A NOTE ON NEAR-BARBILIAN PLANES

Near-Barbilian Planes (NBPs) and Strong Near-Barbilian Planes (SNBPs) were introduced in [2] as a variation of Barbilian Planes (BPs). In this short note we show that any NBP is an SNBP; we classify all NBPs up to the classification of linear spaces (many examples follow as a result of a universal construction) and we show that the only NBPs that are also BPs are those mentioned in [2], namely the projective planes.

DEFINITIONS. A neighbour-incidence structure is a quadruple $(\mathcal{P}, \mathcal{L}, |, \cong)$, where \mathcal{P} is a set of points, \mathcal{L} is a set of lines, | is a symmetric binary relation between \mathcal{P} and \mathcal{L} called *incidence* and \cong is a symmetric binary relation between \mathcal{P} and \mathcal{L} called *neighbour*. We shall denote arbitrary points by x, y, z and arbitrary lines by l, m, n, k.

Given a neighbour-incidence structure, we define a binary relation in $\mathscr P$ and $\mathscr L$ (also called *neighbour*) as follows.

- (B.1) $x \cong y \Leftrightarrow \forall l | y : x \cong l$.
- $(B.2) l \cong m \Leftrightarrow \forall x | m : l \cong x.$

Consider the following conditions.

- (1) If x|l, then $x \cong l$.
- (2) For all x and y such that $x \not\cong y$, there exists a unique l with l|x and l|y. Notation: $l = x \vee y$.
- (2') For all l and m such that $l \ncong m$, there exists a unique x with $x \mid l$ and $x \mid m$. Notation: $x = l \land m$.
- (2*) If $l \ncong m$, then there exists a unique x such that $x \cong l$ and $x \cong m$. Notation: x = N(l, m).
- (3) If $l \ncong m$, $x \mid l$ and $l \land m \ncong x$, then $x \ncong m$.
- (4) There exists at least one line; for each l, there exists an x|l; for any x and y, there exists an l with $l \ncong x$ and $l \ncong y$.
- (5) If $l \ncong m$, then there exists a z | l such that $N(l, m) \ncong z$.
- (6) If $x \cong l$ and $l \cong m$, then $x \cong m$.

A neighbour-incidence structure is called a (projective) Barbilian plane (BP) if it satisfies (1), (2), (2'), (3) and (4). It is called a near-Barbilian plane (NBP) if it satisfies (1), (2), (2*), (4) and (5). An NBP is called a strong NBP if it also

satisfies (6) (for all this, see [2]). Now R. Spanicciati [2] proves the following properties of NBPs.

PROPERTIES

- (P.1) Any NBP gives rise to a linear space ([1]) $(\mathcal{P}, \mathcal{L}, |)$.
- $(P.2) x \cong y \Leftrightarrow x = y.$
- (P.3) The neighbour relation is an equivalence relation when restricted to the set of lines.
- (P.4) If $x \ncong y$, $x \cong l$ and $y \cong l$, then $x \lor y \cong l$.

We now show that any NBP is also an SNBP.

THEOREM. Every near-Barbilian plane is a strong near-Barbilian plane.

Proof. We prove condition (6). Let $x \cong l$ and $l \cong m$. If x | m, then by (1), $x \cong m$. So suppose $x \not\mid m$. Choose y | m (cf. (4)). Since $x \neq y$, by (2) and (P.2), $n = x \vee y$ is uniquely defined. Since $l \cong m$, we have by (B.2) $y \cong l$. Hence by (P.4), $n \cong l$. By (P.3), $n \cong m$. Since x | n, we have again by (B.2) $x \cong mQ$.E.D.

CONSTRUCTION. Choose any projective plane $\Pi = (\mathcal{P}, \mathcal{L}, \in)$ (viewed as a shadow space, i.e. every line is a subset of the set \mathcal{P} of points (see [1]). Choose for any $l \in \mathcal{L}$ an arbitrary linear space $\Pi_l = (l, \mathcal{L}_l, |)$ (always existing since we can take for \mathcal{L}_l the set of 2-subsets of l and $| = \in \cup \ni$). This linear space may be trivial (i.e. $|\mathcal{L}_l| = 1$). Now define $\Pi^* = (\mathcal{P}, \cup |\mathcal{L}_l: l \in \mathcal{L}\}, |, \cong)$, where $x \cong m$ $(m \in \mathcal{L}_l) \Leftrightarrow x \in l$. Then it is easy to check that Π^* is an NBP. We verify, for example, the main axioms (2) and (2*). The other axioms are non-degeneracy axioms and follow directly from the construction, the non-degeneracy conditions of a projective plane and the properties of a linear space. Note also that $m \cong n \Leftrightarrow m, n \in \mathcal{L}_l$ for some $l \in \mathcal{L}$, and $x \cong y \Leftrightarrow x = y$.

- (2) If $x, y \in \mathcal{P}$, then there is a unique l in \mathcal{L} containing both x and y. Moreover, there exists a unique m in \mathcal{L}_l incident with both x and y.
- (2*) Let $m \ncong n$ and let $m \in \mathcal{L}_l$ and $n \in \mathcal{L}_k$. Then $l \ne k$ and so, there exists unique x in $l \cap k$. By definition, x is the unique point neighbour to both m and n.

Conversely, it follows from [2, Prop. (3.9) and Th. (4.5)] that every SNBP, and hence every NBP, must be constructed in this manner. So the above construction is universal. Note that, with the above notation, Π_l is a maximal linear subspace of Π^* for every $l \in \mathcal{L}$.

Now, if (2') holds in Π^* , then clearly every line of Π_l must be incident with all points of l; hence Π_l is trivial and Π^* is a projective plane. So this answers two open questions in [2] and shows that the class of NBPs is a well-defined subclass of the class of linear spaces.

REFERENCES

- 1. Buekenhout, F., 'Diagrams for Geometries and Groups', J. Comb. Theory A27 (1972), 121-151.
- 2. Spanicciati, R., 'Near-Barbilian Planes', Geom. Dedicata 24 (1987), 311-318.

Authors' address:

G. Hanssens and H. Van Maldeghem, Seminarie voor meetkunde en kombinatoriek, Rijksuniversiteit van Gent, Galglaan 2, 9000 Gent, Belgium.

(Received, February 24, 1988)

· ·