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Abstract

Let G be a group with an irreducible spherical (B,N)-pair of rank 2 where B
has a normal subgroup U with B = UT for T = B ∩N . Let P be the generalized
n-gon associated to this (B,N)-pair and let W be the associated Weyl group. So
T stabilizes an ordinary n-gon in P, and |W | = 2n. We prove that, if either U is
nilpotent or G acts effectively on P and Z(U) #= 1, then |W | = 2n with n = 3, 4, 6, 8
or 12. If G acts effectively and n #= 4, 6, then (up to duality) Z(U) consists of central
elations. Also, if n = 3 and U is nilpotent, then P is a Moufang projective plane
and if, moreover, G acts effectively on P, then it contains its little projective group.
Finally, we show that, if G acts effectively on P, if Z(U) #= 1, and if T satisfies a
certain strong transitivity assumption, then P is a Moufang n-gon with n = 3, 4 or
6 and G contains its little projective group.

1 Introduction

For the purpose of this paper, a thick generalized polygon P (or thick generalized n-gon,
n ≥ 3), or briefly a polygon (or n-gon), is a bipartite graph (the two corresponding classes
are called types) of diameter n and girth 2n (the girth of a graph is the length of a minimal
circuit) containing a proper circuit of length 2n + 2 (the latter is equivalent with saying
that all vertices have valency > 2, see [15]). If the last condition is not (necessarily)
satisfied, then the polygon is called weak. The vertices are called the elements of P. A
pair of elements {x, y} is called a flag if x and y are adjacent. The set of neighbors of an
element x is denoted by D1(x), and, more generally, the set of elements at distance i from
x, 0 ≤ i ≤ n, is denoted by Di(x). The diameter of the edge graph of P is also equal to
n and two flags at distance n from each other are called opposite. Also two elements of
P at distance n from each other are called opposite. A circuit of length 2n in P is called
an apartment. Two opposite flags are contained in exactly one apartment. These, and
many more properties, can be found in [15]. A sequence (x0, x1, . . . , xk) of elements of P
is called a simple path of length k, or a (simple) k-path, if xi−1 is incident with xi, for all
i ∈ {1, 2, . . . , k}, and if xi−1 #= xi+1, for all i ∈ {1, 2, . . . , k − 1}.

Generalized polygons were introduced by Tits [11]. The standard examples arise from
irreducible spherical (B,N)-pairs of rank 2. For this paper, we will content ourselves with
a geometric definition of these.
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Therefore, let P be an n-gon, and let G be a group acting (not necessarily effectively)
on P such that each element of G acts as a type preserving graph automorphism. If G acts
transitively on the set of apartments of P, and if the stabilizer in G of an apartment A acts
as the dihedral group of order 2n on A, then we say that G is a group with an irreducible
spherical (B,N)-pair of rank 2, or briefly, with a (B,N)-pair. If we fix an apartment A
and a flag f contained in A, then we call the stabilizer B in G of f a Borel subgroup of
G. Also, there exists a subgroup N of B stabilizing A such that B ∩ N is normal in N
and the corresponding quotient W has order 2n and is isomorphic to a dihedral group.
The group W is called the Weyl group of G. The group N is not unique; in particular
one can take the full stabilizer of A in G. If P is a weak polygon, then we call G a weak
(B,N)-pair. Groups with a (B,N)-pair were introduced by Tits; see e.g. [13].

Let P be an n-gon. An elation g of P is an automorphism of P fixing D1(xi), 1 ≤ i ≤
n − 1, for some simple path (x1, x2, . . . , xn−1) of P. The group of elations fixing D1(xi),
1 ≤ i ≤ n − 1, for the simple path (x1, x2, . . . , xn−1) acts freely on D1(x0) \ {x1}, for
every element x0 ∈ D1(x1) \ {x2}. If this action is transitive for all such x0, then we say
that the path (x1, x2, . . . , xn−1) is a Moufang path. If all simple paths of length n− 2 are
Moufang, then we say that P is a Moufang polygon. If n is even, and if all simple paths
of length n− 2 starting with an element of fixed type are Moufang, then we say that P is
half Moufang. All Moufang polygons are classified by Tits and Weiss [14]. An elation is
called central if it fixes Di(x), for some element x, and for all positive i ≤ n/2 (in which
case x is called a center of the elation). The little projective group of a Moufang polygon is
the group generated by all elations. It is a group with a natural (B,N)-pair and it always
contains central elations. For the notions introduced in this paragraph, see [14] and [15].

Let G be a group with an irreducible spherical (B,N)-pair of rank 2, let P be the
corresponding polygon and let A be any apartment of P. If for any element x of A, the
pointwise stabilizer in G of A acts transitively on the set of elements of D1(x) which are
not contained in A, then we call G highly transitive. It is equivalent to require this for
two adjacent elements x of A.

If an n-gon P admits a type preserving automorphism group G acting transitively on
the set of proper circuits of length 2n+2, and such that the stabilizer of such a circuit acts
as the dihedral group of order 2n + 2 on that circuit, then G is a group with a (B,N)-pair
(and corresponding n-gon P), and we call this (B,N)-pair strong. A group G with a strong
(B,N)-pair is automatically highly transitive.

Granted the classification of finite simple groups, all finite groups with an irreducible
spherical (B,N)-pair of rank 2 can be classified, see [1]. The finiteness condition can not be
dispensed with as is shown by the ‘free’ and ‘universal’ examples of Tits [12] and Tent [8].
Hence, one must have additional hypotheses in order to classify. Therefore, let us have a
look at some results in the finite case the proofs of which do not use the classification of
finite simple groups.

(i) A fundamental result of Feit and Higman [2] states that the Weyl group W of a
weak finite (B,N)-pair must have order |W | = 2n for n = 2, 3, 4, 6, 8 or 12. In fact,
this is a consequence of their theorem that thick finite generalized n-gons exist only
for n = 3, 4, 6 and 8. This result does not hold in the infinite case: for any n, there
are infinite groups with a (B,N)-pair whose Weyl group has order 2n (see [8, 12]).
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(ii) Consider the following condition for a group G with a (B,N)-pair:

(*) there exists a normal nilpotent subgroup U of B such that B = UT , for
T = B ∩N .

Fong and Seitz [3] classified all finite irreducible spherical (B,N)-pairs of rank 2
satisfying (*). They showed that such groups are all of Lie type equipped with a
natural (B,N)-pair structure, and hence the corresponding polygon is known.

(iii) The finite n-gons with a strong (B,N)-pair, and the corresponding groups (acting
faithfully on the n-gon) are classified in [6, 10, 16]. However, in the infinite case,
strong (B,N)-pairs exist for each n ≥ 3, see [8] (and so, in particular, there are
infinite generalized n-gons with a highly transitive group, for all n), and the con-
struction shows that a classification is out of reach.

So in the infinite case, possibly except for the second result above, one needs additional
hypotheses. In this paper, we will show in a purely geometrical way the following results,
which are respective infinite analogs of the finite theorems mentioned above. Before
stating these results, we introduce the following condition for a group G with a (B,N)-
pair:

(**) there is a normal subgroup U of B such that B = UT , with T = B ∩ N , and
Z(UR/R) #= 1, where R is the kernel of the action of G on the corresponding
polygon P.

Theorem 1. The Weyl group of the group G with an irreducible spherical (B,N)-pair
of rank 2 satisfying (**) must have order 2n with n = 3, 4, 6, 8 or 12. If, moreover,
n ∈ {3, 8, 12}, then the center of UR/R (with R defined as in (**)) consists of central
elations. In particular, if G is a group with an irreducible spherical (B,N)-pair of rank 2
satisfying (*) and corresponding n-gon P, then n ∈ {3, 4, 6, 8, 12}.

Theorem 2. If G is a group with a (B,N)-pair satisfying (*) and with Weyl group W of
order 6, then the associated projective plane P is a Moufang plane and G/R contains its
little projective group, where R denotes the kernel of the action of G on P.

Theorem 3. If G is a highly transitive group with an irreducible spherical (B,N)-pair
of rank 2 satisfying (**), then the associated polygon P is a Moufang polygon and G/R
contains the little projective group of P, where R is the kernel of the action of G on P.

2 A general lemma

2.1 Standing Hypotheses. Throughout, let G be a group with an irreducible spherical
(B,N)-pair of rank 2 and let P be the associated n-gon. Let A be some apartment in P
and let {p, q} be a flag in A. Let B be the stabilizer of {p, q}, and let N ≤ G be such
that it stabilizes A and such that T := B ∩ N ! B with W := B/T isomorphic to the
dihedral group of order 2n. Finally, let R be the kernel of the action of G on P. Then
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G/R is a group with a (B,N)-pair and with corresponding polygon P. The stabilizer of
{p, q} in G/R is B/R. The group N/R stabilizes A and T/R = B/R∩N/R !B/R, with
W ≡ (B/R)/(T/R). If G satisfies (*) or (**), respectively, then so does G/R. Hence, in
order to show Theorems 1, 2 and 3, we may assume that R is trivial and hence that G
acts effectively (faithfully) on P.

Since in this case, (*) implies (**), we assume throughout that U is a normal subgroup
of B satisfying B = UT with Z(U) #= 1.

We observe that U acts transitively on the set of flags opposite {p, q}. Also, we will
use the following well known observation frequently:

2.2 Lemma Let G be a group acting on a set X, and let g and h be commuting elements
of G. If g fixes some x ∈ X, then it also fixes h(x). "

Now, it is an immediate consequence of Lemma 2.2 and the transitivity of U on flags
opposite {p, q} that, if an element in Z(U) fixes an element in Di(p) for i < n, then it
fixes all elements in Di(p). This implies in particular that, if Z(U) fixes a path (x0, . . . xk),
then Z(U) fixes all elements in D1(x1) ∪ . . . ∪ D1(xk−1) and acts semi-regularly (freely)
on D1(x0) and D1(xk).

The following result uses a small modification of Lemma 5 of [17].

2.3 Lemma The group Z(U) fixes the set Dk(p) ∪ Dk(q) elementwise, for all k < n/2.
In particular, if n is odd, then for any flag {x, y} of P, there exists a non-trivial central
elation with two centers x and y.

Proof. Suppose not. Without loss of generality, let v ∈ Z(U) be an element of the
center not fixing all of Dk(q) with k < n/2 minimal, and hence not fixing any element
in Dk(q). Choose a simple path γ = (p, q, x2, . . . , xn) of length n, put q = x1 and let
Uγ denote the subgroup of U fixing γ. Then Uγ acts transitively on D1(p) \ {q} and on
D1(xn) \ {xn−1}.

Now let u ∈ Uγ. Since u and v commute, we conclude by Lemma 2.2 that u also fixes
v(γ). But since v does not fix xk+1, the sequence (xn, . . . xk+1, xk, v(xk+1), . . . v(xn)) is
a path. It is fixed by u and has length 2n − 2k > n. Now, the flag {v(x2k), v(x2k+1)}
is opposite the flag {xn, xx−1}, and hence u fixes the unique apartment determined by
these two flags; this implies that u fixes the unique element y ∈ D1xn \ {xn−1} of that
apartment. Thus, any element of U which fixes γ fixes y. But U acts transitively on
D1(xn) \ {xn−1}, a contradiction.

So, Z(U) fixes Dk(p) ∪ Dk(q) for all k < n/2. For odd n, this implies immediately
that Z(U) consists of elations having two centers p and q. "

3 Proof of Theorem 1

In this section, we prove Theorem 1. So under the assumptions of our standing hypothe-
ses, we have to show that n ∈ {3, 4, 6, 8, 12}, and if n #= 4, 6, then Z(U) consists of
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central elations. The proof is almost identical to parts of [17], except that we make some
additional explicit observations (and that the general assumptions are different).

So, as in [17], the idea of the proof to rule out the values n /∈ {3, 4, 6, 8, 12} is roughly
speaking as follows. We consider the commutator of two central elements with respect to
flags at a certain distance and find that it (1) fixes too much to be non-trivial, but (2)
does not fix everything, yielding a contradiction.

Case 1: n is odd.

First assume that n is odd. Let (x, y) and (x′, y′) be flags where, say, d(x, x′) = n+3
2 and

d(y, y′) = n−1
2 . By the Lemma 2.3 we know that there exist elations α with centers x, y and

β with centers x′, y′. Since α fixes y′, and β fixes y, it is easy to see that the commutator
θ := [α, β] = αβα−1β−1 fixes all elements at distance ≤ n−1

2 from y and all elements at
distance ≤ n−1

2 from y′. Hence θ fixes D1(z) pointwise for all z belonging to any simple
path (z1, z2, . . . , z 3n−5

2
), with y = zn−1

2
and y′ = zn−1. Hence θ is the identity whenever

the length 3n−7
2 of that path exceeds n − 2. But now consider z ∈ Dn−1

2
(x′) ∩Dn+1

2
(y′),

and suppose that θ fixes z. Then α−1(z) = β−1α−1(z) and so β fixes α−1(z). Since α
does not fix x′, α−1(z) belongs to Dn+1

2
(y′) ∩Dn+3

2
(x′). Hence β would be the identity, a

contradiction. So θ is not the identity, implying 3n−7
2 ≤ n− 2. This reduces to n ≤ 3.

Case 2: n = 2m and Z(U) contains an automorphism which is not a central elation.

In this case, for any flag {x, y}, there exists a non-trivial automorphism αx,y fixing Dk(x)∪
Dk(y), for 0 ≤ k ≤ n

2 − 1, and acting freely on the sets Dn/2(x)∩Dn/2+1(y) and Dn/2(y)∩
Dn/2+1(x) (by Lemma 2.2 and Lemma 2.3). Let (x, y) and (x′, y′) be flags with d(x, x′) =
n/2 + 1 and d(y, y′) = n/2− 1. Choose αx,y =: α and αx′,y′ =: β. Since α fixes y′, and
β fixes y, we see as before that the commutator θ := [α, β] fixes all elements at distance
≤ n/2− 1 from y and all elements at distance ≤ n/2− 1 from y′. Hence θ fixes D1(z)
pointwise for all z belonging to any simple path (z1, z2, . . . , z3n/2−4), with y = zn/2−1 and
y′ = zn−2. Hence θ is the identity whenever the length 3n/2 − 5 of that path exceeds
n− 2. But now consider z ∈ Dn/2−1(x′) ∩Dn/2(y′). As in Case 1 one easily shows that θ
does not fix z. So θ is not the identity, implying 3n/2− 5 ≤ n− 2. This reduces to n ≤ 6.

Remark that, if n = 6, then the length of the path (z1, . . . , z5) is equal to n − 2 = 4,
hence θ is a non-trivial elation fixing D2(z2) and D2(z4) pointwise. By choosing the flags
{x, y} and {x′, y′} appropriately, we thus obtain in this case such non-trivial elations for
all simple paths of length 4.

Case 3a: n = 2m with m odd where Z(U) consists of central elations.

By the transitivity of G on elements of a given type, every element of one type of P is
center of a non-trivial elation. Let p and p′ be such elements at distance m + 1 from
each other and choose non-trivial elations α and β with center p and p′, respectively.
Then, as before, one easily shows that the commutator θ = [α, β] is non-trivial. Also, if
{q} = D1(p) ∩Dm(p′) and {q′} = D1(p′) ∩Dm(p), then θ fixes Dm−1(q) ∪Dm−1(q′). As
before, this implies that 3m− 5 ≤ n− 2, hence n ≤ 6.

Case 3b: n = 2m with m even where Z(U) consists of central elations.
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Here, we argue similarly as in Case 3a, except that we have to choose elements p and p′

at distance m + 2 from each other. So we obtain the condition 3m− 8 ≤ n− 2, implying
n ≤ 12, so n ∈ {4, 8, 12}.

Thus, either Z(U) consists of elations and n ∈ {3, 4, 6, 8, 12} or Z(U) does not consist
entirely of elations and n = 4 or 6. "

The remark in Case 2 of the proof of the previous theorem shows:

3.1 Proposition If, under the standing hypotheses, n = 6, then either Z(U) consists
of central elations or U contains elations for any simple path (x1, . . . x5) fixing D2(x2) ∪
D2(x4) pointwise. "

4 Proof of Theorem 2

In this section we prove Theorem 2, as a corollary of a more general proposition.

4.1 Proposition Let G be a group with an irreducible spherical (B,N)-pair of rank 2
satisfying (*), i.e., in terms of our standing hypotheses, U is nilpotent. Then — up
to duality, i.e., up to interchanging p and q — for all x ∈ D1(p) \ {q}, and for all k,
0 < k < n/2, the subgroup of U fixing the set D1(p)∪D1(q) pointwise acts transitively on
all elements in Dk(x)∩Dk+1(p). Also, for all y ∈ D1(q)\{p}, and for all k, 0 < k < n/2,
the subgroup of U fixing the set D1(q) elementwise, acts transitively on all elements in
Dk(y) ∩Dk+1(q).

Proof. Clearly, we may assume that k is maximal with respect to the property k < n/2.
Let {1}!Z(U) = Z1(U)!Z2(U)! · · ·!Zm−1(U)!Zm(U) = U be the ascending central
series of U and let i > 0 be minimal with the property that Zi+1(U) does not fix all of
D1(p)∪D1(q). Note that such an i exists because Z(U) fixes D1(p)∪D1(q) by Lemma 2.3.
Without loss of generality, there is some v ∈ Zi+1(U) not fixing D1(p) pointwise. Since
Zi(U) fixes all elements of D1(p) and U acts transitively on D1(p) \ {q}, this implies that
v does not fix any element of D1(p) \ {q}. Let x ∈ D1(p) \ {q} be arbitrary, and let
γ = (x, x1, . . . xk) and γ′ = (x, y1, . . . yk) be two simple paths of length k with x1, y1 #= p.

Then the simple path (xk, . . . x1, x, p, v(x), v(x1), . . . v(xk)) has length 2k +2 ∈ {n, n+
1} and hence it is contained in some ordinary n-gon Γ. Similarly there is an ordinary
n-gon Γ′ containing the simple path (yk, . . . y1, x, p, v(x), v(x1), . . . v(xk)).

Let (p1, q1) be the unique flag in Γ opposite (p, v(x)) and let (p2, q2) be the unique
flag of Γ′ opposite (p, v(x)). Then there exists u ∈ U mapping the flag (p1, q1) onto the
flag (p2, q2). Clearly, u fixes x and since the commutator [u, v] fixes all elements of D1(p),
we conclude that u also fixes v(x). By choice of Γ and Γ′, then u also fixes the path
(v(x1), . . . , v(xk)) and maps the path γ to γ′.

Now consider the commutator uv−1u−1v ∈ Zi(U). It is easy to see that it maps γ to
γ′; moreover it fixes D1(p) ∩D1(q) by our assumption on i, proving the first part of the
proposition.

The second part is proved in a completely similar way. "
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Now Theorem 2 follows since for n = 3, Proposition 4.1 immediately implies that the
flag (p, q) is a Moufang path. Hence all flags are Moufang paths and the projective plane
is a Moufang plane.

5 Proof of Theorem 3

The following theorem generalizes Theorem 6.4.9 of [15].

5.1 Proposition Suppose Q is a half Moufang generalized n-gon with n = 2m even,
and such that all the corresponding elations are central elations. Then Q is a generalized
quadrangle or a Moufang generalized hexagon.

Proof. Let (x1, . . . , xn−1) be a Moufang path and suppose all corresponding elations
are central elations with center xm. Choose x0 ∈ D1(x1)\{x2} and xn ∈ D1(xn−1)\{xn−2}.
Let (xn, xn+1, . . . , x2n−1, x0) be an arbitrary path of length n joining xn with x0 such that
x1 #= x2n−1. Let y be either an arbitrary element of Dm(xm) ∩Dm(x3m) or an arbitrary
element of Dm+1(x3m+1) ∩ Dm−1(xm+1), with y #= x0. Applying the group of central
elations with center xm, we easily see that Dm−1(x0)∩Dm+1(xn) = Dm−1(x0)∩Dm+1(y).
It follows from Lemma 1 of [4] and the symmetry between x0 and xn that the pair (x0, xn)
is distance-(m−1)-regular, see 6.4.1 of [15] for a precise definition. Now, Theorem 6.4.5(i)
of [15] implies that m− 1 ≤ n+2

4 , hence n ≤ 6. For n = 6, the result follows from [7]. "

In the case of a half Moufang quadrangle, we will use the following result.

5.2 Proposition Suppose Q is a half Moufang generalized quadrangle and suppose that
all simple paths of length 2 starting with an element of type 1 are Moufang paths. More-
over, suppose that for every flag {p, q}, with p an element of type 1, the action on
D1(q) \ {p} of the elation group corresponding with any simple path (p′, r, p), r #= q,
is independent of (p′, r). Then Q is a Moufang quadrangle and all elations are generated
by the elations corresponding with simple paths of length 2 starting with an element of
type 1.

Proof. See Proposition 3.6 of [9]. "

Throughout the rest of this section, we consider the standing hypotheses, and we
assume that G is highly transitive. We now embark on the proof of Theorem 3.

By Theorem 1, we know that n ∈ {3, 4, 6, 8, 12}. If n = 3, 8 or 12, then Z(U) consists
of central elations, which by the transitivity assumption on T are transitive for one type
of (n − 2)-paths. Thus the cases n = 8 and n = 12 are excluded by Proposition 5.1. If
n = 3, then, clearly, P is a Moufang projective plane.

If n = 6, then either Z(U) consists of central elations and we are done by Proposi-
tion 5.1, or, by Proposition 3.1, we have root elations of both types. By the transitivity
assumption on T we then see that P is Moufang.

Now consider the case n = 4. Assume first that Z(U) contains central elations, with
center q, say. Choose an element r ∈ D1(p)\{q}. Let U0 be the group of all central elations
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with center q. This group acts transitively as a regular abelian group on D1(r) \ {p}. Let
q′ be arbitrary in D1(p) \ {q, r}. Let g ∈ G be such that g(q) = q′ and put U ′

0 = gU0g−1.
Also U ′

0 acts as a regular abelian group on D1(r) \ {p}. Every element of the commutator
[U0, U ′

0] fixes D2(q) ∪ D2(q′) pointwise, hence must be the identity. It follows that the
actions on D1(r) of both U0 and U ′

0 are the same (see e.g. [5] 4.2.A(v)). Thus we can
apply Lemma 5.2 to see that P is in fact a Moufang quadrangle and G contains the little
projective group.

Hence it remains to deal with the case n = 4 where Z(U) does not contain central
elations. We will exclude this situation by a series of lemmas. Note that we do not know
whether or not P admits central elations (necessarily not belonging to any conjugate of
U).

5.3 Lemma Let P be as before, and let x be any element of P. Then the pointwise
stabilizer of D1(x) in G acts freely on the set D4(x).

Proof. In order to use our standard notation, we may without loss of generality suppose
that x is the unique element in D1(p) different from q and contained in the apartment A.
Suppose the lemma is false, then there exists some element u ∈ G \ {1} fixing D1(x) ∪A
pointwise. So u ∈ B (recall that B is the pointwise stabilizer of the flag {p, q}), hence u
normalizes Z(U). Let p′ be the element of A incident with q and distinct from p and let
q′ be incident with p′, different from q and contained in A. If u fixes D1(p′) pointwise,
then u is the identity by 4.4.2(v) of [15]. Hence there exists y ∈ D1(p′) with u(y) #= y. Let
v ∈ Z(U) be such that v(q′) = y, then the commutator θ := vuv−1u−1 belongs to Z(U)
and fixes D1(x) pointwise. Hence it is a central elation with center p, and consequently
it must, by assumption, be the identity. But it clearly does not fix y, a contradiction. "

5.4 Lemma Let P be as before, and let γ = (q′′, p, q) be a simple path of length 2. If α
is any elation for γ, then α is in fact a central elation.

Proof. Since Z(U) acts transitively on D1(q′′) \ {p}, every element of U fixing at
least one element of D1(q′′) \ {p} fixes D1(q′′) pointwise. So, by assumption, we obtain a
subgroup H∗ of U acting transitively on D4(q′′) ∩D2(q) and fixing D1(q′′) pointwise.

Now if α is a root elation for γ, then by Lemma 5.3 (putting x = q′′), α is in H∗ ≤ U
and hence must commute with all β ∈ Z(U). But this says that α is a central elation. "
5.5 Lemma Let P be as before, and let γ = (q′′, p, q, p′, q′) be a simple path of length 4.
If α is any elation for (p, q, p′), then α ∈ Z(U).

Proof. By Lemma 5.4, α is a central elation. By similar arguments as in Lemma 5.4,
the subgroup H ′ of U fixing {q′′, q′} fixes D1(p′) pointwise and acts transitively on D1(q′′)\
{p}. Thus, by Lemma 5.3, α ∈ H ′ ≤ U . If α #∈ Z(U), then there is some u ∈ U such that
the commutator [α, u] is non-trivial. Clearly, the action of H ′ on D1(q′′) commutes with
the action of Z(U), and since Z(U) is regular and abelian, these actions agree. Hence
there is some v ∈ Z(U) which induces the same action on D1(q′′) as α does. Then v and
α agree on D2(p) because otherwise αv−1 is an elation for (q′′, p, q) which is not a central
elation. But this is impossible. Thus [α, u] is the identity on D1(q′′), but since [α, u] is
clearly also a central elation, this is a contradiction. Consequently α ∈ Z(U). "
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5.6 Lemma Let P be as before, and let γ = (p, q, p′, q′) be a simple path of length 3
contained in A. Suppose that the group H fixing D1(p) ∪D1(q) ∪ {q′} pointwise is non-
trivial. Then the path (p, q, p′) is a Moufang path.

Proof. By the transitivity of T , the group H acts transitively on D1(q′) \ {p′}. Let
(q′′, p, q, p′, q′) be a simple path of length 4 contained in A, then, by symmetry, the group
H ′ fixing D1(p′) ∪ D1(q) ∪ {q′′} pointwise acts transitively on D1(q′′) \ {p}. Hence for
every element h ∈ H, there exists h′ ∈ H ′ such that h′h fixes A pointwise. Since it
also fixes D1(q) pointwise, it must be identity by Lemma 5.3. Hence h = h′−1 fixes
D1(p) ∪D1(q) ∪D1(p′) pointwise. Applying the transitivity of T , the result now follows.

"

We can now finish the proof of Theorem 3.
We keep the same notation as above, so we have the simple path (q′′, p, q, p′, q′) and

a regular and abelian subgroup H ′ of U fixing {q′′, q′} ∪ D1(p′) pointwise and acting
transitively on D1(q′′) \ {p}. Similarly, we obtain a group H ≤ B fixing D1(q) ∪ {q′, q′′}
pointwise and acting transitively on D1(q′′) \ {p}.

Now consider the commutator group [H, H ′] ≤ H ∩H ′ (by Lemma 5.2). If [H, H ′] is
non-trivial, then Lemma 5.6 implies that the path (p, q, p′) is Moufang, and Lemma 5.5
yields a contradiction. If on the other hand [H, H ′] is trivial, then the action of H on
D1(q′′) agrees with the action of H ′ on D1(q′′). If H #= H ′, then there are elements h ∈ H
and h′ ∈ H ′ such that hh′ is non-trivial and fixes D1(q′′)∪{q′}, contradicting Lemma 5.3.
Hence H = H ′ and Lemma 5.6 implies that the path (p, q, p′) is Moufang. Now Lemma 5.5
yields a contradiction. "
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