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Abstract

The flag geometry Γ = (P,L, I ) of a finite projective plane Π of order s is the
generalized hexagon of order (s, 1) obtained from Π by putting P equal to the set
of all flags of Π, by putting L equal to the set of all points and lines of Π and where
I is the natural incidence relation (inverse containment), i.e., Γ is the dual of the
double of Π in the sense of Van Maldeghem [7]. Then we say that Γ is fully and
weakly embedded in the finite projective space PG(d, q) if Γ is a subgeometry of the
natural point-line geometry associated with PG(d, q), if s = q, if the set of points
of Γ generates PG(d, q), and if the set of points of Γ not opposite any given point of
Γ does not generate PG(d, q). Preparing the classification of all such embeddings,
we construct in this paper the classical examples, prove some generalities and show
that the dimension d of the projective space belongs to {6, 7, 8}.
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1 Introduction

The problem that we consider in this paper stems from an attempt to characterize the
“natural” embeddings of all finite Moufang classical generalized hexagons (generalized
hexagons were introduced by Tits [6]; for more details on the “natural” embeddings, see
Section 3 below). In fact, it is well-known that a finite Moufang hexagon of order (s, t)
contains a subhexagon of order either (1, t) or (s, 1) (or both). In order to distinguish
between these two (non-disjoint) cases, one sometimes calls a finite Moufang hexagon
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with a subhexagon of order (1, t) classical, and one with a subhexagon of order (s, 1) dual
classical. The natural embeddings in PG(d, q) of all classical finite hexagons of order
(q, t) have been characterized in several ways by Thas & Van Maldeghem [4, 5]. The
main tool in these cases is the fact that all lines of the generalized hexagon Γ through a
point of Γ belong to a plane of PG(d, q). The “natural” embeddings of the dual classical
hexagons (see also Section 3) in general no longer have that property. Hence one needs
new techniques to handle these embeddings. In the present paper, we introduce such
a technique, namely, we look first at the embeddings of the hexagons of order (q, 1) in
PG(d, q). Our Main Conjecture is that the embeddings of such geometries Γ of order
(q, 1) arising from the “natural” embeddings of the dual classical hexagons of order (q, q)
and (q, q3) are characterized by one simple property: it must be a weak embedding, i.e.,
the points of Γ not opposite a given point of Γ do not generate the ambient projective
space PG(d, q) (for precise definitions, see below). We will show here that an embedded
generalized hexagon Γ of order (q, 1) in PG(d, q) satisfying this property must arise from
a Desarguesian projective plane as described in the abstract (see also Section 2 below),
and that d ∈ {6, 7, 8}. The distinct cases d = 6, 7, 8 will be treated in detail elsewhere,
since they are quite involved. At present, our Main Conjecture is proved in the cases
d = 6, 7.

2 Preliminaries

Let Π be a (finite) projective plane of order s. We define the flag geometry Γ of Π as
follows. The points of Γ are the flags of Π (i.e., the incident point-line pairs of Π); the
lines of Γ are the points and lines of Π. Incidence between points and lines of Γ is reverse
containment. It follows that Γ is a (finite) generalized hexagon of order (s, 1) (see (1.6) of
Van Maldeghem [7]). The advantage of viewing Γ rather as a generalized hexagon than
as the flag geometry of a projective plane is that one can apply results from the general
theory of generalized hexagons. We will call Γ a thin hexagon (since there are only 2 lines
through every point of Γ).

Throughout, we assume that Γ is a thin hexagon of order (s, 1) with corresponding pro-
jective plane Π. We introduce some further notation. For a point x of Γ, we denote by x⊥

the set of points of Γ collinear with x (two points are collinear if they are incident with a
common line); we denote by x⊥⊥ the set of points of Γ not opposite x (i.e., not at distance
6 from x in the incidence graph of Γ). For a line L of Γ, we write L⊥⊥ for the intersection
of all sets p⊥⊥ with p a point incident with L (in this notation, we view L as the set of
points incident with it). For an element x of Γ (point or line), we denote by Γi(x) the set
of all elements of Γ at distance i from x in the incidence graph of Γ. In this notation, we
have p⊥ = Γ0(p) ∪ Γ2(p), p⊥⊥ = Γ0(p) ∪ Γ2(p) ∪ Γ4(p) and L⊥⊥ = Γ1(L) ∪ Γ3(L).

Let PG(d, q) be the d-dimensional projective space over the Galois field GF(q). We
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say that Γ is weakly embedded in PG(d, q) if the point set of Γ is a subset of the point
set of PG(d, q) which generates PG(d, q), if the line set of Γ is a subset of the line set
of PG(d, q), if the incidence relation in Γ is the restriction of the incidence relation in
PG(d, q), and if for every point x of Γ, the set x⊥⊥ does not generate PG(d, q). If moreover
s = q, then we say that the weak embedding is also full.

The only examples of weak full embeddings of finite thin hexagons in PG(d, q) known to
us arise from full embeddings of the dual classical generalized hexagons of order (q, q) and
(q, q3) (the fully embedded dual classical generalized hexagon of order (q, q) considered
here is a subhexagon of the fully embedded dual classical generalized hexagon of order
(q, q3)). In the next paragraph we will briefly describe how this is done, and we will give
a detailed description of the embeddings. In Section 4 we will show our Main Result:

Main Result. If Γ is a thin generalized hexagon weakly and fully embedded in some
projective space PG(d, q), and if Γ is the flag geometry of the projective plane Π, then Π
is Desarguesian and d ∈ {6, 7, 8}.
In the next section it will be shown that the cases d = 6, 7 actually occur.

3 The examples

3.1 Some background

The background of the construction concerns the dual classical hexagons. For definitions
and properties used in this subsection, we refer to Thas [3] or Van Maldeghem [7]
(since this is not essential for the sequel).

Let H(q) denote the classical hexagon of order q (the split Cayley hexagon in the termi-
nology of Van Maldeghem [7]). It has a natural standard embedding in PG(6, q) with
the following properties. On top of being a weak and full embedding, for any point x of
H(q), the set of points x⊥ is the point set of a projective subplane PG(2, q) of PG(6, q).
In other words, the set of lines of H(q) through x is a plane line pencil in PG(6, q). Hence,
on the Grassmann variety of the lines of PG(6, q), the lines of H(q) become points, and
the points of H(q) — which can be identified with the corresponding plane line pencil
— become lines. Hence the dual of H(q) is embedded in some PG(d, q); this embedding
will be called natural. Moreover, one can check that this embedding is weak. Since we
will not use that fact, we wil not prove it here. Hence also the thin subhexagons of order
(q, 1) of the dual of H(q) are weakly and fully embedded in some PG(d′, q). The example
we describe in the next section is the result of a computation along the lines we just
explained. But we will present an independent description.

Note that if q is a power of 3, then H(q) is self dual, and hence it has a natural embedding
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in PG(6, q), but also a “natural” embedding in some PG(d, q). These two embeddings
are non-isomorphic.

3.2 Coordinates

Let V be a 3-dimensional vector space over GF(q), and let V ∗ be the dual space. We
choose dual bases. Then the vector lines of the tensor product V ⊗ V ∗ can be seen
as the point-line pairs of the projective plane PG(2, q). Indeed, it is easily calculated
that the pair {(x0, x1, x2), [a0, a1, a2]} (we use parentheses for the coordinates of points
and brackets for those of lines) corresponds to the vector line generated by the vector
(a0x0, a0x1, a0x2, a1x0, a1x1, a1x2, a2x0, a2x1, a2x2). In fact, the point-line pairs of PG(2, q)
are bijectively mapped (and we denote this bijection by θ) onto the Segre variety S2;2 in
PG(8, q); see Hirschfeld & Thas [1], §25.5. We denote coordinates in PG(8, q) by
X00, X01, X02, X10, . . . , X22. It then is easily seen that the incident point-line pairs of
PG(2, q) are mapped into the hyperplane PG(7, q) of PG(8, q) with equation X00 +
X11 + X22 = 0, and that the image under θ of the set of flags of PG(2, q) is a set of
points which generates PG(7, q) (this follows from the fact that S2;2 generates PG(8, q)).
Now consider the flag F = {(x0, x1, x2), [a0, a1, a2]} of PG(2, q). Any flag of PG(2, q) not
opposite F (viewed as a point of the thin hexagon Γ corresponding with PG(2, q)) has
the form {(y0, y1, y2), [b0, b1, b2]} with b0y0 + b1y1 + b2y2 = 0 and either

b0x0 + b1x1 + b2x2 = 0, (1)

or

a0y0 + a1y1 + a2y2 = 0. (2)

Hence the corresponding point p = (biyj)i,j=0,1,2 of PG(8, q) satisfies the equation X00 +
X11 + X22 = 0 and (by multiplying Equations (1) and (2) with y0, y1, y2 and b0, b1, b2

respectively) either also x0X0j+x1X1j+x2X2j = 0, j = 0, 1, 2, or a0Xi0+a1Xi1+a2Xi2 = 0,
i = 0, 1, 2. Making the appropriate linear combinations (multiplying with aj and xi,
i, j = 0, 1, 2), we see that the coordinates of p satisfy the equations X00 + X11 + X22 = 0
and

2∑

i,j=0

ajxiXij = 0. (3)

Now we note that the hyperplane with equation (3) is always distinct from PG(7, q).
Indeed, the conditions ajxi = 0, i, j = 0, 1, 2, i %= j, readily imply that, without loss
of generality, we may assume a0 = x0 = 1 and a1 = a2 = x1 = x2 = 0, contradicting
the fact that we have a flag. Also, we remark that the set of flags containing one fixed

4



point (respectively line) of PG(2, q) is mapped under θ onto the set of points of a line of
PG(7, q); this is immediately checked with an elementary calculation. Hence identifying
every flag of PG(2, q) with its image under θ, we obtain a weak and full embedding of Γ
in PG(7, q). We call this embedding (and every equivalent one with respect to the linear
automorphism group of PG(7, q)) a natural embedding of Γ in PG(7, q).

By another elementary calculation, one easily sees that the intersection of all hyperplanes
with equation (3) is the point k with coordinates xii = 1, xij = 0, i, j ∈ {0, 1, 2}, j %= i.
This point lies in PG(7, q) if and only if the characteristic of GF(q) is equal to 3. Hence,
in this case, we can project the weakly embedded thin hexagon Γ from k onto some
hyperplane PG(6, q) of PG(7, q) not containing k to obtain a weak and full embedding of
Γ in the 6-dimensional projective space PG(6, q). We call this embedding also a natural
embedding of Γ.

The exceptional behaviour over fields with characteristic 3 is in conformity with the
special behaviour of classical generalized hexagons over such fields (the hexagons related
to Dickson’s group G2(q), q = 3e, are at the same time classical and dual classical, as
remarked before).

Hence we see that with every Desarguesian projective plane Π ∼= PG(2, q), there corre-
sponds a weak full embedding of the corresponding thin hexagon Γ in PG(7, q), and if
q = 3e, then there is an additional weak full embedding of Γ in PG(6, q). In the next
section, we will show that any weakly fully embedded thin hexagon has as corresponding
projective plane a Desarguesian one and that the dimension of the ambient projective
space is either 6, 7 or 8. This is about as far as one can go in the classification of weakly
fully embedded thin hexagons using only synthetic arguments.

Remark. Everything in this section can be generalized to the infinite case without
notable change.

4 Proof of the Main Result

Standing hypotheses. From now on we suppose that Γ = (P ,L, I ) is a generalized
hexagon (with point set P and line set L) of order (q, 1) weakly embedded in PG(d, q).
We denote by Π the projective plane for which the dual of the double of it is isomorphic
to Γ.

Let x ∈ P . The set x⊥⊥ does not generate PG(d, q); hence it generates some (proper)
subspace of PG(d, q) which we will denote by ζx. Since there are only two lines through
every point of Γ, the embedding is also flat (i.e., all lines of Γ through any fixed point x
are contained in a plane of PG(d, q)), and hence Lemma 3 of Thas & Van Maldeghem
[4] holds (it does not matter that Γ is thin). This implies that ζx is a hyperplane which
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does not contain any point of Γ opposite x. Also, as a consequence we have that ζx %= ζy

for x %= y, x, y ∈ P . This implies that for any line L of Γ, the set L⊥⊥ is contained
in a (d − 2)-dimensional space, obtained by intersecting ζx and ζy for two arbitrary but
distinct points on L. We denote by ξL the subspace of PG(d, q) generated by Γ3(L). By
the foregoing, it has dimension at most d− 2.

We summarize the results of the previous paragraph for further reference.

Lemma 1 For every x ∈ P, the space ζx = 〈x⊥⊥〉 is a hyperplane which does not contain
any point of Γ6(x). In particular, ζx %= ζy for x, y ∈ P with x %= y. Also, for every line
L ∈ L, the space ξL = 〈L⊥⊥〉 is at most (d− 2)-dimensional.

We will actually see that the dimension of ξL has to be at least d− 3 (Lemma 5 below).

An almost direct consequence of Lemma 1 is the following lemma.

Lemma 2 Every apartment Σ of Γ generates a 5-dimensional subspace of PG(d, q).

Proof. Suppose Σ generates a projective subspace of dimension < 5. Then there is a
point x of Σ which is contained in the subspace generated by the other five points of Σ.
Hence, if y is opposite x in Σ, it follows that x ∈ ζy, contradicting Lemma 1. !
Since Γ is a full weak and flat embedding, we can use Lemma 1 of Thas & Van Mal-
deghem [4]. Since Γ is thin, we must modify it as follows.

Lemma 3 Let Γ be weakly embedded in PG(d, q). Let U be any subspace of PG(d, q)
containing an apartment Σ of Γ. Then the points x of Γ in U for which Γ1(x) ⊆ U together
with the lines of Γ in U form a (thin) subhexagon Γ′ of Γ. Let L, M be two concurrent
lines of Σ and let x, y be two points not contained in Σ but incident with respectively L
and M . If U contains Γ1(x) and Γ1(y), then Γ′ is of some order (s, 1), 1 < s ≤ q.

Note that in general the condition on M and y in the last statement of the previous lemma
can not be deleted, since Γ′ could correspond in Π with a degenerate subplane.

Proposition 4 Let Γ be weakly embedded in PG(d, q). Then d ≥ 6.

Proof. By Lemma 2, we must have d ≥ 5. Suppose now d = 5. For any line L, the space
ξL is at most 3-dimensional. Suppose it is 2-dimensional. Then two lines at distance 4 in
Γ and concurrent with L meet in ξL, a contradiction. Hence ξL is 3-dimensional, for all
lines L of Γ.

6



Now let L and M be two opposite lines of Γ. If ξL∪ ξM is contained in a 4-space, then the
intersection ξL∩ξM contains a plane, which meets L in some point of Γ; hence ξM contains
a point of L, which must then be non-opposite every point of M , a contradiction. Hence
ξL ∪ ξM generates PG(5, q) and hence ξL ∩ ξM is a line K. Note that the set of points of
PG(5, q) on K is precisely the set Γ3(L)∩Γ3(M). Let N be a line of Γ4(M)∩Γ6(L). Then
Γ3(L)∩Γ3(N) forms a line K ′ in PG(5, q) which meets K in a point (on Γ2(M)∩Γ2(N)),
and which meets every element of Γ2(L) in precisely one point. For exactly one element,
this point coincides with the intersection of K and K ′. Hence at least q elements of Γ2(L)
are contained in the plane π generated by K and K ′, and consequently Γ2(L) contains a
pair of concurrent lines, a contradiction.

The lemma is proved. !
We have actually seen examples in the case d = 6, so the previous lemma is the best
we can do. Before establishing an upper bound for d, we will show that Π is always
Desarguesian. To that aim, we need the following lemma.

Lemma 5 Let L be any line of Γ. Then ξL has dimension either d − 2 or d − 3, and it
contains no point of Γ5(L). Also, there is a unique (d − 2)-space ξ̃L contained in all ζx,
x I L.

Proof. Clearly ξL does not contain a point x of Γ at distance 5 from L since such a
point is opposite at least one point y I L and this would imply x ∈ ξL ⊆ ζy, contradicting
Lemma 1.

If ξL is (d− 2)-dimensional, then we put ξ̃L = ξL and the result follows. So suppose that
ξL has dimension % < d − 2. Consider two distinct lines M, M ′ of Γ opposite L (then
M ′ ∈ Γ4(M)) and let U be the subspace of PG(d, q) generated by ξL, M, M ′. Since there
is a unique line L′ of Γ meeting ξL, M and M ′, the space U has dimension at most % + 3.
By Lemma 3, U induces a subhexagon Γ′ of Γ, which must be of order (q, 1) in view of
ξL ⊆ U . Hence Γ′ = Γ and U = PG(d, q). Whence % ≥ d− 3, and so, by our assumption,
% = d− 3.

Consider any line M of Γ opposite L. Put UM = 〈ξL, M〉. Then UM must have dimension
d − 1. Indeed, otherwise M has at least one point in common with ξL and such a point
belongs to Γ5(L), a contradiction. Hence UM is a hyperplane. Clearly UM ′ %= UM for
M %= M ′, M ′ opposite L in Γ, for otherwise Γ is induced in a hyperplane UM . Also,
UM %= ζx, for all x I L because M contains points opposite x. Hence the set of hyperplanes

{UM |M ∈ Γ6(L)} ∪ {ζx |x I L}

is the complete set of q2 + q + 1 hyperplanes through ξL. They form the lines of the
residual plane π(ξL) in PG(d, q) of ξL. Let K be a line of Γ at distance 4 from L. It
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is clear that 〈ξL, K〉 is (d − 2)-dimensional and that it is contained in every hyperplane
UM , M ∈ Γ2(K) \ Γ2(L), and in ζx, for the unique x ∈ Γ1(L) ∩ Γ3(K). Hence each UM

contains q + 1 points of π(ξL), each of which is on a unique line of π(ξL) of type ζx. In
total, we have q2 + q such points on lines UM of π(ξL), so the only missing point can be
denoted ξ̃L and belongs to all lines of type ζx.

The lemma is proved. !
We can now show that Π is Desarguesian.

Proposition 6 The projective plane Π is isomorphic to PG(2, q).

Proof. Consider two arbitrary lines M and M ′ of Γ which are at distance 4. Let L be
some line of Γ opposite both M and M ′. Next, let (x0, x1, x2, x3) be an arbitrary sequence
of points on M , containing at least three different elements. Now, let yi, i = 0, 1, 2, 3, be
the unique point on L not opposite xi. Then ζyi contains xi, but not xj for j %= i. By the
previous lemma we now have the following equality of cross-ratios:

(x0, x1; x2, x3) = (ζy0 , ζy1 ; ζy2 , ζy3).

If we denote by x′
i, i = 0, 1, 2, 3, the point on M ′ not opposite yi, then obviously

(x0, x1; x2, x3) = (ζy0 , ζy1 ; ζy2 , ζy3) = (x′
0, x

′
1; x

′
2, x

′
3). Denote by Ni respectively N ′

i the
unique line of Γ containing xi respectively x′

i, and not opposite L, i = 0, 1, 2, 3. Without
loss of generality we may assume that the lines Ni, N ′

i are points of the projective plane
Π. Then in Π the perspectivity with center L from the line M onto the line M ′ maps
the point Ni onto the point N ′

i , i = 0, 1, 2, 3. By the foregoing, with this perspectivity
there corresponds a projectivity of the line M of PG(d, q) onto the line M ′ of PG(d, q)
(as cross-ratios are preserved). It follows that the group of projectivities of any line M of
Π acts semi-regularly on the set of all ordered triples of distinct points of Π on M . Hence
this group is sharply 3-transitive on the line M of Π, and so Π is the plane PG(2, q) (see
e.g. Pickert [2], p. 139). !
We now look for an upper bound for d.

Proposition 7 Let Γ be weakly embedded in PG(d, q). Then d ≤ 8.

Proof. Consider an apartment Σ in Γ. We consider a coordinatization over GF(q) of Π
with respect to the triangle T in Π corresponding to Σ (we use homogeneous coordinates).
The point in Π with coordinates (1, 1, 1) is some line E in PG(d, q). Now let r be some
generator of the multiplicative group of GF(q), and let R be the line of PG(d, q) which
corresponds to the point of Π with coordinates (1, r, 0). It is easily seen that the triangle
T and the points (1, 1, 1) and (1, r, 0) generate the whole plane Π. Hence, Γ is induced in
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the subspace generated by Σ, E, R. Consequently PG(d, q) must be generated by Σ, E, R.
Since R meets Σ in some point, and since Σ generates a subspace of dimension 5, we see
that d ≤ 5 + 2 + 1 = 8. !
We end with some important and useful consequences of the previous results.

Corollary 8 Let L and M be two arbitrary opposite lines of Γ. Let L0, L1, . . . , Lk be k+1
distinct elements of Γ2(L), 1 ≤ k ≤ q, and put Γ2(M) ∩ Γ2(Li) = {Mi}, 0 ≤ i ≤ k. Then
the dimension of the subspace U of PG(d, q) generated by L0, L1, . . . , Lk is equal to the
dimension of the subspace V generated by M0, M1, . . . ,Mk. In particular, the dimension
of ξL is independent of the line L of Γ.

Proof. Let U have dimension %. Then by Lemma 5 〈U,M〉 has dimension % + 2. But
〈U,M〉 = 〈V, L〉. Hence, by Lemma 5 again, V has dimension %. !

Corollary 9 Let L0, L1, L2 be three distinct lines of Γ concurrent with some line L ∈ L.
Then U := 〈L0, L1, L2〉 has dimension 4.

Proof. If the dimension of U is not 4, then it must be 3. In that case, let M0, M1, M2

(respectively M ′
0, M

′
1, M

′
2) be three lines of Γ concurrent with respectively L0, L1, L2 and

all belonging to Γ2(M) (respectively Γ2(M ′)), for some line M (respectively M ′) opposite
L of Γ. By Corollary 8, the dimension of 〈M0, M1, M2〉 (respectively 〈M ′

0, M
′
1, M

′
2〉) is

equal to 3. Now note that in Π the mapping M ′
i .→ Mi, i = 0, 1, 2, is the restriction to

{M ′
0, M

′
1, M

′
2} of a perspectivity from M ′ onto M . Since the group of projectivities of any

line of Π is (sharply) 3-transitive, we conclude that for any three distinct lines K0, K1, K2

concurrent with some line K of Γ the space W := 〈K0, K1, K2〉 has dimension 3. We can
thus choose K in Γ2(M0)∩Γ4(M)∩Γ6(L), K0 = M0 and Ki concurrent with Li, i = 1, 2.
We now have that 〈U,M〉 is 5-dimensional (by Lemma 5), hence U ∩ V is a line. But
similarly, U ∩W is a line (which meets U ∩ V in the unique element of Γ1(L0)∩Γ1(M0)),
and this implies that L1 and L2 are contained in the plane spanned by U ∩V and U ∩W .
This contradicts the fact that the lines L1 and L2 do not meet in PG(d, q). !
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