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Abstract

I present an elementary description of the smallest generalized hexagon
using only the elements of a Fano projective plane. Representations of the
symplectic space W5(2) and of the projective space PG(5, 2) using only ele-
ments of PG(2, 2) emerge. As an application, I produce an embedding of the
dual H(2)D of the split Cayley hexagon H(2) in PG(7, 2).

1 Introduction

A generalized hexagon Γ of order (s, t) is a rank 2 point-line geometry whose incidence
graph has diameter 6 and girth 12, each vertex corresponding to a point has valency
t+1 and each vertex corresponding to a line has valency s+1. These objects arise in
the context of triality and were discovered by Tits [1959], who also constructed the
main examples, and in fact, all known finite examples. For a general introduction,
see the monograph Generalized Polygons by Van Maldeghem [1998] (which we
abbreviate by [GP] from now on), or, emphasizing the finite case, the chapter by
Thas [1995] in the Handbook of Incidence Geometry. In this note, we will use the
notation and terminology of [GP] (in particular, distance between elements in Γ
is the distance in the incidence graph, opposite elements are elements at maximal
distance 6, collinear elements — denoted by “⊥” — are elements at distance 2, etc).

The finite examples known at present all have a large automorphism group, more
exactly, the groups G2(q) and 3D4(q) arise here. The corresponding generalized
hexagons are, up to duality, the geometries naturally associated with these groups
and their parabolic subgroups (as groups with a BN-pair of type G2). The hexagons
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related to G2(q) are called the split Cayley hexagons — denoted by H(q) — and we
will focus on them for the moment.

Since G2(q) is a subgroup of O7(q), there is a representation of H(q) on the parabolic
quadric Q(6, q) in the projective space PG(6, q). The points of H(q) are all points of
Q(6, q) and the lines of H(q) are some lines of Q(6, q), namely those whose Grassman-
nian coordinates satisfy certain linear equations, see Tits [1959] for more details (or
see [GP],2.4.13). If q is even, then Q(6, q) has a kernel k (a point contained in every
tangent hyperplane) and projecting Q(6, q) from k onto a hyperplane not incident
with k, we obtain a representation of H(q) in PG(5, q), where the points of H(q)
are all points of PG(5, q), and the lines of H(q) are some lines of a symplectic space
W5(q). This is well-known, see [GP],2.4.14.

Moreover, the group G2(2) is isomorphic to PGU3(3), and this isomorphism trans-
lates into an elementary description of H(2) in the projective plane PG(2, 9) (also
due to Tits [1959]) as follows: the points of H(2) are the non-self-conjugate points
of PG(2, 9) with respect to a fixed unitary polarity, and three such points form a
line if they constitute a self-conjugate triangle.

Also, Payne [1971] has represented H(q) using only elements of PG(3, q). In the
special case of s = 2, we will show that the Fano plane PG(2, 2) already “contains”
in an elementary way the hexagon H(2). As a consequence, we can also represent
W5(2) and PG(5, 2) only using elements of PG(2, 2). This will be done in the next
sections. At the end of the paper, we give some motivation and background, as well
as an application.

Note that the hexagon H(2) is, up to duality, the unique hexagon of order (2, 2) (see
Tits [1959] or Cohen & Tits [1985]). It is not isomorphic to its dual (the dual is
obtained by interchanging the roles of points and lines).

2 The construction

Let there be given the Fano plane PG(2, 2). We define the following geometry
Γ = (P ,L, I ). The set of points P is the set of points, lines, flags and anti flags
of PG(2, 2). Recall that a flag is an incident point-line pair, and an anti flag is a
non-incident point-line pair. The elements of L, the lines of Γ, are of two types. We
define them by giving the 3 points incident with each line. For any flag {p, L}, with
p a point of PG(2, 2) and L a line of PG(2, 2), the set {p, L, {p, L}} is a line of
Γ, and for every flag {p, L} of PG(2, 2), the set {{p, L}, {x1, M1}, {x2, M2}} (where
{p, x1, x2} is the set of points of PG(2, 2) incident with L, and dually, {L, M1, M2}
is the set of lines of PG(2, 2) incident with p) is a line of Γ.

Proposition 1. The geometry Γ is a generalized hexagon isomorphic to H(2).
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Proof. We define a bijection Θ between the points of H(2) and those of Γ and show
that collinearity is preserved. Since the number of lines of H(2) equals the number
of lines of Γ (namely, 63), it follows that also θ−1 preserves collinearity and hence Θ
is an isomorphism.

For clarity’s sake, we will denote elements of H(2) with lower case Greek letters, and
elements of PG(2, 2) with Latin letters.

We know that H(2) contains a sub geometry ∆ isomorphic to a generalized hexagon
of order (1, 2), see 1.9.10 and 2.4.15 of [GP]. ∆ can be described as follows. Its
points are the points and lines of PG(2, 2), and its lines are the incident point-line
pairs (hence the flags) of PG(2, 2) with obvious incidence relation. We define Θ on
the points of ∆ in the natural way: a point of ∆ is mapped onto to corresponding
point or line of PG(2, 2).

On each line λ of ∆, there is a unique point of H(2) not belonging to ∆. We map
this point under θ to the flag of PG(2, 2) corresponding with λ. Now consider an
anti flag {p, L} in PG(2, 2). Then π := Θ−1(p) and ρ := Θ−1(L) are two opposite
points of H(2). There are exactly three lines in H(2) at distance 3 from both these
points, and there are exactly three points π, ρ, σ of H(2) at distance 3 from these
three lines (by the regulus condition, see Ronan [1980], or in the terminology of
[GP], by the distance-3-regularity). By definition, we put Θ(σ) := {p, L}. This is
well defined since it is readily seen that σ cannot be at distance 3 from at least 4
lines of ∆ (see also Thas [1976] and 1.8.11 of [GP]). Since Θ is now a surjective
map from the set of 63 points of H(2) onto a set of 63 elements (7 points, 7 lines,
21 flags and 28 anti flags of PG(2, 2)), we see that Θ is bijective.

It is clear that, if {p, L} is a flag of PG(2, 2), the points Θ−1(p), Θ−1(L) and
Θ−1({p, L}) form a line in H(2). It is also clear from the construction that, for
any anti flag {p, L} of PG(2, 2), the point Θ−1({p, L}) is collinear with the point
Θ−1({x, M}), where p is incident with M , M with x and x with L in PG(2, 2). Hence
it remains to show that, if {p, L} is a flag of PG(2, 2), if the set of points incident
with L is p, x1, x2, and if the set of lines incident with p is L, M1, M2 (in PG(2, 2)),
then the third point of H(2) on the line through Θ−1({p, L}) and Θ−1({x1, M1}) is
Θ−1(x2, M2}).
By definition of Θ, the only points of H(2) collinear with Θ−1({p, L}) are the
four points Θ−1({xi, Mj}), i, j ∈ {1, 2}. Suppose by way of contradiction that
Θ−1({x1, M2}) is collinear with Θ−1({x1, M1}). Let M be any line of PG(2, 2)
through x1, M $= L, and let yi be the intersection of M with Mi, i = 1, 2. Then in
H(2), we have

Θ−1(M) ⊥ Θ−1({y1, M}) ⊥ Θ−1({x1, M1}) ⊥
⊥ Θ−1({x1, M2}) ⊥ Θ−1({y2, M}) ⊥ Θ−1(M),
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which defines an ordinary 5-gon, contradicting the fact that the incidence graph of
H(2) has girth 12.

The proposition is proved. !
Remark. It is also easy to show directly that the geometry Γ is a generalized
hexagon. Indeed, by counting the elements at distance ≤ 6 from a given element,
one obtains that the diameter of the incidence graph of Γ is equal to 6. But now
the girth must be 12, otherwise we cannot have 126 vertices at distance ≤ 6 from a
given vertex in the incidence graph, which has valency 3.

If we define the type of a 3-set of P as the set of types of its elements, where P
stands for point, L for line, F for flag, and A for anti flag, then the types of the lines
of Γ are PLF and FAA.

3 The symplectic space W5(2)

By adding the image under Θ of the ideal lines (or the hyperbolic lines) of H(q) to
L, we obtain a presentation of Q(6, 2) (see 2.4.16 of [GP]), and hence of W5(2). A
hyperbolic line in H(2) is just a set of 3 points collinear with a fixed point π, and at
distance 4 from another fixed point π′ opposite π, see 6.5.1 of [GP].

It is now an elementary exercise to determine the hyperbolic lines in terms of the
elements of PG(2, 2), but it is rather tedious to write all arguments down. So we
will just give the result.

Proposition 2. Let the point-line geometry Γ′ = (P ,L′, I ) be defined as follows.
The point set P is, as above, the set of points, lines, flags and anti flags of PG(2, 2).
The elements of L′ are the elements of L completed with the following 3-sets (and
for the convenience of the reader we give the type of each 3-set):

(i) {x1, x2, x3}, with x1, x2, x3 three elements incident with the same element of
PG(2, 2). There are 14 such sets, and they are precisely the point rows and
line pencils of PG(2, 2). They have types PPP and LLL.

(ii) {x1, {x2, y}, {x3, y}}, with x1, x2, x3 the three elements incident with the ele-
ment y. There are 42 such sets. They have types PFF and LFF.

(iii) {{p1, L1}, {p2, L2}, {p3, L3}}, with p1, p2, p3 three collinear points of PG(2, 2),
with L1, L2, L3 three concurrent lines of PG(2, 2), and with pi incident with
Li, i = 1, 2, 3. There are 28 such sets. They have type FFF.
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(iv) {x1, {x2, y}, {x3, y}}, with x1, x2, x3 three elements incident with a common
element z of PG(2, 2), and with y $= z an element incident with x1. There are
84 such sets. They have types PAA and LAA.

(v) {{p1, L1}, {p2, L3}, {p3, L2}, with p1, p2, p3, L1, L2, L3 as in (iii) above. There
are 84 such sets. They have type FAA.

Then Γ′ is isomorphic to the point-line geometry of W5(2).

Note that, indeed, W5(2) has 315 = 63 + (14 + 42 + 28 + 84 + 84) lines.

4 The projective space PG(5, 2)

By adjoining the images under Θ of the imaginary lines of H(2), see 6.5.5 of [GP],
to Γ′, we obtain a geometry Γ′′ which is isomorphic to the point-line geometry of
PG(5, 2). An imaginary line is the set of points at distance 3 from two opposite
lines of H(2). The proof of the next proposition is again elementary but tedious to
write down. We omit it, but the reader can easily do it for himself.

Proposition 3. Let the point-line geometry Γ′′ = (P ,L′′, I ) be defined as follows.
The point set P is, as above, the set of points, lines, flags and anti flags of PG(2, 2).
The elements of L′′ are the elements of L′ completed with the following 3-sets:

(a) {p, L, {p, L}}, with {p, L} an anti flag of PG(2, 2). There are 28 such sets.
They have type PLA.

(b) {{p1, L2}, {p2, L3}, {p3, L1}, with p1, p2, p3, L1, L2, L3 as in (iii) above (see Propo-
sition 2). There are 56 such sets. They have type AAA.

(c) {{p, L}, {q1, M1}, {q2, M2}}, with M1 a line of PG(2, 2) containing the three
(distinct) points p, q1, q2, and q2 a point incident with the three (distinct) lines
L, M1, M2. There are 84 such sets. They have type FFA

(d) {x1, {x2, y}, {x3, y}}, with x1, x2, x3 three elements incident with a common
element z, and y $= z is incident with x3. There are 168 such sets. They have
types PFA and LFA.

5 Motivation and Remarks

The main motivation for the construction of H(2) in this paper is the simplicity of
that construction. It can be given in any introductory lecture about generalized
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polygons, since the Fano projective plane is very easily introduced by a picture.
There has lately been some interest in pictures of the hexagon H(2) and its dual.
The pictures of Schroth [19**] are very nice, but slightly too complicated to serve
as a definition of H(2). Polster [1998], on the other hand, makes pictures that
can really be used as a definition of certain geometries. His idea is to let one group
act on different configurations (defining the various elements and incidence of the
geometry) given by pictures, and this way generate the full geometry. In fact, what
he does is encode the full geometry in a small number of pictures. This is also
the exercise he carries out in Polster [19**] to construct H(2). Unfortunately,
he does not arrive at the construction of the present paper, but at a rather more
complicated one (there are also four types of points, vaguely related to the Fano
plane, or, more precisely, to a pair of Fano planes with common point set, so that
only a dihedral group of order 14 acts on his set of points instead of the group
AutPGL3(2) ∼= PGL2(7) as in our case, and there are six types of lines; moreover,
to obtain W5(2), he has to define an additional 36 types of lines; not less than a
total of 93 different types of lines are needed to define PG(5, 2)!).

Some special substructures of H(2), of W5(2) or PG(5, 2) can be seen in the represen-
tation we gave. For instance, there is a unique line of Γ through every point of type
F. Hence the points of type F define a partition of L. Deleting the points of type F ,
we see that there remain the points of type P and L, with collinearity defining the
incidence graph of PG(2, 2), and the points of type A, where collinearity precisely
defines the Coxeter graph, as can be easily seen (see e.g. 12.3 of Brouwer, Cohen
& Neumaier [1989] for this definition of Coxeter graph). This is also remarked by
Polster [19**], although in his representation, the Coxeter graph is slightly harder
to identify. Also, the thirty five points of type P, L and F form the point set of a
Klein quadric in PG(5, 2) (or rather in Γ′′). Every passant (non-intersecting line)
is of type AAA, and it is easily seen that they are all equivalent under the group
PGL3(2) of PG(2, 2) (which of course acts on Γ, Γ′ and Γ′′).

We leave it to the reader to discover other side-accidents of this construction.

We content ourselves by mentioning one further application in the next section.

6 Application: an embedding of H(2)D in PG(7, 2)

We now define a mapping Ψ from the set of lines of H(2) to the set of points of
PG(7, 2). Therefore, we view PG(7, 2) as the hyperplane in PG(8, 2) (where we
denote a general point by the 9-tuple (x00, x01, x02, x10, x11, x12, x20, x21, x22)) with
equation X00 + X11 + X22 = 0. We identify the lines of H(2) with the sets of flags,
points, lines and anti-flags of PG(2, 2) given in Section 2 above. We consider any
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coordinatization of PG(2, 2) and denote the points with parentheses and the lines
with square brackets. For any point-line pair {p, L} of PG(2, 2), with p = (x0, x1, x2)
and L = [a0, a1, a2], ai, xi ∈ GF(2), i = 1, 2, 3, we define the point {p, L}θ of
PG(8, 2) by

(a0x0, a1x0, a2x0, a0x1, a1x1, a2x1, a0x2, a1x2, a2x2).

Now for any flag {p, L} of PG(2, 2), we define

{p, L, {p, L}}Ψ = {p, L}θ.

Also, for the line {{p, L}, {x1, M1}, {x2, M2}} (where {p, x1, x2} is the set of points
of PG(2, 2) incident with L, and dually, {L, M1, M2} is the set of lines of PG(2, 2)
incident with p) of H(2), we define {{p, L}, {x1, M1}, {x2, M2}}Ψ as the nucleus of
the conic with point set

{{p, L}θ, {x1, M1}θ, {x2, M2}θ}.

Equivalently, this point is equal to the coordinate wise addition

{p, L}θ + {x1, M1}θ + {x2, M2}θ.

It is now an elementary exercise to see that LΨ is contained in PG(7, 2). Moreover,
one can check that concurrent lines in H(2) are mapped under Ψ to collinear points
(the calculations boil down to checking this only once for each of the four types of
sets of concurrent lines — corresponding with the four types of points of H(2) —
using the action of the group PGL3(2) acting with four orbits on the embedding).
Hence we obtain a full embedding Γ of the dual of H(2) in PG(7, 2).

We claim that the full automorphism group of the embedding is the full automor-
phism group of PGL3(2). Indeed, clearly, this group acts on the embedding. But
the images of the two types of lines of H(2) form two orbits under the automor-
phism group of the embedding because the lines of H(2) concurrent with a line of
the form {p, L, {p, L}, with {p, L} a flag of PG(2, 2), are mapped under Ψ to a set
of 6 coplanar points, while this is not true for the other lines of H(2). The claim
now follows.

Further, it is easy to check that the points x corresponding with lines of H(2) of
type {p, L, {p, L}}, with {p, L} a flag of PG(2, 2), have the following property: the
set of points of Γ collinear with x is contained in a plane of PG(7, 2) and the set of
points of Γ not opposite x is contained in a hyperplane of PG(7, 2). None of these
is true for the other points of Γ.
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