above formulae from L and L ′ down to K and K ′, respectively.
We define

L = {β−1(u2 + αv2) + a : u, v ∈ K, a ∈ K ′} ⊆ K;

L ′ = {α(x2 + β2 y2) + b2 : x, y ∈ K ′, b ∈ K}.

It is clear that both L and L ′ are additive subgroups of K and that 1 ∈ L∩ L′. We now show
that LL ′ ⊆ L. It is easily calculated that a generic element of LL′ has the form

β−1
((

bu + α(vx + βvy)
)2

+ α(bv + ux + βuy)2
)

+
(
ab2 + aα(x2 + β2 y2)

)
,(3)

which clearly belongs to L. Similarly, L2L ′ ⊆ L ′. Since L generates K ′(β) as a ring, and L ′

generates K2(α) as a ring, there exists a mixed quadrangle Q
(
K ′(β),K2(α); L, L ′

)
. More-

over, restricting the commutation relations of Q(K, L,K ′, α, β) according to the restric-
tions from L and L ′ down to K and K ′, we see that we obtain the commutation relations of
Q
(
K ′(β),K2(α); L, L ′

)
with respect to the additive isomorphisms

K × K × K ′ → L : (u, v, a) 7→ β−1(u2 + αv2) + a,

K ′ × K ′ × K → L ′ : (x, y, b) 7→ α(x2 + β2 y2) + b2.
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We will show that both quadrangles Q(K, L,K ′;α, β) and Q
(
K ′(β),K2(α); L, L ′

)
arise

as fixed point structure of an involution in a certain building of mixed type F4. Therefore,
we have to classify fixed point free involutions in mixed quadrangles Q(L, L ′; L, L ′) (“fixed
point free” means here: without any fixed elements, either points or lines).

We give a third example. In the commutation relations of the exceptional Moufang
quadrangle Q(K, L,K ′;α, β) above, we restrict U1 and U3 from L ′ × L ′ × K down to
{0} × {0} × K. Writing (0, 0, b) in this set as b, we obtain the commutation relations

[U1,U2] = [U1,U3] = [U2,U3] = [U3,U4] = {0}

and [
(u, v, a)2, (u ′, v ′, a ′)4

]
=
(
β−1
(
uu ′ + u ′u + α(vv ′ + v ′v)

))
3[

b1, (u, v, a)4

]
= (bu, bv, b2a)2 ·

(
bβ−1(uu + αvv + βa)

)
3

In fact, this is a classical Moufang quadrangle (see Tits [16]). In Van Maldeghem [19],
it is called a Moufang quadrangle of type (C −CB)2. Below, we will show that it arises from
a mixed building of type C4. We will denote it by Q(K, L× L× K ′;α, β).

3 Homogeneous Involutions and Moufang Buildings

Throughout these notes we will consider buildings as simplicial chamber complexes en-
dowed with an apartment system and we adopt the notation of Tits [10]. All buildings
considered in this paper are assumed to be spherical but we do not assume in general that a
building is thick (note however that our definition of Moufang buildings will require thick-
ness!). Moreover, an automorphism of a building is always meant to be type preserving.
We remark however that everything included in this section remains true (or has a true
analogue) without this restriction.

3.1 Homogeneous Automorphisms and Tits Diagrams

Throughout this subsection let M be a spherical Coxeter diagram over a set I, let ∆ be a
(not necessarily thick) building of type M and let typ : ∆→ P(I) be a type function (where
P(I) denotes the set of all subsets of I).

We let
(
W, (si)i∈I

)
be the Coxeter system of type M, for J ⊆ I we set W J = 〈s j | j ∈ J〉

and r J denotes the longest element in W J.
Let τ be an automorphism of∆ and let ∆̃ := Fix∆(τ ) be the set of simplices fixed under

the action of τ . The automorphism τ will be called homogeneous if ∆̃ is a thick building
(with the partial ordering induced from∆).

Lemma 3.1 Given a homogeneous automorphism τ of ∆ and two maximal simplices A, B
in ∆̃, then typ(A) = typ(B). Moreover typ |∆̃ : ∆̃ → P(Ĩ) is a type function on ∆̃ where
Ĩ := typ(A).

Let τ be a homogeneous involution of the building ∆ and let Ĩ be as in the previous
lemma. The Tits diagram of τ is defined to be the pair (M, Ĩ). It is visualized by drawing
circles around the nodes of the Coxeter diagram M which are contained in Ĩ.
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It is a fact that the Tits diagram of a homogeneous involution determines the type (i.e.,
the Coxeter diagram M̃ = (m̃ı̃j̃)ı̃,j̃∈Ĩ) completely: if we set Ĩ0 : I \ Ĩ then m̃ı̃j̃ is precisely the
order of the product rĨ0∪{ı̃}rĨ0∪{j̃}.

3.2 Spherical Moufang Buildings

In this subsection we explain the Moufang condition in order to fix some additional nota-
tion which is needed in the sequel. Let∆ be an irreducible building of rank at least 2 and let
Σ ⊆ ∆ be an apartment. We denote the set of all half apartments ofΣ byΘ(Σ); sometimes
half apartments are also called ‘roots’, but we don’t do this here because we want to reserve
the word ‘root’ for an element of an abstract root system.

Let θ be any half apartment of ∆. A chamber C is said to be in the interior of θ if
|Cham θ ∩ Cham St A| = 2 for each face A of C of codimension 1. The set of chambers
which are in the interior of θ will be denoted by θ◦. The root group Uθ associated to θ is
the subgroup of Aut(∆) which stabilizes any chamber adjacent to some chamber in θ◦.

The building∆ is called Moufang if it is thick and if for each half apartment θ the root
group Uθ acts transitively on the set of apartments containing θ. For any Moufang building
we denote the group generated by the set of root groups by G(∆). It is readily verified that
it suffices to take the root groups associated to the half apartments of a single apartment in
order to generate G(∆). Moreover, G(∆) is a normal subgroup of Aut(∆) and hence we
can interpret each automorphism of∆ as an automorphism of G(∆) as well.

A Moufang building will be said to be of characteristic 2 if all root groups are 2-groups;
i.e., if the order of any element in a root group has order 2n for some natural number n.

3.3 Homogeneous Involutions Acting on Moufang Buildings

Throughout this subsection we assume that∆ is a spherical Moufang building. We denote
the centralizer of the element g in the group G by CG(g). We start with an observation
concerning homogeneous involutions:

Lemma 3.2 Let τ be a homogeneous involution acting on ∆ and let ∆̃ = Fix∆(τ ). Given
an apartment Σ̃ of ∆̃, then there exists an apartment Σ in ∆ stabilized by τ and such that
Σ̃ = FixΣ(τ ). In particular, each chamber of ∆̃ is contained in an apartment which is stable
under τ .

Proof Let C̃ be a chamber of Σ̃ and let C be a chamber of∆ which contains C̃ . Then τ (C)
is opposite to C in St C̃ because τ |St C̃ is a fixed point free involution. It follows that the
convex closure of Σ̃,C and τ (C) is an apartment of∆ which is stable under τ . The second
assertion follows from the fact that each chamber of ∆̃ is contained in an apartment of ∆̃.

The following proposition can be seen as a combinatorial version of some basic facts
which are well known from the theory of Galois descents in semi-simple algebraic groups.
A detailed proof of this geometric version can be easily extracted from Mühlherr [6].

Proposition 3.3 Let τ be a homogeneous involution acting on ∆ and suppose that ∆̃ is
irreducible and of rank at least 2. Then ∆̃ := Fix∆(τ ) is a Moufang building. Let Σ̃ be an
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apartment of ∆̃, let θ̃1, θ̃2 be non-opposite half apartments contained in Σ̃ and let Ũ1, Ũ2 be
the corresponding root groups. Then there exist subgroups Ũ θ̃1

, Ũ θ̃2
of CG(∆)(τ ) such that Ũ θ̃1

(respectively Ũ θ̃2
, 〈Ũ θ̃1

, Ũ θ̃2
〉) is mapped isomorphically onto Ũ1 (respectively Ũ2, 〈Ũ1, Ũ2〉)

under the canonical homomorphism CG(∆)(τ )→ Aut(∆̃).

Since it will be of interest in Section 5, we describe in some detail how the group Ũ θ̃ for
a given half apartment of ∆̃ can be obtained. LetΣ be an apartment of∆ which contains θ̃
and which is stabilized by τ (cf. Lemma 3.2) and set Σ̃ = FixΣ(τ ); let H0 denote the set of
half apartments of Σ which contain Σ̃, let H ′

θ̃
denote the set of half apartments of Σ which

contain θ̃ and put Hθ̃ := H ′
θ̃
\ H0 and U θ̃ := 〈Uθ | θ ∈ Hθ̃〉. Now Ũ θ̃ is precisely the

centralizer of τ in U θ̃.
We close this subsection with an observation in the characteristic 2 case:

Lemma 3.4 Suppose that ∆ is of characteristic 2 and that τ is an involution acting on ∆.
Then the following are equivalent:

(i) τ is homogeneous.
(ii) There exists a pair (C̃,Σ) consisting of a maximal simplex C̃ in Fix∆(τ ) and an apart-

ment Σ of∆ such that C̃ is contained in Σ and such that Σ is stabilized by τ .

Proof That (i) implies (ii) follows from Lemma 3.2.
In order to show the converse implication we remark that it is sufficient to show that

the chamber complex ∆̃ := Fix∆(τ ) is thick. Thus we can reduce the problem to the case
where the rank of ∆̃ is one. But in this case the assertion is trivial because an involution
acting on a 2-group U has a non-trivial centralizer.

4 Coordinates of Homogeneous Involutions Acting on Certain Buildings of
Mixed Type

4.1 Conventions

From now on, until the end of this section, we will use the following convention:
We assume that X is a Dynkin diagram in the set X := {C2,B4,C4, F4}. These diagrams

will be labelled according to the following picture:

C2 PP��
2 3

B4 PP��
0 1 2 3

C4 PP��
4 52 3

F4 PP��
41 2 3
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For each X ∈ X we denote the set of its labels by I(X); for instance I(B4) = {0, 1, 2, 3}.
LetΦdenote the root system of type X. The set of short (respectively long) roots in Φ is

denoted by Φs (respectively Φl). Moreover, B = {ηi | i ∈ I(X)} will be a basis of the root
systemΦ. The Weyl group of Φwill be denoted by W and for each φ ∈ Φ we let sφ ∈ W
be the reflection associated to φ; we put si := sηi for i ∈ I(X).

We assume that L is a field of characteristic 2 and that L ′ is a subfield of L containing L2.
We denote the set of all automorphisms of L which stabilize L ′ by Aut(L, L ′) and for X ∈ X
we put TX(L, L ′) = {(λi)i∈I(X) | λi ∈ L \ {0} for i ≥ 3, λi ∈ L ′ for i ≤ 2}.

We let∆ be the building of mixed type associated to the group X(L, L ′) (cf. Tits [10]), Σ
is an apartment of∆ andΘ denotes the set of all half apartments of∆ which are contained
in Σ.

We let Spe(∆) be the set of all type preserving automorphisms of∆ and N̂ denotes the
stabilizer of Σ in Spe(∆).

Remark It follows from Tits [10] that∆ is a Moufang building of characteristic 2, the root
groups being isomorphic to the additive groups of L and L ′.

4.2 Parametrisations

A parametrisation of∆ is a triple Π =
(
ω, (xφ)φ∈Φs , (yφ)φ∈Φl

)
where ω is a bijection from

Φ onto Θ and where xφ (respectively yφ ′) is an isomorphism from the additive group of
L (respectively L ′) onto Uω(φ) (respectively Uω(φ ′)) for each φ ∈ Φs (respectively φ ′ ∈ Φl)
such that the following conditions are satisfied:

(i) The mapping B →
⋂
η∈B ω(η) defines a bijection from the set of bases ofΦ onto the

set of chambers in Σ.
(ii) Given δ, δ ′ ∈ Φs satisfying δ ′ 6∈ {+δ,−δ} and t, t ′ ∈ L, then [xδ(t), xδ ′(t ′)] =

xδ+δ ′(tt ′) if δ + δ ′ ∈ Φs and [xδ(t), xδ ′(t ′)] = id∆ in the remaining cases.
(iii) Given δ ∈ Φs, δ ′ ∈ Φl, t ∈ L and s ∈ L ′ then [xδ(t), yδ ′(s)] = xδ+δ ′(ts)y2δ+δ ′(t2s) if

δ + δ ′ ∈ Φ and [xδ(t), yδ ′(s)] = id∆ in the remaining cases.
(iv) Given δ, δ ′ ∈ Φl satisfying δ ′ 6∈ {+δ,−δ} and s, s ′ ∈ L ′, then [yδ(s), yδ ′(s ′)] =

yδ+δ ′(ss ′) if δ + δ ′ ∈ Φ and [yδ(s), yδ ′(s ′)] = id∆ in the remaining cases.

The following proposition is immediate from Tits [10, 10.3.2].

Proposition 4.1 There exists a parametrisation of∆.

From now on until the end of this section we fix a parametrisation Π =
(
ω, (xφ)φ∈Φs ,

(yφ)φ∈Φl

)
of∆ and we put C = ω(B).

4.3 Coordinatization of N̂

Let τ ∈ N̂ . Then there exists a unique element (w, σ, λ) ∈W ×Aut(L, L ′)×TX(L, L ′) such
that the following holds:

(1) τ
(
xηi (t)

)
= xw(ηi )

(
λiσ(t)

)
for all i ≥ 3 and t ∈ L.

(2) τ
(

yηi (s)
)
= yw(ηi )

(
λiσ(s)

)
for all i ≤ 2 and s ∈ L ′.
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Moreover, if φ = Σi∈I(X)niηi ∈ Φs, then τ
(
xφ(t)

)
= xw(φ)

(
λφσ(t)

)
for all t ∈ L with

λφ := Πi∈I(X)λ
ni
i . The analogous statement holds also for φ ∈ Φl if we replace x by y and

t ∈ L by s ∈ L ′.
Given τ ∈ N̂ then the triple (w, σ, λ) is called the coordinate of τ and we denote it by

[τ ].
We have also the ‘converse’ of the previous fact: Givenψ = (w, σ, λ) ∈W×Aut(L, L ′)×

TX(L, L ′) then there exists an element τ ∈ N̂ such that [τ ] = ψ; this element will be
denoted by τψ .

Remark The statements made so far follow from Steinberg [8] and Carter [2] and are ac-
tually well known if L = L ′ (in other words: if∆ is the building associated to the Chevalley
group of type X over the field L). Using Tits [10, 10.3.2 and Theorem 10.4], one easily
verifies that they remain valid for mixed groups.

The next lemma follows from an elementary calculation (bearing in mind that [id∆] =(
1W , idL, (1L, . . . , 1L ′)

)
).

Lemma 4.2 Let τ ∈ N̂ be such that τ 2 = id∆ and let (w, σ, λ) be its coordinate. Then:

(i) w2 = 1W

(ii) σ2 = idL

(iii) If λφ is defined as above, then λφσ(λw(φ)) = 1L for all φ ∈ Φ.

The converse holds as well: Given a triple ψ = (w, σ, λ) ∈ W × Aut(L, L ′) × TX(L, L ′)
satisfying (i)–(iii), then τ 2

ψ = id∆.

4.4 Homogeneous Involutions Having Tits Diagram
(
X, I(X) \ {2, 3}

)
Throughout this section we assume that σ ∈ Aut(L, L ′) satisfies σ2 = idL and we write t
instead of σ(t) for t ∈ L. We put K = {t ∈ L | t = t} and K ′ = L ′∩K. We set w1 = s2s3s2s3

and define (writing F× := F \ {0} for an arbitrary field F)

P(C2) = K ′
×
× K×, P(B4) = K ′

×
× K ′

×
,

P(C4) = (K2)× × K×, P(F4) = (K2)× × K ′
×
.

For (b, a) ∈ P(X) we define λ(b,a) = λ ∈ TX(L, L ′) as follows: λ1 := (ab)−1, λ2 := b,
λ3 := a, λ4 := (b1/2a)−1 and λ0 = λ5 := 1L. Finally we define for X ∈ X the set
I(X) = {τw1,σ,λ(b,a) | (b, a) ∈ P(X)}.

Lemma 4.3 Let τ ∈ N̂ be a homogeneous involution of ∆ having Tits diagram
(
X, I(X) \

{2, 3}
)
, X ∈ X, and stabilizing the simplex of cotype {2, 3} contained in C. Let [τ ] =

(w, σ, λ) be its coordinate. Then

(i) w = w1

(ii) There exists µ ∈ TX(L, L ′) such that τ(1W ,idL,µ)ττ
−1
(1W ,idL,µ) = τ(w1,σ,λ(b,a)) for some (b, a) ∈

P(X).
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Proof Assertion (i) is obvious.
We now show (ii). We have

w1(η0) = η0, w1(η1) = η1 + 2η2 + 2η3, w1(η2) = −η2,

w1(η3) = −η3, w1(η4) = η2 + 2η3 + η4, w1(η5) = η5

and by Lemma 4.2(iii) it follows that λ0λ0 = λ1λ1λ
2
2λ

2
3 = λ2λ

−1
2 = λ3λ

−1
3 = λ4λ4λ2λ

2
3 =

λ5λ5 = 1L and in particular that λ2 ∈ K ′, λ3 ∈ K.
We put

λ∗ =

{
1L + λ1λ2λ3 if λ1 6= λ1,

1L else,

µ∗ =

{
1L + λ2λ

2
3λ

2
4 if λ4 6= λ4,

1L else,

µ0 =

{
1L + λ0 if λ0 6= λ0,

1L else,

µ5 =

{
1L + λ5 if λ5 6= λ5,

1L else,

and µ1 = 1L, µ2 = µ
∗−1, µ3 = µ

∗λ∗−1, µ4 = µ
∗−1λ∗.

Now we define λ ′ ∈ TX(L, L ′) via the identity

τ(w1,σ,λ ′) = τ(1W ,idL,µ)ττ
−1
(1W ,idL,µ),

where µ ∈ TX(L, L ′) is defined by µ = (µi)i∈I(X).

Now one calculates that λ ′0 = λ ′5 = 1, λ ′1 = (λ−1
1 + λ

−1
1 )−1 (if λ1 6= λ1; otherwise

λ ′1 = λ1) and λ ′4 = (λ4 + λ4)(λ∗λ
∗
)−1 (if λ4 6= λ4; otherwise λ ′4 = λ4). Hence λ

′
i =

λ ′i for all i ∈ I(X) and as τ(w1,σ,λ ′) is a homogeneous involution the claim follows from
Lemma 4.2(iii) if we put b := λ ′2 = (µ2µ̄2)−1λ2 and a := λ ′3 = (µ3µ̄3)−1λ3.

Corollary 4.4 Given any homogenous involution τ of ∆ having Tits-diagram
(

X, I(X) \
{2, 3}

)
, then τ is conjugate to an element of I(X).

Proof By Lemma 3.4 there exists a pair (C̃,Σ ′) consisting of a fixed simplex C̃ of type
I(X)\{2, 3} and an apartmentΣ ′ containing C̃ which is stable under τ . Thus τ is conjugate
(in Spe(∆)) to an element of N̂ which stabilizes the

(
I(X)\{2, 3}

)
-face of C . The assertion

follows from the previous lemma.
The following Lemma is an easy consequence of Lemma 3.4:

Lemma 4.5 Let τ be an involution in I(X) and let B denote the face of cotype {2, 3} of C.
Then τ is a homogenous involution of ∆ with Tits-diagram

(
X, I(X) \ {2, 3}

)
if and only if

τ |St(B) acts fixed point freely.
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5 The Fixed Point Structure of Homogeneous Involutions Acting on Mixed
F4-Buildings and Having Tits Diagram (F4, {1, 4})

In this section we are going to calculate the commutation relations of the fixed point quad-
rangle of a homogeneous involution acting on a mixed F4-building and having Tits diagram
(F4, {1, 4}). It follows from Corollary 4.4, that we only have to consider homogeneous in-
volutions which are contained in I(F4). We adopt the conventions of the previous sections
and we assume that X = F4. According to Lemma 4.3, we let (b, a) ∈ K2 × K ′ and we
put τ = τ(w1,σ,((ab)−1,b,a,(ba2)−1/2)). Note that in Section 7, we will identify the commuta-

tion relations of the fixed point quadrangle of τ with the commutation relations of the new
Moufang quadrangles, or of certain mixed quadrangles.

We set c1 = (ab)−1, c2 = b, c3 = b, c4 = (ba2)−1/2, Σ̃ = FixΣ(τ ) and C̃ denotes the face
of type {1, 4} of the chamber C .

5.1 The ‘Positive’ Half Apartments Contained in Σ̃

We introduce some more notation. From now on, until the end of this section, we will
represent the root φ = n1η1 + n2η2 + n3η3 + n4η4 as n1n2n3n4. Moreover, we will write Uφ

for Uω(φ).
With the notation of Subsection 3.3 we are going to describe the groups Ũ θ̃. Clearly, Σ̃ is

the flag complex of an ordinary quadrangle. Let p0, . . . , p3 (respectively l0, . . . , l3) denote
the simplices of type 1 (respectively 4) contained in Σ̃. Without loss, we may assume that
C̃ = p0 ∪ l0 and that pi is incident to l j whenever j = i or j ≡ i + 1 mod 4.

We define the half apartments θ̃i of Σ̃ as follows:

θ̃1 = l3 ∪ p4 ∪ l4 ∪ p0 ∪ l0, θ̃2 = p4 ∪ l4 ∪ p0 ∪ l0 ∪ p1,

θ̃3 = l4 ∪ p0 ∪ l0 ∪ p1 ∪ l1, θ̃4 = p0 ∪ l0 ∪ p1 ∪ l1 ∪ p2.

With the notation of Subsection 3.3 we define for i = 1, . . . , 4 the subset Ri of Φ by
Ri = ω

−1(Hθ̃i
). One verifies that

R1 = {1000, 1100, 1110, 1120, 1220}

R2 = {1111, 1121, 2342, 1221, 1231}

R3 = {1122, 1222, 1232, 1242, 1342}

R4 = {0001, 0011, 0122, 0111, 0121}

Note that we can already see that the groups U θ̃i
= 〈Uφ | φ ∈ Ri〉 (with the notation of

Subsection 3.3) are abelian. Indeed, for instance U θ̃1
= 〈U1000,U1100,U1110,U1120,U1220〉

and the latter is abelian by Subsection 4.2(ii).

5.2 The Root Groups Ũ θ̃i

In order to determine the root groups Ũ θ̃i
we have to determine CU θ̃i

(τ ). In order to do so
we introduce the following definitions:
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For p ∈ K ′ we put

v1(p) = y0122(p), v2(p) = y2342(p),

and for i = 1, 2 we set Vi = {vi(p) | p ∈ K ′}.
For q ∈ K we put

z1(q) = x1110(q), z2(q) = x1232(q),

and for i = 1, 2 we set Zi = {zi(q) | q ∈ K}.
For s ∈ L ′ we put

y1(s) = y1000(s)y1220(c1 s̄), y2(s) = y1100(s)y1120(c1c2 s̄),

y3(s) = y1122(s)y1342(c1 s̄), y4(s) = y1222(s)y1242(c1c2 s̄),

and for i = 1, . . . , 4 we set Yi = {yi(s) | s ∈ L ′}.
For t ∈ L we put

x1(t) = x0001(t)x0121(c4t), x2(t) = x0011(t)x0111(c3c4t),

x3(t) = x1111(t)x1231(c4t), x4(t) = x1121(t)x1221(c3c4t),

and for i = 1, . . . , 4 we put Xi = {xi(t) | t ∈ L}.
It is easily verified, that the Vi , Zi , Yi , Xi are subgroups of G(∆) centralizing τ . Moreover,

one has the following:

Ũ θ̃1
= Y1Y2Z1, Ũ θ̃2

= X3X4V2,

Ũ θ̃3
= Y3Y4Z2, Ũ θ̃4

= X1X2V1.

5.3 Commutation Relations for the Ũ θ̃i

We will consider the Ũ θ̃i
as products of the Vi , Zi , Yi and Xi and give the commutation

relations in terms of these factors at the end of this subsection. As the computations are a bit
involved we give only the results of the two most important intermediate steps. The reader
should have no difficulties to reconstruct the details, provided he has enough patience.

First Step

[
v1(p), z1(q)

]
= z2(pq)v2(pq2),[

v1(p), y1(s)
]
= v2(c1 pss̄)y3(ps),[

v1(p), y2(s)
]
= v2(c1c2 pss̄)y4(ps),[

z1(q), x1(t)
]
= z2(c4qtt)x3(qt),[

z1(q), x2(t)
]
= z2(c3c4qtt)x4(qt),
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y1(s), y3(s ′)

]
= v2

(
c1(ss̄ ′ + s̄s ′)

)
,[

y2(s), y4(s ′)
]
= v2

(
c1c2(ss̄ ′ + s̄s ′)

)
,[

x1(t), x3(t ′)
]
= z2

(
c4(tt ′ + tt ′)

)
,[

x2(t), x4(t ′)
]
= z2

(
c3c4(tt ′ + tt ′)

)
,[

y1(s), x1(t)
]
= x4(c4ts)y4(c1t2 s̄),[

y1(s), x2(t)
]
= x3(c3c4ts)y4

(
(c3c4)2t2s

)
,[

y2(s), x1(t)
]
= x4(c1c2t s̄)y3(c1c2t2 s̄),[

y2(s), x2(t)
]
= x3(ts)y3(t2s).

All other commutation relations between two groups of the Vi , Zi , Yi and Xi are trivial.

Second Step

[
y1(s)y2(s ′), x1(t)

]
= x4(c1c2t s̄ ′ + c4ts)v2

(
c2

1c2(s ′t2s + s̄ ′t2 s̄)
)

y3(c1c2t2 s̄ ′)y4(c1t2 s̄),[
y1(s)y2(s ′), x2(t ′)

]
= x3(t ′s ′ + c3c4t ′s)v2

(
c1(s ′t ′

2
s̄ + s̄ ′t ′

2
s)
)

y3(t ′
2
s ′)y4(c2

4c2
3t ′

2
s),[

y1(s)y2(s ′), x1(t)x2(t ′)
]
=
[

y1(s)y2(s ′), x1(t)
][

y1(s)y2(s ′), x2(t ′)
]

· z2

(
c3c2

4(t ′t s̄ + tt ′s) + c4(t ′ts ′ + t ′t s̄ ′)
)
.

The Final Result

[
y1(s1)y2(s2)z1(q1), y3(s3)y4(s4)z2(q2)

]
= v2

(
c1

(
s1 s̄3 + s̄1s3 + c2(s2 s̄4 + s̄2s4)

))
,

[
x1(t1)x2(t2)v1(p1), x3(t3)x4(t4)v2(p2)

]
= z2

(
c4

(
t1t3 + t1t3 + c3(t2t4 + t2t4)

))
,[

y1(s1)y2(s2)z1(q1), x1(t1)x2(t2)v1(p1)
]
= x3(t3)x4(t4)v2(p2)y3(s3)y4(s4)z2(q2),

where

t3 = t2s2 + c3c4t2s1 + q1t1,

t4 = c1c2t1 s̄2 + c4t1s1 + q1t2,

p2 = c2
1c2(t2

1s1s2 + t2
1 s̄1 s̄2) + c1(t2

2 s̄1s2 + t2
2s1 s̄2) + c1 p1(s1 s̄1 + c2s2 s̄2) + p1q2

1,

s3 = c1c2t2
1 s̄2 + t2

2 s2 + p1s1,

s4 = c1t2
1 s̄1 + (c4c3)2t2

2s1 + p1s2,

q2 = c3c2
4(t1t2 s̄1 + t1t2s1) + c4(t1t2s2 + t1t2 s̄2) + c4q1(t1t1 + c3t2t2) + p1q1.
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6 Fixed Point Free Involutions of the Mixed Quadrangle Q(L, L ′; L, L ′)

In this section, we investigate the conditions on (b, a) for τ = τ(w1,σ,λ(b,a)) to be a homo-
geneous involution having Tits diagram (F4, {1, 4}). To that end, it suffices to look at the
action of τ on any residue of type C2 it stabilizes. We have to express that τ does not fix any
element in such a residue. This requires some explicit calculations, and therefore we have
to consider a model of such a residue. We choose to work geometrically. Everything could
also be done on the group-theoretical level. For clarity, we will denote the restriction of τ
to a residue of type C2 by θ in this section.

Since we are interested in involutions which act fixed point free on both the set of points
and the set of lines of a mixed quadrangle, we first find a (geometric) representation of
the dual of such a quadrangle, and the action of a collineation on that dual. We could use
the Klein quadric, but we have chosen to use coordinates in the sense of Hanssens & Van
Maldeghem [3].

6.1 The Quadrangles Q(L, L ′; L, L ′) and Q(L, L; L, L)

The symplectic quadrangle Q(L, L; L, L) can be defined as follows: The points are the points
of the projective space PG(3, L), and we relabel them according to the following table:

POINTS
Coordinates in Q(L, L; L, L) Coordinates in PG(3, L)

(∞) (1, 0, 0, 0)
(a) (a, 0, 1, 0)

(k, b) (b, 0, k, 1)
(a, l, a ′) (l + aa ′, 1, a ′, a)

The lines are the lines of PG(3, L) which are totally isotropic with respect to an alternat-
ing bilinear form, e.g., X0Y1 + X1Y0 + X2Y3 + X3Y2. If we denote by 〈a, b〉 the line generated
by the points a and b, then we can represent the lines of Q(L, L; L, L) as follows:

LINES
Coordinates in Q(L, L; L, L) Coordinates in PG(3, L)

[∞] 〈(1, 0, 0, 0), (0, 0, 1, 0)〉

[k] 〈(1, 0, 0, 0), (0, 0, k, 1)〉

[a, l] 〈(a, 0, 1, 0), (l, 1, 0, a)〉

[k, b, k ′] 〈(b, 0, k, 1), (k ′, 1, b, 0)〉

It is readily checked that the incidence relation can be written as (see e.g. Van Maldeg-
hem [19])

[k, b, k ′] I(k, b) I[k] I(∞) I[∞] I(a) I[a, l] I(a, l, a ′)

and {
k ′ = a2k + l

a ′ = ak + b
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If we want to assign to the lines coordinates of points of PG(3, L), and to the points co-
ordinates of totally isotropic lines of PG(3, L) (with respect to the above alternating form),
then the dual of the incidence relation must look the same as above. This can be achieved
by mapping [k, b, k ′] onto (k, b2, k ′) and (a, l, a ′) onto [a2, l, a ′2]. This way, we get a repre-
sentation of Q(L, L; L, L) where the lines are certain points of PG(3, L), as follows:

POINTS
Coordinates in Q(L, L; L, L) Coordinates in PG(3, L)

[∞] (1, 0, 0, 0)
[k] (k, 0, 1, 0)

[a, l] (l, 0, a2, 1)
[k, b, k ′] (b2 + kk ′ ′, 1, k ′, k)

Notice that a point (x0, x1, x2, x3) of PG(3, L) represents a line of Q(L, L; L, L) if and only
if x0x1 + x2x3 ∈ L2.

Now the quadrangle Q(L, L ′; L, L ′) is obtained by restricting the coordinates k, k ′, l
above to L ′. Hence a point (x0, x1, x2, x3) of PG(3, L) is a point of Q(L, L ′; L, L ′) if and only
if x0x1 + x2x3 ∈ L ′. Consequently, the lines of Q(L, L ′; L, L ′) are the points (y0, y1, y2, y3)
of PG(3, L ′) (because L2 ⊆ L ′) with y0 y1 + y2 y3 ∈ L2.

6.2 Involutions of Q(L, L ′; L, L ′)

Now let θ be a (fixed point free) involution of Q(L, L ′; L, L ′). Then θ arises from some
involution of PG(3, L). Since the collineation group of Q(L, L ′; L, L ′) acts transitively on
the set of all apartments, we may assume that (∞)θ = (0, 0, 0), (0, 0, 0)θ = (∞), (0, 0)θ =
(0) and (0)θ = (0, 0). Let σ be an automorphism of L of order at most 2 (and let K and K ′

be as before; also denote σ(t) = t , for all t ∈ L). Then we may represent θ as




x0

x1

x2

x3


 7→




0 β 0 0
1 0 0 0
0 0 0 γ
0 0 α−1 0






x0

x1

x2

x3


 ,

with α, β, γ ∈ L×. If we denote the above 4 × 4 matrix by M, and if we denote by A the
matrix of the alternating bilinear form (i.e., A is the matrix with a 1 on the positions (1, 2),
(2, 1), (3, 4) and (4, 3), and everywhere else 0), then θ preserves the lines of Q(L, L; L, L)
(a necessary condition) if and only if MTAM = mA, where m ∈ L×. One calculates easily
that this means αβ = γ. Now the matrix M together with σ respresents a collineation of
Q(L, L ′; L, L ′) if and only if θ preserves the point set of Q(L, L ′; L, L ′). This is true if and
only if x ′0x ′1 + x ′2x ′3 ∈ L ′, for all (x ′0, x

′
1, x
′
2, x
′
3) = (x0, x1, x2, x3)θ, with x0x1 + x2x3 ∈ L ′. An

elementary calculation shows that this is equivalent to β ∈ L ′ (by choosing x0 = x1 = 1
and x2 = x3 = 0) and x1 ∈ L ′ whenever x1 ∈ L ′. So σ preserves L ′. Moreover, expressing
that θ is an involution, we obtain that MM is a multiple of the identity matrix. Hence one
calculates that β = β = γα−1. Consequently β ∈ K ′ and α = α, γ = γ, implying both γ
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and α belong to K. We can now write θ as follows:




x ′0 = βx1,

x ′1 = x0,

x ′2 = (αβ)x3,

x ′3 = α
−1x2.

(4)

6.3 Parametrisation of Q(L, L ′; L, L ′) and Coordinates of θ

Let Σ be the apartment of Q(L, L ′; L, L ′) which is determined by the points [0], [0, 0],
[0, 0, 0] and [∞], letΦ= (Φ, E) be the root system of type C2 and let {η2, η3} be a base of
Φ.

It is an elementary exercise to verify that there exists a parametrisation

Π =
(
ω, (xφ)φ∈Φs , (yφ)φ∈Φl

)
of Q(L, L ′; L, L ′) (with respect to the apartment Σ) such that yη2 maps s ∈ L ′ onto the
automorphism 


x0

x1

x2

x3


 7→




1 0 0 0
s 1 0 0
0 0 1 0
0 0 0 1






x0

x1

x2

x3




and such that xη3 maps t ∈ L onto the automorphism




x0

x1

x2

x3


 7→




1 0 t 0
0 1 0 0
0 0 1 0
0 t 0 1






x0

x1

x2

x3


 .

Now, if θ denotes the the involution of the previous subsection, then we obtain after
an elementary calculation that θ

(
yη2 (s)

)
= θyη2 (s)θ = y−η2 (β s̄), for each s ∈ L ′, and

θ
(
xη3 (t)

)
= θxη3 (t)θ = x−η3 (αt), for all t ∈ L.

We now show:

Proposition 6.1 With the notation of Section 4, suppose that X = C2 and (β, α) ∈ K ′ × K
(= I(C2)). Set τ = τ(w1,σ,(β,α)). Then Fix∆(τ ) = ∅ (with∆ = Q(L, L ′; L, L ′)) if and only if
the following two conditions are satisfied:

(i) If m ∈ L is such that mm = β and if u, v ∈ L satisfy (u, v) 6= (0, 0), then

m(uu + αvv) 6∈ L ′.

(ii) If p ∈ L ′ is such that pp = α−2β2 and if x, y ∈ L ′ satisfy (x, y) 6= (0, 0), then

p(xx + α2βy ȳ) 6∈ L2.
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If β is contained in K2, then condition (i) is equivalent to the following condition (I), where
β = β ′2.

(I) For all u, v ∈ L, and all a ∈ K ′, we have

uu + αvv + β ′a = 0⇐⇒ u = v = a = 0.

If α is contained in K ′, then condition (ii) is equivalent to condition (II) below.

(II) For all x, y ∈ L ′, and all b ∈ K, we have

xx + βy ȳ + αβb2 = 0⇐⇒ x = y = b = 0.

Proof First, we express that θ does not fix any point of Q(L, L ′; L, L ′).
It is readily calculated that a point (x0, x1, x2, x3) is a fixed point for θ if and only if there

exists m ∈ L such that mm = β, x0 = mx1 and x2 = mα−1x3. Hence a generic fixed point
in PG(3, L) has coordinates

(mu, u,mα−1v, v),

with mm = β. No fixed point may belong to Q(L, L ′; L, L ′), in other words,

m(uu + αvv) /∈ L ′,(5)

for every m as above, and for all u, v ∈ L, (u, v) 6= (0, 0). This shows (i). Now suppose that
β = β ′

2 ∈ K2. Note that from the above follows that, in particular, β cannot be written
as mm with m ∈ L ′, hence β /∈ K ′2. If m 6= β ′, then we substitute u = (β ′ + m)u ′

and v = (β ′ + m)v ′ in Equation (5), and we obtain, in view of (β ′ + m)(β ′ + m) =
m−1β ′(m2 + β ′2) ∈ m−1β ′K ′2 = m−1β ′

−1K ′2,

β ′
−1

(u ′u ′ + αvv ′) /∈ L ′.(6)

Since the left hand side is in K, we deduce that Equation (6) is equivalent to

uu + αvv + β ′a = 0⇐⇒ u = v = a = 0,(7)

for all u, v ∈ L, and all a ∈ K ′. If m = β ′, then this follows immediately. We have
proved (I).

We now look at the action of θ on the set of lines of Q(L, L ′; L, L ′). It is easily seen that θ
maps [∞] to [0, 0, 0] (and vice versa), and [0] to [0, 0] (and vice versa). Hence the matrix
of θ in PG(3, L ′), viewed as the extension of the map θ on the dual of Q(L, L ′; L, L ′) to
PG(3, L ′), has only non-zero entries in the positions (1, 2), (2, 1), (3, 4) and (4, 3). It suf-
fices to look at the image of the point (1, 1, 1, 1) to completely determine this matrix. The
point (1, 1, 1, 1) corresponds to the line [1, 0, 1], which is in PG(3, L) determined by the
points (0, 0, 1, 1) and (1, 1, 0, 0). They are mapped under θ to the points (0, 0, αβ, α−1)
and (β, 1, 0, 0), respectively. These two points determine the line [α2β, 0, β], which repre-
sents the point with coordinates

(
(αβ)2, 1, β, α2β

)
in PG(3, L ′). Hence we can write θ in

PG(3, L ′) as 


y ′0 = (αβ)2 ȳ1,

y ′1 = ȳ0,

y ′2 = β ȳ3,

y ′3 = α
2β ȳ2.
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We verify that θ does not fix any line of Q(L, L ′; L, L ′). This is easily done by substituting
β2α−2 for β; βα−2 for α; K ′,K2, L ′ and L2 for K,K ′, L and L ′, respectively, in the above
conditions. Condition (5) becomes (after some rewriting)

p(xx + α2βy ȳ) /∈ L2,(8)

for all p ∈ L ′ with pp = α−2β2, and all x, y ∈ L ′. This shows (ii). In particular, p /∈ L2,
hence α /∈ K2. Now suppose that α ∈ K ′. As above, we can reduce the condition (8) to the
case p = α−1β, and so we obtain the condition

α−1β(xx + βy ȳ) /∈ L2,(9)

for all x, y ∈ L ′. As above, this is equivalent to

xx + βy ȳ + αβb2 = 0⇐⇒ x = y = b = 0,(10)

for all x, y ∈ L ′, and all b ∈ K. We have proved (II).
It is also clear now that (i) and (ii) imply that θ acts fixed point freely on∆ (as a build-

ing).
Combining this with Lemma 4.3, we obtain:

Corollary 6.2 Let X ∈ {B4,C4, F4} and let τ = τ(w1,σ,λ(β,α)) ∈ I(F4) (respectively I(B4),
I(C4)), then τ is homogeneous if and only if conditions (I) and (II) (respectively (i) and (II),
(I) and (ii)) are satisfied.

6.4 Equivalence of Conditions (I) and (II)

Lemma 6.3 Let (β, α) ∈ K2 × K ′. Then the conditions (I) and (II) are equivalent.

Proof First note that each of the conditions (I) and (II) implies that α /∈ K2 and β ′ /∈ K ′

(where again β ′2 = β).
We show that (I) implies (II). This follows from writing (II) as

(x + β ′y)(x + β ′y) + α(β ′b)(β ′b) + β ′(xȳ + yx) = 0,

and it follows from (I) that b = 0 and x + β ′y = 0. Since β ′ /∈ K ′, this implies x = y = 0.
Conversely, it similarly follows from the identity

(uu + αvv + β ′a)2 = (u2 + αv2)(u2 + αv2) + βaa + αβ
(
β ′(uv + vu)

)2
,

for all u, v ∈ L, a ∈ K ′, that (II) implies (I).
Hence (I) and (II) are equivalent.
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6.5 The Moufang Quadrangle Q(K, L× L× K ′;α, β)

In this subsection, which will only be important for some geometric considerations, we
will be more sketchy about proofs. In fact, we will omit most of the calculations. Our
purpose is to identify the Moufang quadrangles arising from a homogeneous involution
in a building of mixed type C4 and having Tits diagram (C4, {4, 5}) (with conventions as
before). One could actually do a similar calculation as performed in Section 5, but since
the building is embedded in a classical one now, we have a more elementary and direct
geometric approach along the lines of the previous section.

We embed the quadrangle Q(L, L ′; L, L ′) in the mixed polar space W7(L, L ′), which is
defined as follows. It is the subspace of the usual symplectic polar space of rank 4 over the
field L associated to the alternating bilinear form

X0Y1 + X1Y0 + X2Y3 + X3Y2 + X4Y5 + X5Y4 + X6Y7 + X7Y6

in PG(7, L) obtained by restricting the point set to the points with coordinates

(x0, x1, x2, x3, x4, x5, x6, x7)

such that

x0x1 + x2x3 + x4x5 + x6x7 ∈ L ′.

This is what we call a mixed polar space of type C4, or a mixed building of type C4. The
embedding of Q(L, L ′; L, L ′) is now achieved by putting x4 = x5 = x6 = x7 = 0. Let
us denote by ei , i = 4, 5, 6, 7, the point of PG(7, L) whose i-th coordinate xi is equal to
1, and all its other coordinates are 0. Then ei belongs to W7(L, L ′) and the quadrangle
Q(L, L ′; L, L ′) can be seen as the intersection of the perps of the ei , i.e., e⊥4 ∩ e⊥5 ∩ e⊥6 ∩ e⊥7
(where the perp p⊥ of a point p is the set of all points collinear with p in the polar space).

Now we are interested in a homogeneous involution θ ′ of W7(L, L ′) which fixes at least
an ordinary quadrangle, but which acts fixed point freely on the set of 2 and 3-dimensional
projective subspaces of W7(L, L ′), and which extends θ of the previous subsections (see
Equations (4)).

From Lemma 4.3, it follows (after some calculations) that we may assume that θ ′ is
represented by




x ′0 = β
′2x1,

x ′1 = x0,

x ′2 = (αβ ′2)x3,

x ′3 = α
−1x2,




x ′4 = β
′x4,

x ′5 = β
′x5,

x ′6 = β
′x6,

x ′7 = β
′x7.

(11)

LetΓ be the generalized quadrangle fixed by θ ′. Now for b ∈ K and (u, v, a) ∈ L×L×K ′,
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we define the following matrices

M1(b) =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 b
0 0 0 0 0 1 0 0
0 0 0 0 0 b 1 0
0 0 0 0 0 0 0 1




M3(b) =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 b 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 b 0 1




M2(u, v, a) =




1 0 0 0 0 0 0 v
0 1 0 0 0 0 0 β ′

−1v
0 0 1 0 0 0 0 u
0 0 0 1 0 0 0 (αβ ′)−1u
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

β ′
−1v v (αβ ′)−1u u 0 0 1 (αβ ′)−1(uu + αvv + β ′a)
0 0 0 0 0 0 0 1




M4(u, v, a) =




1 0 0 0 0 v 0 0
0 1 0 0 0 β ′

−1v 0 0
0 0 1 0 0 u 0 0
0 0 0 1 0 (αβ ′)−1u 0 0

β ′
−1v v (αβ ′)−1u u 1 (αβ ′)−1(uu + αvv + β ′a) 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




Clearly, Ui = {Mi(b) : b ∈ K}, i = 1, 3, and U j = {M j(u, v, a) : u, v ∈ L, a ∈ K ′},
j = 2, 4, form groups, which apparently stabilize the polar space W7(L, L ′), but which
also stabilize Γ. The latter follows from the fact that the above matrices commute with θ ′

(and this is readily verified). The group U1 fixes Γ(e5) ∪ Γ(e5e6) ∪ Γ(e6) pointwise and
acts transitively on Γ(e4e6) \ {e6}; the group U2 fixes Γ(e5e6) ∪ Γ(e6) ∪ Γ(e4e6) and acts
transitively on Γ(e4) \ {e4e6}; the group U3 fixes Γ(e6)∪Γ(e4e6)∪Γ(e4) pointwise and acts
transitively onΓ(e4e7)\{e4}; the group U4 fixesΓ(e4e6)∪Γ(e4)∪Γ(e4e7) and acts transitively
on Γ(e6) \ {e4e6}. It is now an elementary exercise to check the following identities (inside
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the group U+ = U1U2U3U4):

[U1,U2] = [U1,U3] = [U2,U3] = [U3,U4]

and [
M2(u, v, a),M4(u ′, v ′, a ′)

]
= M3

(
β ′
−1(

uu ′ + u ′u + α(vv ′ + v ′v)
))
,

[
M1(b),M4(u, v, a)

]
= M2(bu, bv, b2a)M3

(
bβ ′

−1
(uu + αvv + β ′a)

)
.

Hence, if σ 6= 1, we obtain the commutation relations of the quadrangle Q(K, L × L ×
K ′;α, β) defined before. Consequently, Γ is isomorphic to that Moufang quadrangle.

Note that the previous calculations also hold for σ = 1. In that case, the quadrangle Γ
is a mixed quadrangle, as can be checked immediately.

7 The Main Result

In this section we summarize the results of the previous sections.

Main Result Let τ be a homogeneous involution of a building ∆ of mixed type F4, and
suppose that it has Tits diagram (F4, {1, 4}). Then Γ := Fix∆(τ ) is isomorphic either to
a new Moufang quadrangle of type Q(K, L,K ′;α, β) (if the field automorphism involved
is non-trivial), or to a mixed quadrangle of type Q

(
K ′(β),K2(α); L, L ′

)
(if the field auto-

morphism involved is trivial), see Subsection 2.2. All new Moufang quadrangles arise in
this way (but not all mixed quadrangles).

Moreover, the usual diagram-trick for finding subquadrangles (“the C2-system associ-
ated to a given B C2-system”) applies here as if the quadrangles arose from algebraic groups.
More exactly, if we call “points” in Γ elements which have type 1 in ∆, then an ideal sub-
quadrangle Γ ′ (of type Q(K, L× L × K ′;α, β) if the field automorphism involved is non-
trivial) arises from the Tits diagram obtained by considering the extended (affine) diagram
F̃4 “at the right”, encircling the new node and deleting the old encircled node 1 (we thus
obtain (C4, {4, 5})). Dually, a full subquadrangle is obtained. This procedure can be ap-
plied once again to the full and the ideal subquadrangle and we obtain mixed quadrangles
of type Q(K,K ′; K,K ′).

Proof In the final result of Subsection 5.3, we set c1 = αβ2, c2 = β−2, c3 = α−1 and
c4 = αβ. Moreover, we put

(x, y, b)1 := y1(y)y2(x)z1(b),

(u, v, a)2 := x3(β−1v)x4(β−1u)v2(a),

(x, y, b)3 := y3(y)y4(x)z2(b),

(u, v, a)4 := x3(β−1v)x4(β−1u)v2(a).

We now obtain the commutation relations of the new Moufang quadrangles if σ is non-
trivial (and observe that the conditions (I) and (II) are the same as the conditions (1)
and (2) in Section 2.2), and we obtain the commutation relations of the mixed quadrangle
Q
(
L ′(β), L2(α); L, L ′

)
(note K = L and K ′ = L ′ here) if σ is trivial, see Subsection 2.2.

The other assertions now follow from Section 6.
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8 Geometric Aspects

We recall that all buildings considered in this paper are assumed to be spherical but not
necessarily to be thick. The following lemma is an easy exercise in the elementary theory of
spherical buildings:

Lemma 8.1 Let∆ be a building of type M and let Σ be an apartment of∆. Given a convex
(in the sense of Tits [10]) subset∆1 of∆ containingΣ, then∆1 is a building of type M as well.

The following result can be extracted from Scharlau [7] (to which we refer for the no-
tions undefined here):

Lemma 8.2 Let∆ be a building of type M. Then the thin-classes of the chambers constitute
the chamber graph of a thick building ∆◦ with the induced adjacency relation. The set of
reflections of the Weyl group of∆◦ can be canonically identified with a subset of the reflections
of the Weyl group of∆.

The two lemmas above can be used to establish the existence of certain subquadrangles
of the new quadrangles in a geometric way. In the remainder of this section we will indicate
in some detail how this works.

Let L, L ′, K, K ′ be as in Section 4, let∆ be the building associated to the group F4(L, L ′),
letΣ be an apartment of∆ and let C be a chamber contained inΣ. We will make freely use
of the definitions and notations introduced in Sections 4 and 5. We putΦ ′s = {0010, 0110,
1110, 1232} and Φ ′l = {0100, 0120, 0122, 2342}. We label the Dynkin diagram D4 by
{0, 1, 2, 3} by assigning 0 to the unique node of valency 3.

We define some subbuildings of∆:

∆2: Let P12 =
{

A ∈ Σ | typ(A) ∈ {{2, 3, 4}, {1, 3, 4}}
}

. We define ∆2 as the full

convex hull of Σ and
⋃

A∈P12
St A. By Lemma 8.1∆2 is a building of type F4 and one

verifies that ∆◦2 is the building associated to the group D4(L ′). The set of positive
roots associated to the reflections which are in the Weyl-group of∆◦2 is the set Φl.

∆1: Let v4 be the vertex of type {4} contained in C and let ∆1 be the full convex hull of
∆2 and St v4. Then∆◦1 is the building associated to the (mixed) group B4(L, L ′). The
set of positive roots associated to the reflections which are in the Weyl-group of ∆◦1
is Φl ∪ Φ ′s .

2∆: The definitions of P34 and 2∆ are obtained by ‘dualizing’ the definitions of P12 and
∆2. Now 2∆

◦ is the building associated to the group D4(L) and the set of positive
roots associated to the reflections which are in the Weyl-group of 2∆

◦ is Φs.

1∆: Define v1 and 1∆ ‘dually’ to v4 and ∆1. Then 1∆ is the building associated to the
(mixed) group C4(L, L ′) and the set of positive roots associated to the reflections
which are in the Weyl-group of 1∆

◦ is the set Φs ∪ Φ ′l .

1∆1: We put 1∆1 = 1∆ ∩ ∆1. The building 1∆
◦
1 is associated to the (mixed) group

C2(L, L ′) = B2(L, L ′) and the set of positive roots associated to the reflections which
are in the Weyl-group of 1∆

◦
1 is the set Φ ′s ∪ Φ

′
l .

Remark The analogous statements for ∆1, ∆2 remain true if we start with a building
associated to the group F4(k) where k is any field. The validity of the statements about
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1∆ and 2∆ is a characteristic 2 phenomenon. Indeed, if k has not characteristic 2 then

1∆ = ∆ = 2∆.
Now let τ be a homogenous involution of∆ having Tits diagram (F4, {1, 4}), normaliz-

ingΣ and fixing the {1, 4}-face of C . Then τ stabilizes∆1,∆2, 1∆, 2∆ and 1∆1 and induces
homogenous involutions τ1, τ2, 1τ , 2τ and 1τ1 on∆◦1 ,∆◦2 , 1∆

◦, 2∆
◦ and 1∆

◦
1 , respectively.

The Tits diagram of τ1 (respectively τ2, 1τ , 2τ , 1τ1) is (B4, {0, 1}) (respectively (D4, {0, 1}),
(C4, {4, 5}), (D4, {0, 1}), (C2, {2, 3})). The fixed point sets of all these involutions arise as
subquadrangles Γ1, Γ2, 1Γ, 2Γ and 1Γ1, respectively, of the fixed point quadrangle Γ of τ in
∆. For instance, the quadrangle Q(K, L× L×K ′;α, β) of Section 6.5 is isomorphic to Γ1.

If τ = τ(w1,σ,((ab)−1,b,a,(ba2)−1/2)), then we can extract the commutation relations for the

subquadranglesΓ1, Γ2, 1Γ, 2Γ and 1Γ1 by restricing them to the corresponding root groups.
For instance in order to obtain the commutation relations of Γ1 one sets U1 = Y1Y2Z1,
U2 = V2, U3 = Y3Y4Z2, U4 = V1 in Subsection 5.2.

Suppose that σ 6= idL. Let H ′ (respectively H) be the quaternion algebra over K ′ (respec-
tively K) defined by the separable quadratic extension L ′ (respectively L) and the element
α ∈ K ′ (respectively β ′ ∈ K). Let n ′ : H ′ → K ′ and n : H → K be the respective norm
forms.

The quadrangle Γ2 is the quadrangle associated to the quadratic form q2 : H ′ × K ′ ×
K ′ × K ′ × K ′ → K ′ defined via q2(x0, x1, x2, x3, x4) := n ′(x0) + x1x2 + x3x4.

The quadrangle 2Γ is the quadrangle associated to the quadratic form 2q : H×K ×K ×
K × K → K defined via 2q(x0, x1, x2, x3, x4) := n(x0) + x1x2 + x3x4.

The quadrangleΓ1 is the quadrangle Q(K ′, L ′×L ′×K2; β2, α) associated to the quadra-
tic form q1 : K ×H ′ → K ′ defined via q1(y, x) = y2 + β2n ′(x).

The quadrangle 1Γ is the quadrangle Q(K, L× L×K ′;α, β) associated to the quadratic
form 1q : K ′ × H → K (with K ′ a vector space over K by defining the scalar product
k · k ′ = k2k ′, k ∈ K, k ′ ∈ K ′) defined via 1q(y, x) = y + αn(x). Note again that this is the
quadrangle of Section 6.5.

Finally the quadrangle 1Γ1 is the quadrangle Q(K,K ′; K,K ′).
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