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Abstract

In this paper, we prove a combinatorial property of twin apartments and oppo-
sition of chambers in twin buildings. We then characterize adjacency of chambers
in twin buildings by means of opposition of chambers. As an application, we study
maps which satisfy certain conditions related to opposition of chambers, e.g. maps
that preserve opposition. Applied to the special case of spherical buildings, all our
main results as well as their corollaries are new.
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1 Introduction and Statement of the Main Results

Twin buildings are natural generalizations of spherical buildings, which play a central role
in the modern theories of incidence geometry, group theory, finite geometry, etc. Where
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spherical buildings are associated to groups of Lie type, twin buildings arise from Kac-
Moody groups. The crucial notion in a twin building is that of opposition (of chambers).
Roughly speaking, and denoting the set of chambers of a building Ω by Ch(Ω), a twin
building ∆ = (∆+, ∆−, δ∗) consists of a pair of buildings (∆+, ∆−) of the same type,
say determined by the Coxeter System (W, S) (standard notation), and a “codistance”
δ∗ : (Ch(∆+) × Ch(∆−)) ∪ (Ch(∆−) × Ch(∆+)) → W . The axioms are modelled on
the situation in spherical buildings. There, the codistance is in a sense “complementary”
to the Weyl distance, in particular the codistance between two chambers is equal to
1 (the identity in W ) if and only if the Weyl distance between these two chambers is
equal to the longest word. Correspondingly, if ∆ is a twin building as before, then two
chambers C, D ∈ Ch(∆) := Ch(∆+)∪Ch(∆−) are called opposite precisely when they are
in different components and δ∗(C, D) = 1 (there is also a numerical codistance, which is
obtained from δ∗ by taking the length of the words in (W, S)). Hence spherical buildings
can be twinned to themselves and constitute a subclass of the class of twin buildings (cf.
Tits [1990], Proposition 1).

Twin buildings were originally invented by Mark Ronan and Jacques Tits. They were
introduced in the literature by Tits [1990] (see also Tits [1989]), where many elementary
properties are given, but proofs are only sketched or omitted. An introduction and an
exposition of many elementary properties with proofs is provided by Abramenko [1996],
to which we refer for definitions and notation.

The aim of the present paper is to use the opposition of chambers to characterize two
fundamental notions in the theory of (twin) buildings: that of “twin apartments” and
that of “adjacency of chambers”. A twin apartment in a twin building ∆ as above is a
pair of apartments Σ = (Σ+, Σ−), Σε ⊆ ∆ε, ε ∈ {+,−}, such that the restriction of the
codistance to that pair induces the structure of a (thin) twin building. Applied to the
spherical case, every usual apartment can be seen as a twin apartment, unlike the general
situation (there are many apartments in ∆+ which do not have a twin in ∆− and vice
versa).

The characterization of twin apartments presented below is the consequence of a com-
binatorial parity pattern which we discovered first in spherical and then also in twin
buildings. The surprising general fact is that the number of chambers in a given twin
apartment which are opposite a fixed chamber outside this twin apartment is always even
(see Theorem 1.1 and Corollary 1.3). As might be expected, such a general statement has
interesting applications in building theory. As one important example, we shall deduce
below a characterization of the adjacency of chambers in thick twin buildings by means of
the opposition relation (see Theorem 1.2 and Corollary 1.4). It is perhaps not surprising
that such a characterization can be given. However, only by applying our first theorem we
were able to give a short and elegant proof for it, which will be presented in Section 4; our
first approach was much more laborious and needed a separate investigation of general-
ized polygons and twin trees before spherical and twin buildings could be treated.

2



We would like to emphasize the fact that our main results are also new for the case of
spherical buildings. Hence we do not “just generalize” known facts from spherical building
theory to twin building theory. For people only interested in the results restricted to
the spherical case, we will phrase our main results in the classical language of spherical
buildings as two corollaries. We have also tried to write down our proofs avoiding as
much as possible the specific notation of twin buidings. Therefore, it should be possible
for someone interested in spherical buildings to read the proofs without much knowledge
of twin buildings.

Some further notation that we will use in the sequel: for ε ∈ {+,−}, we define −ε as
{ε,−ε} = {+,−}. Also, C opD means that C is opposite D; C op D means that C is not
opposite D. A twin building ∆ = (∆+, ∆−, δ∗) is called thick if the buildings ∆+ and ∆−
are both thick.

Theorem 1.1 Let ∆ = (∆+, ∆−, δ∗) be a thick twin building. Let M be a non-empty set
of chambers of ∆. Then M is the chamber set of a twin apartment Σ if and only if for
every chamber C of M, there is a unique chamber C ′ ∈ M opposite C, and for every
chamber C in Ch(∆) \M, the number of chambers of M which are opposite C is even.

Theorem 1.2 Let (∆+, ∆−, δ∗) be a thick twin building. Let C and D be arbitrary distinct
chambers of ∆. Then C and D are adjacent if and only if there exists a chamber E in ∆
such that no chamber of ∆ is opposite exactly one of {C, D,E}.

For the convenience of the reader only interested in spherical buildings, we restate these
results for spherical buildings.

Corollary 1.3 Let ∆ be a thick spherical building. Let M be a non-empty set of cham-
bers. Then M is the chamber set of an apartment of ∆ if and only if every chamber of
M has a unique opposite in M and every chamber outside M has an even number of
opposites in M.

Corollary 1.4 Let ∆ be a thick spherical building. Let C, D be arbitrary distinct cham-
bers of ∆. Then C and D are adjacent if and only if there is a chamber E such that no
chamber of ∆ is opposite a unique member of {C, D,E}.

There are some corollaries to these results, and they are gathered in Section 5. Here, we
just mention one of them.

Corollary 1.5 Let ∆ = (∆+, ∆−, δ∗) be a thick twin building without any non-spherical
rank 2 residues. Then the distance and codistance functions are completely determined by
the opposition relation. Hence a thick 2-spherical twin building (in particular any spherical
building) is completely determined by its set of chambers and the opposition relation.
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We emphasize the fact that in the previous corollary, the twin building is determined only
by the set of chambers and the opposition relation, unlike the classical well known result,
where in addition the whole structure of the two separate buildings must be given.

Finally we remark that the results presented in this paper are also motivated by Bernhard
Mühlherr’s question, which “1-twinnings” (for a definition, see Mühlherr [1998]) could
be extended to twinnings. In a forthcoming paper we shall, applying Theorem 1.2, answer
this question, thereby obtaining new characterizations of twin buildings.

2 Twin Apartments and Twin Roots

We recall some notation and basic facts concerning twin buildings. The results summa-
rized below are due to Tits [1989], [1990]; proofs can be found in Abramenko [1996],
Ch.I, §2.

As in the introduction, we denote by ∆ = (∆+, ∆−, δ∗) a (not necessarily thick) twin
building with W -codistance δ∗ as introduced in Tits [1990] and Abramenko [1996],
Definition 3, and by “ op ” the corresponding opposition relation. By a twin apartment
Σ of ∆ we understand a pair (Σ+, Σ−) of apartments in ∆+, ∆−, respectively, such
that (Σ+, Σ−, δ∗|Σ) is itself a (thin) twin building (cp. Definition 4 and Lemma 2(iii) in
Abramenko [1996]). From the very definition of a twin building we immediately deduce
the following

Fact 2.1 If Σ = (Σ+, Σ−) is a twin apartment, then for any chamber C in Σ+∪Σ−, there
exists exactly one chamber C ′ in Σ+ ∪ Σ− opposite C, i.e., such that C opC ′.

Remark 2.2 One can easily show the converse, namely, that any pair Σ = (Σ+, Σ−) of
apartments in ∆+, ∆− satisfying the statement of Fact 2.1 is a twin apartment of ∆.

If Σ, C and C ′ are as in Fact 2.1, we write C ′ =: op Σ(C) (and hence also C = op Σ(C ′)).

Another immediate consequence of the definition of twin apartments is the following

Fact 2.3 If Σ = (Σ+, Σ−) is a twin apartment, then the opposition involution op Σ in-
duces an isomorphism of Coxeter complexes between Σ+ and Σ−.

For the next basic result, we again refer to Abramenko [1996], Lemma 2.

Fact 2.4 Given chambers C, D in ∆+ ∪∆−, there exists a twin apartment Σ = (Σ+, Σ−)
such that C, D belong to Σ+ ∪ Σ−. If additionally C opD, then this twin apartment Σ is
unique.
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If C opD, then the unique twin apartment Σ of Fact 2.4 will be denoted by Σ{C, D}.
We shall also need generalizations of the classical notion in spherical buildings of a “root”
(= a half apartment). If β is a root in a Coxeter complex Θ, we shall denote by −β
the unique root in Θ satisfying Θ = β ∪ (−β) such that β ∩ (−β) does not contain any
chambers.

Now let ∆ = (∆+, ∆−, δ∗) be a twin building as above. A pair α = (α+, α−) is called
a twin root of ∆ if there exists a twin apartment Σ = (Σ+, Σ−) of ∆ such that αε is a
root in Σε for ε ∈ {+,−}, and α− = − op Σ(α+). Note that op Σ(α+) is a root in Σ− by
Fact 2.3.

Any twin root is the “coconvex hull” (in the sense of Abramenko [1996], Chapter I, §4,
Appendix) of two properly selected chambers C, D of ∆ which are at numerical codis-
tance 1, i.e., δ∗(C, D) ∈ S, where the Coxeter system (W, S) defines the type of ∆.
This alternative characterization of twin roots follows immediately from Proposition 5 of
Abramenko [1996]. However, the proof of that proposition is not yet published, and
therefore we shall now derive this property of twin roots directly in the form it is needed
later on.

Lemma 2.5 Let C, D be non-opposite chambers of ∆ such that D is adjacent to a chamber
C ′ opC. Then there exists a unique twin root α = (α+, α−) of ∆ such that C, D belong to
α+ ∪ α−. This twin root automatically satisfies α ⊆ Σ{C, C ′}.

Proof. We may assume C ∈ ∆+ and C ′ ∈ ∆−. We also assume that ∆ is of type (W, S) and
S = {si | i ∈ I} for some (finite) index set I. Then C ′ and D are i-adjacent for some i ∈ I,
and, since C op D, δ∗(C, D) = si. Setting Σ := Σ{C, C ′} = (Σ+, Σ−), we observe D ∈ Σ−
since Σ− must contain a chamber i-adjacent to C ′ and at codistance si from C (and there
is only one such chamber in ∆−; with the notation of Definition 6 of Abramenko [1996],
we have D = proj∗C′∩DC, the “coprojection” of C onto the panel C ′ ∩D). Denote by α−
the root in Σ− containing D but not C ′, and set α+ := − op Σ(α−) = op Σ(−α−). Then
C = op Σ(C ′) ∈ Σ+, and α := (α+, α−) ⊆ Σ is a twin root containing both C and D.

Assume now that there is a second twin root α̃ = (α̃+, α̃−) containing C and D. Let
Σ̃ = (Σ̃+, Σ̃−) be a twin apartment containing α̃, and let C̃ be the chamber i-adjacent to
D in Σ̃−. Then δ∗(C, D) = si implies C op C̃, hence Σ̃ = Σ{C, C̃} and C̃ /∈ α̃− (because
C ∈ α̃+). We shall show now by induction on the gallery distance between D and X that
any chamber X of α− is also contained in α̃−. So let (D = D0, D1, . . . , Dm = X) be a
minimal gallery connecting D and X, hence automatically contained in α−. Let D"−1 be
i"-adjacent to D" (i" ∈ I) for all positive % ≤ m. Observe that γ := (C ′, D,D1, . . . , Dm)
is also a minimal gallery since C ′ /∈ α− and D ∈ α−. Hence sisi1 · · · si! is reduced
with respect to the Coxeter system (W, S). Because Σ = Σ{C, C ′} and γ ⊆ Σ−, we
obtain δ∗(C, D") = sisi1 · · · si! , for all positive % ≤ m (and all these expressions are
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reduced). In particular, Dm is the coprojection of C onto the panel p− := Dm−1 ∩ Dm.
Now, by induction we have Dm−1 ∈ α̃− ⊆ Σ̃−. However, C ∈ Σ̃+ and p− ∈ Σ̃− imply
Dm = proj∗p−C ∈ Σ̃− (cp. Abramenko [1996], Corollary 3).

Hence (C̃, D, D1, . . . , Dm), being of reduced type (i, i1, . . . , im), is a minimal gallery in
Σ̃−. Since C̃ /∈ α̃− and D ∈ α̃−, this implies X = Dm ∈ α̃−. So we have shown α− ⊆ α̃−.
By symmetry, we also get α̃− ⊆ α−. Reversing the roles of + and − (and using the
chambers D′ ∈ Σ+ and D̃ ∈ Σ̃+ i-adjacent to C instead of C ′ and C̃, respectively), one
finally obtaines α+ = α̃+, hence α = α̃. !

Lemma 2.6 Let C1, C2, C3 be three different pairwise adjacent chambers of ∆. Let Σ
be a twin apartment of ∆ which contains C1 and C2. Then there exist three twin roots
α1, α2, α3 satisfying the following properties.

(1) Ch(αi) ∩ {C1, C2, C3} = {Ci}, for i = 1, 2, 3.

(2) The sets Ch(α1), Ch(α2), Ch(α3) are pairwise disjoint.

(3) For any i, j ∈ {1, 2, 3} with i < j, the set Ch(αi)∪Ch(αj) is the set of chambers of
a twin apartment Σij, with Σ12 = Σ.

Proof. Denote by p the panel C1∩C2 = C2∩C3 = C3∩C1, and set C ′
i := op Σ(Ci), i = 1, 2,

and p′ := C ′
1 ∩ C ′

2. Let D3 be the unique chamber of ∆ containing p′ and not opposite
C3. Note that by Fact 2.1 C ′

1 is not opposite C2 and C ′
2 is not opposite C1. Hence C ′

1

and C ′
2 are both opposite C3, and D3 *= C ′

1, C
′
2. This implies D3 opC1, C2. According to

Fact 2.4, we have uniquely defined twin apartments Σ12 := Σ{C1, C ′
1} = Σ{C2, C ′

2} = Σ,
Σ13 := Σ{C1, D3} and Σ23 := Σ{C2, D3}. Applying Lemma 2.5 repeatedly, we obtain
(uniquely determined) twin roots α1, α2, α3 such that {C1, C ′

2} ⊆ Ch(α1), {C2, C ′
1} ⊆

Ch(α2), {C3, D3} ⊆ Ch(α3) satisfying additionally α1 ⊆ Σ ∩ Σ13, α2 ⊆ Σ ∩ Σ23 and
α3 ⊆ Σ13 ∩ Σ23.

Without loss of generality, we may assume C1, C2, C3 ∈ ∆+ and C ′
1, C

′
2, D3 ∈ ∆−. By

definition, a twin root never contains opposite chambers. Hence the above construction
implies (αi)+∩{C1, C2, C3} = {Ci}, i = 1, 2, 3, and, with M := {C ′

1, C
′
2, D3}, (α1)−∩M =

{C ′
2}, (α2)− ∩M = {C ′

1}, (α3)− ∩M = {D3}. Now it follows immediately from basic
properties of roots in Coxeter complexes that (αi)ε = −(αj)ε in (Σij)ε, for i, j ∈ {1, 2, 3},
i < j, and ε ∈ {+,−}. This implies (2) and (3), and we already deduced (1) above. !

Remark 2.7 It is easy to see that Σ, C1, C2, C3 and properties (1), (2) and (3) determine
α1, α2, α3 uniquely, but we will not need this fact in the sequel.
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Remark 2.8 If the reader is only interested in spherical buildings, he may restrict to the
special case where ∆ = ∆+ = ∆− is a spherical building in which ordinary apartments
Σ = Σ+ = Σ−, respectively ordinary roots α = α+ = α− are considered. In this case, all
the facts stated above (including the lemmas) are well known.

3 A Characterization of Twin Apartments

In this section, we prove Theorem 1.1. First we introduce some notation.

Let us briefly denote the set Ch(∆ε) of chambers of ∆ε by Cε, ε ∈ {+,−}, and put
C = C+ ∪ C− = Ch(∆). For a pair Ω+, Ω− of subcomplexes of ∆+, ∆−, respectively, we
write Ch(Ω) = Ch(Ω+) ∪ Ch(Ω−), where Ω = (Ω+, Ω−). For any C ∈ C and any subset
M ⊆ C, we define the number n(C,M) as the number of elements of M opposite C. If
Σ is a twin apartment, we also briefly denote n(C, Σ) := n(C, Ch(Σ)). Similarly, we write
n(C, α) := n(C, Ch(α)) for a twin root α.

Remark 3.1 Let Σ = (Σ+, Σ−) be a twin apartment and let α = (α+, α−) be a twin root
of ∆.

(i) According to Fact 2.1, n(C, Σ) = 1 if C ∈ Σ+ ∪ Σ−.

(ii) It is an easy exercise to show n(C, Σ) <∞ for all C ∈ C. However, this also follows
from Proposition 3.2 below.

(iii) As an immediate consequence of the axiom (Tw2) in Tits [1990], Section 2.2, one
obtains n(C, Σ) ≥ 1 for all C ∈ C. It is also known that n(C, Σ) > 1 if C /∈ Σ+∪Σ−
(cp. Tits [1990], Proposition 3). Again, this last statement independently follows
from the proof of Proposition 3.2 below.

(iv) By the definition of twin roots, we have n(C, α) = 0, for all chambers C ∈ α+ ∪α−.

We will now prove the following slightly more detailed version of Theorem 1.1.

Proposition 3.2 For a twin building ∆ and a non-empty set of chambers M ⊆ C, we
consider the following two statements:

(a) There exists a twin apartment Σ of ∆ such that M = Ch(Σ).

(b) n(C,M) = 1 for all C ∈M and n(C,M) ≡ 0 mod 2, for all C ∈ C \M.

Then (a) always implies (b), and (b) implies (a) whenever ∆ is thick.
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Proof. We first show that (a) always implies (b). Given a twin apartment Σ = (Σ+, Σ−),
we already know from Fact 2.1 that n(C, Σ) = 1 for C ∈ Ch(Σ). So we have to show
n(C, Σ) ≡ 0 mod 2 for C ∈ C \ Ch(Σ).

Choose a minimal gallery γ between C and Σ, i.e., a gallery γ = (C = X0, X1, . . . , Xm)
with Xm a chamber in Σ and m minimal. Eventually, the claim will be proved by induction
on m ≥ 1. We now apply Lemma 2.6 with C1 := Xm, C3 := Xm−1 and with C2 being the
unique neighbour of C1 in Σ containing C1∩C3. So let the twin apartments Σ12 = Σ, Σ13,
Σ23 as well as the twin roots α1, α2 and α3 satisfy the properties (1)–(3) of Lemma 2.6.
Then we distinguish two cases.

(1) C = X0 ∈ Ch(α3).
Then also C ∈ Ch(Σi3), for i = 1, 2, and Ch(Σi3) = Ch(αi)∪̇Ch(α3) implies 1 =
n(C, Σi3) = n(C, αi) + n(C, α3) = n(C, αi), i = 1, 2, hence n(C, Σ) = n(C, α1) +
n(C, α2) = 1 + 1 = 2.

Note that this case contains the case m = 1, where C = X0 = C3; hence we can
start the induction alluded to above.

(2) C /∈ Ch(α3).
Then, because C /∈ Ch(Σ) = Ch(α1) ∪ Ch(α2), also C /∈ Ch(Σi3) for i = 1, 2.
However, since Xm−1 = C3 ∈ Ch(Σ13) ∩ Ch(Σ23), the chamber C is now nearer
(in the sense of galleries) to Σ13 and Σ23 than to Σ. Therefore, the induction
hypothesis yields n(C, αi) + n(C, α3) = n(C, Σi3) ≡ 0 mod 2, for i = 1, 2. This
implies n(C, Σ) = n(C, α1) + n(C, α2) = n(C, Σ13) + n(C, Σ23) − 2n(C, α3) ≡ 0
mod 2.

Now we show that (b) implies (a) if ∆ is thick. Choose C ∈ M, let C ′ be the unique
element of M opposite C, and set Σ := Σ{C, C ′}. We will show M = Ch(Σ).

Let D be a neighbour of C in Σ and let E be an arbitrary chamber distinct from both
C and D containing the panel C ∩ D (E exists by the thickness of ∆). Now D is not
opposite C ′. Hence E opC ′, and therefore E /∈M because n(C ′,M) = 1.

Now consider an arbitrary chamber X ∈ M \ {C ′}. Since n(C,M) = 1, the chamber X
is not opposite C. Because the three chambers C, D,E are pairwise adjacent, this implies
that X opD if and only if X opE. Therefore n(E,M) = n(D,M)+1. Since E /∈M, our
assumption (b) implies that n(E,M) is even. Hence n(D,M) is odd which forces, again
by assumption (b), D ∈M. So any neighbour of C in Σ is a member of Σ. Analogously,
any neighbour of C ′ in Σ is an element of M. Hence a straightforward induction using
gallery distances shows that Ch(Σ) ⊆ M. In view of the implication “(a)=⇒(b)” and
the first statement of Remark 3.1(iii), this yields n(Z,M) ≥ 2 for all Z ∈ C \ Ch(Σ).
Therefore the first part of assumption (b) implies now Ch(Σ) = M. The proposition is
proved. !
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Remark 3.3 The last statement in Remark 3.1(iii) might give hope to characterize twin
apartments more generally as corresponding to sets M of chambers such that

(*) n(X,M) = 1 for X ∈M, and n(X,M) > 1 for X ∈ C \M.

This is not true. Indeed, consider a thick building Γ of type A2, i.e., the flag complex of
a projective plane. Let p and l be two opposite panels and let {Ci | i ∈ I} (respectively
{Di | i ∈ I}) be the set of chambers containing p (respectively l), where I is some appro-
priate index set, which may be assumed to contain the elements 0 and 1. We may also
assume that Ci op Di, for all i ∈ I. Let Ei, i ∈ I, be the unique chamber adjacent to
both Ci and Di. Take any i, j ∈ I, i *= j. Then the set {C0, C1, D0, D1, Ei, Ej} satisfies
condition (*) above. Note that only for {i, j} = {0, 1}, this set is the set of chambers of
an apartment.

In fact, one can show that every set of chambers of a projective plane satisfying (*) is
constructed in the above way. An interesting conjecture is that every set of chambers of
some thick spherical building ∆ satisfying (*) has the same number of chambers as any
apartment in ∆.

The above counterexample may be generalized to an arbitrary twin building as follows.
Consider the set of chambers Ch(Σ) of some twin apartment Σ of ∆. Let p+, p− be two
opposite panels in Σ, and let C+, C−, D+, D− be the four chambers of Σ containing these
panels, with C+ opC− and D+ opD−. Consider two arbitrary chambers X+ and Y+ on
p+ and let Y− respectively X− be the unique chamber on p− not opposite X+ respectively
Y+. Put M = (Ch(Σ) ∪ {X+, X−, Y+, Y−}) \ {C+, C−, D+, D−}. Clearly n(X,M) = 1
for X ∈ M, and it follows easily from basic facts in the theory of twin buildings that
n(X,M) > 1 for X ∈ C \M. So M satisfies (*).

Clearly, one can repeat this “replacement” procedure for other pairs of opposite panels to
obtain very different sets M satisfying (*).

Remark 3.4 The implication (b)=⇒(a) is not true for weak non-thick buildings. Even
if we require that

(**) n(C,M) > 1 for every chamber C ∈ C \M.

Indeed, let ∆ be a finite non-thick building of type C2. We may describe ∆ as follows. Let
L0, L1 . . . , Lm, M0, M1, . . . ,Mn be arbitrary distinct symbols, m, n > 1. These symbols
contitute one type of panels of ∆. The other type is formed by the set {pi,j | 0 ≤ i ≤
m, 0 ≤ j ≤ n}. The set of chambers is Ch(∆) = {{Li, pi,j}, {Mj, pi,j} | 0 ≤ i ≤ m, 0 ≤
j ≤ n}. Choose arbitrarily % and k such that 0 ≤ % < k ≤ m and %′ and k′ such that
0 ≤ %′ < k′ ≤ n and consider the set M = {{L0, p0,0}, {L0, p0,1}, {L1, p1,0}, {L1, p1,1},
{M"′ , p","′}, {M"′ , pk,"′}, {Mk′ , p",k′}, {Mk′ , pk,k′}}. Then M satisfies condition (b) and
(**), and it is not the chamber set of an apartment whenever {k, %, k′, %′} *= {0, 1}. This
can be checked very easily.

9



4 A Characterization of Adjacency by Opposition

We keep the notation of the previous section. In addition, we denote by C op the set
of chambers opposite the chamber C ∈ ∆. It is our aim to show now the following
proposition, which is obviously a reformulation of Theorem 1.2 stated in the Introduction.

Proposition 4.1 In a thick twin building ∆, two different chambers C and D are adjacent
if and only if there exists a third chamber E such that n(X, {C, D,E}) *= 1 for all chambers
X ∈ C.

Proof. If C and D are adjacent, then C ∩ D is a panel. In view of thickness, there
exists a chamber E containing C ∩ D and different from C, D. By the basic properties
of the opposition relation, any chamber X ∈ C is opposite 0, 2 or 3 members of the set
{C, D,E}.
Let us now assume that the following is satisfied for some E ∈ C:

(A) n(X, {C, D,E}) *= 1 for all X ∈ C.

Choose (using Fact 2.4) a twin apartment Σ containing C and D. Set C ′ := op Σ(C)
and D′ := op Σ(D). Since C *= D, we also have (by Fact 2.1) C ′ *= D′, C ′ op D and
D′ op C. Hence (A) implies E opC ′ as well as E opD′. Note that this is only possible if
E *= D, C and if C ′, D′ (respectively C, D,E) lie in the same “half” of ∆, say C ′, D′ ∈ ∆−
(respectively C, D,E ∈ ∆+). In particular, there exists a minimal gallery γ = (C =
Z1, Z2, . . . , Z" = D) connecting C and D in ∆. Note that γ is contained in Σ.

Now assume that C and D are not adjacent, i.e., % > 2. We seek a contradiction. Set
Ci := Zi for i = 1, 2. Since ∆ is thick, there exists a chamber C3 *= C1, C2 which
contains C1 ∩C2. Now let α1, α2, α3 and Σ13, Σ23 be the twin roots and twin apartments,
respectively, satisfying the properties (1)–(3) of Lemma 2.6 and guaranteed to exist by
Lemma 2.6.

Since γ is minimal and C = C1 = Z1 /∈ α2 but C2 = Z2 ∈ α2, we also have D = Z" ∈ α2.
In view of Σ = α1 ∪ α2, we obtain C ′ ∈ α2 and D′ ∈ α1. Furthermore, C ∈ α1 ⊆ Σ13 =
α1 ∪ α3 implies that C ′′ := op Σ13

(C) ∈ α3, and D ∈ α2 ⊆ Σ23 = α2 ∪ α3 implies that
D′′ := op Σ23

(D) ∈ α3.

Note that C ′′, being opposite C = C1 but not opposite C3 (because C3 and C ′′ lie in the
same twin root α3), is necessarily opposite C2. Since both Z2 and Z" = D belong to Σ23,
and C2 = Z2 *= D (because % > 2), we have D′′ = op Σ23

(D) *= op Σ23
(C2) = C ′′. Hence

C ′, C ′′, D′, D′′ are pairwise different, C op ∩(α1∪α2∪α3) = {C ′, C ′′}, and D op ∩(α1∪α2∪
α3) = {D′, D′′}. Applying now our assumption (A) for all chambers X ∈ α1∪α2∪α3, we
obtain E op ∩ (α1∪α2∪α3) = {C ′, C ′′, D′, D′′}, implying E op ∩ (α1∪α3) = {C ′′, D′, D′′}
and so n(E, Σ13) = 3.
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However, this contradicts Proposition 3.2 which says that n(E, Σ13) is either 1 or even.
Hence C and D must be adjacent. !
As an immediate corollary to this proof, we have the following result:

Corollary 4.2 Three distinct chambers C, D,E of a thick twin building ∆ are pairwise
adjacent if and only if n(X, {C, D,E}) *= 1 for all chambers X of ∆.

If C is the set of chambers of a thick twin building, and if M ⊆ C is such that for any
X ∈ C, there exists a chamber C ∈ M satisfying C op X, then |M| > 2 (cf. Remark 5.1
below). Hence Corollary 4.2 implies the following

Corollary 4.3 A non-empty set M of chambers is the set of chambers through some
panel of the thick twin building ∆ if and only if for all chambers X of ∆, either all
elements of M are not opposite X, or exactly one chamber in M is not opposite X.

5 Maps defined on the Set of Chambers of a Twin
Building

In the following, we will consider thick twin buildings ∆ = (∆+, ∆−, δ∗), ∆̃ = (∆̃+, ∆̃−, δ̃∗)
and maps ϕ : C → C̃ (where C̃ := Ch(∆̃+)∪Ch(∆̃−)) which preserve opposition and non-
opposition, i.e., C opD (in ∆) if and only if ϕ(C) opϕ(D) (in ∆̃).

We will say that ∆ is 2-spherical if every rank 2-residue in ∆ is of spherical type.

Remark 5.1 Choose C ∈ C+ and assume ϕ(C) ∈ C̃+ (otherwise we just change signs in
∆̃). Let D ∈ C+ be arbitrary. Then there exists a chamber E ∈ C− which is opposite
both C and D. Indeed, take any E ∈ C− opposite C such that the codistance δ∗(E, D) is
of minimal length. If δ∗(E, D) were not equal to 1, then the thickness of ∆ and the twin
building axioms would yield a neighbour F of E with F opC and the length of δ∗(F, D)
strictly smaller than the length of δ∗(E, D).

Hence ϕ(E) opϕ(C), ϕ(D), showing that ϕ(E) ∈ C̃− and ϕ(D) ∈ C̃+. The same argument
applied to E and C− instead of C and C+ yields ϕ(C−) ⊆ C̃−. Therefore we may and will
assume ϕ(C+) ⊆ C̃+ and ϕ(C−) ⊆ C̃−. We shall denote the restriction of ϕ to C+ and C−
by ϕ+ and ϕ− respectively.

Our second main theorem has the following consequences:

11



Corollary 5.2 Let ∆ and ∆̃ be as above. Assume additionally that ∆ is 2-spherical.
Then any surjective map ϕ : C → C̃ preserving opposition and non-opposition extends
(uniquely), after an appropriate adjustment of the numberings (i.e. the type functions) of
∆̃+ and ∆̃−, to an isomorphism of twin buildings between ∆ and ∆̃.

Proof. First we claim that ϕ is injective. Indeed, given two distinct chambers C, D ∈ C,
we can find (in any twin apartment containing both C and D) a chamber E ∈ C opposite
C but not opposite D. Then ϕ(E) is opposite ϕ(C) but not opposite ϕ(D), implying
ϕ(C) *= ϕ(D). Hence the maps ϕε : Cε → C̃ε, ε ∈ {+,−}, introduced in Remark 5.1, are
bijections. Now Proposition 4.1 implies that ϕ+ and ϕ− as well as their inverses preserve
adjacency. Therefore Theorem 3.21 in Tits [1974] yields that ϕ+ and ϕ− (uniquely)
extend to simplicial isomorphisms φε : ∆ε → ∆̃ε, for ε ∈ {+,−}. In particular, all these
buildings are of the same type, and we may assume that the type functions on ∆̃+, ∆̃−
are such that φ+ and φ− are type-preserving. This implies that the Weyl distances
are also preserved by φ+ and by φ−. Since the opposition relation is of course still
preserved by φ = (φ+, φ−), the characterization of the Weyl codistance given in Remark 3
of Abramenko [1996] finally shows that δ∗(C, D) = δ̃∗(φ+(C), φ−(D)), for all C ∈ C+

and all D ∈ C−. Hence φ is indeed an isomorphism of twin buildings. !
If ∆ is not 2-spherical, then Theorem 3.21 in Tits [1974] cannot be applied any longer.
Also, if ϕ is not surjective, our characterizations using the opposition relation do not help
any longer, because our results involve all chambers of a twin building.

Finally, the thickness assumption in Corollary 5.2 is necessary as well. Indeed, consider
two thin twin buildings Σ = (Σ+, Σ−, δ∗), Σ̃ = (Σ̃+, Σ̃−, δ̃∗), not necessarily of the same
type, such that the cardinalities of Ch(Σ+) and Ch(Σ̃+) (and hence also of Ch(Σ−) and
Ch(Σ̃−)) are equal. Then any bijection between Ch(Σ+) and Ch(Σ̃+) can be extended to
a bijection between Ch(Σ) and Ch(Σ̃) preserving opposition and non-opposition.

Corollary 5.3 If ∆ is a thick 2-spherical twin building, then the Weyl distances and the
Weyl codistance are uniquely determined (up to the notation of types) by the opposition
relation on the set of chambers.

Proof. Let ((C+, δ+), (C−, δ−), δ∗) and ((C+, δ̃+), (C−, δ̃−), δ̃∗) be two “realizations” of the
same opposition relation “ op ” on ∆. Then Corollary 5.2 shows that the identity id: C → C
extends to a twin building isomorphism. This implies δ+ ≡ δ̃+, δ− ≡ δ̃− and δ∗ ≡ δ̃∗ (if
the types in ∆̃ are denoted appropriately). !
In case of twin buildings of the same type, we do not know in general whether the sur-
jectivity assumption in Corollary 5.2 can be deleted in order to conclude that ϕ extends
to an isomorphism of twin buildings between ∆ and a uniquely defined subbuilding of ∆̃.
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That appears to be the case for buildings of type A2 (projective planes), but if the twin
buildings do not have the same type, then there are counterexamples. Indeed, consider
the building associated with a symplectic quadrangle W(K) (i.e., the natural geometry
of the symplectic group Sp4(K)) over a perfect field K of characteristic 2 admitting an
automorphism σ whose square is the Frobenius automorphism. Then the building as-
sociated with the double 2W(K) of it (in the sense of Van Maldeghem [1998]; this
just means the non-thick generalized octagon with point set the panels of W(K) (as a
building), with line set the set of chambers of W(K) and with inclusion as incidence rela-
tion) can be viewed as a subbuilding of the thick generalized octagon O(K, σ) associated
with the group 2F4(K, σ). The map sending the chamber {p, L} (with p a point of W(K)
and L a line) of W(K) to the chamber {p, {p, L}} of O(K, σ) preserves opposition and
non-opposition of chambers, but it can of course never preserve adjacency.

For finite buildings, however, we have the following interesting result.

Corollary 5.4 Let ∆ be a thick, finite (hence spherical) building, and let ϕ : Ch(∆) →
Ch(∆) be a map preserving opposition and non-opposition. Then ϕ extends uniquely to
an automorphism of ∆.

Proof. As remarked in the beginning of the proof of Corollary 5.2, ϕ is injective and hence
automatically surjective in the present situation. Now we apply, as in the proof of Corol-
lary 5.2, our Proposition 4.1 together with Theorem 3.21 in Tits [1974] in order to see
that ϕ extends (uniquely) to a simplicial automorphism of ∆. Note that automorphisms
are just simplicial automorphisms in the category of spherical buildings so that we need
not consider types here. !
Our results also imply a very elegant (and unexpected) characterization of involutions in
spherical buildings.

Corollary 5.5 Let ∆ be a thick spherical building. A map θ : Ch(∆)→ Ch(∆) satisfies

(OPP) C op θ(D)⇒ θ(C) opD, for all chambers C, D ∈ Ch(∆),

if and only if θ extends uniquely to an involutive automorphism of ∆.

Proof. If θ extends to an involutive automorphism of ∆, then it preserves opposition and
hence we have C op θ(D)⇒ θ(C) op θ2(D) = D.

We now assume that θ is a transformation of Ch(∆) satisfying (OPP).

First we claim that θ maps distinct adjacent chambers to distinct adjacent chambers. To
prove this, let C and D be adjacent chambers in ∆, with C *= D. Suppose first that
θ(C) = θ(D). In view of the thickness assumption, there is some chamber E adjacent
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to both C and D, and distinct form both C and D. Assume by way of contradiction
that θ(E) *= θ(C). Then there exists a chamber F opposite θ(E), but not opposite
θ(C) = θ(D). Applying (OPP), we deduce that θ(F ) is opposite E but not opposite both
C and D, a contradiction. Hence θ(C) = θ(E), for every chamber containing the panel
C ∩ D. Now consider any chamber F ′ opposite θ(C). Then (OPP) implies that θ(F ′)
is opposite every chamber containing the panel C ∩ D, a contradiction. We conclude
θ(C) *= θ(D).

Let E be as above. Suppose some chamber F ′′ is opposite exactly one member of
{θ(C), θ(D), θ(E)}. Then, by (OPP), θ(F ′′) is opposite exactly one member of {C, D,E},
a contradiction. Now it follows from Proposition 4.1 that θ(C) and θ(D) are adjacent.

Let C and D again be adjacent chambers of ∆. We claim that θ induces a bijection from
the set of chambers containing C ∩ D to the set of chambers containing θ(C) ∩ θ(D).
Indeed, by the previous paragraph, θ already induces an injection between these two sets.
Now suppose that E ′ is some chamber containing θ(C)∩ θ(D) and which is not the image
of some chamber containing C ∩D. We select a chamber F of ∆ opposite θ(C), but not
opposite E ′. Then F is opposite θ(E), for all E ⊇ (C ∩ D). Hence, by (OPP), θ(F ) is
opposite all chambers containing the panel C ∩D, a contradiction. Our claim follows.

Now suppose C is some fixed chamber of ∆, and suppose by way of contradiction that
there exists a panel p ⊆ θ(C) such that no chamber adjacent to C is mapped onto a
chamber containing p (except for C). Let C ′ be any chamber opposite θ(C). Then the
apartment Σ{θ(C), C ′} contains a unique chamber F ′ opposite the unique chamber F of
Σ{θ(C), C ′}, with F containing p and F *= θ(C). Hence F ′ is opposite no chamber θ(X),
with X adjacent to θ(C). By (OPP), θ(F ′) is not opposite any chamber adjacent to C.
However, we already showed that θ(F ′) is adjacent to θ(C ′), which is opposite C. But
this implies that θ(F ′) must be opposite at least one neighbour of C, a contradiction.
Hence we have shown that, if a chamber D belongs to the image of θ, then every chamber
adjacent to D does. An obvious induction argument on the gallery distance of an arbitrary
chamber to D now implies that θ is surjective.

Now we claim that θ is also injective. Suppose that C and D are two distinct chambers of
∆. Then there exists a chamber opposite C, but not opposite D, and by the surjectivity
of θ, we may write this chamber as θ(F ). Now (OPP) yields that F is opposite θ(C), but
not opposite θ(D), implying θ(C) *= θ(D).

So θ is a bijection, mapping adjacent chambers onto adjacent chambers. Since θ−1 also
satisfies (OPP), it preserves adjacency as well. Applying again (as in the proof of Corol-
lary 5.2) Theorem 3.21 in Tits [1974], we conclude that θ extends uniquely to an au-
tomorphism of ∆. Now fix a chamber C, then we have X op θ(C) ⇔ θ(X) op θ2(C), for
all X ∈ Ch(∆) (because θ is an automorphism), but (OPP) implies that X op θ(C) ⇔
θ(X) opC. Hence C op = (θ2(C)) op by the surjectivity of θ. We infer C = θ2(C), so θ
is involutive.
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The corollary is completely proved. !

Remark 5.6 One might try to characterize involutions in 2-spherical twin buildings ∆
similarly as in the previous corollary. However, especially in the case where the map θ
interchanges the two components of ∆, condition (OPP) does not seem to be the right
requirement. If θ preserves the components of ∆ = (∆+, ∆−, δ∗), then we have the
following result, which has, up to the first and the last paragraph, a proof that is identical
to the proof of Corollary 5.5 (and we leave it to the reader as an easy exercise to adjust
these paragraphs).

Let ∆ = (∆+, ∆−, δ∗) be a thick twin building. A map θ = (θ+, θ−) with θε : Ch(∆ε) →
Ch(∆ε), ε ∈ {+,−}, satisfies

(OPP) C op θ(D)⇒ θ(C) opD, for all chambers C, D ∈ Ch(∆),

if and only if θ+ and θ− are adjacency-preserving bijections and (θ+, θ−1
− ) preserves oppo-

sition and non-opposition.

Remark 5.7 There is an alternative and shorter argument to deduce surjectivity in the
proof of Corollary 5.5, if one uses the finite rank of the building ∆. However, we have
chosen to write down the longer argument because our proof is now also valid for appropri-
ately defined (generalizations of) spherical buildings of infinite rank (infinite dimensional
projective spaces and polar spaces).
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