On irreducible (B,N)-pairs of rank 2

Katrin Tent* Hendrik Van Maldeghem ${ }^{\dagger}$

Abstract

Let G be a group with an irreducible spherical (B,N)-pair of rank 2 where B has a normal subgroup U with $B=U T$ for $T=B \cap N$. Let \mathfrak{P} be the generalized n-gon associated to this (B,N)-pair and let W be the associated Weyl group. So T stabilizes an ordinary n-gon in \mathfrak{P}, and $|W|=2 n$. We prove that, if either U is nilpotent or G acts effectively on \mathfrak{P} and $Z(U) \neq 1$, then $|W|=2 n$ with $n=3,4,6,8$ or 12. If G acts effectively and $n \neq 4,6$, then (up to duality) $Z(U)$ consists of central elations. Also, if $n=3$ and U is nilpotent, then \mathfrak{P} is a Moufang projective plane and if, moreover, G acts effectively on \mathfrak{P}, then it contains its little projective group. Finally, we show that, if G acts effectively on \mathfrak{P}, if $Z(U) \neq 1$, and if T satisfies a certain strong transitivity assumption, then \mathfrak{P} is a Moufang n-gon with $n=3,4$ or 6 and G contains its little projective group.

1 Introduction

For the purpose of this paper, a thick generalized polygon \mathfrak{P} (or thick generalized n-gon, $n \geq 3$), or briefly a polygon (or n-gon), is a bipartite graph (the two corresponding classes are called types) of diameter n and girth $2 n$ (the girth of a graph is the length of a minimal circuit) containing a proper circuit of length $2 n+2$ (the latter is equivalent with saying that all vertices have valency >2, see [15]). If the last condition is not (necessarily) satisfied, then the polygon is called weak. The vertices are called the elements of \mathfrak{P}. A pair of elements $\{x, y\}$ is called a flag if x and y are adjacent. The set of neighbors of an element x is denoted by $D_{1}(x)$, and, more generally, the set of elements at distance i from $x, 0 \leq i \leq n$, is denoted by $D_{i}(x)$. The diameter of the edge graph of \mathfrak{P} is also equal to n and two flags at distance n from each other are called opposite. Also two elements of \mathfrak{P} at distance n from each other are called opposite. A circuit of length $2 n$ in \mathfrak{P} is called an apartment. Two opposite flags are contained in exactly one apartment. These, and many more properties, can be found in [15]. A sequence $\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ of elements of \mathfrak{P} is called a simple path of length k, or a (simple) k-path, if x_{i-1} is incident with x_{i}, for all $i \in\{1,2, \ldots, k\}$, and if $x_{i-1} \neq x_{i+1}$, for all $i \in\{1,2, \ldots, k-1\}$.

Generalized polygons were introduced by Tits [11]. The standard examples arise from irreducible spherical (B,N)-pairs of rank 2. For this paper, we will content ourselves with a geometric definition of these.

[^0]Therefore, let \mathfrak{P} be an n-gon, and let G be a group acting (not necessarily effectively) on \mathfrak{P} such that each element of G acts as a type preserving graph automorphism. If G acts transitively on the set of apartments of \mathfrak{P}, and if the stabilizer in G of an apartment A acts as the dihedral group of order $2 n$ on A, then we say that G is a group with an irreducible spherical (B,N)-pair of rank 2, or briefly, with a (B,N)-pair. If we fix an apartment A and a flag f contained in A, then we call the stabilizer B in G of f a Borel subgroup of G. Also, there exists a subgroup N of B stabilizing A such that $B \cap N$ is normal in N and the corresponding quotient W has order $2 n$ and is isomorphic to a dihedral group. The group W is called the Weyl group of G. The group N is not unique; in particular one can take the full stabilizer of A in G. If \mathfrak{P} is a weak polygon, then we call G a weak (B,N)-pair. Groups with a (B,N)-pair were introduced by Tits; see e.g. [13].

Let \mathfrak{P} be an n-gon. An elation g of \mathfrak{P} is an automorphism of \mathfrak{P} fixing $D_{1}\left(x_{i}\right), 1 \leq i \leq$ $n-1$, for some simple path $\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$ of \mathfrak{P}. The group of elations fixing $D_{1}\left(x_{i}\right)$, $1 \leq i \leq n-1$, for the simple path $\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$ acts freely on $D_{1}\left(x_{0}\right) \backslash\left\{x_{1}\right\}$, for every element $x_{0} \in D_{1}\left(x_{1}\right) \backslash\left\{x_{2}\right\}$. If this action is transitive for all such x_{0}, then we say that the path $\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$ is a Moufang path. If all simple paths of length $n-2$ are Moufang, then we say that \mathfrak{P} is a Moufang polygon. If n is even, and if all simple paths of length $n-2$ starting with an element of fixed type are Moufang, then we say that \mathfrak{P} is half Moufang. All Moufang polygons are classified by Tits and Weiss [14]. An elation is called central if it fixes $D_{i}(x)$, for some element x, and for all positive $i \leq n / 2$ (in which case x is called a center of the elation). The little projective group of a Moufang polygon is the group generated by all elations. It is a group with a natural (B,N)-pair and it always contains central elations. For the notions introduced in this paragraph, see [14] and [15].

Let G be a group with an irreducible spherical (B,N)-pair of rank 2, let \mathfrak{P} be the corresponding polygon and let A be any apartment of \mathfrak{P}. If for any element x of A, the pointwise stabilizer in G of A acts transitively on the set of elements of $D_{1}(x)$ which are not contained in A, then we call G highly transitive. It is equivalent to require this for two adjacent elements x of A.

If an n-gon \mathfrak{P} admits a type preserving automorphism group G acting transitively on the set of proper circuits of length $2 n+2$, and such that the stabilizer of such a circuit acts as the dihedral group of order $2 n+2$ on that circuit, then G is a group with a (B,N)-pair (and corresponding n-gon \mathfrak{P}), and we call this (B,N)-pair strong. A group G with a strong (B, N)-pair is automatically highly transitive.

Granted the classification of finite simple groups, all finite groups with an irreducible spherical (B,N)-pair of rank 2 can be classified, see [1]. The finiteness condition can not be dispensed with as is shown by the 'free' and 'universal' examples of Tits [12] and Tent [8]. Hence, one must have additional hypotheses in order to classify. Therefore, let us have a look at some results in the finite case the proofs of which do not use the classification of finite simple groups.
(i) A fundamental result of Feit and Higman [2] states that the Weyl group W of a weak finite (B, N)-pair must have order $|W|=2 n$ for $n=2,3,4,6,8$ or 12 . In fact, this is a consequence of their theorem that thick finite generalized n-gons exist only for $n=3,4,6$ and 8 . This result does not hold in the infinite case: for any n, there are infinite groups with a (B,N)-pair whose Weyl group has order $2 n$ (see $[8,12]$).
(ii) Consider the following condition for a group G with a (B, N)-pair:
$\left(^{*}\right)$ there exists a normal nilpotent subgroup U of B such that $B=U T$, for $T=B \cap N$.

Fong and Seitz [3] classified all finite irreducible spherical (B,N)-pairs of rank 2 satisfying $\left(^{*}\right)$. They showed that such groups are all of Lie type equipped with a natural (B, N)-pair structure, and hence the corresponding polygon is known.
(iii) The finite n-gons with a strong (B,N)-pair, and the corresponding groups (acting faithfully on the n-gon) are classified in $[6,10,16]$. However, in the infinite case, strong (B,N)-pairs exist for each $n \geq 3$, see [8] (and so, in particular, there are infinite generalized n-gons with a highly transitive group, for all n), and the construction shows that a classification is out of reach.

So in the infinite case, possibly except for the second result above, one needs additional hypotheses. In this paper, we will show in a purely geometrical way the following results, which are respective infinite analogs of the finite theorems mentioned above. Before stating these results, we introduce the following condition for a group G with a (B,N)pair:
(**) there is a normal subgroup U of B such that $B=U T$, with $T=B \cap N$, and $Z(U R / R) \neq 1$, where R is the kernel of the action of G on the corresponding polygon \mathfrak{P}.

Theorem 1. The Weyl group of the group G with an irreducible spherical (B, N)-pair of rank 2 satisfying (${ }^{* *}$) must have order $2 n$ with $n=3,4,6,8$ or 12 . If, moreover, $n \in\{3,8,12\}$, then the center of $U R / R$ (with R defined as in $\left({ }^{* *}\right)$) consists of central elations. In particular, if G is a group with an irreducible spherical (B, N)-pair of rank 2 satisfying (*) and corresponding n-gon \mathfrak{P}, then $n \in\{3,4,6,8,12\}$.

Theorem 2. If G is a group with a (B,N)-pair satisfying (*) and with Weyl group W of order 6 , then the associated projective plane \mathfrak{P} is a Moufang plane and G / R contains its little projective group, where R denotes the kernel of the action of G on \mathfrak{P}.

Theorem 3. If G is a highly transitive group with an irreducible spherical (B, N)-pair of rank 2 satisfying $\left({ }^{* *}\right)$, then the associated polygon \mathfrak{P} is a Moufang polygon and G / R contains the little projective group of \mathfrak{P}, where R is the kernel of the action of G on \mathfrak{P}.

2 A general lemma

2.1 Standing Hypotheses. Throughout, let G be a group with an irreducible spherical (B,N)-pair of rank 2 and let \mathfrak{P} be the associated n-gon. Let A be some apartment in \mathfrak{P} and let $\{p, q\}$ be a flag in A. Let B be the stabilizer of $\{p, q\}$, and let $N \leq G$ be such that it stabilizes A and such that $T:=B \cap N \unlhd B$ with $W:=B / T$ isomorphic to the dihedral group of order $2 n$. Finally, let R be the kernel of the action of G on \mathfrak{P}. Then
G / R is a group with a (B, N)-pair and with corresponding polygon \mathfrak{P}. The stabilizer of $\{p, q\}$ in G / R is B / R. The group N / R stabilizes A and $T / R=B / R \cap N / R \unlhd B / R$, with $W \equiv(B / R) /(T / R)$. If G satisfies $\left(^{*}\right)$ or $\left({ }^{* *}\right)$, respectively, then so does G / R. Hence, in order to show Theorems 1, 2 and 3, we may assume that R is trivial and hence that G acts effectively (faithfully) on \mathfrak{P}.

Since in this case, $\left(^{*}\right)$ implies $\left(^{* *}\right)$, we assume throughout that U is a normal subgroup of B satisfying $B=U T$ with $Z(U) \neq 1$.

We observe that U acts transitively on the set of flags opposite $\{p, q\}$. Also, we will use the following well known observation frequently:
2.2 Lemma Let G be a group acting on a set X, and let g and h be commuting elements of G. If g fixes some $x \in X$, then it also fixes $h(x)$.

Now, it is an immediate consequence of Lemma 2.2 and the transitivity of U on flags opposite $\{p, q\}$ that, if an element in $Z(U)$ fixes an element in $D_{i}(p)$ for $i<n$, then it fixes all elements in $D_{i}(p)$. This implies in particular that, if $Z(U)$ fixes a path $\left(x_{0}, \ldots x_{k}\right)$, then $Z(U)$ fixes all elements in $D_{1}\left(x_{1}\right) \cup \ldots \cup D_{1}\left(x_{k-1}\right)$ and acts semi-regularly (freely) on $D_{1}\left(x_{0}\right)$ and $D_{1}\left(x_{k}\right)$.

The following result uses a small modification of Lemma 5 of [17].
2.3 Lemma The group $Z(U)$ fixes the set $D_{k}(p) \cup D_{k}(q)$ elementwise, for all $k<n / 2$. In particular, if n is odd, then for any flag $\{x, y\}$ of \mathfrak{P}, there exists a non-trivial central elation with two centers x and y.

Proof. Suppose not. Without loss of generality, let $v \in Z(U)$ be an element of the center not fixing all of $D_{k}(q)$ with $k<n / 2$ minimal, and hence not fixing any element in $D_{k}(q)$. Choose a simple path $\gamma=\left(p, q, x_{2}, \ldots, x_{n}\right)$ of length n, put $q=x_{1}$ and let U_{γ} denote the subgroup of U fixing γ. Then U_{γ} acts transitively on $D_{1}(p) \backslash\{q\}$ and on $D_{1}\left(x_{n}\right) \backslash\left\{x_{n-1}\right\}$.

Now let $u \in U_{\gamma}$. Since u and v commute, we conclude by Lemma 2.2 that u also fixes $v(\gamma)$. But since v does not fix x_{k+1}, the sequence $\left(x_{n}, \ldots x_{k+1}, x_{k}, v\left(x_{k+1}\right), \ldots v\left(x_{n}\right)\right)$ is a path. It is fixed by u and has length $2 n-2 k>n$. Now, the flag $\left\{v\left(x_{2 k}\right), v\left(x_{2 k+1}\right)\right\}$ is opposite the flag $\left\{x_{n}, x_{x-1}\right\}$, and hence u fixes the unique apartment determined by these two flags; this implies that u fixes the unique element $y \in D_{1} x_{n} \backslash\left\{x_{n-1}\right\}$ of that apartment. Thus, any element of U which fixes γ fixes y. But U acts transitively on $D_{1}\left(x_{n}\right) \backslash\left\{x_{n-1}\right\}$, a contradiction.

So, $Z(U)$ fixes $D_{k}(p) \cup D_{k}(q)$ for all $k<n / 2$. For odd n, this implies immediately that $Z(U)$ consists of elations having two centers p and q.

3 Proof of Theorem 1

In this section, we prove Theorem 1. So under the assumptions of our standing hypotheses, we have to show that $n \in\{3,4,6,8,12\}$, and if $n \neq 4,6$, then $Z(U)$ consists of
central elations. The proof is almost identical to parts of [17], except that we make some additional explicit observations (and that the general assumptions are different).

So, as in [17], the idea of the proof to rule out the values $n \notin\{3,4,6,8,12\}$ is roughly speaking as follows. We consider the commutator of two central elements with respect to flags at a certain distance and find that it (1) fixes too much to be non-trivial, but (2) does not fix everything, yielding a contradiction.

Case 1: n is odd.
First assume that n is odd. Let (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ be flags where, say, $d\left(x, x^{\prime}\right)=\frac{n+3}{2}$ and $d\left(y, y^{\prime}\right)=\frac{n-1}{2}$. By the Lemma 2.3 we know that there exist elations α with centers x, y and β with centers x^{\prime}, y^{\prime}. Since α fixes y^{\prime}, and β fixes y, it is easy to see that the commutator $\theta:=[\alpha, \beta]=\alpha \beta \alpha^{-1} \beta^{-1}$ fixes all elements at distance $\leq \frac{n-1}{2}$ from y and all elements at distance $\leq \frac{n-1}{2}$ from y^{\prime}. Hence θ fixes $D_{1}(z)$ pointwise for all z belonging to any simple path $\left(z_{1}, z_{2}, \ldots, z_{\frac{3 n-5}{2}}\right)$, with $y=z_{\frac{n-1}{2}}$ and $y^{\prime}=z_{n-1}$. Hence θ is the identity whenever the length $\frac{3 n-7}{2}$ of that path exceeds $n-2$. But now consider $z \in D_{\frac{n-1}{2}}\left(x^{\prime}\right) \cap D_{\frac{n+1}{2}}\left(y^{\prime}\right)$, and suppose that θ fixes z. Then $\alpha^{-1}(z)=\beta^{-1} \alpha^{-1}(z)$ and so β fixes $\alpha^{-1}(z)$. Since α does not fix $x^{\prime}, \alpha^{-1}(z)$ belongs to $D_{\frac{n+1}{2}}\left(y^{\prime}\right) \cap D_{\frac{n+3}{2}}\left(x^{\prime}\right)$. Hence β would be the identity, a contradiction. So θ is not the identity, implying $\frac{3 n-7}{2} \leq n-2$. This reduces to $n \leq 3$.

Case 2: $n=2 m$ and $Z(U)$ contains an automorphism which is not a central elation.
In this case, for any flag $\{x, y\}$, there exists a non-trivial automorphism $\alpha_{x, y}$ fixing $D_{k}(x) \cup$ $D_{k}(y)$, for $0 \leq k \leq \frac{n}{2}-1$, and acting freely on the sets $D_{n / 2}(x) \cap D_{n / 2+1}(y)$ and $D_{n / 2}(y) \cap$ $D_{n / 2+1}(x)$ (by Lemma 2.2 and Lemma 2.3). Let (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ be flags with $d\left(x, x^{\prime}\right)=$ $n / 2+1$ and $d\left(y, y^{\prime}\right)=n / 2-1$. Choose $\alpha_{x, y}=: \alpha$ and $\alpha_{x^{\prime}, y^{\prime}}=: \beta$. Since α fixes y^{\prime}, and β fixes y, we see as before that the commutator $\theta:=[\alpha, \beta]$ fixes all elements at distance $\leq n / 2-1$ from y and all elements at distance $\leq n / 2-1$ from y^{\prime}. Hence θ fixes $D_{1}(z)$ pointwise for all z belonging to any simple path $\left(z_{1}, z_{2}, \ldots, z_{3 n / 2-4}\right)$, with $y=z_{n / 2-1}$ and $y^{\prime}=z_{n-2}$. Hence θ is the identity whenever the length $3 n / 2-5$ of that path exceeds $n-2$. But now consider $z \in D_{n / 2-1}\left(x^{\prime}\right) \cap D_{n / 2}\left(y^{\prime}\right)$. As in Case 1 one easily shows that θ does not fix z. So θ is not the identity, implying $3 n / 2-5 \leq n-2$. This reduces to $n \leq 6$.

Remark that, if $n=6$, then the length of the path $\left(z_{1}, \ldots, z_{5}\right)$ is equal to $n-2=4$, hence θ is a non-trivial elation fixing $D_{2}\left(z_{2}\right)$ and $D_{2}\left(z_{4}\right)$ pointwise. By choosing the flags $\{x, y\}$ and $\left\{x^{\prime}, y^{\prime}\right\}$ appropriately, we thus obtain in this case such non-trivial elations for all simple paths of length 4.

Case 3a: $n=2 m$ with m odd where $Z(U)$ consists of central elations.
By the transitivity of G on elements of a given type, every element of one type of \mathfrak{P} is center of a non-trivial elation. Let p and p^{\prime} be such elements at distance $m+1$ from each other and choose non-trivial elations α and β with center p and p^{\prime}, respectively. Then, as before, one easily shows that the commutator $\theta=[\alpha, \beta]$ is non-trivial. Also, if $\{q\}=D_{1}(p) \cap D_{m}\left(p^{\prime}\right)$ and $\left\{q^{\prime}\right\}=D_{1}\left(p^{\prime}\right) \cap D_{m}(p)$, then θ fixes $D_{m-1}(q) \cup D_{m-1}\left(q^{\prime}\right)$. As before, this implies that $3 m-5 \leq n-2$, hence $n \leq 6$.

Case 3b: $n=2 m$ with m even where $Z(U)$ consists of central elations.

Here, we argue similarly as in Case 3a, except that we have to choose elements p and p^{\prime} at distance $m+2$ from each other. So we obtain the condition $3 m-8 \leq n-2$, implying $n \leq 12$, so $n \in\{4,8,12\}$.

Thus, either $Z(U)$ consists of elations and $n \in\{3,4,6,8,12\}$ or $Z(U)$ does not consist entirely of elations and $n=4$ or 6 .

The remark in Case 2 of the proof of the previous theorem shows:
3.1 Proposition If, under the standing hypotheses, $n=6$, then either $Z(U)$ consists of central elations or U contains elations for any simple path $\left(x_{1}, \ldots x_{5}\right)$ fixing $D_{2}\left(x_{2}\right) \cup$ $D_{2}\left(x_{4}\right)$ pointwise.

4 Proof of Theorem 2

In this section we prove Theorem 2, as a corollary of a more general proposition.
4.1 Proposition Let G be a group with an irreducible spherical (B,N)-pair of rank 2 satisfying (*), i.e., in terms of our standing hypotheses, U is nilpotent. Then - up to duality, i.e., up to interchanging p and q - for all $x \in D_{1}(p) \backslash\{q\}$, and for all k, $0<k<n / 2$, the subgroup of U fixing the set $D_{1}(p) \cup D_{1}(q)$ pointwise acts transitively on all elements in $D_{k}(x) \cap D_{k+1}(p)$. Also, for all $y \in D_{1}(q) \backslash\{p\}$, and for all $k, 0<k<n / 2$, the subgroup of U fixing the set $D_{1}(q)$ elementwise, acts transitively on all elements in $D_{k}(y) \cap D_{k+1}(q)$.

Proof. Clearly, we may assume that k is maximal with respect to the property $k<n / 2$. Let $\{1\} \unlhd Z(U)=Z_{1}(U) \unlhd Z_{2}(U) \unlhd \cdots \unlhd Z_{m-1}(U) \unlhd Z_{m}(U)=U$ be the ascending central series of U and let $i>0$ be minimal with the property that $Z_{i+1}(U)$ does not fix all of $D_{1}(p) \cup D_{1}(q)$. Note that such an i exists because $Z(U)$ fixes $D_{1}(p) \cup D_{1}(q)$ by Lemma 2.3. Without loss of generality, there is some $v \in Z_{i+1}(U)$ not fixing $D_{1}(p)$ pointwise. Since $Z_{i}(U)$ fixes all elements of $D_{1}(p)$ and U acts transitively on $D_{1}(p) \backslash\{q\}$, this implies that v does not fix any element of $D_{1}(p) \backslash\{q\}$. Let $x \in D_{1}(p) \backslash\{q\}$ be arbitrary, and let $\gamma=\left(x, x_{1}, \ldots x_{k}\right)$ and $\gamma^{\prime}=\left(x, y_{1}, \ldots y_{k}\right)$ be two simple paths of length k with $x_{1}, y_{1} \neq p$.

Then the simple path $\left(x_{k}, \ldots x_{1}, x, p, v(x), v\left(x_{1}\right), \ldots v\left(x_{k}\right)\right)$ has length $2 k+2 \in\{n, n+$ $1\}$ and hence it is contained in some ordinary n-gon Γ. Similarly there is an ordinary n-gon Γ^{\prime} containing the simple path $\left(y_{k}, \ldots y_{1}, x, p, v(x), v\left(x_{1}\right), \ldots v\left(x_{k}\right)\right)$.

Let $\left(p_{1}, q_{1}\right)$ be the unique flag in Γ opposite $(p, v(x))$ and let $\left(p_{2}, q_{2}\right)$ be the unique flag of Γ^{\prime} opposite $(p, v(x))$. Then there exists $u \in U$ mapping the flag (p_{1}, q_{1}) onto the flag $\left(p_{2}, q_{2}\right)$. Clearly, u fixes x and since the commutator $[u, v]$ fixes all elements of $D_{1}(p)$, we conclude that u also fixes $v(x)$. By choice of Γ and Γ^{\prime}, then u also fixes the path $\left(v\left(x_{1}\right), \ldots, v\left(x_{k}\right)\right)$ and maps the path γ to γ^{\prime}.

Now consider the commutator $u v^{-1} u^{-1} v \in Z_{i}(U)$. It is easy to see that it maps γ to γ^{\prime}; moreover it fixes $D_{1}(p) \cap D_{1}(q)$ by our assumption on i, proving the first part of the proposition.

The second part is proved in a completely similar way.

Now Theorem 2 follows since for $n=3$, Proposition 4.1 immediately implies that the flag (p, q) is a Moufang path. Hence all flags are Moufang paths and the projective plane is a Moufang plane.

5 Proof of Theorem 3

The following theorem generalizes Theorem 6.4.9 of [15].
5.1 Proposition Suppose \mathfrak{Q} is a half Moufang generalized n-gon with $n=2 m$ even, and such that all the corresponding elations are central elations. Then \mathfrak{Q} is a generalized quadrangle or a Moufang generalized hexagon.

Proof. Let $\left(x_{1}, \ldots, x_{n-1}\right)$ be a Moufang path and suppose all corresponding elations are central elations with center x_{m}. Choose $x_{0} \in D_{1}\left(x_{1}\right) \backslash\left\{x_{2}\right\}$ and $x_{n} \in D_{1}\left(x_{n-1}\right) \backslash\left\{x_{n-2}\right\}$. Let $\left(x_{n}, x_{n+1}, \ldots, x_{2 n-1}, x_{0}\right)$ be an arbitrary path of length n joining x_{n} with x_{0} such that $x_{1} \neq x_{2 n-1}$. Let y be either an arbitrary element of $D_{m}\left(x_{m}\right) \cap D_{m}\left(x_{3 m}\right)$ or an arbitrary element of $D_{m+1}\left(x_{3 m+1}\right) \cap D_{m-1}\left(x_{m+1}\right)$, with $y \neq x_{0}$. Applying the group of central elations with center x_{m}, we easily see that $D_{m-1}\left(x_{0}\right) \cap D_{m+1}\left(x_{n}\right)=D_{m-1}\left(x_{0}\right) \cap D_{m+1}(y)$. It follows from Lemma 1 of [4] and the symmetry between x_{0} and x_{n} that the pair (x_{0}, x_{n}) is distance- $(m-1)$-regular, see 6.4.1 of [15] for a precise definition. Now, Theorem 6.4.5 $i()$ of [15] implies that $m-1 \leq \frac{n+2}{4}$, hence $n \leq 6$. For $n=6$, the result follows from [7].

In the case of a half Moufang quadrangle, we will use the following result.
5.2 Proposition Suppose \mathfrak{Q} is a half Moufang generalized quadrangle and suppose that all simple paths of length 2 starting with an element of type 1 are Moufang paths. Moreover, suppose that for every flag $\{p, q\}$, with p an element of type 1 , the action on $D_{1}(q) \backslash\{p\}$ of the elation group corresponding with any simple path $\left(p^{\prime}, r, p\right), r \neq q$, is independent of $\left(p^{\prime}, r\right)$. Then \mathfrak{Q} is a Moufang quadrangle and all elations are generated by the elations corresponding with simple paths of length 2 starting with an element of type 1.

Proof. See Proposition 3.6 of [9].

Throughout the rest of this section, we consider the standing hypotheses, and we assume that G is highly transitive. We now embark on the proof of Theorem 3.

By Theorem 1, we know that $n \in\{3,4,6,8,12\}$. If $n=3,8$ or 12 , then $Z(U)$ consists of central elations, which by the transitivity assumption on T are transitive for one type of ($n-2$)-paths. Thus the cases $n=8$ and $n=12$ are excluded by Proposition 5.1. If $n=3$, then, clearly, \mathfrak{P} is a Moufang projective plane.

If $n=6$, then either $Z(U)$ consists of central elations and we are done by Proposition 5.1, or, by Proposition 3.1, we have root elations of both types. By the transitivity assumption on T we then see that \mathfrak{P} is Moufang.

Now consider the case $n=4$. Assume first that $Z(U)$ contains central elations, with center q, say. Choose an element $r \in D_{1}(p) \backslash\{q\}$. Let U_{0} be the group of all central elations
with center q. This group acts transitively as a regular abelian group on $D_{1}(r) \backslash\{p\}$. Let q^{\prime} be arbitrary in $D_{1}(p) \backslash\{q, r\}$. Let $g \in G$ be such that $g(q)=q^{\prime}$ and put $U_{0}^{\prime}=g U_{0} g^{-1}$. Also U_{0}^{\prime} acts as a regular abelian group on $D_{1}(r) \backslash\{p\}$. Every element of the commutator [$\left.U_{0}, U_{0}^{\prime}\right]$ fixes $D_{2}(q) \cup D_{2}\left(q^{\prime}\right)$ pointwise, hence must be the identity. It follows that the actions on $D_{1}(r)$ of both U_{0} and U_{0}^{\prime} are the same (see e.g. [5] 4.2.A (v)). Thus we can apply Lemma 5.2 to see that \mathfrak{P} is in fact a Moufang quadrangle and G contains the little projective group.

Hence it remains to deal with the case $n=4$ where $Z(U)$ does not contain central elations. We will exclude this situation by a series of lemmas. Note that we do not know whether or not \mathfrak{P} admits central elations (necessarily not belonging to any conjugate of $U)$.
5.3 Lemma Let \mathfrak{P} be as before, and let x be any element of \mathfrak{P}. Then the pointwise stabilizer of $D_{1}(x)$ in G acts freely on the set $D_{4}(x)$.

Proof. In order to use our standard notation, we may without loss of generality suppose that x is the unique element in $D_{1}(p)$ different from q and contained in the apartment A. Suppose the lemma is false, then there exists some element $u \in G \backslash\{1\}$ fixing $D_{1}(x) \cup A$ pointwise. So $u \in B$ (recall that B is the pointwise stabilizer of the flag $\{p, q\}$), hence u normalizes $Z(U)$. Let p^{\prime} be the element of A incident with q and distinct from p and let q^{\prime} be incident with p^{\prime}, different from q and contained in A. If u fixes $D_{1}\left(p^{\prime}\right)$ pointwise, then u is the identity by 4.4.2(v) of [15]. Hence there exists $y \in D_{1}\left(p^{\prime}\right)$ with $u(y) \neq y$. Let $v \in Z(U)$ be such that $v\left(q^{\prime}\right)=y$, then the commutator $\theta:=v u v^{-1} u^{-1}$ belongs to $Z(U)$ and fixes $D_{1}(x)$ pointwise. Hence it is a central elation with center p, and consequently it must, by assumption, be the identity. But it clearly does not fix y, a contradiction.
5.4 Lemma Let \mathfrak{P} be as before, and let $\gamma=\left(q^{\prime \prime}, p, q\right)$ be a simple path of length 2 . If α is any elation for γ, then α is in fact a central elation.

Proof. Since $Z(U)$ acts transitively on $D_{1}\left(q^{\prime \prime}\right) \backslash\{p\}$, every element of U fixing at least one element of $D_{1}\left(q^{\prime \prime}\right) \backslash\{p\}$ fixes $D_{1}\left(q^{\prime \prime}\right)$ pointwise. So, by assumption, we obtain a subgroup H^{*} of U acting transitively on $D_{4}\left(q^{\prime \prime}\right) \cap D_{2}(q)$ and fixing $D_{1}\left(q^{\prime \prime}\right)$ pointwise.

Now if α is a root elation for γ, then by Lemma 5.3 (putting $x=q^{\prime \prime}$), α is in $H^{*} \leq U$ and hence must commute with all $\beta \in Z(U)$. But this says that α is a central elation.
5.5 Lemma Let \mathfrak{P} be as before, and let $\gamma=\left(q^{\prime \prime}, p, q, p^{\prime}, q^{\prime}\right)$ be a simple path of length 4 . If α is any elation for $\left(p, q, p^{\prime}\right)$, then $\alpha \in Z(U)$.

Proof. By Lemma 5.4, α is a central elation. By similar arguments as in Lemma 5.4, the subgroup H^{\prime} of U fixing $\left\{q^{\prime \prime}, q^{\prime}\right\}$ fixes $D_{1}\left(p^{\prime}\right)$ pointwise and acts transitively on $D_{1}\left(q^{\prime \prime}\right) \backslash$ $\{p\}$. Thus, by Lemma 5.3, $\alpha \in H^{\prime} \leq U$. If $\alpha \notin Z(U)$, then there is some $u \in U$ such that the commutator $[\alpha, u]$ is non-trivial. Clearly, the action of H^{\prime} on $D_{1}\left(q^{\prime \prime}\right)$ commutes with the action of $Z(U)$, and since $Z(U)$ is regular and abelian, these actions agree. Hence there is some $v \in Z(U)$ which induces the same action on $D_{1}\left(q^{\prime \prime}\right)$ as α does. Then v and α agree on $D_{2}(p)$ because otherwise αv^{-1} is an elation for $\left(q^{\prime \prime}, p, q\right)$ which is not a central elation. But this is impossible. Thus $[\alpha, u]$ is the identity on $D_{1}\left(q^{\prime \prime}\right)$, but since $[\alpha, u]$ is clearly also a central elation, this is a contradiction. Consequently $\alpha \in Z(U)$.
5.6 Lemma Let \mathfrak{P} be as before, and let $\gamma=\left(p, q, p^{\prime}, q^{\prime}\right)$ be a simple path of length 3 contained in A. Suppose that the group H fixing $D_{1}(p) \cup D_{1}(q) \cup\left\{q^{\prime}\right\}$ pointwise is nontrivial. Then the path $\left(p, q, p^{\prime}\right)$ is a Moufang path.

Proof. By the transitivity of T, the group H acts transitively on $D_{1}\left(q^{\prime}\right) \backslash\left\{p^{\prime}\right\}$. Let ($q^{\prime \prime}, p, q, p^{\prime}, q^{\prime}$) be a simple path of length 4 contained in A, then, by symmetry, the group H^{\prime} fixing $D_{1}\left(p^{\prime}\right) \cup D_{1}(q) \cup\left\{q^{\prime \prime}\right\}$ pointwise acts transitively on $D_{1}\left(q^{\prime \prime}\right) \backslash\{p\}$. Hence for every element $h \in H$, there exists $h^{\prime} \in H^{\prime}$ such that $h^{\prime} h$ fixes A pointwise. Since it also fixes $D_{1}(q)$ pointwise, it must be identity by Lemma 5.3. Hence $h=h^{\prime-1}$ fixes $D_{1}(p) \cup D_{1}(q) \cup D_{1}\left(p^{\prime}\right)$ pointwise. Applying the transitivity of T, the result now follows.

We can now finish the proof of Theorem 3.
We keep the same notation as above, so we have the simple path ($q^{\prime \prime}, p, q, p^{\prime}, q^{\prime}$) and a regular and abelian subgroup H^{\prime} of U fixing $\left\{q^{\prime \prime}, q^{\prime}\right\} \cup D_{1}\left(p^{\prime}\right)$ pointwise and acting transitively on $D_{1}\left(q^{\prime \prime}\right) \backslash\{p\}$. Similarly, we obtain a group $H \leq B$ fixing $D_{1}(q) \cup\left\{q^{\prime}, q^{\prime \prime}\right\}$ pointwise and acting transitively on $D_{1}\left(q^{\prime \prime}\right) \backslash\{p\}$.

Now consider the commutator group $\left[H, H^{\prime}\right] \leq H \cap H^{\prime}$ (by Lemma 5.2). If [H, H^{\prime}] is non-trivial, then Lemma 5.6 implies that the path (p, q, p^{\prime}) is Moufang, and Lemma 5.5 yields a contradiction. If on the other hand $\left[H, H^{\prime}\right]$ is trivial, then the action of H on $D_{1}\left(q^{\prime \prime}\right)$ agrees with the action of H^{\prime} on $D_{1}\left(q^{\prime \prime}\right)$. If $H \neq H^{\prime}$, then there are elements $h \in H$ and $h^{\prime} \in H^{\prime}$ such that $h h^{\prime}$ is non-trivial and fixes $D_{1}\left(q^{\prime \prime}\right) \cup\left\{q^{\prime}\right\}$, contradicting Lemma 5.3. Hence $H=H^{\prime}$ and Lemma 5.6 implies that the path $\left(p, q, p^{\prime}\right)$ is Moufang. Now Lemma 5.5 yields a contradiction.

ACKNOWLEDGMENT. We would like to thank Richard Weiss for some very helpful comments on a preliminary version of this paper.

References

[1] F. Buekenhout and H. Van Maldeghem, Finite distance transitive generalized polygons, Geom. Dedicata 52 (1994), 41 - 51.
[2] W. Feit and G. Higman, The nonexistence of certain generalized polygons J. Algebra 1 (1964), 114 - 131.
[3] P. Fong and G. Seitz, Groups with a (B, N)-pair of rank 2. I, II. Invent. Math. 21 (1973), 1 - 57; ibid. 24 (1974), 191 - 239.
[4] E. Govaert, A combinatorial characterization of some finite classical generalized hexagons, J. Combin. Theory Ser. A 80 (1997), $339-346$.
[5] J. D. Dixon, B. Mortimer Permutation groups, Springer, Graduate Texts in Mathematics 163, 1996.
[6] T. G. Ostrom and A. Wagner, On projective and affine planes with transitive collineation groups, Math. Z. 71 (1959), 186 - 199.
[7] M. A. Ronan, A geometric characterization of Moufang hexagons, Invent. Math. 57 (1980), 227 - 262.
[8] K. Tent, Very homogeneous generalized n-gons of finite Morley Rank, to appear in J. London Math. Soc.
[9] K. Tent and H. Van Maldeghem, The Cherlin-Zil'ber Conjecture for BN-pairs with panels of Morley rank 1, submitted.
[10] J. A. Thas and H. Van Maldeghem, The classification of all finite generalized quadrangles admitting a group acting transitively on ordered pentagons, J. London Math. Soc. (2) 51 (1995), 209-218.
[11] J. Tits, Sur la trialité et certain groupes qui s'en déduisent, Inst. Hautes Études Sci. Publ. Math. 2 (1959), 13 - 60.
[12] J. Tits, Endliche Spiegelungsgruppen, die als Weylgruppen auftreten, Invent. Math. 43 (1977), 283 - 295.
[13] J. Tits, Buildings of spherical type and finite BN-pairs, Springer Verlag, Lecture Notes in Math. 386, Berlin, Heidelberg, New York, 1974.
[14] J. Tits and R. Weiss, The classification of Moufang Polygons, in preparation.
[15] H. Van Maldeghem, Generalized polygons, Birkhäuser Verlag, Monographs in Mathematics 93, Basel, Boston, Berlin, 1998.
[16] H. Van Maldeghem, A finite generalized hexagon admitting a group acting transitively on ordered heptagons is classical, J. Combin. Theory Ser. (A) 75 (1996), 254-269.
[17] R. Weiss, The nonexistence of certain Moufang polygons, Invent. Math. 51 (1979), 261-266.

Katrin Tent

Mathematisches Institut
Universität Würzburg,
Am Hubland,
D-97074 WÜRZBURG,
Germany
E-MAIL: tent@@mathematik.uni-wuerzburg.de
Hendrik Van Maldeghem
Pure Mathematics and Computer Algebra
Universiteit Gent
Galglaan 2,
B-9000 Gent,
Belgium
E-MAIL: hvm@@cage.rug.ac.be

[^0]: *The first author is supported by the Bayerischer Habilitationsförderpreis
 ${ }^{\dagger}$ The second author is a Research Director of the Fund for Scientific Research - Flanders (Belgium)

