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Abstract. The main problem considered in this paper is “how does a
dual polar space Γ of rank 3 embed in a metasymplectic space ∆?” The
expected and generic answer is that Γ is isomorphic to a subgeometry
of a point residual Res∆ppq and that it arises as a subgeometry of a
trace geometry, that is, Γ Ď pK

X q’, for two opposite points p and q,
where q’ is the set of points special to q. However, this is not always
the case, and we describe some counterexamples, even classify them for
certain classes of metasymplectic spaces ∆. These results complement
the analogous results for the exceptional geometries of diameter at most
3 arising from groups of types E6,E7,E8 recently treated by Cooperstein
and the second author.
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1. Introduction
Classifying subgeometries of a given geometry is very helpful to understand
the structure of the given geometry. In particular if the subgeometry is, in
some sense, large, and/or, in another sense, maximal. The latter would mean
that it is not contained in a well-known subgeometry already; the former
could for instance mean that lines of the subgeometry are full lines of the
ambient geometry, or if there is a rank or dimension available, that these
do not differ too much. Embeddings of geometries in projective or affine
spaces has been thoroughly investigated, especially for polar spaces, but also
for other, mostly finite, geometries such as (semi-)partial geometries, partial
quadrangles, generalised hexagons, etc. Recently, there has been some inter-
est to look at subgeometries of the standard exceptional geometries of Lie
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type, emphasising inclusions of exceptional geometries themselves. This was
very fruitful for gaining insight into the structure of these geometries, as it
revealed, for instance, beautiful properties of the so-called equator geome-
tries, see for instance [9, 13]. Recently, Cooperstein and the second author [5]
characterised so-called trace geometries in exceptional Lie incidence geome-
tries of simply laced type as the only fully embedded geometries isomorphic
to a point residual. The present paper investigates the analogue for meta-
symplectic spaces, that is, for the standard Lie incidence geometries related
to spherical buildings of type F4 (which is also an exceptional type).

There are three phenomena that complicate things for the metasym-
plectic spaces, and which are due to the fact that the diagram is not simply
laced.

piq Point residuals in metasymplectic spaces are dual polar spaces of rank 3.
But that class of geometries is much larger than those that can appear as
point residual. So, it is an additional complication that we do not know
in advance which isomorphism class of geometries we are embedding.

piiq In the simply laced case, the point residuals are Lie incidence geometries
that are generated by the points of an apartment. This is not longer
true in the metasymplectic case. Yet, this property was the basis of a
fundamental technique in [5].

piiiq Finally, maybe the most prominent thing, not all (fully) embedded dual
polar spaces in metasymplectic spaces are traces, even if they are iso-
morphic to the point residuals! It will also turn out that a dual polar
space can be embedded in a symplecton.

Concerning the first complication mentioned above, it will turn out that
in half of the cases, the isomorphism class and embedding will be determined
by just assuming we have an embedded dual polar space of rank 3. In the
remaining cases, we find subgeometries of embedded geometries isomorphic
to point residuals. The second complication will be bypassed by using a dif-
ferent method. Concerning the third complication, we will show that in most
metasymplectic spaces an embedding of a dual polar space must be “isomet-
ric” (precise definition see below) and we will describe isometric embeddings
of dual polar spaces that do not arise as traces; sometimes we can even clas-
sify. Moreover we provide an example of a dual polar space isomorphic to
a point residual that is embedded in a symplecton (and hence not isomet-
rically embedded). Especially the isometric embeddings that are not traces
provide more insight in the structure of metasymplectic spaces. We note, in
particular, that this exceptional behaviour is not only for infinite cases, but
also for those over a finite field in characteristic 2, in particular, the smallest,
finite ones over F2 experience this. Roughly speaking, and referring forward
for undefined notions, we prove the following:

Main Results—Informal statements.

p1q Dual polar spaces fully embedded in metasymplectic spaces which do not
admit central elations, are always traces;
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p2q Dual polar spaces fully embedded in metasymplectic spaces the duals of
which do not admit central elations are either contained in traces, or
contained in a symp, or contained in the perp of a point, but not in
a trace (and in the latter case the metasymplectic space has planes of
order 2 and has 5 symps on each plane; the dual polar spaces have either
3 symps per line—and there is a unique non-trace example—or 5 symps
per line—and again there is a unique non-trace example).

p3q If the metasymplectic space admits central elations and also its dual
does, then a fully embedded dual polar space is either contained in a
trace, in a symp, or in the perp of a point, but not in a trace.
As a byproduct of our proof, we exhibit an alternative method to deter-

mine the embedding rank of the dual polar spaces of rank 3 with three points
per line, a result due to Yoshiara [24], who made use of the Leech lattice to
do so. We only use elementary (finite incidence) geometry, and the existence
of metasymplectic spaces.

Let us mention two applications of our results. Firstly, one might wonder
what about dual polar spaces of rank at least 4 embedded in metasymplectic
spaces? We will show that, if a dual polar space of rank at least 4 is fully
embedded in a metasymplectic space admitting no central elations, then it
has rank 4 and is isomorphic to a so-called tropics geometry, see Proposi-
tion 2.19, hence essentially unique. Secondly, suppose the metasymplectic
space ∆ admits an embedding in a projective space; one can then consider
the universal embedding of any point perp pK (a cone with vertex p over the
point residual). Every hyperplane section not through p of this universal em-
bedding gives rise to an embedded dual polar space. Our main results reveal
in precisely which cases such a hyperplane section is always a trace, that is,
arises from the geometry of the metasymplectic space itself. Moreover, in the
non-embeddable case, our main results imply that every fully embedded dual
polar space of rank 3 is a trace, and (so) nothing exceptionally happens due
to the non-embeddability.

Alongside with our main results, and besides the alternatie proof for
the universal embedding of the dual polar spaces of rank 3 with three points
per line, we prove many other results that we hope will prove useful in other
contexts. Most prominently, we for instance show that no nontrivial injective
projection of the quadric Veronesean of any projective plane with at least 21
points, is contained in a nontrivial quadric, except if the underlying fiels has
characteristic 2 and the projection is from a subspace of the nucleus plane,
see Lemma 3.9.

We also provide some consequences of our results. One kind of corollary
states that in the standard embedding of certain metasymplectic spaces ∆,
every hyperplane of the projective subspace spanned by the points collinear
to a given point p of ∆, not containing p itself, is the subspace spanned
by the points collinear to p and not opposite some fixed point q, with q
opposite p. Another consequence is the uniqueness of the so-called tropics
geometry as fully embedded dual polar space of rank 4 in metasymplectic
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spaces not containing central elations. This is the geometric counterpart of
the uniqueness of groups of type B4 in groups of type F4, or also of the
uniqueness of root systems of type B3 in root systems of type F4.

We now introduce all notions needed to state our main results in detail.
This is done in section 2. Before we proceed with the proof, we review some
known properties of Veronese representations of projective planes and prove
some new ones in section 3. We start the proofs with two general results:
if a fully embedded dual polar space is not contained in a symp, then it is
isometrically embedded and contained in the perp of a point p in such a way
that every line through pv contains at most one point of the embedded dual
polar space. This is the content of section 4. Then, in section 5 we prove
our main results for the separable case, that is, for metasymplectic spaces
either who do not admit central elations, or whose dual do not admit central
elations. The inseparable case (both the metasymplectic space and its dual
admit central elations) is then treated in section 6.

2. Preliminaries and statement of the Main Results
The main players in this paper are metasymplctic spaces. We will view these
with the help of the language of parapolar spaces, which are point-line geome-
tries satisfying certain axioms. Crucial substructures of parapolar spaces are
polar spaces. Therefore, we start by briefly introducing point-line geometries,
polar spaces and parapolar spaces, mainly to fix notation.

2.1. Point-line geometries
For the purpose of this paper, a point-line geometry is a pair Γ “ pX,L q

consisting of a set X whose elements are called points, and a non-empty
subset L of the set of subsets of X, each element of which is called a line.
We assume every member of L has at least three elements. A collineation
(or automorphism) of a point-line geometry Γ “ pX,L q is a bijection from
X onto itself that induces a bijection on L .

Let Γ “ pX,L q be a point-line geometry. We introduce some terminol-
ogy and notation.

If every pair of distinct points is contained in at most one line, then we
say that Γ is a partial linear space. From now on, assume that Γ is a partial
linear space. We also assume that Γ is thick, that is, each line contains at
least three points.

Two points x, y P X are collinear, denoted as x K y, if they are contained
in a common line, which we usually denote by xy and which is unique. The
set xK (the perp of x) is the set of points collinear to x and, more generally,
for a subset T Ď X, the set TK is the set of points collinear to each point of
T . A subspace S is a subset of X with the property that each member of L
intersects S in either 0, 1 or all of its points. We will view subspaces as point-
line geometries using the induced line set. A singular subspace is a subspace
in which each pair of points is collinear. A geometric hyperplane, or briefly
hyperplane, is a subspaces which is not disjoint from any line. A subhyperplane
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is a hyperplane of a hyperplane. The point graph of Γ is the graph with
vertices the elements of X, adjacent when distinct and collinear. The distance
between two points is the distance in the point graph. The diameter diamΓ
of Γ is the diameter of its point graph. If the diameter is finite, then we call
Γ connected. A convex set C Ď X is a set of points at mutual finite distance
with the property that all vertices of every minimal path in the point graph
between any two arbitrary elements of C are contained in C.

Example 2.1. For an arbitrary right vector space V over some skew field L,
define the point set of the point-line geometry PGpV q as the set of 1-spaces
of V , and the line set as the set of 2-spaces (seen as sets of the contained
1-spaces). If dimV “ n ă 8, then we denote PGpV q also as PGpn,Lq. Such
a point-line geometry is called a projective space (over L). Its dimension is
dimV ´ 1.

Projective spaces are linear spaces, that is, partial linear spaces in which
every pair of points is contained in a line.

An arbitrary subspace of PGpV q is precisely the set of 1-spaces of a
given subspace of V . In PGpV q, we sometimes denote the line defined by
two distinct points x, y by xx, yy, and, more generally, the intersection of all
subspaces containing a set A of points by xAy.

For convenience we shall also call every abstract axiomatic projective
plane (that is, a thick linear space with the property that each pair of lines
intersects nontrivially) and every set of at least three elements with itself as
unique line, a projective space (of dimension 2 and 1, respectively).

A special mention deserves the projective plane PGp2,Oq obtained from
a Cayley algebra O (see also below). It is obtained in the standard way from
an affine plane (by adding points and a line at infinity) that can be described
as the set of pairs px, yq P OˆO, where lines are the sets of points satisfying
an equation of the form y “ mx ` k, or x “ x0, m, k, x0 P O. It is called a
Cayley plane.

We will also need the notion of a projective (sub)line.

Definition 2.2. Let F be a field. Then the set of 1-spaces of a two-dimensional
vector space V over F, together with the group PGL2pFq acting naturally on
that set, is called the projective line over F. Let K be a subfield of F. Then
the vector lines over F defined by vectors which are a K-linear combination
of (two) given basis vectors, define a standard projective subline over K, since
the group PGL2pKq acts naturally on that set of 1-spaces. Now let F have
characteristic 2 and let V 1 be a subspace of the F2-vector space F. Then the set
of vector lines over F defined by vectors which are a V 1-linear combination of
(two) given basis vectors, is by definition a mixed projective subline PGp1, V 1q
over V 1. Using coordinates with respect to the given basis, PGp1, V 1q is given
by the following set of projective points:

tFp1, xq | x P V 1u Y tFp0, 1qu.
Given two arbitrary different 1-spaces in PGp1, V 1q, we can always find

two respective non-zero vectors e1, e2 on them with coordinates in V 1. Then
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it is immediate that PGp1, V 1q is equal to tFpe1 ` xe2q | x P V
1u Y tFe2u,

and so a mixed projective subline is independent of the chosen basis. We now
make a few remarks.

Remark 2.3. We note that, if K is a subfield of F, then PGp2,Kq is in a
natural way a subplane of PGp2,Fq, and every line of PGp2,Kq defines a
standard projective subline over K of a unique line of PGp2,Fq. However, a
mixed projective subline over V 1 of PGp1,Fq only arises from a subplane in
that way if V 1 has the structure of a field, which is not necessarily the case.
For instance consider over F2pt, uq the subspace generated by 1, t and u over
F2pt

2, u2q. This is not a subfield as tu does not belong to it.

Remark 2.4. Let F be a field and let σ be a Galois involution of F. Then it is
shown in [23] that the sets tx´xσ | x P Fu and ty P F | y` yσ “ 0u coincide;
denote that set by S. We claim that the set tFp1, yq | y P Su Y tFp0, 1qu of
1-spaces of a two-dimensional vector space FˆF over F is a standard subline
over K, where K is the field of fixed elements of σ. Indeed, this follows from
the fact that, if t is an arbitrary element satisfying t ` tσ “ 0, then S “ tK
(and then we replace the standard basis pe1, e2q with pe1, te2q).

Remark 2.5. Let F be a field of characteristic 2 and let K be a subfield such
that F{K is separable and quadratic. Then K does not contain F2 and hence
a projective subline over K cannot be a mixed projective subline. Indeed,
let x P FzK satisfy the separable quadratic equation x2 ` ax ` b “ 0, with
a, b P Kˆ. If x2 belonged to K, then so would ax ` b, hence also x P K, a
contradiction.

Definition 2.6. Let Γ “ pX,L q and Λ “ pY,Rq be two partial linear spaces.
Then we say that Γ is fully embedded in Λ if X Ď Y and L Ď R. For the pur-
pose of the present paper, we call the embedding isometric if X is a subspace
of ∆ and every member of R contained in X belongs to L (so Γ is induced
in X by Λ). If Λ is a projective space, then we call every full embedding of Γ
in Λ a projective (full) embedding and say that Γ is embeddable. In this case
a secant is a line of Λ that is not a line of Γ, but intersects the point set of
Γ in at least two points. Recall that we denote the projective line defined by
two points p, q of an embedded geometry as xp, qy; it can be a secant!

A projective embedding of Γ into PGpV q is called universal if every
other projective embedding, say in PGpV 1q is obtained from it by projection,
that is, there exists a subspace S of PGpV q, a complementary subspace V 2
in V , and an isomorphism ϕ : PGpV 2q Ñ PGpV 1q such that the mapping
X Ñ PGpV 1q : x ÞÑ pxx, Sy X PGpV 2qqϕ is injective and defines the given
embedding in PGpV 1q. If a point line-geometry has such a universal embedding
in PGpV q for some vector space V , we call dimV the embedding rank of
Γ. A projective embedding of Γ into PGpV q is called homogeneous if every
collineation of Γ is induced by a collineation of PGpV q. By the very definition
of universal embedding the latter is always homogeneous.
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2.2. Polar and parapolar spaces
A (thick) point-line geometry Γ “ pX,L q is a polar space if xK is a hyper-
plane distinct from X itself, for each x P X. One shows that the singular
subspaces of a polar space are either lines or projective spaces of dimension
at least 2 (see for example Theorem 7.4.13 of [2]). We will only consider polar
spaces of finite rank r, that is, polar spaces in which the maximum dimen-
sion of singular subspaces is finite and equal to r´ 1. Note that we included
non-degeneracy (that is, the property that no point is collinear to all other
points) in our definition of polar spaces; this is done for convenience..

Polar spaces have a number of nice properties and we refer to the recent
book [23] for background and theory. We mention that diamΓ “ 2, for every
polar space Γ, and that for every pair of non-collinear points x, y, the set
xKXyK is a subspace which defines a polar space of rank r´1 when endowed
with the lines it contains. Also, the number of maximal singular subspaces
(that is, singular subspaces of dimension r´1) containing a given submaximal
singular subspace (that is, a singular subspace of dimension r´2) is a constant
at least equal to 2. If this number is exactly 2, then we say that the polar
space is hyperbolic. Otherwise it is non-hyperbolic.

Definition 2.7. For two points p, q of a polar space, we call the set hpp, qq :“
ptp, quKqK a hyperbolic line. We say it is short if hpp, qq “ tp, qu.

Example 2.8. All the examples in the following paragraphs are non-hyperbolic.
piq Let A be an alternative quadratic division algebra over some field K,

and we view K as the scalar multiples of the identity element 1 for the
multiplication. Then A admits a standard involution A Ñ A : x ÞÑ x
with the property that trpxq :“ x ` x P K and npxq :“ xx P K. Every
element x P A satisfies a quadratic equation, namely x2´trpxqx`npxq “
0. The mapping n : AÑ K : x ÞÑ npxq “ xx is a quadratic form, called
the norm form of A. Let V “ K‘K‘K‘ A‘K‘K‘K and define
the following quadratic form

q : V Ñ K : px´3, x´2, x´1, x, x1, x2, x3q ÞÑ x´3x3 ` x´2x2 ` x´1x1 ` npxq.

Then the projective null set of q in PGpV q, that is, the set of 1-spaces vK
of V with qpvq “ 0, endowed with the projective lines contained in it,
constitute a polar space of rank 3 which we will denote by B3,1pK,Aq. If
p, p1 are non-collinear points of B3,1pK,Aq, then the polar space pKXp1K
is denoted as B2,1pK,Aq. On the other hand, the polar space with the
property that for each pair of non-collinear points x, x1, the subspace
xK X x1K is isomorphic to B3,1pK,Aq, is denoted as B4,1pK,Aq (and
has rank 4). All hyperbolic lines of the polar spaces B3,1pK,Aq (and
B2,1pK,Aq) are short, if A is not an inseparable multiple quadratic ex-
tension of K (including A “ K) when charpKq “ 2.

Note that in general the projective null set of a polynomial of
which all terms have degree two is called a quadric. The maximal vector
dimension of a projective subspace contained in the quadric is called
the Witt index of the quadric. It belongs to folklore that in PGp3,Kq,
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with K a field, there is, up to isomorphism, only one quadric of Witt
index 2 which defines a polar spaces. It is a hyperbolic polar space of
rank 2, also known as a grid. It contains two systems of lines such that
two lines belong to the same system if they are disjoint. Such a system
will also be called a regulus; the other system is then referred to as the
opposite regulus.

piiq Let again A be an alternative quadratic division algebra over some field
K, but now assume that A is associative. Set V :“ A‘A‘A‘A‘A‘A
and consider this as a right vector space over A. Consider the following
mapping q1 (which is a pseudo-quadratic form):

q1 : V Ñ A : px´3, x´2, x´1, x1, x2, x3q ÞÑ x´3x3 ` x´2x2 ` x´1x1.

Then the set of points vA of PGpV q such that q1pvq P K, either endowed
with all lines contained in it (if A ‰ K), or endowed with the lines
corresponding to the totally isotropic 2-spaces of the alternating form

ppx´3, x´2,x´1, x1, x2, x3q, py´3, y´2, y´1, y1, y2, y3qq

ÞÑ x´3y3 ` x´2y2 ` x´1y1 ´ x1y´1 ´ x2y´2 ´ x3y´3

(if K “ A), is a polar space of rank 3 which we denote as C3,1pA,Kq.
If A ‰ K and A2 Ę K, we call it a Hermitian polar space; if A2 Ď K
and charK “ 2, then we call it an inseparable polar space, and if K “ A
we call it a symplectic polar space. Similarly as in piq, we denote by
C2,1pA,Kq the polar space of rank 2 obtained by intersecting pK with
p1K, for two non-collinear points p, p1 of C3,1pA,Kq. It is well known that
B2,1pK,Aq is the dual of C2,1pA,Kq, this follows for example from 1.10 in
[20] or explicitly 3.4.9, 3.4.11 and 3.4.13 in [22]. All hyperbolic lines of
C3,1pA,Kq are non-short and can be parametrised by KY t8u (that is,
they are projective sublines over K of lines of PGp5,Aq), see Lemma 2.25
below.

piiiq For each Cayley algebra, that is, alternative non-associative quadratic
division algebra O, also sometimes called non-split octonion algebra,
there exists a polar space, denoted as C3,1pO,Kq of rank 3 whose planes
(singular subspaces isomorphic to projective planes) are Cayley planes
over O, see Chapter 9 in [20] or [7] for an elementary description. The
polar space C3,1pO,Kq is referred to as a non-embeddable polar space, or
a Freudenthal-Tits polar space. The polar space pKX p1K, with p, p1 two
non-collinear points of ∆pOq, is the dual of B2,1pK,Oq, and therefore
sometimes denoted by C2,1pO,Kq.

Recall that an alternative quadratic division algebra over the field K
is one of the following: K itself, a separable quadratic extension of K, a
quaternion division algebra over K (sometimes also called a Hamiltonion
division algebra over K), an octonion division algebra over K (sometimes also
called a Cayley division algebra over K), or an inseparable multiple quadratic
extension of K in characteristic 2. Recall also that, in the finite case, denoting
the finite field with q elements as Fq, the quadratic division algebras over Fq
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are the fields Fq and Fq2 . We often replace a finite field with its order in
the notation for the geometries. For instance, C3,1pq, qq is the polar space
arising from a non-degenerate alternating form (or symplectic polarity, see
Section 2.4) in PGp5, qq, the finite projective space over Fq. In this paper, let
K always be a field and A,B quadratic alternative division algebras over K,
unless specified otherwise.

A parapolar space is a connected partial linear space ∆ “ pX,L q with
the following properties. First, the collection of convex subspaces of ∆ isomor-
phic to a polar space is non-empty. Each member of that collection is called
a symplecton, or symp for short. Secondly, every pair of points x, y with the
property that |tx, yuK| ą 1 is contained in some symp. If all symplecta of
∆ have the same rank r, then we say that ∆ has uniform symplectic rank
r. We will only work with parapolar space having uniform symplectic rank
(but there exist many other parapolar spaces). By the convexity of symps,
each symp is determined by any pair tp, qu of its non-collinear points, and we
denote the symp by ξpp, qq. The pair tp, qu is called a symplectic pair ; also p
is symplectic to q, and we write p KK q..

A parapolar space ∆ is called strong if every pair of points at distance
at most 2 is contained in a symp. In other words, if there do not exist points
p, q such that |pKXqK| “ 1. In a non-strong parapolar space, pairs tp, qu with
pK X qK a singleton, are called special (and p is also said to be special to q,
notation p ’ q). Note that every polar space of rank r is a strong parapolar
space of uniform symplectic rank r.

Let ∆ “ pX,L q be a parapolar space of uniform symplectic rank r at
least 3. Let p P X be arbitrary. Define the following geometry Res∆ppq. Its
point set is the set of lines of ∆ containing p. An arbitrary line of Res∆ppq
is the set of lines of ∆ through p contained in a projective plane (a so-called
planar line pencil with vertex p). The geometry Res∆ppq is a strong parapolar
space of uniform symplectic rank r ´ 1. It is called the point residual at p.

A dual polar space of rank 3 is the point-line geometry obtained from a
non-hyperbolic polar space of rank 3 by taking as point set the set of planes
(maximal singular subspaces) and as lines the sets of planes containing a
given line (submaximal singular subspace). The following is immediate.

Proposition 2.9. A dual polar space of rank 3 is a strong parapolar space of
uniform symplectic rank 2.

Even though a dual polar space of rank 3 has a uniform symplectic rank
smaller than 3, one can define a point residual as follows. Let Ω “ pX,L q be
a dual polar space of rank 3 and let p P X be arbitrary. Then the point set
of ResΩppq is the set of lines of Ω containing p. An arbitrary line of ResΩppq
is the set of lines of Ω through p contained in a symplecton of Ω. It follows
immediately that ResΩppq is isomorphic to a projective plane.

The dual polar space of rank 3 associated to the polar spaces B3,1pK,Aq
and C3,1pA,Kq, will be denoted by B3,3pK,Aq and C3,3pA,Kq, respectively.
Note that the symps of these parapolar spaces are isomorphic to C2,1pA,Kq
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and B2,1pK,Aq, respectively. If Ω is the dual polar space corresponding to the
polar space Γ, then It is also convenient to call Γ the dual of Ω.

Now we introduce the metasymplectic spaces that we are concerned
about in the present paper.

Definition 2.10. A parapolar space ∆ “ pX,L q is a metasymplectic space if
it has uniform symplectic rank 3 and one of the following holds.
piq There exists a field K and an alternative quadratic division algebra

A such that each point residual is isomorphic to C3,3pA,Kq, whereas
every symp is isomorphic to B3,1pK,Aq. These metasymplectic spaces
are denoted as F4,1pK,Aq and said to be of type F4,1, or of long root
type.

piiq There exists a field K and an alternative quadratic division algebra
A such that each point residual is isomorphic to B3,3pK,Aq, whereas
every symp is isomorphic to C3,1pA,Kq. These metasymplectic spaces
are denoted as F4,4pK,Aq and said to be of type F4,4, or of short root
type.

If A is not an inseparable extension of K (this includes the assumption that A
does not coincide with K if charK “ 2), then we say that the metasymplectic
space is separable; otherwise inseparable.

Remark 2.11. Note that the inseparable metasymplectic spaces are precisely
those that are of both types F4,1 and F4,4.

Before we can state a precise version of our main results, we need some
more terminology. We introduce that in the following proposition, which re-
views the possible mutual positions of points and symps in a metasymplectic
space, which can be deduced from [4].

Proposition 2.12. Let ∆pX,L q be a metasymplectic space of type F4,1 or F4,4.
[Point-Point] Let p, q be two points of ∆. Then either p K q, or p and q are

contained in a unique symp ξpp, qq, or p and q are special, or p and q
are at distance 3 from each other, in which case we call p and q opposite
and denote this as p ” q (if p is not opposite q we write p ı q).

[Point-Symp] Let p be a point and ξ a symp of ∆. Then either p P ξ, or pKXξ “
L P L , or pKK X ξ “ txu, x P X. In the second case, we say that p and
ξ are close, the points of pξ X LKqzL are symplectic to p and all points
of ξzLK are special to p. In the third case, we say that p and ξ are far,
all points of pξ X xKqztxu are special to p and all points of ξzxK are
opposite p.

[Symp-Symp] Let ξ and ζ be two distinct symps of ∆. Then either ξ X ζ is a
plane (and we say that ξ and ζ are adjacent), ξ X ζ is a point (and we
say that ξ and ζ are symplectic), or ξ X ζ “ ∅. In the latter case either
there exists a unique symp intersecting both ξ and ζ in respective planes
(and we say that ξ and ζ are special), or each point of ξ is far from ζ
(and we call ξ and ζ opposite).

Furthermore, for a line L and a point p we either have that no point of L
is opposite p, or all points except exactly one are. The non-opposite point is
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then special to p. Consequently, points collinear to a point symplectic to p are
never opposite p.

We will use the symbols KK,’,” and ı also in the exponent, with the
obvious meaning. For example pı denotes the set of points not opposite p.

Remark 2.13. The terminology for symps in piiiq of the previous proposition
can be explained by the following property: Let Ξ be the set of symps of ∆
and let L be the set of pencils of symps, that is, the sets of symps containing
a given plane. Then ∆˚ “ pΞ,Lq is a metasymplectic space. If ∆ is of type
F4,1 or F4,4, then ∆˚ is of type F4,4 or F4,1, respectively. We call ∆˚ the dual
of ∆.

Remark 2.14. We note that, if A is an inseparable extension of K, then
B3,1pK,Aq is isomorphic to C3,1pK,A2q, where A2 denotes the field of squares
of A. Consequently, F4,1pK,Aq – F4,4pA2,Kq.

Remark 2.15. Note that the metasymplectic spaces that we have defined
are in fact Lie incidence geometries, that is, geometries defined from Tits-
buildings, namely from those of type F4, as the notation suggests. We will
not explicitly need this connection. Some terminology is borrowed from this,
though: Opposite points and opposite symps in our sense are also opposite
in the building-theoretic sense. Adjacent symps are symps that are contained
in adjacent chambers in the building-theoretic sense.

By definition, point residuals in metasymplectic spaces are dual polar
spaces. Such residues also give rise to embedded dual polar spaces as follows.

Definition 2.16. Let p and q be two opposite points of a metasymplectic space.
∆. Then the set of points pK X qı is called a trace. Endowed with all lines
contained in it, we obtain a trace geometry.

Some interesting substructures of these metasymplectic spaces are equa-
tor geometries and imaginary lines.

Definition 2.17. Let ∆ “ pX,L q be a metasymplectic space. Let p, q be two
opposite points of ∆. Then the set of points that are symplectic to both p
and q is called the equator of p and q, and if we call every intersection of
size at least 2 of the equator with a symp a “line”, then we talk about the
equator geometry Epp, qq. It is well known that Epp, qq is isomorphic to the
polar space that is dual to any point residual (see for example Proposition
2.6.2 in [16]).

A hyperbolic line of an equator geometry through two opposite points
a and b will be called an imaginary line of the corresponding metasymplectic
space and denoted by C pa, bq. These are short if, and only if, the metasym-
plectic space is separable of type F4,4.

In metasymplectic spaces of type F4,4 we can extend the equator ge-
ometry (we refer to Section 2.6 of [16] for many more properties of these
subgeometries).
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Definition 2.18. Let p and q be two opposite points of F4,4pK,Aq. Then define
the extended equator geometry pEpp, qq as the point-line geometry with point
set

ď

tEpx, yq | x, y P Epp, qq, x opposite yu

and line set the hyperbolic lines (of symps) contained in this point set.

We then have the following embedding result.

Proposition 2.19 (Section 2.7 of [16]). Let ∆ be the metasymplectic space
F4,4pK,Aq and let p, q be opposite points. Then the set of points of ∆ collinear
to at least two points of pEpp, qq is the point set of a fully embedded polar space
of rank 4 isomorphic to B4,1pK,Aq.

The fully embedded polar space of rank 4 of the previous proposition is
called a tropics geometry of ∆.

2.3. Main Results
We can now state the main results.

Main Result A. Let Ω be a dual polar space of rank 3 fully embedded in a sep-
arable metasymplectic space ∆ – F4,1pK,Aq, with A an alternative quadratic
division algebra over K. Then one of the following possibilities occurs.
piq Ω is isomorphic to C3,3pB,Kq, for some quadratic subalgebra B of A,

is isometrically embedded, and is contained in a trace geometry of ∆.
If B “ A, then Ω coincides with a trace geometry and conversely, ev-
ery trace geometry is an isometrically fully embedded dual polar space
isomorphic to C3,3pA,Kq.

piiq Ω is isomorphic to C3,3pB,Kq and embedded in a symp, with K infi-
nite and B a quadratic associative division algebra such that dimKpBq ă
dimKpAq or B an inseparable field extension different from K if charpKq “
2.

piiiq K – F2 and A – F4, there is a point p such that each point of Ω is on
a unique line of ∆ through p and each line of ∆ through p contains at
most one point of Ω, but Ω is not contained in a trace geometry. Up to
isomorphism, there are unique examples for Ω P tpC3,3p2, 2q,C3,3p4, 2qqu.

Main Result B. Let Ω be a dual polar space fully embedded in a separable
metasymplectic space ∆ – F4,4pK,Aq, with A an alternative quadratic division
algebra over K. Then Ω is isomorphic to B3,3pK,Aq, isometrically embedded,
and arises as a trace geometry of ∆. Conversely, every trace geometry is an
isometrically fully embedded dual polar space isomorphic to B3,3pK,Aq.

Main Result C. Let Ω be a dual polar space fully embedded in an insepara-
ble metasymplectic space ∆ – F4,1pK,K1q, with K1 an inseparable (possibly
multiple or trivial) quadratic extension of K, charK “ 2. Then one of the
following possibilities occurs.
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piq Ω is isomorphic to C3,3pK2,Kq, for some quadratic subalgebra K2 of
K1, is isometrically embedded, and is contained in a trace geometry.
Conversely, every trace geometry is an isometrically fully embedded dual
polar space isomorphic to C3,3pK1,Kq.

piiq Ω is isomorphic to C3,3pK2,Kq, for some quadratic subalgebra K2 of K1,
is isometrically embedded, there is a point p such that each point of Ω is
on a unique line of ∆ through p and each line of ∆ through p contains
at most one point of Ω, but Ω is not contained in a trace geometry.

piiiq K ‰ K1 is infinite, Ω is isomorphic to C3,3pB,Kq, for some alternative
division algebra B ‰ K over K such that either B is an inseparable
multiple quadratic extension of K or dimKpBq ă dimKpK1q, and Ω is
fully embedded in a symplecton.

Remark 2.20. We provide examples of all cases except of Main Result Apiiq.
So whether this actually does occur, is still an open problem.

Remark 2.21. For each field K, there are examples of Main Result Cpiiq.
For finite fields, there is, up to isomorphism, a unique example for Main
Result Cpiiq, except if K “ F2, then there are exactly two examples. We
sketch a proof of this fact, along with some more remarks in the infinite case,
in Remark 6.2.

We will also prove the following consequences of our main results.

Corollary A. Every fully embedded dual polar space of rank at least rank 4
in a separable metasymplectic space of type F4,4 has rank 4 and is a tropics
geometry.

Finally, the next consequence is immediate. In the finite case it can also
be proved directly with a counting argument, but in general it is a rather
nice consequence of our main results.

Corollary B. Let ∆ be a separable metasymplectic space fully embedded in
some projective space PGpV q, and assume ∆ is not isomorphic to F4,1p2, 4q.
Let p be an arbitrary point of ∆ and let U be the subspace of PGpV q generated
by pK (the points of ∆ collinear to p in ∆). Let H be any hyperplane of U
not containing p. Then pK XH is a trace.

2.4. Some more preliminaries
Before we start proving those main results, we repeat some results from the
literature which will prove useful many times. It mainly concerns properties
of polar space, in particular of the symps of the metasymplectic spaces we
are considering. We also explain the connection between the statement of the
main results in the introduction, and the ones in the previous paragraphs.

Our definition of isometric embedding implies immediately that, if a
polar space Σ is fully embedded in a parapolar space ∆, then this embedding
is isometric if, and only if, non-collinear points of Σ are non-collinear (more
exactly, have distance 2) in ∆. Hence distances between points are respected.
Hence we can apply [9, Lemma 3.20].
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Lemma 2.22 (Lemma 3.20 in [9]). Let Σ be a polar space fully embedded in a
parapolar space ∆. Then either Σ is completely contained in a singular sub-
space of ∆, or Σ is fully and isometrically embedded in a unique symplecton
of ∆.

Lemma 2.23. piq The embeddings of B3,1pK,Aq and B2,1pK,Aq in projective
space as given in Example 2.8 piq are universal. Even more, if A is
not an inseparable field extension if charK “ 2, those embeddings are
unique, i.e. there are no injective projections possible.

piiq The embeddings of C3,1pA,Kq and C2,1pA,Kq in projective space as given
in Example 2.8 piiq are universal, except if charK “ 2 and A is an
inseparable (multiple) extension of K (this includes A “ K). Even more,
those embeddings are unique if universal.

Proof. The universality follows from 8.7 of [20]. The uniqueness in piq follows
from Proposition 3.18 of [18]. In piiq the uniqueness follows from the fact that
a projective plane does not contain disjoint lines, and a projective space of
dimension at most 4 does not contain disjoint planes. ˝

We now provide some more background and explanation of the previous
lemma, at the same time introducing some notions that we will need later
on.

The polar spaces in Example 2.8 are defined using forms, which are
associated to reflexive forms (symmetric bilinear, alternating and Hermitian
forms), see [20, Chapter 8]. Exactly in the separable case, these, in turn,
define a polarity of the projective space, that is, an involution (a permutation
of order 2) of the subspaces reversing the inclusion relation. We refer to that
polarity as the defining polarity. The image of a point p of the polar space
(say, Σ) under that polarity is the tangent hyperplane, that is, the hyperplane
spanned by all lines of Σ containing p. Alternatively, that hyperplane can
be defined as the union of the set of lines of the projective space, going
through p and either completely contained in Σ, or intersecting it in just tpu.
Every subspace through p of the tangent hyperplane at p will be called a
tangent subspace. We will mainly use this notion for “tangent lines”. Since
a polarity defines an isomorphism between the projective space to its dual
(in all the examples, the dimension is finite), the global intersection of all
tangent hyperplanes is the empty set.

In the inseparable case, the intersection of all tangent hyperplanes of
the universal embedding is non-empty and corresponds to the radical of the
associated reflexive form. Projections from subspaces of that radical yields
different embeddings. Projection from the whole radical yields a minimal
embedding. If K1 is a multiple quadratic inseparabel extension of K in char-
acteristic 2, then the embedding of B3,1pK,K1q given by Example 2.8piq is
universal, and the one of C3,1pK,K12q given by Example 2.8piiq is minimal.
Hence the latter corresponds to a polarity again.
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Now we relate to (in)separability of a metasymplectic space to the ex-
istence of so-called central elations. We first define the latter, also for polar
spaces.

Definition 2.24. A central elation of a polar space with centre the point a
is a collineation that fixes all points collinear with a. A central elation of a
metasymplectic space with centre the point a is a collineation that fixes a
and stabilises all the lines that have at least one point collinear to a.

Lemma 2.25. Let ξ be the polar space C3,1pA,Kq or the polar space C2,1pA,Kq
and let x, y be opposite points of ξ. Then the following holds:
piq The number of points on the hyperbolic line hpx, yq is |K| ` 1;
piiq the group of central elations of ξ with centre x (see Definition 2.24) acts

sharply transitive on hpx, yqztxu;
piiiq if ξ “ C3,1pA,Kq, then hpx, yq “ LKXMK for all opposite lines L,M Ď

xK X yK;
pivq if A is associative and ξ is minimally embedded in the projective space

Π (which is at the same time universally in the separable case), then
hpx, yq is a subset of the projective line xx, yy through x and y in Π.

Proof. If ξ “ C3,1pA,Kq, Lemma 2.6.9 of [16] yields piq and piiiq. However a
similar argument shows that piq also holds if ξ “ C2,1pA,Kq. If A is associa-
tive, Propositions 7.2.6 and 7.2.7 of [23] yield piq, piiq and pivq. The fact that
piiq also holds in the non-associative case follows now from the comments
after Proposition 7.2.7 in [23]. ˝

Now, one can deduce from [16] that a metasymplectic space admits
central elations if, and only if, each equator geometry admits central elations.
This, Lemma 2.25 and the fact that B3,1pK,Aq does not admit central elations
in the separable case by [23, Proposirion 7.2.8], implies that the inseparable
metasymplectic spaces Γ are precisely those for which both Γ and its dual
admit central elations; the metasynplectic spaces of type F4,1 are precisely
those that admit central elations, and the separable metasymplectic spaces
of type F4,4 are precisely those that do not admit central elations. This now
shows that the statements of the main results in the introduction and in the
previous subsection are equivalent.

The following result belongs to folklore, but we provide an explicit proof
for completeness.

Lemma 2.26. Let K be a field of characteristic 2 and K1 a (possibly triv-
ial) inseparable (multiple) quadratic field extension of K. Let B2,1pK,K1q be
embedded in PGpn,Kq. Then every secant intersects B2,1pK,K1q in a mixed
projective subline. The latter exists of only two points if, and only if, the
embedding is universal.

Proof. Let L be a secant. Denote d :“ dimKpK1q. Note that the embedding
must be a projection from the universal one as given in Example 2.8 piq by
Lemma 2.23 piq. So we may interpret PGpn,Kq as a subspace of PGp3`d,Kq.
Denote the coordinates of a point of the latter as px´2, x´1, pyiqiPI , x1, x2q
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with I an index set of cardinality d. Without loss of generality, we may now
suppose that L is given by the equations x´1 “ 0, x1 “ 0 and yi “ 0 for
all i P I. As explained in paragraph 3.4 of [23], we may also suppose that
B2,1pK,K1q is embedded in PGp3` d,Kq as the null set of

x´2x2 ` x´1x1 “
ÿ

iPI

aiy
2
i ,

for some ai with i P I forming a base of K12 over K2. Since the projection
must be injective, we may suppose that PGpn,Kq is the subspace given by
the equations yj “ 0 for all j P J for some J Ď I and that the projection is
from the subspace given by the equations xk “ 0 for all k P t´2,´1, 1, 2u and
yi “ 0 for all i P IzJ . Then B2,1pK,K1q is given in PGpn,Kq as the following
set of points:

tpx´2, x´1, pyiqiPIzJ , x1, x2q |DpzjqjPJ P K :

x´2x2 ` x´1x1 `
ÿ

iPIzJ

aiy
2
i “

ÿ

jPJ

ajz
2
j u.

Now the intersection of L and this set of points is the set
#˜

1, 0, 0, 0,
ÿ

jPJ

ajλ
2
j

¸

|pλjqjPJ P K

+

Y tp0, 0, 0, 0, 1qu ,

which forms clearly a mixed projective subline.
The last claim follows now easily, noting that this corresponds to the

case J “ H. ˝

Finally we note down the classification of non-hyperbolic non-embeddable
polar spaces as give by Tits [20].

Lemma 2.27 (9.1 of [20]). Every non-hyperbolic non-embeddable polar space
of rank 3 is isomorphic to C3,1pO,Kq for some field K and some octonion
division algebra O over F .

For completeness (but irrelevant for us) we mention that the same source
also implies that hyperbolic non-embeddable polar spaces are the line Grass-
mannians of projective spaces of dimension 3 over a non-commutative skew
field.

3. Veronese varieties
Since several arguments to prove our main results will involve Veronese va-
rieties and Veronese representations of projectie planes, we review the main
properties of these objects that we will use, and prove some new ones. A good
reference is [15].

The reason why Veroneseans like that turn up is that, if a dual polar
space is embedded universally in a projective space, then the point residual
is a Veronese variety (see for example [8], or Remark 4.8).
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Definition 3.1. Let x ÞÑ x be the standard involution of A as a quadratic
alternative division algebra over K. Then A can be seen as a vector space
over K and we can consider the projective space PGpV q, with V “ K‘K‘
K‘ A‘ A‘ A. Note dimV “ 3 dimKpAq ` 2. Consider the following points
of PGpV q, given by their coordinates:

$

’

&

’

%

ppx, yq “ p1, xx, yy;xy, y, xq, x, y P A;

ppyq “ p0, 1, yy; y, 0, 0q, y P A;

pp8q “ p0, 0, 1; 0, 0, 0q.

Then we call V2pK,Aq “ tppx, yq | x, y P Au Y tppyq | y P Au Y tpp8qu a
Veronese variety, or briefly a Veronesean (associated to PGp2,Aq).

We now consider ppx, yq, ppyq and pp8q as points of PGp2,Aq with re-
spective coordinates px, y, 1q, p1, y, 0q and p0, 1, 0q. Then the lines are given
as follows: the line Lm,q with equation y “ mx ` q, m, q P A consist of the
points ppx,mx`qq (x P A) and ppmq; the line La with equation x “ a, a P A,
consist of the points ppa, yq (y P A) and pp8q; and the line L8 consists of
the points ppyq (y P A) together with pp8q. These lines then correspond to
quadrics of Witt index 1 in the subspaces of PGpV q that they generate. We
will refer to such quadrics as the ovoids of the Veronesean.

When A is associative, we can directly and homogeneously define the
Veronese variety from the projective plane PGp2,Aq as

ρpx, y, zq “ pxx, yy, zz; yz, zx, xyq.

By Theorem 3.2 of [15], every translation of PGp2,Aq is induced by a
collineation of PGpV q stabilising V2pK,Aq (a translation of a projective plane
is a collineation with fixed points precisely the set of points of some line).
Considering the group generated by the translations, we see that the stabiliser
in PGpV q of V2pK,Aq acts transitively on the set of ordered triples of non-
collinear points, and, likewise, on the set of ordered triples of non-concurrent
lines of PGp2,Aq (in other words, on ordered triples of ovoids not having a
common point).

Furthermore we will need the following results.

Lemma 3.2 (Theorem 3.3 of [15]). Let O1, O2 be two ovoids of V2pK,Aq (em-
bedded in PGpV q as above), for some alternative quadratic division algebra A
over K. Then the intersection xO1y X xO2y is a point p of V2pK,Aq.

We will also use Main Result 4.3 of [12], which says the following.

Proposition 3.3 (Main Result 4.3 of [12]). Let the point set of a projective
plane Π be a set of points spanning a projective space PGpW q, for some
vector space W (not necessarily finite-dimensional), such that the lines of
Π correspond to quadrics of Witt index 1 in subspaces of PGpW q of given
uniform dimension d such that any two such subspaces intersect in a unique
point (necessarily belonging to Π). Then Π is a Veronese variety and the
dimension ofW is 3d, except possibly if Π – PGp2, 2q (and necessarily d “ 2),
or if Π – PGp2, 4q and d “ 3.
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In [12] also the case Π – PGp2, qq, pq, dq “ p2, 2q, p4, 3q, is considered.
The arguments in [12, §7.3.1,§7.3.2] easily imply the following statements.

Lemma 3.4. Let the point set of a projective plane Π – PGp2, qq, q “ 2, 4, be
a set of points of a projective space PGpn, 2q, for some n ě 2, such that the
lines of Π correspond to quadrics of Witt index 1 in subspaces of PGpn, 2q of
dimension 2 if q “ 2, and of dimension 3 if q “ 4, such that any two such
subspaces intersect in a unique point (necessarily belonging to Π). Suppose
also that the natural action of PGL3pqq on Π is induced by PGLn`1p2q. Then
either Π is a Veronese variety, or q “ 2, n “ 6 and Π is a set of seven points
generating PGp6, 2q, or q “ 4, n “ 10 and there is a unique such example.
In the last case, let, for each point p P Π, Tp be the subspace generated by
the tangent planes at p to the quadrics of Witt index 1 corresponding to the
lines of PGp2, 4q through p. Then, for each p P Π, dimTp “ 6, each triple of
tangent planes at p to the quadrics of Witt index 1 through p generates Tp.
The intersection of all these Tp is a line L the projection of Π from which is
a Veronesean V2p2, 4q and the stabilisator of Π in PGp10, 4q acts transitively
on L.

The next result probably belongs to folklore, but we provide a proof for
completeness.

Lemma 3.5. Let C be a plane conic completely contained in V2pK,Aq, for
some alternative quadratic division algebra A over K, and suppose |K| ą 2.
Then C is contained in an ovoid of V2pK,Aq.

Proof. By the properties of the full collineation group of PGpV q stabilising
V2pK,Aq mentioned above, we may assume that, if three points of C are not
contained in a common ovoid of V2pK,Aq, then they have respective coordi-
nates p1, 0, 0; 0, 0, 0q, p0, 1, 0; 0, 0, 0q and p0, 0, 1; 0, 0, 0q. Clearly, no nontrivial
linear combination of these points, except for the points themselves, belongs
to V2pK,Aq, as A has no zerodivisors. ˝

A skeleton of a projective plane is an ordered quadruple of points such
that no three are on a line.

Lemma 3.6. Let C1, C2 be two intersecting conics contained in distinct ovoids
of V2pK,Aq. Then there exists a unique Veronese variety that is isomorphic
to V2pK,Kq containing both C1 and C2 and itself contained in V2pK,Aq.

Proof. Since the collineation group of PGp2,Aq acts transitively on skeletons
of PGp2,Aq (see Satz 4.1.2 and 7.3.14 of [19]), we may assume that C1 contains
the points a1 “ p1, 0, 0; 0, 0, 0q, a2 “ p0, 1, 0; 0, 0, 0q and a12p1, 1, 0; 0, 0, 1q, and
C2 contains the points a1 “ p1, 0, 0; 0, 0, 0q, a3 “ p0, 0, 1; 0, 0, 0q and a13 “

p1, 0, 1; 0, 1, 0q. If V2 is a Veronese variety isomorphic to V2pK,Kq containing
C1YC2, then it should also contain a conic C through a2 and a3, and a conic
C 1 through a12 and a13. Moreover, the conics C and C 1 should meet in a
point. Since conics lie on unique ovoids, the intersection point p of C and C 1
is the intersection of the ovoid O of V2pK,Aq through a2 and a3 with the ovoid
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O1 through a12 and a13. Since, with above notation, O corresponds to the line
L8 and O1 to the line L´1,1 of PGp2,Aq, it follows that p “ pp´1q and hence
has coordinates p0, 1, 1;´1, 0, 0q. Since the six points a1, a2, a3, a12, , a13 and
pp´1q uniquely define the six-dimensional subspace K‘K‘K‘K‘K‘K
of V (with each K of the last three components the natural inclusion of K in
A), the lemma is proved. ˝

In the case V2pK,Kq, the ovoids are plane conics. When charK “ 2,
then each conic has a nucleus, which is, geometrically, the intersection of all
tangent lines, or, algebraically, the radical of the bilinear form associated to
the quadratic form defining the conic. Now we note the following, which is
known in the finite case, but we need it in full generality:

Lemma 3.7. Assume charK “ 2. The set of nuclei of conics of V2pK,Kq is
the plane consisting of the points p0, 0, 0; a, b, cq, a, b, c P K, not all zero.

Proof. The lemma is proved if we show that the point p0, 0, 0; a, b, cq is the
nucleus of the conic C determined by the image of the line of PGp2,Kq with
equation ax` by ` cz “ 0. Without loss of generality, we may assume c “ 1.
Then an arbitrary point of the conic is px2, y2, a2x2 ` b2y2, axy ` by2, ax2 `

bxy, xyq, and all points lie in the plane α given by the equations
$

’

&

’

%

aX0 `X4 ` bX5 “ 0,

bX1 `X3 ` aX5 “ 0,

X2 ` bX3 ` aX4 “ 0,

which is clearly disjoint from the plane π with equations X0 “ X1 “ X5 “ 0.
Projecting α from π onto the plane β with equations X2 “ X3 “ X4 “ 0, we
obtain as projection of C the conic with equations X0X1`X

2
5 “ X2 “ X3 “

X4 “ 0, which has nucleus n1 “ p0, 0, 0; 0, 0, 1q. The projection of n1 from π
onto α is p0, 0, 0; a, b, 1q, what we had to prove. ˝

We will refer to this plane as the nucleus plane of V2pK,Kq.

Lemma 3.8. Let V2pK,Kq be the quadric Veronesean naturally embedded in
PGp5,Kq, and given by the points with coordinates pX2, Y 2, Z2, Y Z, ZX,XY q,
X,Y, Z P K. Then every point of PGp5,Kq not contained in the nucleus plane
if charK “ 2, is equivalent to some point with last three coordinates zero.

Proof. First note that the nucleus plane is the plane consisting of the points
with coordinates p0, 0, 0, a, b, cq with a, b, c P K. Each such point is the nucleus
of a conic on the Veronesean, in particular p0, 0, 0, a, b, cq is the nucleus of the
conic that comes from the line aX ` bY ` cZ “ 0 in PGp2,Kq.

A linear transformation of PGp2,Kq with matrix
¨

˝

a11 a12 a13

a21 a22 a23

a31 a32 a33

˛

‚
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and seen as an automorphism of V2pK,Kq, extends to (or is induced by) a
linear transformation of PGp5,Kq with matrix
¨

˚

˚

˚

˚

˚

˚

˝

a2
11 a2

12 a2
13 2a12a13 2a11a13 2a11a12

a2
21 a2

22 a2
23 2a22a23 2a21a23 2a21a22

a2
31 a2

32 a2
33 2a32a33 2a31a33 2a31a32

a21a31 a22a32 a23a33 a22a33 ` a23a32 a21a33 ` a23a31 a21a32 ` a22a31

a11a31 a12a32 a13a33 a12a33 ` a13a32 a11a33 ` a13a31 a11a32 ` a12a31

a11a21 a12a22 a13a23 a22a13 ` a23a12 a21a13 ` a23a11 a21a12 ` a22a11

˛

‹

‹

‹

‹

‹

‹

‚

Let p “ pA,B,C,D,E, F q be an arbitrary point of PGp5,Kq, not in the
nucleus plane if charK “ 2. Clearly, if charK “ 2, one of A,B,C is nonzero.
We can also assume this if charK ‰ 2, since if then A “ B “ C “ 0 at
least one of D,E, F must be nonzero. Let for example D ‰ 0, then the linear
transformation inducing

¨

˝

1 0 0
0 1 0
0 1 1

˛

‚

maps p to pA1, B1, C 1, D1, E1, F 1q with C 1 nonzero. So we may suppose
without loss of generality in both cases that C ‰ 0.

If p P V2pK,Kq, then regardless of the characteristic of K, the transfor-
mation defined by

¨

˝

1 0 ´E
C

0 1 ´D
C

0 0 1

˛

‚

maps p to a point with last three coordinates zero.
So from now on we assume that p R V2pK,Kq. Suppose first that BC ´

D2 ‰ 0. Now one calculates that the transformation defined by
¨

˝

1 a12 a13

0 1 a23

0 0 1

˛

‚ with

$

’

&

’

%

a23 “ ´
D
C ,

a12 “
DE´CF
BC´D2 ,

a13 “
DF´BE
BC´D2

maps p to a point with last three coordinates zero.
Let now charK ‰ 2. We claim that, then we may always assume that

BC´D2 ‰ 0 and the above transformation does the job. Indeed, suppose not.
By cyclic permutation, we then have, besides BC´D2 “ 0, also AC´E2 “ 0.
If also CF ´DE “ 0, then p P V2pKq, hence CF ´DE ‰ 0. Then the linear
transformation inducing

¨

˝

1 0 0
1 1 0
0 0 1

˛

‚

maps p to pA2, B2, C2, D2, E2, F 2q “ pA,A ` B ` 2F,C,D ` E,E,A ` F q
with B2C2 ´ D22 “ AC ` BC ` 2CF ´ D2 ´ E2 ´ 2DE “ pAC ´ E2q `

pBC ´D2q ` 2pCF ´DEq ‰ 0. Hence the claim.
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So let now charK “ 2. Then, similarly as above, the assertion follows if
BC´D2 ‰ 0 or AC´E2 ‰ 0. Hence suppose BC “ D2 and AC “ E2. Then
AB ‰ F 2, as otherwise p P V2pKq. By cyclic permutation, we may therefore
assume A “ B “ 0. Then we have the point p0, 0, C, 0, 0, F q, which is mapped
onto a point with coordinates p˚, ˚, ˚, 0, 0, 0q by the linear transformation
defined by

¨

˝

1 0 1
0 1 F

C

1 C
F 1

˛

‚.

The lemma is proved. ˝

Lemma 3.9. Let K be a field distinct from F2 and F3. Then no proper injective
projection from a subspace not contained in the nucleus plane of the quadric
Veronesean V2pKq is contained in a (proper) quadric.

Proof. Suppose for a contradiction that a proper projection of V2pKq (from a
subspace not contained in the nucleus plane) is contained in a quadric. Then
V2pKq is contained in a degenerate quadric Q with at least one vertex v not
contained in the nucleus plane of V2pKq. The point v is not contained in any
secant line of V2pKq. We now determine all quadrics that contain V2pKq.

We write a generic point of V2pKq in coordinates as pX2, Y 2, Z2, Y Z, ZX,
XY q. Let

ÿ

0ďiăjď5

aijxixj

be an equation of a generic quadric containing V2pKq. Then, for all X,Y, Z P
K, we have

a00X
4`pa05Y`a04ZqX

3`ppa01`a55qY
2`pa03`a45qY Z`pa02`a44qZ

2qX2`

` pa15Y
3 ` pa14 ` a35qY

2Z ` pa34 ` a25qY Z
2 ` a24Z

3qX`

` a11Y
4 ` a13Y

3Z ` pa12 ` a33qY
2Z2 ` a23Y Z

3 ` a22Z
4 “ 0

Setting Y “ Z “ 0, we obtain a00 “ 0 and similarly a11 “ a22 “ 0. Fixing
arbitrary Y and Z, we get a cubic equation that must admit all field elements
X as roots. Since the field has at least four elements, all coefficients of the
cubic have to be zero. Hence, we have the following identities in Y,Z.

$

’

’

’

&

’

’

’

%

a05Y ` a04Z “ 0,

pa01 ` a55qY
2 ` pa03 ` a45qY Z ` pa02 ` a44qZ

2 “ 0,

a15Y
3 ` pa14 ` a35qY

2Z ` pa25 ` a34qY Z
2 ` a24Z

3 “ 0,

a13Y
3Z ` pa12 ` a33qY

2Z2 ` a23Y Z
3 ´ 0.

The first identity clearly yields a05 “ a04 “ 0. The second one yields (putting
Y “ 0 and Z arbitrary, and Z “ 0 and Y arbitrary)

$

’

&

’

%

a01 ` a55 “ 0,

a02 ` a44 “ 0,

a03 ` a45 “ 0.
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Cyclic permutation X Ñ Y Ñ Z Ñ X quickly yields a15 “ a13 “ a24 “

a23 “ 0, and then it is easy to see that the third and fourth identities above
yield

$

’

&

’

%

a14 ` a35 “ 0,

a25 ` a34 “ 0,

a12 ` a33 “ 0.

Hence a generic quadric containing V2pKq has equation

Apx1x2 ´ x
2
3q `Bpx0x2 ´ x

2
4q ` Cpx0x1 ´ x

2
5q

`Dpx0x3 ´ x4x5q ` Epx1x4 ´ x3x5q ` F px2x5 ´ x3x4q “ 0.

Hence we may assume that this is the equation of Q, for some constants A,
B, C, D, E, F .

Since almost every point of the projective space is equivalent to some
point with coordinates p˚, ˚, ˚, 0, 0, 0q by Lemma 3.8, we may assume that v
has coordinates pk, `,m, 0, 0, 0q, with k, `,m P Kzt0u as otherwise v is con-
tained in the plane of a conic of V2pKq, contradicting the assumption that v
is not a nucleus and the embedding is injective. The fact that v is a vertex
is equivalent to v lying on Q and the tangent space at v being the whole
projective space. Since an equation of the tangent space at v is

pC``Bmqx0 ` pCk `Amqx1 ` pBk `A`qx2 `Dkx3 ` E`x4 ` Fmx5 “ 0,

we have the identities
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

A
k `

B
` `

C
m “ 0,

B
` `

C
m “ 0,

A
k `

C
m “ 0,

A
k `

B
` “ 0,

D “ E “ F “ 0,

which implies A “ B “ C “ D “ E “ F “ 0, a contradiction. ˝

4. Isometricity and locality
First we take a closer look at trace geometries in metasymplectic spaces. One
easily observes the following for these geometries.

Lemma 4.1. Let ∆ be a metasymplectic space. Then any trace geometry is
isomorphic to a dual polar space of rank 3 and is isometrically embedded.
In particular, if ∆ – F4,1pK,Aq then the trace geometry is isomorphic to
C3,3pA,Kq, and if ∆ – F4,4pK,Aq then the trace geometry is isomorphic to
B3,3pK,Aq.

Proof. The fact that the trace geometries are of the described form follows
immediately from the observation that a trace geometry is always isomorphic
to a point residual. The isometricity follows from the fact that, if two points
of a trace geometry pK X qı (for some opposite points p and q of ∆) are
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collinear in ∆, they must be contained in a plane with p and consequently
the line containing them is the intersection of qı with this plane. ˝

In the rest of the paper we will try to prove that in general the converse
of this lemma is true. In this section we will prove that the embedding of
a dual polar space of rank three in a metasymplectic space is in general
isometric and contained in the perp of a point of the metasymplectic space.
The fact that they are also (exactly) the points not opposite another point,
will be proved in the next sections (and it will turn out not to be true in all
cases).

4.1. Isometricity
First we start by proving an equivalent definition of “isometric” for dual polar
spaces fully embedded in metasymplectic spaces. It is actually intuitively
closer to what one expects from something “isometric”.

Lemma 4.2. The embedding of a dual polar space Ω in a metasymplectic space
∆ is isometric if, and only if,

[Col] two points collinear in Ω are also collinear in ∆;
[Sym] two points at distance two in Ω are symplectic in ∆;
[Spe] two points at distance three in Ω are special in ∆.

Proof. If the embedding has the mentioned properties, then it is clearly iso-
metric (points of Ω collinear in ∆ are also collinear in Ω and hence joined by
a line).

Now suppose the embedding of Ω in ∆ is isometric. Clearly, [Col] holds.
Also, two points at distance two in Ω must be symplectic or special in ∆. The
latter is impossible since there are no special pairs of points in a dual polar
space of rank three. This implies that [Sym] holds. Finally, let p, q be two
points at distance 3 in Ω and let x, y be points of Ω such that p K x K y K q
(in Ω). If q P ξpp, yq, then q is collinear in ∆ to a point z of xp, xy Ď Ω. This
produces a line xq, zy in ∆ through two points of Ω which does not belong to
Ω, a contradiction. So q R ξpp, yq and then by Proposition 2.12 [Point-Symp]
the point q is special to p, proving [Spe]. ˝

The following lemma is an immediate consequence of Lemma 2.22. Since
we will however use this often, we formulate (and prove) this here.

Lemma 4.3. Let Ω be a dual polar space of rank 3 fully embedded in a meta-
symplectic space ∆. Let ξ be a symplecton of Ω. Then ξ is isometrically em-
bedded in a unique symplecton ξN of ∆.

Proof. By Lemma 2.22, ξ must be isometrically embedded in a symplecton
ξN of ∆, since ξ does contain two disjoint lines while a maximal singular
subspace of ∆, i.e. a projective plane, does not. Clearly this symplecton is
unique, since it is determined by two non-collinear points. ˝

From now on, we will often use this N-notation ξN for the symplecton
of ∆ containing the symplecton ξ of Ω. Now we are in a position to prove the
general result of this paragraph.
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Proposition 4.4. Let Ω be a dual polar space of rank 3, fully embedded in a
metasymplectic space. Then the embedding is either contained in a symplec-
ton, or is isometric.

Proof. By Lemma 4.3 we immediately have that two collinear (resp. symplec-
tic) points in Ω are also collinear (resp. symplectic) in ∆. Let now a and d
be two opposite points in Ω. Then there exists a path a K b K c K d in Ω. By
Proposition 2.12 [Point-Symp], a is contained in or close to the symplecton
ξpb, dq. In the latter case we get immediately that a is special to d.

We claim that, in the former case, Ω is contained in ξpb, dq. Remark
that we may assume that a is symplectic to d as all the points of abztbu are
opposite d in Ω and at most one of them could be collinear to d in ∆. So we
may assume that ξpb, dq “ ξpa, dq. Every point in Ω collinear to a (or to d)
is contained in this symplecton by the following reasoning. Every line of Ω
through a (or through d) contains a point b1 at distance 2 from d (or from a)
in Ω and this point must then be symplectic to d (or to a) in ∆. But a (or
d) must then by the above argument also be contained in ξpb1, dq (or ξpb1, aq)
and consequently ξpb1, dq “ ξpa, dq “ ξpb, dq. The claim is now proved using
a connectivity argument and the fact that for every point a1 P Ω collinear to
a (in Ω), there exists a point d1 P Ω collinear to d (in Ω), such that a1 and d1
are opposite in Ω and not collinear in ∆.

Note now that if our chosen a and d were special, we get that this must
be the case for every pair of opposite points in Ω by the previous paragraph.
So the embedding is isometric. ˝

In the rest of this subsection, we discuss when both situations (contained
in a symp and isometric) can occur. It will follow that in the separable F4,4-
case the embedding must be isometric, while in the inseparable case there
are examples of embeddings in symplecta. In the separable F4,1-case, it is
not clear if there could be embeddings in a symplecton. However those could
never be isomorphic to a point residual, while they can be in the inseparable
case. We start by studying the separable F4,4-case.

Lemma 4.5. Let Ω be a dual polar space of rank 3, fully embedded in a sep-
arable metasymplectic space ∆ – F4,4pK,Aq. Then every symplecton ξ of Ω
arises as the common perp of two opposite points in a symplecton ξN of ∆.

Proof. First remark that ξ is isometrically embedded in a symplecton ξN of
∆ by Lemma 4.3.

Suppose now that A is not an octonion division algebra over K. Let
ξN – C3,1pA,Kq be universally (by Lemma 2.23) embedded in PGp5,Aq as
in Example 2.8 piiq and denote with ρ the defining polarity. By the Main
Theorem of [3], ξ is the intersection of the polar space ξN with a subspace U
of PGp5,Aq. As ξ contains two opposite lines, but no planes, the dimension
of U is 3 or 4.

We claim that the dimension of U is 3. Suppose first that the polar
space Ω˚ dual to Ω is not embeddable. From Lemma 2.27 we infer that
Ω˚ – C3,1pO,Fq (and consequently Ω – C3,3pO,Fq) for some field F and some
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octonion division algebra O over F. Then ξ – C2,2pO,Fq – B2,1pF,Oq, which
has a unique embedding in PGp11,Fq by Lemma 2.23 piq and is consequently
not embeddable in PGp3,Aq or PGp4,Aq, a contradiction. So Ω˚ must be
embeddable and consequently also the dual ξ˚ of ξ is embeddable. With
Proposition 10.10 of [20] we then get that ξ (and ξ˚) is of the form B2,1pF,Bq
or C2,1pB,Fq, with F a field and B a quadratic associative division algebra
over F. Suppose first that ξ – C2,1pB,Fq and B is not an inseparable multiple
quadratic extension over F if charpFq “ 2 (including F “ B), then U has
dimension 3, by Lemma 2.23 piiq. So it suffices to exclude that ξ is isomorphic
to B2,1pF,Bq for some field F and some quadratic associative division algebra
B (taking Remark 2.14 into account). Suppose now for a contradiction that
ξ is of this form. Then ξ has a universal embedding in PGp3 ` n,Fq with
n “ dimFpBq and must also be embedded in PGp5,Aq. So we get that A “ F
must be a field, so either A “ K and charpKq ‰ 2 or A “ L is a separable
quadratic field extension of K. Recall that the hyperbolic line of C3,1pA,Kq
through two opposite points x and y is the intersection of the projective line
xx, yy of PGp5,Aq with C3,1pA,Kq (see Lemma 2.25 pivq). First suppose that
the induced embedding of ξ in the subspace X of PGp5,Aq that it spans
is the universal one, as given in Example 2.8 piq. Then the projective line
through two opposite points x and y of ξ intersects ξ in only those two
points, a contradiction since ξ arises as the intersection of X with ξN by [3].
So we may suppose that ξ is not universally embedded in X. This implies
by Lemma 2.23 piq that charpFq “ 2, B is an inseparable multiple quadratic
extension over F (including F “ B) and A “ F “ L is a separable quadratic
field extension of K. Let now L be a secant to ξ in this embedding. Then L
intersects ξ in a mixed projective subline of at least three points over L2 by
Lemma 2.26. However, by Remark 2.4, L intersects ξN in a projective subline
over K. This yields that L2 ď K, contradicting Remark 2.5.

So U is spanned by two opposite lines L and M of ξ. Let now π, π1 be
two (locally opposite) planes through L, then each of these planes contains a
unique point (p, p1 respectively) collinear to M . Applying ρ to the projective
line xp, p1y we obtain a three-dimensional subspace of PGp5,Aq containing the
span of L and M . Consequently ξ “ pK X p1K in ξN.

Suppose now that A is an octonion division algebra, then we can apply
Main Result 1 from [17], which gives us that ξ is the common perp of two
points of ξN. ˝

Proposition 4.6. Let Ω be a dual polar space of rank 3, fully embedded in
a separable metasymplectic space ∆ – F4,4pK,Aq. Then the embedding is
isometric.

Proof. By Proposition 4.4 it suffices to prove that Ω cannot be contained in a
symplecton. Suppose for a contradiction that Ω is contained in a symplecton
ξN of ∆. Let p be a point of Ω. The point residual ResξNppq of p in ξN is
a generalised quadrangle C2,1pA,Kq (where points correspond to lines of ξN
through p and lines correspond to planes of ξN through p). However the
point residual of p in Ω, notation ResΩppq, is a projective plane (where points
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correspond to lines of Ω through p and lines correspond to symplecta of Ω
through p). We interpret now the lines of ResΩppq in ResξNppq. Let ζ be a
symplecton of Ω through p. Then by Lemma 4.5, ζ is the common perp
of two points a, b in ξNzΩ. These points determine lines pa and pb and we
denote by a1, b1, respectively, the corresponding points in ResξNppq. Now the
symplecton ζ seen as line in ResΩppq corresponds to all points of ResξNppq
collinear to a1 and b1 in ResξNppq.

We now dualise ResξNppq. This is an orthogonal generalised quadrangle
Q – B2,1pK,Aq, which has a unique (by Lemma 2.23 piq) embedding as a
quadric in Π “ PGp3`n,Kq with n “ dimKpAq (described in Example 2.8piq).

The points of ResΩppq are certain lines on Q. Note that two such disjoint
lines, say L,M , span a three-dimensional subspace S of Π, which intersects
the quadric necessarily in a hyperbolic quadric, i.e. a grid, since this is the only
non-degenerate quadric of Witt index 2 embedded in three dimensions. By
the above interpretation of the lines of ResΩppq, the regulus of this hyperbolic
quadric containing L and M , notation RpL,Mq, corresponds to a line of
ResΩppq. Note further that every projective line in S intersecting all lines of
the opposite regulus of RpL,Mq is itself a line of RpL,Mq.

Now we express that the lines and reguli corresponding to the points
and lines of ResΩppq form a projective plane, since ResΩppq is a projective
plane. Take three such “non-collinear” lines X,Y, Z, i.e. three disjoint lines
on Q (corresponding to points of ResΩppq) not contained in the same regulus.
These must span the projective plane, so this plane is contained in the five-
dimensional subspace T of Π spanned by these three lines. The latter can
not be four-dimensional since then Z must intersect the subspace xX,Y y
in a point (necessarily on the quadric) of a line U of RpX,Y q. This would
contradict the fact that there must be a regulus through the two lines Z,U of
the projective plane. Let y P Y be a point and denote by x, z the respective
unique points on X,Z collinear to y. We now claim that x must be collinear
to z, contradicting the fact that Q does not contain planes.

Therefore let Y 1 be a line on RpX,Zq different from X and Z and let Z 1
vary over RpX,Y q. Then xY 1, Z 1y has dimension 3 and must intersect xY, Zy
in a line X 1 of RpY,Zq, since every two lines in a projective plane intersect.
Now also the three-dimensional space xxy, Y 1y must intersect xY,Zy in a
line and by the above intersections, this line must intersect each line of the
regulus RpY, Zq. So this must be a line of the opposite regulus. Since y is
clearly contained in this intersection, this intersection is the line yz. Then
the plane xx, Y 1y intersects xY,Zy in the point z. Since this plane intersects
Q at least in the line Y 1, it must be a tangent plane. Since the points x and
z are not contained in Y 1, they must be contained in the other line of Q in
this tangent plane and are consequently collinear. ˝

Now we’ll take a closer look at the F4,1-case.

Lemma 4.7. Let Ω be a dual polar space of rank 3, fully embedded in a meta-
symplectic space ∆ – F4,1pK,Aq. Then Ω – C3,3pB,Kq for some quadratic
alternative division algebra B over K.



Dual polar spaces embedded in metasymplectic spaces 27

Proof. Let Ω˚ be the dual of Ω. If Ω˚ is non-embeddable, it must be C3,1pO,Kq
with O an octonion division algebra over K by Lemma 2.27.

So we may from now on assume that Ω˚ is embeddable. Let ξ be a sym-
plecton of Ω, then ξ is embeddable as it must, by Lemma 4.3, be isometrically
embedded in a symplecton of ∆ which is isomorphic to the embeddable polar
space B3,1pK,Aq. Since Ω˚ is also embeddable, also the dual ξ˚ of ξ must be
embeddable. With Proposition 10.10 of [20] we then get that ξ (and ξ˚) is of
the form B2,1pF,Bq or C2,1pB,Fq, with F a field and B a quadratic associative
division algebra over F. If B is not an inseparable field extension, we claim
that the latter is impossible. Suppose for a contradiction that C2,1pB,Fq is
isometrically embedded in B3,1pK,Aq, which is universally (by Lemma 2.23)
embedded in PGp5,Aq as described in Example 2.8 piq. By Theorem 1 of
[3], C2,1pB,Fq then arises as an intersection of B3,1pK,Aq with a subspace
U of PGp5,Aq. However, this induced embedding of C2,1pB,Fq in U must be
as described in Example 2.8 piiq by Lemma 2.23 piiq. This contradicts the
fact that in these embeddings secants intersect C2,1pB,Fq in more than two
points, while they intersect B3,1pK,Aq in only two points. So ξ is isomor-
phic to B2,1pF,Bq for some field F and some quadratic associative division
algebra B (possibly inseparable by Remark 2.14). Then one concludes that
F “ K by looking at the universal embeddings (Lemma 2.23) of B3,1pK,Aq
and B2,1pF,Bq and consequently Ω is isomorphic to C3,3pB,Kq. ˝

An explicit description of the dual polar spaces of rank 3 isomorphic
to C3,3pB,Kq, with B an alternative quadratic division algebra over K, via
an embedding in a projective space PGpV q, can be found in [8]; we will call
this embedding the standard embedding. Explicitly, using the version of [11,
Definition 10.1], set

V “ K‘K‘K‘K‘ B‘ B‘ B‘K‘K‘K‘ B‘ B‘ B‘K,

and, for |K| ą 2, define the embedding parametric as the projective closure
(that is, the smallest overset of points the complement of which intersects no
lne in exactly one point) of the set of all points

p1, k, `,m, x, y, z, xx´ `m, yy ´ km, zz ´ k`, kx´ yz, `y ´ zx,mz ´ xy,

kxx` `yy `mzz ´ pxyqz ´ zpy xq ´ k`m,

with k, `,m P K and x, y, z P B, and x ÞÑ x is the standard involution in B. If
|K| “ 2, one has first to consider a suitable overfield, or explicitly enumerate
the other points, as done in [8] (however, we will not need this).

It is shown in [8] that this embedding is always homogeneous and even
universal if K ‰ F2.

Remark 4.8. Taking p “ p1, 0, . . . , 0q and q “ p0, 0, . . . , 0, 1q, the set pK X qKK
is given by

tp0, k, `,m, x, y, z, 0, . . . , 0q |xx´ `m “ yy ´ km “ zz ´ k` “

kx´ yz “ `y ´ zx “ mz ´ xy “ 0u.
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If k ‰ 0, we can set k “ 1; if k “ 0 and ` ‰ 0, we can set ` “ 1. This way we
obtain

tp0, 1, zz, yy, z y, y, z, 0, . . . , 0q | y, z P BuY
tp0, 0, 1, xx, x, 0, 0, . . . , 0qu Y tp0, 0, 0, 1, 0, 0, 0, . . . , 0qu,

which, after some easy recoordinatising, is seen to coincide with a Veronese
variety as in Definition 3.1.

Remark 4.9. In the above representation, a (standard) symp of C3,3pB,Kq is
given by the intersection with the subspace p˚, 0, ˚, ˚, ˚, 0, 0, ˚, 0, . . . , 0q, and
appears in its universal embedding, as one easily checks.

The following lemmas combine some observations about these dual polar
spaces and their embeddings and will turn out to be convenient to know in
the sequel of our paper. The first lemma holds for all dual polar spaces of
rank 3.

Lemma 4.10. Let Ω be a dual polar space of rank 3 and let x and y be opposite
points in Ω. Then Ω is spanned by xK and yK.

Proof. Let S be the subspace of Ω spanned by xK and yK, i.e. the intersection
of all subspaces of Ω containing xK and yK. It suffices to prove that all points
of Ω are contained in S. By dualising to Ω˚ the polar space of rank 3 dual
to Ω, it suffices to prove that S˚, the set of planes corresponding to points
contained in S, contains all planes of Ω˚. Let πx, πy be the planes of Ω˚

corresponding with x and y. It is then clear that those planes are opposite in
Ω. Note further that the definition of S as a subspace translates to the the
fact that if two planes of Ω˚ intersecting in a line are contained in S˚, then
all planes of Ω˚ through that line must be contained in S˚.

Let π be a plane of Ω. If π equals πx or πy, or intersects one of both
in a line, it is contained in S˚ by definition. Suppose now that π intersects
both, πx, πy, in a point. Then we can project these points on the other plane
(project πXπx onto πy and πXπy onto πx) to get two planes of the previous
type intersecting π in the same line. This yields by the previous observations
that π P S˚. So suppose that π intersects only one of the planes πx, πy in
a point a and is disjoint from the other. Without loss of generality, we may
assume that a P πx. Let πa be the plane spanned by a and its projection
onto πy. Suppose first that there exists a plane α through a intersecting both
πx and π in a line, but intersecting πa only in a. Then α X πy “ ∅ and the
plane β spanned by α X π and its projection on πy is distinct from α. Both
planes α and β belong to S˚, and hence by a previous consideration, also π
does. Suppose now that every plane through a intersecting πx and π in a line,
intersects also πa in a line. Then this is not true for any plane π1 intersecting
π in a line through a. Hence every plane intersecting π in a line through a
belongs to S˚, and with that, π P S˚. Finally let π be a plane disjoint from
πx and πy and let L be a line of π. Projecting this line to πx and to πy yields
two planes contained in S˚ through this line, which concludes the proof if
these two planes are really distinct, But if for each choice of L, these planes
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coincide, then the duality of π given by projecting first to πx, then πx to πy
and this back to π maps each line L to a point p P L, a contradiction since
there do not exist null polarities in a plane. ˝

Lemma 4.11. The only homogeneous embedding of C3,3p2, 2q in PGp13, 2q is
the standard embedding.

Proof. The standard embedding is homogeneous as is shown in [8]. Suppose
now that there is another homogeneous embedding in 13 dimensions. Since
the universal embedding of C3,3p2, 2q is in PGp14, 2q by [24, §6.4], both em-
beddings in 13 dimensions arise as the projection of the universal embedding
from a point onto a hyperplane. By the homogeneity of the embeddings,
this point must be fixed under the extensions to PGp14, 2q of the automor-
phisms of C3,3p2, 2q. Suppose now that C3,3p2, 2q is embedded in the stan-
dard way in PGp13, 2q and denote pX0, X1, . . . , X13q for the coördinates of
the embedding given above (note K “ B “ F2). Then there is a projec-
tion of this C3,3p2, 2q onto PGp7, 2q from the so called nucleus space. It is
the natural projection from the 5-dimensional subspace of PGp13, 2q given by
X0 “ X1 “ X2 “ X3 “ X7 “ X8 “ X9 “ X13 “ 0 onto the 7-dimensional
subspace given by X4 “ X5 “ X6 “ X10 “ X11 “ X12 “ 0. This projection
is, as point set, the hyperbolic quadric in 7 dimensions, in particular given
by the equations X0X13 `X1X7 `X2X8 `X3X9 “ 0. The second homoge-
neous embedding gives rise to a point of PGp13, 2q fixed under the extensions
to PGp13, 2q of the automorphisms of C3,3p2, 2q. The latter can clearly not
be contained in the nucleus subspace C3,3p2, 2q in PGp13, 2q by the automor-
phisms given in Table 2 of [8] (the automorphism group acts on the nucleus
subspace as a symplectic group). So we still have a fixed point under the
extensions of the automorphisms of C3,3p2, 2q to PGp7, 2q. That is a contra-
diction since through each point of PGp7, 2q goes at least one secant to the
hyperbolic quadric, giving rise to an imprimitive action of the automorphism
group of C3,3p2, 2q. ˝

Lemma 4.12. Suppose Ω1 – C3,3pB,Kq is isometrically embedded in Ω –

C3,3pA,Kq. Then B must be a subalgebra of A. If furthermore the dimensions
of A and B over K are finite and Ω is universally embedded (resp. embedded
in a standard way) in the projective space Π, then Ω1 is universally embedded
or embedded in a standard way (resp. embedded in a standard way) in the
subspace of Π spanned by its points.

Proof. The first statement follows immediately by looking at a point residual
which yields a projective subplane PGp2,Bq of PGp2,Aq.

Suppose now that d :“ dimKpAq and d1 :“ dimKpBq are finite. Let then
Ω be homogeneously embedded in the projective space Π and denote by Π1

the subspace of Π spanned by the points of Ω1. Let x, y be opposite points
of Ω1. Then they must also be opposite in Ω by the isometricity and similar
arguments as in the proof of Lemma 4.2. Denote with V the set of points of
Ω in xK X yKK and with V 1 those of Ω1 in xK X yKK.
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Assume first that K ‰ F2. In this case the standard and universal em-
bedding coincide, so suppose Ω is embedded in this way in Π “ PGp6d`7,Kq.
It suffices then to prove that the dimension of Π1 over K equals 6d1` 7. Note
that in this case V is the Veronesean V2pK,Aq and V 1 is a projection of the
Veronesean V2pK,Bq. We claim that this is not a proper projection.

Let ξ11 and ξ12 be symps of Ω1 through x and let ξ1 and ξ2 be the respective
corresponding symps in Ω. From now on let i “ 1, 2. Denote by Oi the
intersection of ξi with V , and by O1i the intersection of ξ1i with V 1, note
that both are the quadrics of Witt index 1. By Lemma 3.2, we get that the
intersection xO1yXxO2y is a point. This implies immediately that also xO11yX
xO12y is a point. Note however that since ξi must be universally embedded in
its span, also ξ1i must be, by combining Lemma 2.26 with the Main result of
[3]. Consequently xO1iy has dimension d1 ` 1, and the claim now follows from
Proposition 3.3.

By interchanging the roles of x and y above, we find that the subspaces
spanned by xK and yK in Π1 have both dimension at least 3d1 ` 3. However
they must be disjoint as well, since they are contained in the disjoint sub-
spaces xK and yK in Π. This shows Ω1 spans a subspace of at least (and hence
precisely) dimension 6d1 ` 7.

So assume now that K “ F2. If A “ B, the claim follows immediately
since the finiteness implies Ω “ Ω1. So we suppose that A “ F4 and B “

F2. It is known that the embedding rank of Ω is then 22 (see [24, §7.1] or
Corollary 5.12, proved independently of the current lemma) and the one of Ω1

is 15 (see [24, §6.4]). Note that the assumptions of Lemma 3.4 are satisfied for
both V and V 1, by Lemma 2.23piq and Remark 4.8 so the induced embedding
of V is in PGp8, 2q or PGp10, 2q and the one of V 1 is in PGp5, 2q or PGp6, 2q.

Let first Ω be embedded universally in Π “ PGp21, 2q. Then V must
be embedded in 10 projective dimensions, by Lemma 4.10. Now V 1 must
be embedded in 6 dimensions, since for the Veronesean V2p2, 2q the tangent
lines to the ovoids through a point lie in a plane (see for example [14, p.152]),
which is not compatible with the last statement of Lemma 3.4. Similarly as
before, we get that the subspaces of Π spanned by xK and yK have both
dimension 11 and intersect in a line, while those of Π1 spanned by xK and
yK have dimensions 7. The latter intersect of course in at most a line, which
yields similarly as before that Π1 has at least dimension 13. The embedding
of Ω1 in Π1 is however still homogeneous. So with Lemma 4.11 we get that it
must be the universal embedding, as in the standard embedding, V 1 is clearly
embedded in 5 dimensions.

Let now the embedding of Ω in Π “ PGp19, 2q be the standard embed-
ding. It follows immediately from the description in [8], see also Remark 4.8,
that V is then embedded as a Veronesean in 8 dimensions. The subspaces
of Π spanned by xK and yK have both dimension 9 and are disjoint. This
implies that also the subspaces of Π1 spanned by xK and yK must be disjoint.
Consequently they cannot be 7-dimensional and so the embedding of Ω1 in
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Π1 must be in 13 dimensions, which implies it is also the standard embedding
by Lemma 4.11. ˝

The following lemma does not immediately yield conditions for our
dual polar space in order that it is embedded isometrically, but this follows
then easily when combined with previous results such as Proposition 4.4 and
Lemma 4.7, as will be done in the Proof of Main Result A (see Section 5.3.4).

Lemma 4.13. Let A and B be quadratic alternative division algebras over K
such that one of the following is satisfied
(i) K is finite;
(ii) A “ B “ K;
(iii) dimKpAq ď dimKpBq and B is not an inseparable (multiple) quadratic

field extension K.
Then there does not exist a full embedding of Ω – C3,3pB,Kq in ζ – B3,1pK,Aq.

Proof. First assume that K is finite and denote k :“ |K|, a :“ |A|, b :“ |B|.
One easily calculates that the number of points in ζ is α “ ak4`ak3`ak2`

k2 ` k ` 1. In the same way one calculates that the number of planes in a
polar space of type C3,1pB,Kq is β “ b3k3`b3k2`b2k2`bk2`b2k`bk`k`1.
This is exactly the number of points in the dual polar space Ω. Now clearly
α ă β, keeping in mind that 0 ă k ď a, b ď k2 (since there are no quaternions
over nor inseparable extensions of finite fields), which proves that Ω cannot
be contained in ζ.

From now on we may assume that K is infinite, so |K| ą 3 and denote
n :“ dimKpAq and m :“ dimKpBq. Suppose for a contradiction that Ω is
fully embedded in ζ and let the latter be universally embedded in PGpn `
5,Kq. Take a point p in Ω and let q be an opposite point in ζ. Let W be
the projection of the point residual ResΩppq onto pK X qK. Then W is a
projection of the Veronesean V :“ V2pK,Bq embedded in PGpn ` 3,Kq. By
the assumptions on the dimensions of the algebras, W must now be a proper
projection of V onto pK X qK – B2,1pK,Aq.

We now prove that no conic of V is mapped to a line under this projec-
tion. Let C be a conic of V . Since, by Lemma 3.5, every conic on a Veronesean
is the intersection of a plane with one of the ovoids and every ovoid corre-
sponds in W to the intersection of W with a symplecton of Ω through p,
the projection of C is contained in a unique symplecton ξ of Ω through p.
Note now that ξ – B2,1pK,Bq is embedded universally in ζ by Lemma 2.22.
Consequently the projection of C cannot be a line, since the intersection of
W with this symplecton does not contain lines.

If now B “ K, we get a contradiction with Lemma 3.9, since the pro-
jection is from a subspace disjoint from the nucleus plane if charK “ 2 by
the previous paragraph. So suppose now that B ‰ K. Let O1 and O2 be
the projections of two ovoids of V onto W and let from now on i “ 1, 2.
Denote by ξi the unique symplecton of Ω through p containing Oi and
by Xi the subspaces of PGpn ` 5,Kq such that ξi “ Xi X ζ (this exists
by [3]). Then Xi has dimension m ` 3 by Lemma 2.23 and Oi spans a
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subhyperplane of Xi since it is contained in pK X qK (in ζ), so the di-
mension of xOiy equals m ` 1. Since both O1 and O2 are contained in
pK X qK, the dimension of xO1, O2y is at most n ` 3. Now the dimension
formula dimxO1y ` dimxO2y “ dimxxO1y, xO2yy ` dimpxO1y X xO2yq yields
dimpxO1y X xO2yq ě pm` 1q ` pm` 1q ´ pn` 3q “ 2m´ n´ 1 ą 0. Let x be
the unique point in O1 XO2 and let L be a line in xO1y X xO2y. Taking now
the intersection of a plane through L in xOiy delivers a conic Ci. Lemma 3.6
yields a (unique) projectionW 1 of a Veronesean V2pK,Kq containing C1YC2.
Since L is the tangent line at x to both C1 and C2, W 1 is a proper projection
from a subspace disjoint from the nucleus plane by the previous paragraph if
charK “ 2. This contradicts again Lemma 3.9. ˝

Example 4.14. Define the following function fields

K :“ F2p. . . , t
2
´2, t

2
´1, t

2
0, t

2
1, t

2
2, t

2
3, t

2
4, t

2
5, t

2
6, . . .q,

B :“ F2p. . . , t
2
´2, t

2
´1, t

2
0, t

2
1, t

2
2, t

2
3, t

2
4, t5, t6, . . .q,

A :“ F2p. . . , t
2
´2, t

2
´1, t

2
0, t1, t2, t3, t4, t5, t6, . . .q,

and let V – pK‘K‘K‘K‘K‘K‘K‘Kq ‘ pA‘A‘A‘A‘A‘Aq
(as vector spaces over K). We now prove that in this case the dual polar
space C3,3pB,Kq can fully be embedded in B2,1pK,Aq. The former is clearly
isomorphic to C3,3pA,Kq since A and B are isomorphic as algebra’s. So this
example will show that in the inseparable case it is possible that a geometry
isomorphic to a trace geometry of a metasymplectic space is fully embedded
in a symp of the metasymplectic space. We use therefore the description of
C3,3pB,Kq as given in [8], in particular the one given in Proposition 3.9 where
it is given as the set of points in the projective space PGpV q satisfying 26
equations. We will take a linear combination of six of these equations and
show that they determine a polar space of rank 2. Clearly C3,3pB,Kq is then
also contained in this polar space.

Denote a point of PGpV q as

pY1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11, Y12, Y13, Y14q,

with Y1, Y2, Y3, Y4, Y8, Y9, Y10, Y14 P K and Y5, Y6, Y7, Y11, Y12, Y13 P B. Define
the quadric

0 “ rY 2
5 ` Y3Y4 ` Y1Y8s ` t

2
1 ¨ rY

2
6 ` Y2Y4 ` Y1Y9s

` t22 ¨ rY
2
7 ` Y2Y3 ` Y1Y10s ` pt

2
1t

2
3 ` t

2
2t

2
4q ¨ rY

2
11 ` Y9Y10 ` Y2Y14s`

` t23 ¨ rY
2
12 ` Y8Y10 ` Y3Y14s ` t

2
4 ¨ rY

2
13 ` Y8Y9 ` Y4Y14s.

(The six quadratic forms between brackets are obtained from [8, Proposi-
tion 3.9].) So after the coördinate transformation

Y1 “ t24Z2 ` t
2
3Z3 `X´2, Y2 “ Z1, Y3 “ t21Z1 ` t

2
4Z4 `X´1,

Y4 “ t22Z1 ` t
2
3Z4 `X1, Y5 “ Z5, Y6 “ Z6, Y7 “ Z7, Y8 “ t21Z2 ` t

2
2Z3 `X2,

Y9 “ Z2, Y10 “ Z3, Y11 “ Z8, Y12 “ Z9, Y13 “ Z10, Y14 “ Z4,
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we get the quadric with equation

X´2X2 `X´1X1 “ t21t
2
2Z

2
1 ` t

2
1t

2
4Z

2
2 ` t

2
2t

2
3Z

2
3 ` t

2
3t

2
4Z

2
4

` Z2
5 ` t

2
1Z

2
6 ` t

2
2Z

2
7 ` pt

2
1t

2
3 ` t

2
2t

2
4qZ

2
8 ` t

2
3Z

2
9 ` t

2
4Z

2
10

in PGp6n` 7,Kq with Xi P K for ´2 ď ip‰ 0q ď 2, Zj P K for 1 ď j ď 4 and
Zl P B for 5 ď l ď 10. This quadric is clearly embedded in the nondegenerate
quadric B2,1pK,Aq.

4.2. Collinear to a point
Now we take a closer look at the isometric case. In this case all points of the
embedded dual polar space are collinear to one point of the metasymplectic
space.

Proposition 4.15. Let Ω be a dual polar space of rank 3 isometrically embedded
in a metasymplectic space ∆. Then there exists a unique point p P ∆ with
Ω Ď pK such that every line through p contains at most one point of Ω.

Proof. Let a and d be two opposite points in Ω. Then these points are special
in ∆. Let p be the unique point collinear to both in ∆. Let L be a line through
a in Ω. Then there is a unique point l on L at distance two from d in Ω, since
the latter is a dual polar space of rank 3. Note that, by the isometricity, l is
symplectic to d in ∆. Let ζ be the symp of ∆ containing l and d. Then a is
close to ζ and hence aK X ζ “: K is a line containing p. It follows that all
other points of L are special to d and collinear to p. Consequently all points
collinear to a in Ω (and similarly to d) are collinear to p in ∆. Since every
point in aK has an opposite point in dK, it follows now by a connectivity
argument that every point of Ω is collinear to p.

It is clear that every line through p contains at most one point of Ω,
since p R Ω. ˝

In the separable case the “at most” in the previous proposition can often
be exchanged by “exactly”, as is shown in the rest of this subsection.

Proposition 4.16. Let Ω be a dual polar space of rank 3 isometrically embedded
in a separable metasymplectic space ∆ – F4,4pK,Aq. Then there exists a
unique point p P ∆ with Ω Ď pK such that every line through p contains
exactly one point of Ω. Consequently Ω must be isomorphic to B3,3pK,Aq.

Proof. Denote with p the unique point of ∆ such that Ω Ď pK from Proposi-
tion 4.15. It suffices then to prove that every line through p contains a point
of Ω. We prove that a geometry Γ – B3,3pK,Aq (with dual Γ˚ – B3,1pK,Aq)
does not contain a proper full subgeometry Ω isomorphic to the dual of a
polar space Ω˚ of rank 3. Let x K y K z KK x be three points of Ω, corre-
sponding to the planes α, β, γ in Ω˚, respectively. Then α and γ intersect
β in two different lines. Denote the intersection of these lines as c. As the
embedding of Ω in Γ is full, every plane in Γ˚ through a line of Ω˚ is a plane
of Ω˚. So, using the terminology of [22], the point residual of c in Ω˚ is an
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ideal subquadrangle of the point residual of c in Γ˚. Hence by Proposition
5.9.4 of [22] these point residuals coincide. Let now π be a plane through c in
Γ˚, then it must be contained in Ω˚ and consequently it contains a second
point c1 of Ω˚. As the same reasoning can be applied to c1, all lines through
c or through c1 are contained in Ω˚ and so are their intersection points as
the embedding is isometric. So every point of π is contained in Ω˚. By a
connectivity argument, one now proves that Ω˚ “ Γ˚ and consequently also
Ω “ Γ. ˝

Lemma 4.17. Let Ω – C3,3pA,Kq be isometrically embedded in a separable
metasymplectic space ∆ – F4,1pK,Aq. Then every symplecton ξ of Ω arises
as the common perp of two opposite points in a symplecton ξN of ∆. These
points are also the unique points of ∆ collinear to all points of ξ.

Proof. Denote for every symplecton ξ in Ω by ξN the corresponding sym-
plecton in ∆ and Eξ :“ tx P ξN | x P ξKu. Then by our assumptions, ξ is
isomorphic to B2,1pK,Aq and ξN is isomorphic to B3,1pK,Aq. Suppose that the
latter is universally embedded in the projective space Π as in Example 2.8piq
and denote with ρ the defining polarity. By the uniqueness of the embeddings
of these spaces (see Lemma 2.23piq), the codimension of the projective space
U spanned by the points of ξ in Π is 2. So Uρ is a projective line K. Clearly
the point p of Proposition 4.15 is contained in this line. Suppose now that this
is the only point of ξN on K. Then K is contained in the tangent hyperplane
pρ which implies that p P U . But this contradicts the fact that p is collinear
to all points of ξ, that ξ does not contain planes, and that UXξN “ ξ (by the
main result of [3]). It is immediately clear that K is not completely contained
in ξN, by the non-degeneracy of ξ. So K intersects ξN in exactly two points,
Eξ consists of two points and the common perp of these two points is exactly
ξ. ˝

Proposition 4.18. Let Ω – C3,3pA,Kq be isometrically embedded in a separable
metasymplectic space ∆ – F4,1pK,Aq. Then there exists a unique point p P ∆
with Ω Ď pK such that every line through p contains exactly one point of Ω.

Proof. Denote with p the unique point of ∆ such that Ω Ď pK from Propo-
sition 4.15. It suffices to prove that every line through p intersects Ω. By
Lemma 4.17, we see that for every symp ξ in Ω there exists a unique point in
∆ different from p collinear to all points of ξ. Denote this point by qξ and let
again ξN “ ξpp, qξq be the unique symp of ∆ containing ξ. Let now x P Ω be
random. We will prove that the cone with p as vertex and ResΩpxq as base
coincides with Res∆pxq (with as point set the lines through x, as line set the
planes through x and inclusion as incidence relation). Then a connectivity
argument concludes the proof.

Note first that Res∆pxq is isomorphic to a dual polar space of rank 3
and ResΩpxq is isomorphic to a projective plane. The points of this plane
correspond to the points in Res∆pxq collinear to p1 and to some q1ξ (with
ξ a symp in Ω containing p), where p1 and q1ξ are the points of Res∆pxq
corresponding to the lines px and xqξ respectively. Every line in this plane



Dual polar spaces embedded in metasymplectic spaces 35

corresponds to such a q1ξ and consists exactly of the points in the common
perp of p1 and q1ξ. By dualising Res∆pxq, we see that pp1q˚ is a plane in a polar
space of rank 3 and pq1ξq

˚ is a plane intersecting this plane in a point. Now
the points on the line of ResΩpxq corresponding to q1ξ are exactly the planes
intersecting both planes pq1ξq

˚ and pp1q˚ in a line in the dual of Res∆pxq.
Since we are working in a polar space, every line through pq1ξq

˚ X pp1q˚ in
pp1q˚ corresponds to such a plane. So we can interpret the dual of ResΩpxq as
an ideal subplane of the plane pp1q˚. Since clearly proper ideal subplanes do
not exist, we find that every plane through px intersects Ω in a line, which
concludes the proof. ˝

We now have almost immediately the following corollary. However since
it uses a lot of previous results we provide a proof for completeness.

Corollary 4.19. Let Ω – C3,3pA,Kq be isometrically embedded in a separable
metasymplectic space ∆ – F4,1pK,Aq and let p be a point of ∆ such that Ω Ď
pK. Then every symplecton ξN of ∆ through p intersects Ω in a symplecton
ξ.

Proof. Let L be a line of ∆ through p contained in ξN, let α and β be
two planes through L contained in ξN. By 4.18, α and β intersect Ω in two
intersecting lines; denote those as Lα and Lβ , respectively, and let x be the
intersection point. Let a and b be points of Lαzx and Lβzx, respectively.
Then, by Lemma 4.2, a and b determine a symplecton ξ of Ω. The latter
is contained in ξN by Lemma 4.3. Now ξN X Ω cannot contain a point not
contained in ξ, since that point would then be at distance at most 2 from all
points in ξ, by Lemma 4.2, which is impossible in a dual polar space of rank
3. ˝

We give one more interesting lemma about this connection between sym-
plecta of a metasymplectic space and those of a dual polar space isometrically
embedded in it.

Lemma 4.20. Let Ω be a dual polar space of rank 3 isometrically embedded in
a metasymplectic space ∆. Let ξ and ζ be two opposite symplecta in Ω. Then
the corresponding symplecta in ∆ are locally opposite through p, with p the
unique point collinear to all points of Ω as in Proposition 4.15.

Proof. Note that by Lemma 4.3 and Proposition 4.15, ξ and ζ are isometri-
cally embedded in symplecta ξN and ζN, respectively, of ∆ through p. Since
ξ and ζ are opposite in Ω (a dual polar space of rank 3), we know that for
every point q of ξ there is a unique point in ζ collinear to q in Ω, but also
at least one point opposite q in Ω. Suppose now that ξN and ζN are not lo-
cally opposite through p. They cannot coincide, since then there cannot be
a point in ζ opposite to q in Ω, or in other words, special to q in ∆ by the
isometricity of the embedding. So ξN and ζN must intersect in a plane. Then
all the points of ζN collinear to q are contained in this plane, but this plane is
disjoint from Ω (since ξ and ζ are disjoint). This means that ζ cannot contain
a point collinear to q, a contradiction. ˝
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5. The separable case
In this section we prove that almost all dual polar spaces isometrically embed-
ded in a separable metasymplectic space are contained in a trace geometry,
and classify the exceptions. Together with the previous section, this allows
us to prove Main Results A and B. We start with the metasymplectic spaces
of type F4,4, since the results and proofs are more concise in this case.

5.1. Separable metasymplectic spaces of short root type
Proposition 5.1. Let Ω be a dual polar space of rank 3, isometrically embedded
in a metasymplectic space ∆ – F4,4pK,Aq. Then Ω is contained in a trace
geometry, i.e. Ω Ď pK X qı for some opposite points p, q P ∆.

Proof. By Proposition 4.15 we know that Ω Ď pK for some p P ∆ and every
line through p intersects Ω in at most one point. Denote for every symplecton
ξ in Ω by ξN the corresponding symplecton in ∆ and define Eξ :“ tx P ξN |
x P ξKu, which is a hyperbolic line in ξN by Lemma 4.5.

Let ξ1 and ξ2 be two opposite symplecta in Ω. By Lemma 4.20 the
symplecta ξN1 and ξN2 are locally opposite through p and consequently every
point a P Eξ1zp is opposite every point b P Eξ2zp. Fix such an a and b
arbitrarily and let q be a point of Epa, bq opposite p.

We claim that Eζ Ď pEpp, qq for every symplecton ζ in Ω. Suppose first
that ζ “ ξ1. Since a P pEpp, qq and ζN intersects pEpp, qq in a hyperbolic line
h by [16, Lemma 2.6.18], we conclude h “ hpp, aq “ Eξ1 . In the same way
one shows that also Eξ2 Ď pEpp, qq. Suppose now that ζ intersects ξ1 and ξ2
in a line. Then it is obvious that Eζ Ď Epa, bq Ď pEpp, qq. If ζ intersects ξ1
in a line, but is disjoint from ξ2, then ζ corresponds in Ω˚ to a point ζ˚
collinear to ξ˚1 and not collinear to ξ˚2 . Two locally opposite planes through
the line xξ˚1 , ζ

˚y of Ω˚ now yield two opposite points in pξ˚1 q
KXpξ˚2 q

K. Denote
the corresponding symplecta as ξ11, ξ12 and note that each of them fulfil the
assumptions for ζ of the previous case. So we already know that Eξ1

1
, Eξ1

2
Ď

pEpa, bq and we can take opposite a1, b1 in Eξ1
1
, Eξ1

2
respectively, so that Eζ Ď

Epa1, b1q Ď pEpp, qq (the latter inclusion follows by again combining Lemma
2.6.18 and Proposition 2.6.15 of [16]).

Now we get similarly as in the previous case that Eζ Ď pEpa1, b1q. Suppose
finally that ζ is disjoint from both ξ1 and ξ2. Then in Ω˚ the point ζ˚ is not
collinear to either ξ˚1 or ξ˚2 . Let L,M be locally opposite lines through ζ˚.
Both contain a point collinear to ξ˚1 , which are contained in pEpa, bq by the
previous cases. Then we can conclude in a similar way as in the previous case
that Eζ Ă pEpp, qq.

Now q is symplectic to some point of Eζ for every symplecton ζ in Ω,
by Proposition 2.6.15 of [16], and, by Proposition 2.12 [Point-Symp], we see
that Ω Ď qı. Thus Ω is contained in a trace geometry. ˝

Note that we now have proved all components of Main Result B. We
combine them in the proof below.
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Proof of Main Result B. From Proposition 4.6 it follows that the embedding
must be isometric. Then Proposition 4.16 combined with Proposition 5.1
delivers the first statement. The second statement follows immediately from
Lemma 4.1. ˝

5.2. A consequence
Proof of Corollary A. Let ∆ be isomorphic to F4,4pK,Aq, separable, and let
first Ω be a dual polar space of rank 4 fully embedded in ∆. We denote by Ω˚

the corresponding polar space (the “dual”). Each point x of Ω˚ defines a dual
polar space Ωx of rank 3 fully embedded in ∆ by considering all maximal
singular subspaces of Ω˚ through x. Then Proposition 5.1 yields a unique
point px of ∆ collinear to each point of Ωx. If y is a point of Ω˚ collinear
to x, then Ωx and Ωy intersect in a symp ξxy of Ω. Since px, py P ξKxy, we
find px KK py, px K py or px “ py. However, the latter two are impossible
since px K py would imply that ∆ does contain three-dimensional subspaces
and px “ py would imply that Ωx and Ωy would intersect in a hyperplane by
Proposition 4.16, a contradiction since they only share a symp.

Now suppose z K y in Ω˚, but z not collinear to x. Then ξxy and ξyz are
opposite symps of Ωy. Hence, the unique symps ξNxy and ξNyz of ∆ containing
ξxy and ξyz, respectively, are locally opposite at py by Lemma 4.20. This
implies that px and pz are opposite in ∆.

Define pE “ tpx | x a point of Ω˚u. The previous paragraph implies
that pE only contains symplectic and opposite pairs of points. Let x and z

be as above, then we claim pE “ pEppx, pzq. Indeed, let ξN be any symp of
∆ through px, then it must intersect Ωx in a symplecton ξ. However, the
latter must be contained in another dual polar space of rank 3, say Ωy1 ,
corresponding to some point y1 of Ω˚ collinear to x. Let now y be the point
on the line xy1 of Ω˚ collinear to z. Then Ωy must intersect Ωx in ξ and
consequently we may assume without loss of generality that ξN “ ξNxy. So ξN

contains a point, py, of pE symplectic to pz. This shows Eppx, pzq Ď pE. Now let
u P pEppx, pzqzEppx, pzq. Then there exist opposite points u1, u2 P Eppx, pzq

symplecic to u and the previous argument shows u P pE. Hence pEppx, pyq Ď pE.
Conversely, if w is a point of Ω˚ collinear to both x and z, then px KK pw KK pz
and hence pw P pEppx, pzq. If w is a point of Ω˚ not collinear to both x and
z, then there are non-collinear points w1, w2 of Ω˚ collinear to x, z and w,
and the previous arguments imply pw P Eppw1

, pw2
q Ď pEppx, pyq. Hence

pE Ď pEppx, pzq, and thus pE “ pEppx, pzq, which proves the claim.
Note that every point of Ω is contained in some ξx1y1 for x1, y1 P Ω˚.

Furthermore pKx X pKy “ ξxy by Lemma 4.5, so every point collinear to two
points of pE is contained in Ω. So we conclude that, by definition, the tropics
geometry associated to pE is precisely Ω.

Next, let Γ be a dual polar space of rank at least 5 fully embedded in
∆, and let Γ1 be a subspace of Γ isomorphic to a dual polar space of rank 4.
If ξ is a symp of Γ1, then every point of ξK occurs as a point of the extended
equator geometry corresponding to Γ1. Let now Γ2 be another subspace of
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Γ isomorphic to a dual polar space of rank 4, containing ξ and let p be the
unique point of ∆ collinear to ξ. Then Γ1 and Γ2 intersect pK respectively in
Σ1 and Σ2, which are dual polar spaces of rank 3. These should only intersect
in ξ, but as above Σ1 X Σ2 is a geometric hyperplane in both Σ1 and Σ2, a
contradiction as there are lines in Σ1 disjoint from ξ.

The proof of Corollary A is complete. ˝

5.3. Separable metasymplectic spaces of long root type
In this case we have no longer the extended equator geometries as a tool.
However we are able to define some other interesting geometries. We start
by recalling some lemmas and notation from the previous sections. We will
eventually have to distinguish between |K| “ 2 and |K| ě 3, but we start
with general considerations.

5.3.1. General considerations. Let Ω – C3,3pA,Kq be an isometrically fully
embedded subgeometry of a separable metasymplectic space ∆ – F4,1pK,Aq.
Let p be the unique point such that Ω Ď pK (exists by Proposition 4.15).
Denote for every symplecton ξ in Ω the corresponding symplecton in ∆ as
ξN (which exists by Lemma 4.3); denote by qξ the unique point in ξN such
that ξ “ pK X qKξ (exists by Lemma 4.17). Now we can define the following
geometries.

Definition 5.2 (The point-line geometry ΓΩ “ pXΩ,LΩq). The geometry ΓΩ

is the point-line geometry pXΩ,LΩq with point set XΩ “ tqξ | ξ symp of Ωu
and line set LΩ “ ttqξ P XΩ | L

1 P ξu | L1 line of Ωu.

Note that this geometry clearly is isomorphic to the dual of the point
residual of p in ∆, i.e. C3,1pA,Kq. We now define in this polar space an
analogue for the equator geometries in metasymplectic spaces (see Defini-
tion 2.17).

Definition 5.3 (The point-line geometry EΓΩpq, q
1q). Let q and q1 be non-

collinear points of ΓΩ. Then EΓΩ
pq, q1q is the equator geometry defined by q

and q1 in ΓΩ, i.e. the point-line geometry with point set the points collinear
to q and q1 in ΓΩ, and line set the lines of ΓΩ included in this point set.

Clearly the latter could be defined in all polar spaces of rank at least
3 and will always be isomorphic to a point residual. Also, the points of
EΓΩ

pq, q1q form a subset of those of Epq, q1q. We will make use of this in-
clusion of these geometries later on. First we prove some more properties
about this inclusion.

Lemma 5.4. Let Ω – C3,3pA,Kq be an isometrically fully embedded subgeom-
etry of a separable metasymplectic space ∆ – F4,1pK,Aq. Then two points
of ΓΩ are collinear in ΓΩ if, and only if, they are symplectic in ∆; they are
non-collinear in ΓΩ if, and only if, they are opposite in ∆. Consequently if q
and q1 are opposite points in ΓΩ, then two points of EΓΩ

pq, q1q are collinear
in EΓΩpq, q

1q if, and only if, they are collinear in Epq, q1q.
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Proof. It is clear that, if two points are contained in a line of ΓΩ, then they
are symplectic in ∆, since the corresponding symplecta in ∆ intersect in
a plane and both points are collinear in ∆ to the same line of this plane.
Conversely if two points x, y of ΓΩ are symplectic in ∆, then p is close to the
corresponding symplecton ξpx, yq and the symplecta ξpp, xq, ξpp, yq contain
the line ξpx, yq X pK, which is contained in Ω as it is contained in pKX xK. If
now two points of ΓΩ are not contained in a line of ΓΩ, then the corresponding
symplecta in Ω are opposite. By Lemma 4.20 the corresponding symplecta
in ∆ are locally opposite through p and so the points are opposite in ∆. The
converse follows from the same lemma.

The last statement follows now immediately from the definition of lines
in an equator geometry of a metasymplectic space. ˝

In the next proof, we make use of central elations (see Definition 2.24).

Lemma 5.5. Let Ω – C3,3pA,Kq be an isometrically fully embedded subgeom-
etry of a separable metasymplectic space ∆ – F4,1pK,Aq and let q and q1 be
opposite points in ΓΩ. Then the hyperbolic lines in EΓΩ

pq, q1q are subsets of
hyperbolic lines in Epq, q1q.

Proof. By Lemmas 2.10.5 and 6.5.1 of [16] a hyperbolic line in Epq, q1q through
two opposite points a, b is the set tbθ | θ central elation of ∆ with centre auY
tau. So we have to prove that, for a and b not collinear in EΓΩ

, the group of
central elations with centre a in ∆ acts transitively on the set of points of
the hyperbolic line through a and b (except a) in EΓΩ

pq, q1q. Note that every
central elation θ of ∆ with centre a induces by restriction a central elation
of EΓΩpq, q

1q with centre a by the following reasoning. Since a is collinear
with a symplecton ξa of Ω and every other point of Ω is collinear with at
least one point of ξa, we see that θ stabilises Ω. Consequently θ stabilises
XΩ and even fixes q and q1, since the corresponding symps of Ω intersect ξa
in a line. Let now c be an arbitrary point of this hyperbolic line through a
and b in EΓΩpq, q

1q different from a. Then by Lemma 2.25piiq there exists a
central elation θ1 of EΓΩ

pq, q1q with centre a that maps b to c. First note that
this extends unambiguously to a central elation of ΓΩ, since the hyperbolic
lines through a and b coincide in both geometries (this follows for example
from Lemma 2.25piiiq) and Lemma 2.25piiq also holds in ΓΩ. Suppose we can
show that this is the restriction of a central elation in ∆; then the symplecton
ξa “ pK X aK in Ω is pointwise fixed and every line intersecting this symp in
a point is stabilised. Let t P Ω be a point on such a line (not contained in
ξaq and let t1 be the image. Then these correspond to planes in ΓΩ through
a line L1 collinear with a. It follows from Lemma 2.25piiq that the central
elations of ΓΩ with centre a act sharply transitively on these planes. So there
is a unique central elation with centre a in ΓΩ that could extend to one in ∆
mapping t to t1. Since there is a unique central elation in ∆ with centre a that
maps t to t1 by Lemma 6.5.1 of [16], we can indeed extend θ1 unambiguously
to a collineation of ∆. ˝
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Lemma 5.6. Let C2 – C2,1pA,Kq be isometrically fully embedded in C3 –

C3,1pA,Kq with A over K separable. Let L1 and L2 be two disjoint lines of
C2. Then LK1 XLK2 is a hyperbolic line h in C3 and every point of h is collinear
to all points of C2.

Proof. Since the embedding is isometric, L1 and L2 are opposite in C3. Then
LK1 X LK2 is a hyperbolic line h of C3 by Lemma 2.25piiiq. Let now x be
an arbitrary point of h. Since x is collinear to both L1 and L2, it must be
collinear to the subquadrangle spanned by them in C2. However the latter has
no proper full subquadrangles by the dual of [22, Proposition 5.9.4] (keeping
in mind that A is separable over K). ˝

The following lemma allows us to recognise subgeometries of equator
geometries in ∆.

Lemma 5.7. Let E – C3,1pA,Kq be a point-line geometry pX,L q with X a
subset of points of a separable metasymplectic space ∆ – F4,1pK,Aq and L
a set of lines of the form tx P ξ | x P LK XMKu with ξ a symplecton in ∆
and L,M two opposite lines in ξ, such that two points are collinear in E if
they are symplectic in ∆ and not collinear in E if they are opposite in ∆.
Then E is contained in an equator geometry Epp, qq for some opposite points
p, q P ∆, with C pp, qq independent of p and q.

Proof. Let a P X be arbitrary. Denote with ResEpaq the point residual of a
in E; then it is clear that ResEpaq – C2,1pA,Kq. We now claim that this can
be interpreted as an isometric subgeometry of the dual point residual of a
in ∆, Res∆paq˚ – C3,1pA,Kq. Note that the points of ResEpaq correspond to
lines of E through a, while those of Res∆paq˚ correspond to symplecta of ∆
through a; and furthermore the lines of ResEpaq correspond to planes of E
through a, while those of Res∆paq˚ correspond to planes of ∆ through a.

To make this identification, we first prove that every symplecton con-
tains at most one line of E (note that the converse is trivially true: every line
of E is contained in exactly one symplecton). Suppose for a contradiction that
the symplecton ζ does contain two lines of E. If these lines are not contained
in a plane, this would imply that ζ contains a pair of opposite points by the
assumptions, a contradiction. However, if these lines would span a plane π,
one gets a contradiction by taking a point r of Ezπ, which must then be
opposite and symplectic to multiple points of this symplecton (impossible by
Proposition 2.12 [Point-Symp]). So we can unambiguously identify the set of
points of ResEpaq with a subset of the set of points of Res∆paq˚.

We now prove that the same can be done for the sets of lines. Consider a
line in ResEpaq corresponding to a plane π of E through a. Let L1,M 1 P π be
two lines of E through a and denote with ξL, ξM the corresponding symplecta.
A point of L1ztaumust be collinear in ∆ to a lineK of ξM which is collinear in
∆ to all points of M 1. Note that a P L1 and consequently K is also contained
in ξL. So ξL and ξM intersect in the plane xa,Ky of ∆. Furthermore all points
of L1 must be collinear in ∆ to this lineK (by Proposition 2.12 [Point-Symp]).
Let now x be an arbitrary point of π different from a. Then x lies on a line
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lm of E with l P L1ztau and m PM 1ztau. But then x is collinear to K as a is
close to ξpl,mq, a is collinear to the line K of ξpl,mq and x is symplectic to
a. Consequently all symplecta through a corresponding to lines of E through
a in π contain the plane xa,Ky. Fix some l P L1ztau and m P M 1ztau. It
suffices now to prove that every symplecton through xa,Ky intersects the
line lm of E in a point. Let ξ be an arbitrary symplecton through xa,Ky.
Then it intersects ξpl,mq in a plane of ∆ through K. So it suffices to prove
that every plane α through K in ξpl,mq contains a point of the line lm of E.
Let α be such a plane of ∆ through K and let L,M be opposite lines of ∆ in
ξpl,mq such that lm “ LKXMK (these exist by our assumptions on the lines
of E). Denote with s the unique point of α collinear in ∆ with all points of
M and note that s R K since all points of lm must be collinear to K and M .
Denote with t the unique point of xM, sy collinear in ∆ with all points of L.
Then t must be collinear with K in ∆ by the previous reasoning, since it is
contained in the line lm of E. Since xM, sy has a unique point collinear with
all points of K in ∆, t “ s and this point is contained in the intersection
αX lm.

It follows now easily that the above identification leads to ResEpaq being
isometrically fully embedded in Res∆paq

˚. So with Lemma 5.6 we find two
locally opposite symplecta ξ, ζ of ∆ through a that both intersect each sym-
plecton through a which corresponds to a point of ResEpaq (in some plane).
Now let b be an arbitrary point of E opposite a in E. Then clearly b is also
opposite a in ∆ and defines two opposite points p :“ ξX bKK and q :“ ζX bKK.
We claim that E Ď Epp, qq. So let c be an arbitrary point of E. We show
that c P Epp, qq. If c “ a or c “ b, this is trivial; so we suppose that c ‰ a, b.

Suppose first that c is collinear to a and b in E. Set α :“ ξXξpa, cq. Then
by the possible point-line relations in ∆ (Corollary 2.5.2 in [16]), b is special
to all points of a unique line B in α and consequently p and c are collinear
to this line (by Proposition 2.12 [Point-Symp] and the fact that p KK b KK c).
So c is symplectic or collinear to p. But note that c is clearly not collinear to
p as the only points collinear to c in ξpa, pq are contained in α.

Suppose now that c is collinear to b but not to a in E. Denote c1 :“
ξpb, cqXaKK. Let L11 and L12 be two lines of E through c1 contained in aKKXbKK,
denote by ζ1, ζ2 the respective corresponding symplecta of ∆ and let from
now on i P t1, 2u. Then these symplecta must be locally opposite as there are
no planes of E that are collinear to a and b in E. Denote by πi the intersection
of ζi with ξpb, cq. As all points of the line L1i of E are symplectic in ∆ to all
points of the line bc of E, the plane πi contains a line Ki collinear with all
points of both lines bc and L1i of E. Note that ξ is adjacent to ξpa, aiq, for
every ai P L1i. Hence p is not opposite any point of ξi, which implies that ζi
and ξpp, c1q are adjacent. Looking now, for fixed i, at the pairwise adjacent
symplecta ζi, ξpb, cq, ξpp, c

1q through c1, these correspond to three pairwise
collinear points in Res∆pc

1q˚. So, the intersection planes of the symplecta
must have one line Mi of ∆ through c1 in common (if they would have a
plane in common, then replacing p with q, that plane has a point collinear
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to q, contradicting the fact that no point of that plane is special to p). Let
now mi P Mi be the unique point collinear to p. Then mi “ Ki XMi, as p
is symplectic to all points of L1i by the previous case. So we constructed two
points m1,m2 P p

KXcK and c is again symplectic or collinear to p. Note that
clearly c is again not collinear to p.

Suppose now that c is not collinear in E to either a or b, but there
exists a point b1 of E collinear in E to b and c, but not to a. We can then
replace b by b1 in the previous two paragraphs to conclude respectively that
all points of E in aKK X b1KK and all points of E in b1KK are symplectic to p. So
c is symplectic to p.

So the only case that is left is a point c of E such that all points collinear
in E to both b and c are also collinear in E to a, or, in other words, c is
contained in the hyperbolic line through a and b in E. Let K 1 be some line
through c in E, let ξ1 be the unique symplecton containing K 1 and let x and
y be two points of K 1 different from c. Then p is symplectic to x and y by the
previous cases, since there are no collinear points on a hyperbolic line. Now
Lemma 2.25piiiq applied to ξ1 – C3,1pA,Kq implies that also c is symplectic
to p (choose as L in the statement of that lemma the line pK X ξ1). ˝

Even though we use similar techniques, we make from now on a dis-
tinction between fields with at least three elements and the field with two
elements. We start with the fields with at least three elements.

5.3.2. Separable metasymplectic spaces of long root type over a field of at
least three elements.

Lemma 5.8. Let C2 – C2,1pA1,Kq be embedded in a polar space C3 – C3,1pA,Kq
with K a field of order at least 3 and A,A1 separable quadratic alternative di-
vision algebras over K, such that
piq the points of C2 form a subset of the set of points of C3;
piiq two points in C2 are collinear if and only if they are collinear in C3;
piiiq the hyperbolic lines of C2 are subsets of hyperbolic lines of C3.
Then the lines of C2 are subsets of lines of C3.

Proof. We prove this by contradiction. Suppose that a, b, c are three collinear
points in C2 which are not collinear in C3. Since they are however pairwise
collinear by piiq, they must be contained in a plane of C3. Then a, b, c are
contained in a(n ideal) sub polar space C12 – C2,1pK,Kq of C2. The latter
still satisfies the assumptions of this lemma for C2, since hyperbolic lines
are preserved under taking this sub polar space, as all lines of C2 through a
point of C12 are also contained in C12. Let C12 be universally embedded as in
Example 2.8piiq in Π2 – PGp3,Kq. Then the lines through a point correspond
to all lines through that point in the tangent hyperplane of Π2. Furthermore,
by Lemma 2.25pivq, the hyperbolic line through two opposite points in this
embedding is just the projective line of Π2. Let L be the line in C12 through
a, b, c and let b2 be a point of C12 collinear to a but not contained in L. Let
C13 – C3,1pK,Kq be a sub polar space of C3 containing a, b, c and b2. Let C13
now as well be universally embedded as in 2.8piiq in Π3 – PGp5,Kq. The
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hyperbolic line through two opposite points is then again the projective line
of Π3 containing these points, by Lemma 2.25pivq.

Remark that C12 is no longer necessarily embedded in C13. However, we
claim that still all points collinear to a in C12 are contained in C13. Indeed,
note first that hyperbolic lines are also preserved under taking the sub polar
space C13 of C3, by a similar argument as for C12. Denote by H :“ xa, b, b2y the
tangent hyperplane of Π2 to C12 at a. Let p be an arbitrary point in H not
contained in L. Then hpb, b2q must intersect hpc, pq in a point q, since both
correspond to projective lines in H. This point q is contained in hpb, b2q Ď C 13
and consequently p is contained in hpc, qq Ď C13. A similar argument now
shows that also all points of L must be contained in C13.

Denote by L2 the line of C12 through a and b2 and let L1 be a line of C12
different from L and L2 through a. By the above observations the hyperbolic
line hpb, b2q must intersect L1 in a point, say b1. Similarly we find a point c1 as
the intersection of hpc, b2q and L1. In C13 the line L corresponds to a plane πL
containing a, b, c. First we prove that L1 and L2 correspond to planes πL1 and
πL2 , respectively, of C13 which intersect πL both in the same line A. Suppose
for a first contradiction that a, b1 and c1 are collinear in C13. Then the plane
π of Π3 spanned by hpb, b1q and hpc, c1q must contain a, which contradicts
the fact that a, b and c are not collinear in C13. So L1 corresponds to a plane
πL1 in C13. Similarly one shows that also L2 corresponds to a plane πL2 of
C13. Then in π the projective lines xb, cy and xb1, c1y must intersect in a point
different from a (since a R π), so the planes πL and πL1 intersect in a line of
C13. Similarly one shows that also the planes πL and πL2 and the planes πL1

and πL2 intersect in a line of C13. Since C13 does not contain three-dimensional
projective spaces, we get that the three planes intersect in the same projective
line A of Π3.

Denote by d the intersection of the projective line xb, cy with A in πL.
We prove now that every point from Lztau is contained in xb, cy. Let p be
such a point. In Π2 we see immediately that hpb, b1q must intersect hpp, c1q in
a point of C12, let’s say q, collinear to a. In Π3 we first get that q P hpb, b1q Ď π
and consequently also p P hpc1, qq Ď π. But p is also contained in πL and
consequently must be contained in the intersection of these two planes, i.e.
the projective line xb, cy of Π3. So all points of L except a are contained in one
line of C13, repeating the argument switching the roles of a and b for example,
we find that a must also lie on this line since |K| ą 2, a contradiction. ˝

Proposition 5.9. Let Ω – C3,3pA,Kq be an isometric subgeometry of a sep-
arable metasymplectic space ∆ – F4,1pK,Aq with K a field of order at least
3. Then Ω is a trace geometry, i.e. Ω “ pK X qı for some opposite points
p, q P ∆.

Proof. Recall the point-line geometry ΓΩ from Definition 5.2. We will show
that this geometry satisfies the conditions of Lemma 5.7, which will almost
complete the proof. With Lemma 5.4 it suffices to prove that the lines of ΓΩ

correspond to sets of points of the form tx P ξ | x P KK X K 1Ku with ξ a
symplecton in ∆ and K,K 1 two opposite lines in ξ. Let L be a line of ΓΩ.
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Let qξ1 , qξ2 , qξ3 P L be points of ΓΩ with respective corresponding symplecta
ξ1, ξ2 and ξ3 in Ω and denote with L1 the line of Ω contained in these three
symplecta. First we claim that qξ3 P ξpqξ1 , qξ2q. Indeed, let ζ, ζ 1 be two symps
of Ω intersecting L1 in two different points. Then these correspond to opposite
points qζ , qζ1 of ΓΩ both collinear to qξ1 , qξ2 , qξ3 in ΓΩ. So qξ1 , qξ2 , qξ3 are con-
tained in EΓΩ

pqζ , qζ1q – C2,1pA,Kq which is clearly embedded in the equator
geometry defined by qζ and qζ1 in ∆, that is, Epqζ , qζ1q – C3,1pA,Kq. Translat-
ing our claim to this setting, it suffices to prove that every line of EΓΩpqζ , qζ1q

is contained in a line of Epqζ , qζ1q. Taking Lemma 5.4 and Lemma 5.5 into
account, we see that we can apply Lemma 5.8. So, we obtain qξ3 P ξpqξ1 , qξ2q
and denote ξL :“ ξpqξ1 , qξ2q.

Let now π, π1 be two locally opposite planes through L in ΓΩ, with
corresponding points k, k1, respectively, on L1, and let qr, qr1 be arbitrary
points of πzL, π1zL, respectively. Note that qr and qr1 are opposite in ∆,
since they cannot be collinear in ΓΩ as there are no 3-dimensional subspaces
in ΓΩ and non-collinear points of ΓΩ are opposite in ∆ by the first paragraph.
However qr and qr1 are close to ξL, as they are collinear to a point of ξL (i.e.
the points k, k1, respectively), but not contained in ξL (since otherwise they
are not mutually opposite in ∆). So, by Corollary 2.5.4 of [16], they define
opposite lines K,K 1 in ξL and all points of the line L of ΓΩ are collinear
in ∆ to these lines, as they must be symplectic to qr and qr1 in ∆. We now
prove that an arbitrary point d in ξL collinear to K,K 1 is actually contained
in L. Note that d and p are symplectic, since k P K and k1 P K 1 (d is
not collinear to p, since this would contradict the opposition of K and K 1).
Now the symplecton ξpp, dq of ∆ intersects Ω in a symp of Ω through L by
Corollary 4.19. So ξpp, dq must contain a point of L Ď ΓΩ, which must by the
previous argument be collinear with K,K 1. If these lines are not contained in
the symplecton, there can at most be one point of ξpp, dq collinear to both.
Since this is the case for d, we can then conclude that d is indeed contained in
L. So we need to exclude that K is contained in ξpp, dq (a similar argument
shows the same for K 1). Suppose that K is contained in ξpp, dq. Then qr is
close to or contained in this symplecton. The latter is impossible, since qr1

is not far from this symp as it is collinear to k1. So qr is close to ξpp, dq and
symplectic to p. Then p must be collinear to K, which contradicts L being
the only line of ξL collinear to p.

So we finally checked all the assumptions to apply Lemma 5.7 and get a
point q P ∆ opposite p symplectic to all points of ΓΩ. Consequently Ω Ď qı

by [16, Corollary 2.5.3] and so Ω is contained in a trace geometry. With
Proposition 4.18 we get that Ω must coincide with the trace geometry pK X
qı. ˝

5.3.3. Separable metasymplectic spaces of long root type over the field with
two elements. So the only separable case left are the dual polar spaces isomet-
rically embedded in F4,1pF2,F4q. Contrary to expectations, we will encounter
here dual polar spaces embedded isometrically that are not contained in a
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trace geometry. Since this is a finite case, some counts will be done, such as
in the following lemma.

Lemma 5.10. Let C3 – C3,1pF4,F2q be a polar space and let 8 be a point of
C3. Then C3 has 210 embedded subgeometries isomorphic to C2,1pF4,F2q such
that hyperbolic lines of both geometries coincide, points in the subgeometry
are collinear if, and only if, they are collinear in C3 and all the points in the
subgeometry are collinear to 8. In 28 of these subgeometries the lines coincide
with lines of C3, but in the other 3 ¨28 subgeometries no three collinear points
are contained in a line of C3.

Proof. Consider the universal embedding of C3 in PGp5, 4q as given in Exam-
ple 2.8piiq and let C2 be embedded in C3 such that hyperbolic lines of both
geometries coincide and points in C2 are collinear if, and only if, they are
collinear in C3.

Let
$

’

&

’

%

L “ tx1, x2, x3, x4, x5u,

L1 “ tx11, x
1
2.x

1
3, x

1
4, x5u,

L2 “ tx21, x
2
2, x

2
3, x

2
4, x5u

be three different lines of C2 through the point x5. Writing xi as i, x1i as i1
and x2i as i2, we may assume that the following are hyperbolic lines (with
obvious notation):

11112 12122 13132 14142

21122 22112 23142 24132

31132 32142 33112 34122

41142 42132 43122 44112

Suppose first that L contains three points x1, x2, x3 of a line M of C3.
We claim that then also x4 belongs to M . Let π0 be the plane of PGp5, 4q
containing x1, x2, x3 and x11. Since hyperbolic lines of both geometries co-
incide and those of C3 are projective lines of PGp5, 4q by Lemma 2.25pivq,
we conclude that π0 also contains x21, x22 and x23. The hyperbolic line 12122

yields x12 P π0, and similarly the hyperbolic line 42132 yields x4 P π0. Now
x4 P xx1, x2y “ M , since otherwise π0 “ xx1, x2, x4y must be a plane of
C3, while it contains hyperbolic lines. Similarly, x5 P M . Note that, by the
above, the line L1 is also contained in π0 and since its points are pairwise
collinear, we conclude that also L1 is a line of C3. By connectivity, C2 is an
ordinary embedding in C3, i.e. lines of C2 are lines of C3. Combining the
main result of [3] with Lemma 2.23piiq, we get that C2 is the intersection of
a three-dimensional subspace U of PGp5, 4q with C3. Suppose now that all
points of C2 must be collinear to the point 8 of C3, then 8 P Uρ with ρ
the defining polarity of C3 in PGp5, 4q. However the line Uρ intersects C3 in
three points, since it is no tangent line. Denote by x, x1 the points contained
in this intersection different from 8, then C2 “ xKX8K “ x1KX8K. Clearly
each such point x opposite 8 gives rise to such a C2. So, since C3 contains
29 points opposite 8, there are 28 such embeddings.
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So, from now on we may assume that no 3 points of any line of C2

are contained in a line of C3. It follows (by [6, Theorem 4.9] for example)
that each line L of C2 is a non-degenerate conic in some plane πL of C3.
Denote by πL, π

1
L and π2L the planes of C3 spanned by the points of L,L1

and L2, respectively. We claim that πL, π1L, π
2
L intersect in a common line K

and that the nuclei of the corresponding conics coincide with a single point
n on K. Indeed, the plane xx1, x2, x

1
1y of PGp5, 4q contains the points x21, x22

and x12; hence the lines xx1, x2y and xx21, x22y intersect in a point z12 ‰ x5.
Similarly the line xx11, x12y must intersect both xx1, x2y and xx21, x22y. Since
C3 has rank three, we get that this is also in the point z12. Hence the line
K :“ xx5, z12y is contained in each of the planes πL, π1L, π

2
L. If we define zij

as tziju “ K X xxi, xjy, 1 ď i ă j ď 4, then, similarly as above, we have
tz1ju “ K X xx11, x

1
jy “ K X xx21, x

2
j y, 2 ď j ď 4. Hence the nucleus of the

conic L in πL is the unique point n of Kztx5, z12, z13, z14u, and the same
holds for the nucleus of L1 in π1L and the nucleus of L2 in π2L. The claim is
proved. By connectivity the nucleus of the conic corresponding to any line of
C2 inside the plane it spans on C3 is n. Hence all points of C2 are collinear to
a common point n of C3, and n corresponds to the point 8 in the statement
of this lemma. Let Π be the 4-space of PGp5, 4q spanned by 8K. Then Π
contains C2.

Now consider at the embedding of C2 in PGp3, 4q as in Example 2.8piiq.
Let π be a plane in PGp3, 4q that is not a tangent plane to C2. Then π
intersects C2 in an ovoid O of C2 (a set of points intersecting each line of C2

in exactly one point), which forms an affine plane AGp2, 3q of order 3 when
structured with its hyperbolic lines. Consequently also in Π the points of O
are contained in a plane π1. Now let h, h1, h2 be parallel lines of AGp2, 3q.
Define then the following hyperbolic lines of C2: g :“ hK, g1 :“ h1K and
g2 :“ h2K. Let x be a point of g (and consequently also of C2). We now claim
that the 3-space Σ :“ xO, xy of Π intersects C2 exactly in the 18 points of C2

contained in the hyperbolic lines h, h1, h2, g, g1 and g2 and that these form a
2-ovoid O2 (a set of points intersecting each line of C2 in exactly two points).
First we prove that these 18 points are contained in Σ. This is clear for the
points of h, h1 and h2. Note that in PGp3, 4q the projective lines containing
g, g1 and h2 are contained in the (projective) plane phX h1qK. Clearly this is
also a non-tangent plane intersecting C2 in an ovoid and consequently these
three hyperbolic lines are also coplanar in Π and contained in Σ. Similar one
proves that g2 is contained in Σ. The fact that every line of C2 intersects this
set of points O2 in exactly two points follows immediately by the fact that π
is a hyperplane of PGp3, 4q and the definition of the lines g, g1, g2. So suppose
for a contradiction that there exists a point a in pC2 X ΣqzO2. By the above
we then find two other points b, c of C2 X Σ on a line of C2 with a, so the
points a, b, c,8 are coplanar in Π. This implies that also 8 is contained in
Σ. This is impossible since then the projective line x8, xy must intersect the
plane π1, necessarily in a point of h, contradicting the fact that x and this
point must lie on an conic with nucleus 8.
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Now let L1, L2, L3, L4 and L5 be different lines of C3 through 8, such
that the first three are pairwise locally opposite, L4 is coplanar with L2

and with L3, and L5 is contained in the plane xL3, L4y. We claim that C2 is
completely determined by its points on these lines. Clearly, every C2 gives rise
to exactly one point on each line. We now prove that given 5 points yi P Li,
with 1 ď i ď 5, such that y5 R xy3, y4y, there exists at most one possible C2

embedded in C3 such that the assumptions of the lemma are satisfied and
no three collinear points of C2 are contained in a line of C3. We first show
that y1, y2, y3 and y4 determine the only 18 points of C2 in the 3-dimensional
space spanned by them. First note that, with similar reasonings as before, C3

intersects the plane π1 :“ xy1, y2, y3y of Π in exactly nine points forming an
AGp2, 3q when structured with its hyperbolic lines. Since the hyperbolic lines
of C2 and C3 coincide and an AGp2, 3q is spanned by three non-collinear points,
these nine points must be contained in C2 (and no other of π1). Now applying
the same reasoning to the planes xy4, ly and xy4, l

1y, with l, l1 the two lines
parallel to, but disjoint from the line through y2 and y3 in this AGp2, 3q, one
finds 8 more points of C2 in the 3-dimensional space xy1, y2, y3, y4y. One shows
easily that these 18 points are in the same configuration as in the previous
paragraph, and those are then all the points of C2 in this 3-dimensional space
and form a 2-ovoid in C2 by the reasoning at the end of that paragraph. Now
all the other points are determined by the fact that four points of PGp2, 4q no
three on a line determine a unique hyperoval of PGp2, 4q (a set of six points no
three of which collinear) and the geometry of 27 points and 27 lines obtained
from C2p4, 2q by removing the points of a 2-ovoid is connected. The latter is
the case since three points of C2p4, 2q on a line not contained in the 2-ovoid
are collinear to 12 other points of C2 not contained in the 2-ovoid, so each
connected component of the new geometry contains at least 15 points, which
is more than half, and hence there is only one component.

For the points y1, y2, y3, y4 and y5 there are 3 ¨ 44 possible choices. If we
can prove that there exists at least one geometry C12 – C2,1p4, 2q satisfying
the assumptions in the statement of the lemma while no three collinear points
of C12 are contained in a line of C3, we can conclude that there are exactly
3 ¨28 such subgeometries in C3 by the following reasoning. We already proved
that for given yi with 1 ď i ď 5 there exists at most one C2 through them
in the previous paragraph. However we can transform our example to one
through these points, so there is at least one as well. This transformation
goes as follows. Let y1i denote the point on Li of C12 for 1 ď i ď 5. First apply
the translation of Π with center 8 that maps the hyperplane xy11, y12, y13, y14y
to the hyperplane xy1, y2, y3, y4y and denote by y25 the image of y15 under this
map. Then apply the homology of Π with center 8 and axis xy1, y2, y3, y4y

that maps y25 to y5. As a composition of collineations, this is a collineation
of Π fixing 8 and preserving the necessary conditions for C2.

To conclude the proof, we construct such an example C12. Let C3 be given
as in Example 2.8piiq and let 8 be the point with coördinates p0, 0, 0, 0, 0, 1q.
Then Π has equation x´3 “ 0 and the points of 8K in this space are given
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by x2
´2x2 ` x2

´1x1 ` x2
1x´1 ` x2

2x´2 “ 0. After a coördinate transforma-
tion, we can denote the points of Π with coördinates pz1, z2, z3, z4, z5q such
that 8 has coördinates p0, 0, 0, 0, 1q and the points of 8K are exactly those
with z3

1 ` z3
2 ` z3

3 ` z3
4 “ 0. We then choose the points of C12 to be those

with z3
1 ` z3

2 ` z3
3 ` z3

4 “ 0 and z5 “ z1z2z3z4. These are well-defined since
ε4 “ ε, for each ε P F4. By explicitly enumerating all points (an elemen-
tary exercise which we shall not do), one checks that the set of these points
together with the line set existing of sets of points contained in the same
plane of C3 through 8 form a point-line geometry isomorphic to C2,1p4, 2q.
Points are then collinear in C12 if, and only if, they are in C3. Further-
more there is at least one line of C12 not contained in a line of C3, namely
tp1, 1, 1, 1, 1q, p1, 1, 0, 0, 0q, p0, 0, 1, 1, 0q, p1, 1, ε, ε, ε2q, p1, 1, ε2, ε2, εqu, so by the
second paragraph of this proof, we get that all lines are like this. To finally
conclude that C12 is indeed an example of a geometry described in the previ-
ous paragraph, one only has to check that it is closed under taking hyperbolic
lines in C3. So suppose we have two noncollinear points of C12. Note that the
geometry is preserved under the following automorphisms of Π: multiplying
the last coördinate and one other coördinate with a non-zero element; per-
muting the four first coördinates; the field automorphism of F4. If one of the
points has only nonzero coördinates, we can suppose without loss of generality
by the above that it is p1, 1, 1, 1, 1q. Then we can again by the above suppose
that the other point is one of the following three: p1, ε, 0, 0, 0q, p1, 1, ε, ε2, 1q
and p1, 1, 1, ε, εq where F4 “ t0, 1, ε, ε

2u. One sees immediately that the third
point on the hyperbolic line through these two is now contained in C12, since it
has coördinates pε2, ε, 1, 1, 1q, p0, 0, ε2, ε, 0q and p1, 1, 1, ε2, ε2q respectively. If
now both points have coördinates equal to zero, we can suppose without loss
of generality that the first one has coördinates p1, 1, 0, 0, 0q and the second
p1, ε, 0, 0, 0q or p1, 0, 1, 0, 0q. Then the third point on the hyperbolic line is
also contained in C12 since it is p1, ε2, 0, 0, 0q or p0, 1, 1, 0, 0q, respectively. ˝

Lemma 5.11. Let ∆ – F4,1pF2,F4q be a separable metasymplectic space and
let 8 be a point of ∆. Then 8K contains 222 subgeometries Ω – C3,3pF4,F2q

embedded isometrically in ∆. For 220 of these subgeometries, each line in ΓΩ

is contained in a symp of ∆; while for the other 3 ¨220 subgeometries no three
points on a line of ΓΩ are contained in a symp of ∆.

Proof. Let Ω – C3,3p4, 2q be isometrically embedded in 8K. By Proposi-
tion 4.18, 8 is the only point of ∆ collinear to all points of Ω and each line
through 8 contains exactly one point of Ω. Let now ξN0 and ξN1 be two locally
opposite symps of ∆ through p and define ξi :“ ξNi X Ω. Then ξi is a symp
of Ω by Corollary 4.19. Let finally pq0, q1q be the pair of points such that
8K X qKi “ ΩX ξNi for i “ 0, 1, which exists by Lemma 4.17.

Note that there are in total 26 ¨ 26 “ 212 possibilities for pq0, q1q as pair
of points with qi P ξNi opposite 8.

Fix now such a pair pq0, q1q. We determine how many isometric subge-
ometries Ω – C3,3p4, 2q of 8K correspond to this pair, such that 8K X qKi “
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ΩXξNi . By Lemma 5.4 and Lemma 5.5, EΓΩ
pq0, q1q is an embedded subgeom-

etry of Epq0, q1q with the properties described in Lemma 5.10. We claim that
Ω is completely determined by this EΓΩpq0, q1q. Note that, since each plane
of ΓΩ – C3,1p4, 2q has at least one point in common with the intersection
of two point-perps, the point set of Ω coincides with the union of all sets
8K X qK, with q P EΓΩ

pq0, q1q. Now we determine the line set of Ω. There
are two different types of lines, so the line set is the union of the two sets
described in the rest of this paragraph. First we have the lines that are con-
tained in some 8KX qK, with q P EΓΩ

pq0, q1q. These correspond with lines of
ΓΩ intersecting or contained in EΓΩ

pq0, q1q. They are determined in the same
way as we determined the point set: it are the lines contained in 8K X qK,
for some q P EΓΩ

pq0, q1q. The second type of lines are those not contained
in any such 8K X qK, with q P EΓΩpq0, q1q. So they correspond to lines of
ΓΩ disjoint from EΓΩpq0, q1q. Each such line L1 existing of the points x1, y1, z1
in Ω corresponds in ΓΩ to three planes πx, πy, πz respectively intersecting
in a line L of ΓΩ. However each of these planes intersects EΓΩ

pq0, q1q in a
point, let’s say x, y, z respectively, forming a hyperbolic line of EΓΩ

pq0, q1q.
The latter can be seen as follows: look at the universal embedding of ΓΩ

in PGp5, 4q, then EΓΩpq0, q1q “ qK0 X qK1 and xπx, πy, πzy “ LK are intersec-
tions of ΓΩ with 3-dimensional subspaces by the main result of [3] combined
with Lemma 2.23piiq, so these subspaces intersect in a projective line. Let
now ξx, ξy, ξz, respectively, be the symps in Ω corresponding to these points.
Then L1 must be a line intersecting those symps. Now by Lemma 5.5, keeping
in mind that in this case the number of points is finite, we get that the hy-
perbolic lines of EΓΩpq0, q1q are just those of Epq0, q1q completely contained
in the point set of EΓΩ

pq0, q1q. Furthermore the number of lines collinear to x
and z in ΓΩ (which is the number of lines in C2,1p4, 2q) is exactly the same as
the number of lines intersecting ξx, ξy and ξz, (which is the number of points
in B2,1p2, 4q). So we can reconstruct the lines of the second type by taking
all lines intersecting each three symps of Ω corresponding to the three points
on a hyperbolic line of Epq0, q1q contained in EΓΩpq0, q1q.

Let now C2 – C2,1p4, 2q be embedded in Epq0, q1q such that hyperbolic
lines of C2 coincide with hyperbolic lines of Epq0, q1q, points are collinear in
C2 if and only if they are in Epq0, q1q and all points of C2 are collinear to
8. We claim that using the methods described in the previous paragraph to
construct a point set and a line set (with two types of lines), we get an Ω
satisfying the conditions in the beginning of the previous paragraph. Note first
that we reconstruct the correct amount of points and lines by the previous
paragraph. Furthermore these lines are clearly full. If we can now prove that
every line through 8 contains at most one point of the constructed point
set, we get that the embedding is also isometric and isomorphic to C3,3p4, 2q.
Suppose for a contradiction that one line M through 8 contains two points
of the constructed set, let’s say m and m1. Then there exist points n and n1
in C2 such that m P 8K X nK and m1 P 8K X n1K. But then the symplecta
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ξp8, nq and ξp8, n1q of ∆ intersect in a plane and n and n1 are symplectic.
This yields m “ m1 by Proposition 2.12 [Point-Symp], a contradiction.

So the number of possibilities for Ω given 8 is equal to 212 times 210

by Lemma 5.10. Let now Ω be such a subgeometry. We claim that as soon as
some symplecton of ∆ contains three points of a line of ΓΩ, each line of ΓΩ is
contained in a symplecton. Recall therefor that lines of an equator geometry
of a metasymplectic space are given by the intersection of the point set with
symplecta. Suppose that three points of the line N of ΓΩ are contained in one
symplecton of ∆ and let M be another arbitrary line of ΓΩ. Let π, π1 be two
locally opposite planes in ΓΩ through N . Suppose first that M is opposite
N in ΓΩ and denote by r, r1 the respective projections of M onto π and π1.
Then both N andM are contained in EΓΩ

pr, r1q which is again by Lemma 5.4
and Lemma 5.5 a subgeometry of Epr, r1q as described in Lemma 5.10. Since
three points of N are contained in a line of Epr, r1q by assumption, the latter
lemma implies that both N and M are lines of Epr, r1q and consequently
each contained in a symplecton. If now M is not opposite N , then we find a
line M 1 of ΓΩ opposite both by Proposition 1.6.16 of [23] and can apply the
previous reasoning twice to get the same conclusion, which proves the claim.
It is now clear that the last statement of this lemma now also follows from
Lemma 5.10. ˝

The following result was already known and proved by Yoshiara in [24,
§7.2]. However we give here an alternative proof that only uses elementary
geometry and the existence of the metasymplectic space F4,1p2, 4q.

Corollary 5.12. The embedding rank of C3,3p4, 2q, the dual polar space related
to the unique non-degenerate Hermitian variety in PGp5, 4q (also denoted by
DHp5, 4q), is 22.

Proof. Let Ω – C3,3p4, 2q be a dual polar space related to the unique non-
degenerate Hermitian variety in PGp5, 4q and denote by n its embedding rank.
Let Λ be the F2-cone over Ω. More exactly, let 8 be an additional point, and
define for each point p of Ω an additional point p1 (not belonging to Ω). Then
the points of Λ are 8, all points p of Ω and all points p1. The lines are all lines
of Ω, the subsets t8, p, p1u, with p a point of Ω, and, for each line tp, q, ru of
Ω, the subsets tp, q1, r1u, tp1, q, r1u and tp1, q1, ru.

We now show that the number of isometrically embedded geometries
isomorphic to Ω in Λ equals 2n. It is obvious that the embedding rank of Λ is
n`1. Suppose now that we have a universal embedding of Λ in PGpn, 2q. Then
every hyperplane of PGpn, 2q not containing8 intersects Λ in an isometrically
embedded subgeometry isomorphic to Ω. Conversely, let d be the (projective)
dimension of the subspace of PGpn, 2q spanned by an isometrically embedded
geometry in Λ isomorphic to Ω. Then, by the definition of embedding rank,
we have d ď n ´ 1. This inequality must be an equality, since adding the
point 8 gives a set spanning the whole space PGpn, 2q (note that by the
finiteness every line of Λ through 8 must contain exactly one point of the
subgeometry). It follows that the number of fully embedded geometries in Λ
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isomorphic to Ω and not containing 8 is equal to the number of hyperplanes
in PGpn, 2q not containing 8, i.e. 2n.

Let now ∆ and 8 be as in Lemma 5.11, then clearly 8K – Λ. It is
obvious that a subgeometry of 8K is embedded isometrically in ∆ if, and
only if, it is in 8K. So when we combine the result in the previous paragraph
with Lemma 5.11, we get that n “ 22. ˝

The following is an immediate consequence of the previous two results.

Corollary 5.13. Let Λ be the F2-cone over Ω “ C3,3p4, 2q. If Λ is embedded in
Π “ PGp22, 2q such that Ω is embedded universally, then there is a bijection
between the hyperplanes of Π not containing the vertex of the cone and the
isometric subgeometries of the cone isomorphic to Ω.

Lemma 5.14. Let ∆ – F4,1pF2,F4q be a separable metasymplectic space and
let p, p1 be two opposite points of ∆. Then there exists a full embedding of ∆
in a projective space such that pK X p1ı is embedded in the standard way in
PGp19, 2q.

Proof. Let q be a prime power. Look at the following chain of full embeddings:

C3,3pq
2, qq Ď F4,1pq, q

2q Ď E6,2pqq Ď PGp77, qq.

The last embedding here is due to section 4.3 of [1] and this is homogeneous.
The middle embedding is by Galois descent due to [21]. Note now that Galois
descent preserves homogeneity, again by [21].

Let now q “ 8. Then the embedding of C3,3p64, 8q induced by the above
chain is the standard (and universal) one in PGp19, 8q, since this is the only
homogeneous embedding by [8].

Applying now Galois descent from F8 to F2 (by using the irreducible
polynomial x2 ` x ` 1) to the whole chain above gives an embedding of
F4,1p2, 4q inducing the standard embedding of C3,3p4, 2q in PGp19, 2q, by ho-
mogeneity. ˝

Finally we are now able to prove Main Result A.

5.3.4. Proof of Main Result A. Lemma 4.7 yields Ω – C3,3pB,Kq for some
quadratic alternative division algebra B over K. Combining then Proposi-
tion 4.4 and Lemma 4.13, yields that the embedding is isometric or we are
in case piiq. So from now on we may assume isometricity. Then with Propo-
sition 4.15, we find a unique point p of ∆ such that Ω Ď pK and each line
through p contains at most one point of Ω.

Suppose now that K ‰ F2 and let q be a point of ∆ opposite p. Then
pK X qı is isomorphic to C3,3pA,Kq by Lemma 4.1 and can be universally
embedded in PGp6n`7,Kq by [8], where n “ dimKpAq. Consequently the cone
with vertex p and base this pKX qı can be embedded in Π :“ PGp6n` 8,Kq.
Let Ω1 be the projection of Ω from p onto pK X qı. Then Ω1 – C3,3pB,Kq
and if we denote by S1 the subspace of Π spanned by the points of Ω1, we get
that Ω1 is embedded universally in S1 by Lemma 4.12 and B is a subalgebra
of A. So the dimension of S1 equals 6d ` 7 with d “ dimKpBq. This implies
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that also the dimension of the subspace S of Π spanned by the points of Ω
has this dimension and that S does not contain p. So we can extend S to a
hyperplane H of Π not containing p which intersects the cone in a geometry
ΩA – C3,3pA,Kq. The latter is clearly isometrically embedded in ∆. Now
Proposition 5.9 yields that ΩA is a trace geometry, which leads immediately
to case piq. Note that the last statement of that case is just Lemma 4.1.

If now K “ F2, then A “ F4 by the separability. Suppose first that
Ω – C3,3p4, 2q. Then we get by Lemma 5.11 that it is possible that Ω is
(contained in) no trace geometry, since for trace geometries, EΓΩ

must be an
equator geometry and must consequently have lines contained in symplecta.
This also follows from the following counting argument. One counts that p has
221 opposite points in ∆. Each such point gives rise to a trace geometry in pK.
Let now q be such a point opposite p. Then C pp, qq contains one more point,
let’s say q1. Now Epp, qq “ Epp, q1q by Lemma 2.10.4 of [23] and consequently
the trace geometries pK X qı and pK X q1ı coincide as well. So we have at
most 220 trace geometries contained in pK, which shows that case piiiq does
occur for Ω – C3,3p4, 2q when combined with Lemma 5.11.

Suppose now that Ω – C3,3p2, 2q. It is clear that Ω can be contained in a
trace geometry. We now show that it is also possible that Ω is not contained
in a trace geometry. Let q be a point opposite p and let ∆ be embedded as in
Lemma 5.14 such that pKXqı is embedded in a standard way in PGp19, 2q. We
claim that the cone over this geometry with vertex p is embedded in PGp20, 2q.
Indeed, the only other option is PGp19, 2q, in which case p is contained in the
subspace spanned by all points of qı, contradicting the observation in [1] that
the embedding of ∆ is polarized, that is, for each point x of ∆, the subspace
spanned by all points of ∆ not opposite x is a proper subspace and hence
does not contain any point of ∆ opposite x. Since pKX qı is the intersection
of this cone with a hyperplane, since the embedding of ∆ is homogeneous,
since the stabilisator of p in ∆ acts transitively on the points opposite p by
the BN-pair property due to Tits (see [20, Theorem 5.2]) and since there are
exactly 220 trace geometries in the cone and hyperplanes in PGp20, 2q not
through p, every trace geometry corresponds to such a hyperplane.

We now take a look at the projection of the cone with vertex p over the
universal embedding of pK X qı in Π22 – PGp22, 2q (let’s say K 1) onto the
cone with vertex p over the standard embedding (let’s say K). Then K is the
projection of K 1 onto a subspace Π20 – PGp20, 2q from a line L (disjoint from
K 1 and Π20). By Corollary 5.13 and the previous paragraph, the hyperplanes
through L not containing p intersect K 1 in a trace geometry, while those
not through L not containing p intersect K 1 in an isometric subgeometry
isomorphic to C3,3p4, 2q that is no trace geometry. Let Ω̃1 – C3,3p4, 2q be
such an isometric subgeometry of K1 that is not a trace geometry, denote
with Π21 the subspace it spans and denote with L1 the intersection of Π21

with xp, Ly (L1 is a line not through p different from L). Note that then
Π20 Ď Π21 – PGp21, 2q. Let Ω1 – C3,3p2, 2q be an isometric subgeometry of
Ω̃1. By Lemma 4.12, Ω1 spans a 14-dimensional projective space Π14, which
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must intersect Π20 in a subspace not containing p, so we can take a hyperplane
Π19 of Π20 containing Π14XΠ20 but not containing p. Now projecting Ω1 onto
this Π19 from xp, Ly yields the standard embedding by Lemma 4.12. This
implies that Π14XΠ20 is 13-dimensional and the unique point p1 of Π14 from
which we can project Ω1 onto its standard embedding, is contained in L1.
By combining the last statement of Lemma 3.4 with the homogeneity of the
universal embedding, the case p1 ‰ LXL1 does occur. In that case, there are no
hyperplanes containing Π14 and L not through p and consequently Ω1 is not
contained in a trace geometry. So this Ω1 is projected onto some Ω – C3,3p2, 2q
isometrically embedded in ∆ not contained in a trace geometry. Note that by
the previous reasoning, it is clear that exactly half of the C3,3p2, 2q that are
isometrically embedded in F4,1p2, 4q, are not contained in any trace geometry.

The uniqueness up to isomorphism of the embeddings described in Main
Result Apiiiq follows from some transitivity arguments. Note first that the
group of automorphisms of Π22 induced by an automorphism of K (i.e. the
extension of the corresponding automorphism on K 1), are exactly the auto-
morphisms of Π22 induced by automorphisms of K 1 that stabilise L. We will
restrict ourselves to these automorphisms for the rest of this proof. It follows
similarly as before from Lemma 3.4 that they act transitively, more exactly
cyclically, on the set of three lines of xp, Ly not containing p and different from
L. So for the case Ω – C3,3p4, 2q it suffices to prove that this group also acts
transitively on the set of hyperplanes through such a line. This is the case
since the group acts transitively on the set of hyperplanes through L as these
correspond to hyperplanes of Π20, but at the same time, the automorphisms
fixing such a hyperplane through L act transitive, more exactly, cyclically, on
(the set of points of) L. So the automorphism group G pointwise fixing L (and
consequently xp, Ly ), also acts transitively on the set of hyperplanes through
L. This now implies that G also acts transitively on the set of hyperplanes
through any other line of xp, Ly not containing p by a counting argument,
taking into account that the stabilisers of such hyperplanes all have the same
size.

So suppose now that Ω – C3,3p2, 2q. By the arguments of the previous
paragraph we only have to show that it can be mapped to any other Ω1 –
C3,3p2, 2q that has the same projection point p0 in xp, Ly and is contained in
the same Ω0 – C3,3p4, 2q, by an automorphism of K 1 stabilising L. Now, all
of Ω,Ω1 and Ω0 are embedded in K 1. Inside the hyperplane H0 containing
Ω0, there clearly exists an automorphism of Ω0 mapping Ω to Ω1 and one can
extend that automorphism uniquely to one, say ϕ, of Π22 by assuming that
also p is fixed. Then K 1 is stabilised. We only have to show that also L is
stabilised. Clearly, ϕ stabilises the unique line L0 of xp, Ly contained in H0,
and it fixes p0 P L0 by assumption. Since the stabiliser of Ω0 inside H0 acts
cyclically on the points of L0, ϕ pointwise fixes L0. Since it aso fixes p, it
pointwise fixes xp, Ly and the proof is complete. ˝

Remark 5.15. Note that similar arguments as in the last part of the above
proof, could also be used to proof that there are indeed geometries isomorphic
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to C3,3p4, 2q isometrically embedded in F4,1p2, 4q not contained in a trace
geometry. In this way, Lemma 5.10 and Lemma 5.11 would be redundant,
but then the embedding rank of C3,3p4, 2q is needed and so one uses [24,
§6.5]. The authors found it more interesting to give an explicit proof that
this can be done without using that and even prove that fact. However, for
the geometries isomorphic to C3,3p2, 2q isometrically embedded in F4,1p2, 4q
not contained in a trace geometry, we did make use of the results in [24] to
limit the length of the article.

6. The inseparable case
Let ∆ be a metasymplectic space F4,1pK,K1q with K a field of characteristic 2
and K1 a (possibly trivial) inseparable (multiple) quadratic field extension of
K, i.e. pK1q2 ď K ď K1). Then as for the metasymplectic space F4,1pF2,F4q, ∆
contains many dual polar spaces of rank 3 fully and isometrically embedded,
but not contained in a trace geometry. Since one can no longer count in this
case and our interest does not lie in classifying exactly those, we provide an
example of such an embedding. Note that by Proposition 4.15 this geometry
will still be contained in the perp of a point. Also, by our observations in
the introduction, it should arise from the universal embedding of a point
perp. The difficulty is to explicitly exhibit such an embedding and show it is
not contained in a trace. Our technique consists in choosing a symp that is
already not embeddable in a trace.

Example 6.1. Let p, q be two opposite points of ∆ and let Ω be the point-
line geometry consisting of the points in pK X qı and the lines completely
contained in this set. Then Ω – C3,3pK1,Kq, since it is isomorphic to the
point residual of p. Let ζN be a symp of ∆ through p. This intersects Ω in a
quadrangle ζ “ pK X qKζ with qζ the unique point of ζN symplectic to q.

We now take a look at the universal embeddings of ζN, ζ and Ω. Let ζN
be given by the equation

x´3x3 ` x´2x2 ` x´1x1 “ x2
0

with px´3, x´2, x´1, x0, x1, x2, x3q P KˆKˆKˆK1 ˆKˆKˆK where x0

can be written as px0,0, x0,1, . . .q in K1 – KˆKˆ¨ ¨ ¨ (dimKpK1q factors). Fur-
ther assume that p has coördinates p1, 0, 0, 0, 0, 0, 0q and qζ has coördinates
p0, 0, 0, 0, 0, 0, 1q. Then ζ is given in this projective space by the system of
equations

$

’

&

’

%

x´2x2 ` x´1x1 “ x2
0,

x3 “ 0,

x´3 “ 0.

However, by Remark 4.9, we can embed Ω in a projective space Π1 over K,
such that ζ (as subspace of Ω) is universally embedded. Let the cone with
vertex p over Ω be embedded in a projective space Π over K of one dimension
more than Π1 such that the induced embedding of Ω is the one described in
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[8]. Then the universal embedding of the cone with vertex p over ζ arises as
the intersection of a subspace S of Π with this embedding.

Now let ζ 1 be the intersection of ζN with the subhyperplane x3 “ x´3`

x0,0 “ 0. Then ζ 1 is isomorphic to B2,1pK,K1q. It is clearly contained in the
cone with vertex p over ζ and it arises in the universal embedding of the latter
as the intersection with a hyperplane H of S not containing p. Consequently
it is embedded in the cone with vertex p and base Ω as the intersection of a
subspace H of Π not containing p. So we can extend this H to a hyperplane
H 1 of Π not containing p. Denote by Ω1 the intersection of the cone with H 1.
This is clearly an isometric subgeometry of ∆ isomorphic to C3,3pK1,Kq.

So suppose now for a contradiction that it would be contained in a trace
geometry, let’s say Ω1 Ď pK X q1ı with q1 some point of ∆ opposite p. Then
Ω1 X ζN “ ζ 1 must be contained in pK X q1Kζ with q1ζ the unique point of ζN

symplectic to q1. So q1ζ “ py´3, y´2, . . . , y3q P ζ
N is collinear to all points of ζ 1

in ζN. All points pa,b,c “ pa, 1, b, a, c, a2` bc, 0q with a, b, c P F2 are contained
in ζ 1. Expressing that q1ζ K p0,0,0 yields y2 “ 0, that q K p0,1,0 yields y1 “ 0,
that q1ζ K p0,0,1 yields y´1 “ 0, that also q1ζ K p0,1,1 yields y´2 “ 0 and that
q1ζ K p1,0,0 yields y3 “ 0. Finally expressing that q1ζ is contained in ζN, yields
y0 “ 0, which means q1ζ “ p, a contradiction.

Note that the following proof could be given before this example. How-
ever the example concludes that all cases of Main Result C do occur.

Proof of Main Result C. With Lemma 4.7, we get that Ω – C3,3pB,Kq for
some quadratic alternative division algebra B over K. Combining then Propo-
sition 4.4 and Lemma 4.13, yields that the embedding is isometric or we are
in case piiiq. Note that the latter indeed occurs sometimes by Example 4.14.
So from now on we may assume isometricity. Then with Proposition 4.15,
we find a unique point p of ∆ such that Ω Ď pK and each line through p
contains at most one point of Ω. Let now q be a point of ∆ opposite p. Then
pK X qı is isomorphic to C3,3pA,Kq by Lemma 4.1 so after projection of Ω
onto pK X qı, we get a full embedding of C3,3pB,Kq into C3,3pK1,Kq. This
implies by Lemma 4.12 that Bp“: K2q is a subalgebra of K1. Finally both piq
and piiq occur by Lemma 4.1 (which also proves the last statement of piq)
and Example 6.1, respectively. ˝

Remark 6.2. Call an isometric embedding of a dual polar space Ω in a meta-
symplectic space ∆ maximal if every line through the unique point p of ∆
collinear to each point of Ω contains a point of Ω. Using arguments similar to
the ones in the proof of Main Result A for the case pK,Aq “ pF2,F4q, one can
refine the statements of Main Result Cpiq and piiq for maximal embeddings as
follows. First suppose K ‰ F2. Then the universal embedding of C3,3pK1,Kq
is the standard one, say in PGpV q, with V as defined just before Remark 4.8.
This has a nucleus space N of codimension 7, just like in the case K “ F2,
cf. the proof of Lemma 4.11. Now embed PGpV q in a projective space PGpV 1q
as a hyperplane and consider the cone with base C3,3pK1,Kq Ď PGpV q and
vertex some point p in PGpV 1q not in PGpV q. Then there is a natural bijective
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correspondence between the maximal isometric embeddings of C3,3pK1,K and
the hyperplanes H of PGpV 1q not containing p. Moreover, the hyperplanes
through N precisely correspond to the traces.

In particular, for a perfect field, the nucleus subspace N has dimension
5 and the automorphism group acts transitively on the hyperplanes. This
implies that, in the perfect case, there are, up to isomorphism, exactly two
maximal isometric embeddings of a dual polar space. In the finite case, say
K “ Fq, this implies that, for a given point p of ∆, the number of embedded
dual polar spaces in pK is equal to q14, from which 28 are a trace. If we call a
symp ξ of an isometric embedded dual polar space straight if it arises as the
intersection of two point perps in its ambient symp ξN, then every embedding
of C3,3pFq,Fqq in ∆ that is not a trace contains precisely q5 symps that are
not straight (that is, the number of points of NzH).

If K “ F2, the universal embedding of C3,3pK,Kq happens in PGp14, 2q
and hence, similarly as before, there are 215 embedded dual polar spaces in
pK, fr a given point p of ∆. This time, the nucleus subspace of the universal
embedding has the structure of an orthogonal (parabolic) space (meaning
that the set of nuclei of the symps forms a parabolic quadric Q), which itself
has a nucleus point n P N . This implies that, up to isomorphism, there are
exactly three embeddings of dual polar spaces: 28 traces (the hyperplane
H, with above notation, contains N), 214 ´ 28 embeddings with exactly 25

symps that are not straight (the hyperplane H contains n but not N), and
214 embeddings with exactly 25 ´ 22 “ 28 symps that are not straight (the
hyperplane H does not contain n and hence intersects Q in a hyperbolic
quadric). We omit the details of the proofs.

It now also follows that, in the standard embedding of F4,4pK,Kq in
PGp25,Kq, every hyperplane section in the subspace spanned by pK, for any
point p of F4,4pK,Kq, is a trace. This now holds for every field K.
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