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Abstract. The main problem considered in this paper is “how does a
dual polar space I' of rank 3 embed in a metasymplectic space A?” The
expected and generic answer is that I' is isomorphic to a subgeometry
of a point residual Resa(p) and that it arises as a subgeometry of a
trace geometry, that is, I' < pJ‘ n ¢, for two opposite points p and g,
where ¢™ is the set of points special to q. However, this is not always
the case, and we describe some counterexamples, even classify them for
certain classes of metasymplectic spaces A. These results complement
the analogous results for the exceptional geometries of diameter at most
3 arising from groups of types Es, E7, Es recently treated by Cooperstein
and the second author.
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1. Introduction

Classifying subgeometries of a given geometry is very helpful to understand
the structure of the given geometry. In particular if the subgeometry is, in
some sense, large, and/or, in another sense, maximal. The latter would mean
that it is not contained in a well-known subgeometry already; the former
could for instance mean that lines of the subgeometry are full lines of the
ambient geometry, or if there is a rank or dimension available, that these
do not differ too much. Embeddings of geometries in projective or affine
spaces has been thoroughly investigated, especially for polar spaces, but also
for other, mostly finite, geometries such as (semi-)partial geometries, partial
quadrangles, generalised hexagons, etc. Recently, there has been some inter-
est to look at subgeometries of the standard exceptional geometries of Lie
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type, emphasising inclusions of exceptional geometries themselves. This was
very fruitful for gaining insight into the structure of these geometries, as it
revealed, for instance, beautiful properties of the so-called equator geome-
tries, see for instance [9, [I3]. Recently, Cooperstein and the second author [5]
characterised so-called trace geometries in exceptional Lie incidence geome-
tries of simply laced type as the only fully embedded geometries isomorphic
to a point residual. The present paper investigates the analogue for meta-
symplectic spaces, that is, for the standard Lie incidence geometries related
to spherical buildings of type F4 (which is also an exceptional type).

There are three phenomena that complicate things for the metasym-
plectic spaces, and which are due to the fact that the diagram is not simply
laced.

(1) Point residuals in metasymplectic spaces are dual polar spaces of rank 3.
But that class of geometries is much larger than those that can appear as
point residual. So, it is an additional complication that we do not know
in advance which isomorphism class of geometries we are embedding.

(#¢) In the simply laced case, the point residuals are Lie incidence geometries
that are generated by the points of an apartment. This is not longer
true in the metasymplectic case. Yet, this property was the basis of a
fundamental technique in [5].

(7i7) Finally, maybe the most prominent thing, not all (fully) embedded dual
polar spaces in metasymplectic spaces are traces, even if they are iso-
morphic to the point residuals! It will also turn out that a dual polar
space can be embedded in a symplecton.

Concerning the first complication mentioned above, it will turn out that
in half of the cases, the isomorphism class and embedding will be determined
by just assuming we have an embedded dual polar space of rank 3. In the
remaining cases, we find subgeometries of embedded geometries isomorphic
to point residuals. The second complication will be bypassed by using a dif-
ferent method. Concerning the third complication, we will show that in most
metasymplectic spaces an embedding of a dual polar space must be “isomet-
ric” (precise definition see below) and we will describe isometric embeddings
of dual polar spaces that do not arise as traces; sometimes we can even clas-
sify. Moreover we provide an example of a dual polar space isomorphic to
a point residual that is embedded in a symplecton (and hence not isomet-
rically embedded). Especially the isometric embeddings that are not traces
provide more insight in the structure of metasymplectic spaces. We note, in
particular, that this exceptional behaviour is not only for infinite cases, but
also for those over a finite field in characteristic 2, in particular, the smallest,
finite ones over o experience this. Roughly speaking, and referring forward
for undefined notions, we prove the following:

Main Results—Informal statements.

(1) Dual polar spaces fully embedded in metasymplectic spaces which do not
admit central elations, are always traces;
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(2) Dual polar spaces fully embedded in metasymplectic spaces the duals of
which do not admit central elations are either contained in traces, or
contained in a symp, or contained in the perp of a point, but not in
a trace (and in the latter case the metasymplectic space has planes of
order 2 and has 5 symps on each plane; the dual polar spaces have either
3 symps per line—and there is a unique non-trace example—or 5 symps
per line—and again there is a unique non-trace example).

(3) If the metasymplectic space admits central elations and also its dual
does, then a fully embedded dual polar space is either contained in a
trace, in a symp, or in the perp of a point, but not in a trace.

As a byproduct of our proof, we exhibit an alternative method to deter-
mine the embedding rank of the dual polar spaces of rank 3 with three points
per line, a result due to Yoshiara [24], who made use of the Leech lattice to
do so. We only use elementary (finite incidence) geometry, and the existence
of metasymplectic spaces.

Let us mention two applications of our results. Firstly, one might wonder
what about dual polar spaces of rank at least 4 embedded in metasymplectic
spaces? We will show that, if a dual polar space of rank at least 4 is fully
embedded in a metasymplectic space admitting no central elations, then it
has rank 4 and is isomorphic to a so-called tropics geometry, see Proposi-
tion [2.19] hence essentially unique. Secondly, suppose the metasymplectic
space A admits an embedding in a projective space; one can then consider
the universal embedding of any point perp p* (a cone with vertex p over the
point residual). Every hyperplane section not through p of this universal em-
bedding gives rise to an embedded dual polar space. Our main results reveal
in precisely which cases such a hyperplane section is always a trace, that is,
arises from the geometry of the metasymplectic space itself. Moreover, in the
non-embeddable case, our main results imply that every fully embedded dual
polar space of rank 3 is a trace, and (so) nothing exceptionally happens due
to the non-embeddability.

Alongside with our main results, and besides the alternatie proof for
the universal embedding of the dual polar spaces of rank 3 with three points
per line, we prove many other results that we hope will prove useful in other
contexts. Most prominently, we for instance show that no nontrivial injective
projection of the quadric Veronesean of any projective plane with at least 21
points, is contained in a nontrivial quadric, except if the underlying fiels has
characteristic 2 and the projection is from a subspace of the nucleus plane,
see Lemma [3.91

We also provide some consequences of our results. One kind of corollary
states that in the standard embedding of certain metasymplectic spaces A,
every hyperplane of the projective subspace spanned by the points collinear
to a given point p of A, not containing p itself, is the subspace spanned
by the points collinear to p and not opposite some fixed point g, with ¢
opposite p. Another consequence is the uniqueness of the so-called tropics
geometry as fully embedded dual polar space of rank 4 in metasymplectic
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spaces not containing central elations. This is the geometric counterpart of
the uniqueness of groups of type By in groups of type F4, or also of the
uniqueness of root systems of type B3 in root systems of type Fj.

We now introduce all notions needed to state our main results in detail.
This is done in section [2} Before we proceed with the proof, we review some
known properties of Veronese representations of projective planes and prove
some new ones in section [3] We start the proofs with two general results:
if a fully embedded dual polar space is not contained in a symp, then it is
isometrically embedded and contained in the perp of a point p in such a way
that every line through pv contains at most one point of the embedded dual
polar space. This is the content of section ] Then, in section [5] we prove
our main results for the separable case, that is, for metasymplectic spaces
either who do not admit central elations, or whose dual do not admit central
elations. The inseparable case (both the metasymplectic space and its dual
admit central elations) is then treated in section @

2. Preliminaries and statement of the Main Results

The main players in this paper are metasymplctic spaces. We will view these
with the help of the language of parapolar spaces, which are point-line geome-
tries satisfying certain axioms. Crucial substructures of parapolar spaces are
polar spaces. Therefore, we start by briefly introducing point-line geometries,
polar spaces and parapolar spaces, mainly to fix notation.

2.1. Point-line geometries

For the purpose of this paper, a point-line geometry is a pair I' = (X,.%&)
consisting of a set X whose elements are called points, and a non-empty
subset .Z of the set of subsets of X, each element of which is called a line.
We assume every member of £ has at least three elements. A collineation
(or automorphism) of a point-line geometry I' = (X, .%) is a bijection from
X onto itself that induces a bijection on .Z.

Let I' = (X, .%) be a point-line geometry. We introduce some terminol-
ogy and notation.

If every pair of distinct points is contained in at most one line, then we
say that T' is a partial linear space. From now on, assume that I' is a partial
linear space. We also assume that I' is thick, that is, each line contains at
least three points.

Two points z,y € X are collinear, denoted as x L y, if they are contained
in a common line, which we usually denote by zy and which is unique. The
set 2 (the perp of x) is the set of points collinear to z and, more generally,
for a subset T < X, the set T is the set of points collinear to each point of
T. A subspace S is a subset of X with the property that each member of .Z
intersects S in either 0, 1 or all of its points. We will view subspaces as point-
line geometries using the induced line set. A singular subspace is a subspace
in which each pair of points is collinear. A geometric hyperplane, or briefly
hyperplane, is a subspaces which is not disjoint from any line. A subhyperplane
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is a hyperplane of a hyperplane. The point graph of I' is the graph with
vertices the elements of X, adjacent when distinct and collinear. The distance
between two points is the distance in the point graph. The diameter diamT
of T is the diameter of its point graph. If the diameter is finite, then we call
I’ connected. A convex set C € X is a set of points at mutual finite distance
with the property that all vertices of every minimal path in the point graph
between any two arbitrary elements of C' are contained in C'.

Ezample 2.1. For an arbitrary right vector space V' over some skew field L,
define the point set of the point-line geometry PG(V') as the set of 1-spaces
of V, and the line set as the set of 2-spaces (seen as sets of the contained
1-spaces). If dimV = n < oo, then we denote PG(V) also as PG(n,L). Such
a point-line geometry is called a projective space (over L). Its dimension is
dimV — 1.

Projective spaces are linear spaces, that is, partial linear spaces in which
every pair of points is contained in a line.

An arbitrary subspace of PG(V) is precisely the set of 1-spaces of a
given subspace of V. In PG(V), we sometimes denote the line defined by
two distinct points x,y by (z,y), and, more generally, the intersection of all
subspaces containing a set A of points by (A).

For convenience we shall also call every abstract axiomatic projective
plane (that is, a thick linear space with the property that each pair of lines
intersects nontrivially) and every set of at least three elements with itself as
unique line, a projective space (of dimension 2 and 1, respectively).

A special mention deserves the projective plane PG(2, Q) obtained from
a Cayley algebra O (see also below). It is obtained in the standard way from
an affine plane (by adding points and a line at infinity) that can be described
as the set of pairs (z,y) € O x O, where lines are the sets of points satisfying
an equation of the form y = mx + k, or x = xg, m, k,xo € Q. It is called a
Cayley plane.

We will also need the notion of a projective (sub)line.

Definition 2.2. Let I be a field. Then the set of 1-spaces of a two-dimensional
vector space V over F, together with the group PGLy(F) acting naturally on
that set, is called the projective line over F. Let K be a subfield of F. Then
the vector lines over F defined by vectors which are a K-linear combination
of (two) given basis vectors, define a standard projective subline over K, since
the group PGLy(K) acts naturally on that set of 1-spaces. Now let F have
characteristic 2 and let V'’ be a subspace of the F2-vector space F. Then the set
of vector lines over F defined by vectors which are a V’'-linear combination of
(two) given basis vectors, is by definition a mized projective subline PG(1,V")
over V'. Using coordinates with respect to the given basis, PG(1, V') is given
by the following set of projective points:

(F(1,2) | z € V'} U {F(0,1)}.

Given two arbitrary different 1-spaces in PG(1,V’), we can always find
two respective non-zero vectors eg, e on them with coordinates in V’. Then



6 Linde Lambrecht and Hendrik Van Maldeghem

it is immediate that PG(1,V”) is equal to {F(e; + ze3) | € V'} U {Fes},
and so a mixed projective subline is independent of the chosen basis. We now
make a few remarks.

Remark 2.3. We note that, if K is a subfield of F, then PG(2,K) is in a
natural way a subplane of PG(2,F), and every line of PG(2,K) defines a
standard projective subline over K of a unique line of PG(2,F). However, a
mixed projective subline over V’ of PG(1,F) only arises from a subplane in
that way if V'’ has the structure of a field, which is not necessarily the case.
For instance consider over Fa(t, u) the subspace generated by 1,¢ and u over
Fo(t?,u?). This is not a subfield as tu does not belong to it.

Remark 2.4. Let F be a field and let o be a Galois involution of F. Then it is
shown in [23] that the sets {x —27 | z € F} and {y € F | y + y” = 0} coincide;
denote that set by S. We claim that the set {F(1,y) | y € S} v {F(0,1)} of
1-spaces of a two-dimensional vector space F x IF over F is a standard subline
over K, where K is the field of fixed elements of 0. Indeed, this follows from
the fact that, if ¢ is an arbitrary element satisfying ¢t + ¢ = 0, then § = tK
(and then we replace the standard basis (eq, e3) with (eq,tes)).

Remark 2.5. Let F be a field of characteristic 2 and let K be a subfield such
that F/K is separable and quadratic. Then K does not contain F? and hence
a projective subline over K cannot be a mixed projective subline. Indeed,
let # € F\K satisfy the separable quadratic equation 22 + ax + b = 0, with
a,b € K*. If 22 belonged to K, then so would ax + b, hence also = € K, a
contradiction.

Definition 2.6. Let I' = (X,.Z) and A = (Y, %) be two partial linear spaces.
Then we say that I is fully embedded in A if X € Y and .Z < Z. For the pur-
pose of the present paper, we call the embedding isometric if X is a subspace
of A and every member of # contained in X belongs to .Z (so I is induced
in X by A). If A is a projective space, then we call every full embedding of T
in A a projective (full) embedding and say that T is embeddable. In this case
a secant is a line of A that is not a line of T", but intersects the point set of
I' in at least two points. Recall that we denote the projective line defined by
two points p, ¢ of an embedded geometry as {p, ¢); it can be a secant!

A projective embedding of T' into PG(V) is called universal if every
other projective embedding, say in PG(V”) is obtained from it by projection,
that is, there exists a subspace S of PG(V'), a complementary subspace V"
in V, and an isomorphism ¢ : PG(V") — PG(V’) such that the mapping
X — PG(V') : & —» ({,58) n PG(V"))? is injective and defines the given
embedding in PG(V”). If a point line-geometry has such a universal embedding
in PG(V) for some vector space V, we call dimV the embedding rank of
I. A projective embedding of T" into PG(V) is called homogeneous if every
collineation of I is induced by a collineation of PG(V'). By the very definition
of universal embedding the latter is always homogeneous.
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2.2. Polar and parapolar spaces

A (thick) point-line geometry I' = (X,.%) is a polar space if x* is a hyper-
plane distinct from X itself, for each x € X. One shows that the singular
subspaces of a polar space are either lines or projective spaces of dimension
at least 2 (see for example Theorem 7.4.13 of [2]). We will only consider polar
spaces of finite rank r, that is, polar spaces in which the maximum dimen-
sion of singular subspaces is finite and equal to » — 1. Note that we included
non-degeneracy (that is, the property that no point is collinear to all other
points) in our definition of polar spaces; this is done for convenience..

Polar spaces have a number of nice properties and we refer to the recent
book [23] for background and theory. We mention that diamT' = 2, for every
polar space I', and that for every pair of non-collinear points z,y, the set
x+ Nyt is a subspace which defines a polar space of rank r — 1 when endowed
with the lines it contains. Also, the number of maximal singular subspaces
(that is, singular subspaces of dimension r— 1) containing a given submazimal
singular subspace (that is, a singular subspace of dimension r—2) is a constant
at least equal to 2. If this number is exactly 2, then we say that the polar
space is hyperbolic. Otherwise it is non-hyperbolic.

Definition 2.7. For two points p, ¢ of a polar space, we call the set h(p,q) :=
({p, ¢} ) a hyperbolic line. We say it is short if h(p,q) = {p, q}.

Ezxample 2.8. All the examples in the following paragraphs are non-hyperbolic.
(i) Let A be an alternative quadratic division algebra over some field K,
and we view K as the scalar multiples of the identity element 1 for the
multiplication. Then A admits a standard involution A — A : z — T
with the property that tr(z) := 2 + 7 € K and n(z) := 2T € K. Every
element x € A satisfies a quadratic equation, namely x? —tr(z)z+n(z) =
0. The mapping n: A —» K : 2 — n(z) = 27T is a quadratic form, called
the norm form of A. Let V= K®OKOKPAPKPK DK and define

the following quadratic form

q:V->K:(r_5,2_9,2_1,2,21,22,%3) — T_3T3 + T_2Ts + T_121 + n(x).

Then the projective null set of ¢ in PG(V'), that is, the set of 1-spaces vK
of V with ¢(v) = 0, endowed with the projective lines contained in it,
constitute a polar space of rank 3 which we will denote by B3 1 (K, A). If
p,p’ are non-collinear points of B3 1 (KK, A), then the polar space p* np'*
is denoted as By 1(K, A). On the other hand, the polar space with the
property that for each pair of non-collinear points x,z’, the subspace
't A 2t is isomorphic to Bs1(K,A), is denoted as Bg1(K,A) (and
has rank 4). All hyperbolic lines of the polar spaces B3 1(K, A) (and
B2.1(K, A)) are short, if A is not an inseparable multiple quadratic ex-
tension of K (including A = K) when char(K) = 2.

Note that in general the projective null set of a polynomial of
which all terms have degree two is called a quadric. The maximal vector
dimension of a projective subspace contained in the quadric is called
the Witt index of the quadric. It belongs to folklore that in PG(3,K),
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with K a field, there is, up to isomorphism, only one quadric of Witt
index 2 which defines a polar spaces. It is a hyperbolic polar space of
rank 2, also known as a grid. It contains two systems of lines such that
two lines belong to the same system if they are disjoint. Such a system
will also be called a requlus; the other system is then referred to as the
opposite requlus.

(#4) Let again A be an alternative quadratic division algebra over some field
K, but now assume that A is associative. Set V := AQADADAPADA
and consider this as a right vector space over A. Consider the following
mapping ¢’ (which is a pseudo-quadratic form):

/ — — —
q:V —>A:(x_3,2_9,2_1,21,22,23) — T_3%3 + T_2To + T_1T1.

Then the set of points vA of PG(V') such that ¢'(v) € K, either endowed
with all lines contained in it (if A # K), or endowed with the lines
corresponding to the totally isotropic 2-spaces of the alternating form

(($—3,$—27$—1,$17$27$3), (y_3,y_2,y_1,y1,y2,y3))
— T _3Ys + T _2Y2 +T_1Y1 — T1Y-1 — T2Y—2 — T3Y-3

(if K = A), is a polar space of rank 3 which we denote as Cz1(A, K).
If A # K and A? & K, we call it a Hermitian polar space; if A2 € K
and charK = 2, then we call it an inseparable polar space, and if K = A
we call it a symplectic polar space. Similarly as in (¢), we denote by
C,1(A,K) the polar space of rank 2 obtained by intersecting pt with
p'+, for two non-collinear points p, p’ of C3 1(A, K). It is well known that
B2,1(K, A) is the dual of C; 1 (A, K), this follows for example from 1.10 in
[20] or explicitly 3.4.9, 3.4.11 and 3.4.13 in [22]. All hyperbolic lines of
C31(A,K) are non-short and can be parametrised by K u {c0} (that is,
they are projective sublines over K of lines of PG(5, A)), see Lemma
below.

(#41) For each Cayley algebra, that is, alternative non-associative quadratic
division algebra O, also sometimes called non-split octonion algebra,
there exists a polar space, denoted as Cs 1 (0, K) of rank 3 whose planes
(singular subspaces isomorphic to projective planes) are Cayley planes
over O, see Chapter 9 in [20] or [7] for an elementary description. The
polar space Cs1(0,K) is referred to as a non-embeddable polar space, or
a Freudenthal-Tits polar space. The polar space p= N p'*, with p, p’ two
non-collinear points of A(Q), is the dual of By 1(K,Q), and therefore
sometimes denoted by C;1(0,K).

Recall that an alternative quadratic division algebra over the field K
is one of the following: K itself, a separable quadratic extension of K, a
quaternion division algebra over K (sometimes also called a Hamiltonion
division algebra over K), an octonion division algebra over K (sometimes also
called a Cayley division algebra over K), or an inseparable multiple quadratic
extension of K in characteristic 2. Recall also that, in the finite case, denoting
the finite field with ¢ elements as [, the quadratic division algebras over I,
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are the fields F, and .. We often replace a finite field with its order in
the notation for the geometries. For instance, C31(q,¢) is the polar space
arising from a non-degenerate alternating form (or symplectic polarity, see
Section in PG(5, g), the finite projective space over Fy. In this paper, let
K always be a field and A, B quadratic alternative division algebras over K,
unless specified otherwise.

A parapolar space is a connected partial linear space A = (X,.%) with
the following properties. First, the collection of convex subspaces of A isomor-
phic to a polar space is non-empty. Each member of that collection is called
a symplecton, or symp for short. Secondly, every pair of points x,y with the
property that |{z,y}*| > 1 is contained in some symp. If all symplecta of
A have the same rank r, then we say that A has uniform symplectic rank
r. We will only work with parapolar space having uniform symplectic rank
(but there exist many other parapolar spaces). By the convexity of symps,
each symp is determined by any pair {p, ¢} of its non-collinear points, and we
denote the symp by £(p, q). The pair {p, ¢} is called a symplectic pair; also p
1s symplectic to ¢, and we write p 1L q..

A parapolar space A is called strong if every pair of points at distance
at most 2 is contained in a symp. In other words, if there do not exist points
p, q such that [p~ n¢*| = 1. In a non-strong parapolar space, pairs {p, ¢} with
pt N ¢t a singleton, are called special (and p is also said to be special to g,
notation p > ¢). Note that every polar space of rank r is a strong parapolar
space of uniform symplectic rank 7.

Let A = (X,.%) be a parapolar space of uniform symplectic rank r at
least 3. Let p € X be arbitrary. Define the following geometry Resa(p). Its
point set is the set of lines of A containing p. An arbitrary line of Resa (p)
is the set of lines of A through p contained in a projective plane (a so-called
planar line pencil with vertex p). The geometry Resa(p) is a strong parapolar
space of uniform symplectic rank r» — 1. It is called the point residual at p.

A dual polar space of rank 3 is the point-line geometry obtained from a
non-hyperbolic polar space of rank 3 by taking as point set the set of planes
(maximal singular subspaces) and as lines the sets of planes containing a
given line (submaximal singular subspace). The following is immediate.

Proposition 2.9. A dual polar space of rank 3 is a strong parapolar space of
uniform symplectic rank 2.

Even though a dual polar space of rank 3 has a uniform symplectic rank
smaller than 3, one can define a point residual as follows. Let Q = (X, %) be
a dual polar space of rank 3 and let p € X be arbitrary. Then the point set
of Resq(p) is the set of lines of 2 containing p. An arbitrary line of Resq(p)
is the set of lines of 2 through p contained in a symplecton of 2. It follows
immediately that Resq(p) is isomorphic to a projective plane.

The dual polar space of rank 3 associated to the polar spaces B3 1(K, A)
and Cs1(A,K), will be denoted by Bs3(K,A) and C33(A,K), respectively.
Note that the symps of these parapolar spaces are isomorphic to Ca1(A, K)
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and By 1(K, A), respectively. If 2 is the dual polar space corresponding to the
polar space I', then It is also convenient to call I" the dual of €.

Now we introduce the metasymplectic spaces that we are concerned
about in the present paper.

Definition 2.10. A parapolar space A = (X,.%) is a metasymplectic space if

it has uniform symplectic rank 3 and one of the following holds.

(1) There exists a field K and an alternative quadratic division algebra
A such that each point residual is isomorphic to Cs3(A,K), whereas
every symp is isomorphic to B3 1(K, A). These metasymplectic spaces
are denoted as Fs1(K, A) and said to be of type Fa1, or of long root
type.

(it) There exists a field K and an alternative quadratic division algebra
A such that each point residual is isomorphic to B3 3(K, A), whereas
every symp is isomorphic to Cs1(A,K). These metasymplectic spaces
are denoted as F44(K,A) and said to be of type Faa, or of short root
type.

If A is not an inseparable extension of K (this includes the assumption that A

does not coincide with K if char K = 2), then we say that the metasymplectic

space is separable; otherwise inseparable.

Remark 2.11. Note that the inseparable metasymplectic spaces are precisely
those that are of both types F4 1 and Fy 4.

Before we can state a precise version of our main results, we need some
more terminology. We introduce that in the following proposition, which re-
views the possible mutual positions of points and symps in a metasymplectic
space, which can be deduced from [4].

Proposition 2.12. Let A(X,.Z) be a metasymplectic space of type Fa1 or Faa.
[Point-Point] Let p,q be two points of A. Then either p L q, or p and q are
contained in a unique symp &(p,q), or p and q are special, or p and q
are at distance 3 from each other, in which case we call p and q opposite

and denote this as p = q (if p is not opposite q¢ we write p # q).

[Point-Symp| Let p be a point and & a symp of A. Then eitherp € &, or ptn€ =
Le Z, orpt n¢&={x}, € X. In the second case, we say that p and
¢ are close, the points of (¢ n L*)\L are symplectic to p and all points
of &\L* are special to p. In the third case, we say that p and & are far,
all points of (¢ n zt)\{x} are special to p and all points of &\z* are
opposite p.

[Symp-Symp]| Let & and ¢ be two distinct symps of A. Then either € n (¢ is a
plane (and we say that & and ¢ are adjacent), £ N ¢ is a point (and we
say that & and ¢ are symplectic), or £ n ¢ = &. In the latter case either
there exists a unique symp intersecting both & and ( in respective planes
(and we say that & and ¢ are special), or each point of € is far from ¢
(and we call & and ¢ opposite).

Furthermore, for a line L and a point p we either have that no point of L
18 opposite p, or all points except exactly one are. The non-opposite point is
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then special to p. Consequently, points collinear to a point symplectic to p are
never opposite p.

We will use the symbols I, <, = and # also in the exponent, with the
obvious meaning. For example p# denotes the set of points not opposite p.

Remark 2.13. The terminology for symps in (i%i) of the previous proposition
can be explained by the following property: Let = be the set of symps of A
and let £ be the set of pencils of symps, that is, the sets of symps containing
a given plane. Then A* = (E, £) is a metasymplectic space. If A is of type
Fa1 or Fg4, then A* is of type Fa 4 or F4 1, respectively. We call A* the dual
of A.

Remark 2.14. We note that, if A is an inseparable extension of K, then
Bs,1(K, A) is isomorphic to Cs1(K, A?), where A% denotes the field of squares
of A. Consequently, Fs1(K,A) = F44(A% K).

Remark 2.15. Note that the metasymplectic spaces that we have defined
are in fact Lie incidence geometries, that is, geometries defined from Tits-
buildings, namely from those of type F4, as the notation suggests. We will
not explicitly need this connection. Some terminology is borrowed from this,
though: Opposite points and opposite symps in our sense are also opposite
in the building-theoretic sense. Adjacent symps are symps that are contained
in adjacent chambers in the building-theoretic sense.

By definition, point residuals in metasymplectic spaces are dual polar
spaces. Such residues also give rise to embedded dual polar spaces as follows.

Definition 2.16. Let p and g be two opposite points of a metasymplectic space.
A. Then the set of points p= N ¢7 is called a trace. Endowed with all lines
contained in it, we obtain a trace geometry.

Some interesting substructures of these metasymplectic spaces are equa-
tor geometries and imaginary lines.

Definition 2.17. Let A = (X,.%) be a metasymplectic space. Let p, ¢ be two
opposite points of A. Then the set of points that are symplectic to both p
and ¢ is called the equator of p and ¢, and if we call every intersection of
size at least 2 of the equator with a symp a ‘line”, then we talk about the
equator geometry E(p,q). It is well known that E(p,q) is isomorphic to the
polar space that is dual to any point residual (see for example Proposition
2.6.2 in [16]).

A hyperbolic line of an equator geometry through two opposite points
a and b will be called an imaginary line of the corresponding metasymplectic
space and denoted by % (a,b). These are short if, and only if, the metasym-
plectic space is separable of type F4 4.

In metasymplectic spaces of type F44 we can extend the equator ge-
ometry (we refer to Section 2.6 of [I6] for many more properties of these
subgeometries).
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Definition 2.18. Let p and ¢ be two opposite points of F4 4(K, A). Then define

the extended equator geometry E (p, q) as the point-line geometry with point
set

U{E(m,y) | z,y € E(p,q), x opposite y}

and line set the hyperbolic lines (of symps) contained in this point set.
We then have the following embedding result.

Proposition 2.19 (Section 2.7 of [10]). Let A be the metasymplectic space
F44(K, A) and let p, q be opposite points. Then the set of points of A collinear
to at least two points of E(p, q) 1s the point set of a fully embedded polar space
of rank 4 isomorphic to Bs1(K, A).

The fully embedded polar space of rank 4 of the previous proposition is
called a tropics geometry of A.

2.3. Main Results

We can now state the main results.

Main Result A. Let 2 be a dual polar space of rank 3 fully embedded in a sep-
arable metasymplectic space A = F41(K, A), with A an alternative quadratic
division algebra over K. Then one of the following possibilities occurs.
(i) Q is isomorphic to C33(B,K), for some quadratic subalgebra B of A,
is isometrically embedded, and is contained in a trace geometry of A.
If B = A, then Q coincides with a trace geometry and conversely, ev-
ery trace geometry is an isometrically fully embedded dual polar space
isomorphic to C33(A,K).

(13) Q is isomorphic to C33(B,K) and embedded in a symp, with K infi-
nite and B a quadratic associative division algebra such that dimg (B) <
dimg (A) orB an inseparable field extension different from K if char(K) =
2.

(ii1) K = Fy and A = By, there is a point p such that each point of Q is on
a unique line of A through p and each line of A through p contains at
most one point of 2, but  is not contained in a trace geometry. Up to
isomorphism, there are unique examples for Q € {(C33(2,2),Cs33(4,2))}.

Main Result B. Let Q2 be a dual polar space fully embedded in a separable
metasymplectic space A = Fq 4(K, A), with A an alternative quadratic division
algebra over K. Then  is isomorphic to B3 3(K, A), isometrically embedded,
and arises as a trace geometry of A. Conversely, every trace geometry is an
isometrically fully embedded dual polar space isomorphic to B3 3(K, A).

Main Result C. Let Q2 be a dual polar space fully embedded in an insepara-
ble metasymplectic space A = F41(K,K'), with K' an inseparable (possibly
multiple or trivial) quadratic extension of K, charK = 2. Then one of the
following possibilities occurs.
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(i) Q is isomorphic to C33(K",K), for some quadratic subalgebra K" of
K', is isometrically embedded, and is contained in a trace geometry.
Conversely, every trace geometry is an isometrically fully embedded dual
polar space isomorphic to C3 3(K’, K).

(#3) Q is isomorphic to C33(K",K), for some quadratic subalgebra K" of K/,
is isometrically embedded, there is a point p such that each point of 2 is
on a unique line of A through p and each line of A through p contains
at most one point of 1, but € is not contained in a trace geometry.

(131) K # K’ is infinite, Q is isomorphic to C33(B,K), for some alternative
division algebra B # K over K such that either B is an inseparable
multiple quadratic extension of K or dimg(B) < dimg(K'), and Q is
fully embedded in a symplecton.

Remark 2.20. We provide examples of all cases except of Main Result (zz)
So whether this actually does occur, is still an open problem.

Remark 2.21. For each field K, there are examples of Main Result [C|(i4).
For finite fields, there is, up to isomorphism, a unique example for Main
Result ii), except if K = o, then there are exactly two examples. We

sketch a proof of this fact, along with some more remarks in the infinite case,
in Remark

We will also prove the following consequences of our main results.

Corollary A. FEvery fully embedded dual polar space of rank at least rank 4
in a separable metasymplectic space of type Faa has rank 4 and is a tropics
geometry.

Finally, the next consequence is immediate. In the finite case it can also
be proved directly with a counting argument, but in general it is a rather
nice consequence of our main results.

Corollary B. Let A be a separable metasymplectic space fully embedded in
some projective space PG(V'), and assume A is not isomorphic to F41(2,4).
Let p be an arbitrary point of A and let U be the subspace of PG(V') generated
by p* (the points of A collinear to p in A). Let H be any hyperplane of U
not containing p. Then p~ n H is a trace.

2.4. Some more preliminaries

Before we start proving those main results, we repeat some results from the
literature which will prove useful many times. It mainly concerns properties
of polar space, in particular of the symps of the metasymplectic spaces we
are considering. We also explain the connection between the statement of the
main results in the introduction, and the ones in the previous paragraphs.

Our definition of isometric embedding implies immediately that, if a
polar space ¥ is fully embedded in a parapolar space A, then this embedding
is isometric if, and only if, non-collinear points of ¥ are non-collinear (more
exactly, have distance 2) in A. Hence distances between points are respected.
Hence we can apply [9, Lemma 3.20].
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Lemma 2.22 (Lemma 3.20 in [9]). Let ¥ be a polar space fully embedded in a
parapolar space A. Then either % is completely contained in a singular sub-
space of A, or X is fully and isometrically embedded in a unique symplecton

of A.

Lemma 2.23. (i) The embeddings of B3 1(K,A) and B, 1(K, A) in projective
space as given in Example (1) are universal. Even more, if A is
not an inseparable field extension if charK = 2, those embeddings are
unique, i.e. there are no injective projections possible.

(12) The embeddings of C31(A,K) and Cy1(A, K) in projective space as given
in Example (ii) are universal, except if charK = 2 and A is an
inseparable (multiple) extension of K (this includes A = K). Even more,
those embeddings are unique if universal.

Proof. The universality follows from 8.7 of [20]. The uniqueness in () follows
from Proposition 3.18 of [I8]. In (i¢) the uniqueness follows from the fact that
a projective plane does not contain disjoint lines, and a projective space of
dimension at most 4 does not contain disjoint planes. o

We now provide some more background and explanation of the previous
lemma, at the same time introducing some notions that we will need later
on.

The polar spaces in Example 2:8] are defined using forms, which are
associated to reflexive forms (symmetric bilinear, alternating and Hermitian
forms), see |20, Chapter 8]. Exactly in the separable case, these, in turn,
define a polarity of the projective space, that is, an involution (a permutation
of order 2) of the subspaces reversing the inclusion relation. We refer to that
polarity as the defining polarity. The image of a point p of the polar space
(say, ) under that polarity is the tangent hyperplane, that is, the hyperplane
spanned by all lines of ¥ containing p. Alternatively, that hyperplane can
be defined as the union of the set of lines of the projective space, going
through p and either completely contained in ¥, or intersecting it in just {p}.
Every subspace through p of the tangent hyperplane at p will be called a
tangent subspace. We will mainly use this notion for “tangent lines”. Since
a polarity defines an isomorphism between the projective space to its dual
(in all the examples, the dimension is finite), the global intersection of all
tangent hyperplanes is the empty set.

In the inseparable case, the intersection of all tangent hyperplanes of
the universal embedding is non-empty and corresponds to the radical of the
associated reflexive form. Projections from subspaces of that radical yields
different embeddings. Projection from the whole radical yields a minimal
embedding. If K’ is a multiple quadratic inseparabel extension of K in char-
acteristic 2, then the embedding of Bs;(K,K’) given by Example 1) is
universal, and the one of C31(K,K'?) given by Example w) is minimal.
Hence the latter corresponds to a polarity again.
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Now we relate to (in)separability of a metasymplectic space to the ex-
istence of so-called central elations. We first define the latter, also for polar
spaces.

Definition 2.24. A central elation of a polar space with centre the point a
is a collineation that fixes all points collinear with a. A central elation of a
metasymplectic space with centre the point a is a collineation that fixes a
and stabilises all the lines that have at least one point collinear to a.

Lemma 2.25. Let & be the polar space C31(A,K) or the polar space Ca1(A, K)
and let x,y be opposite points of &. Then the following holds:
(i) The number of points on the hyperbolic line h(x,y) is |K| + 1;

(i1) the group of central elations of & with centre x (see Deﬁm’tion acts
sharply transitive on h(z,y)\{z};

(iii) if € = C3.1(A,K), then h(z,y) = L n M* for all opposite lines L, M <
ot Ayt

() if A is associative and & is minimally embedded in the projective space
IT (which is at the same time universally in the separable case), then

h(z,y) is a subset of the projective line {x,y) through x and y in II.

Proof. If £ = C3,1(A,K), Lemma 2.6.9 of [16] yiclds (i) and (ii). However a
similar argument shows that also holds if £ = Co1(A,K). If A is associa-
tive, Propositions 7.2.6 and 7.2.7 of [23] yield ({)), and (iv]). The fact that
also holds in the non-associative case follows now from the comments
after Proposition 7.2.7 in [23]. o

Now, one can deduce from [16] that a metasymplectic space admits
central elations if, and only if, each equator geometry admits central elations.
This, Lemma2.25and the fact that Bz 1 (K, A) does not admit central elations
in the separable case by [23, Proposirion 7.2.8|, implies that the inseparable
metasymplectic spaces I' are precisely those for which both I and its dual
admit central elations; the metasynplectic spaces of type F4 1 are precisely
those that admit central elations, and the separable metasymplectic spaces
of type F4,4 are precisely those that do not admit central elations. This now
shows that the statements of the main results in the introduction and in the
previous subsection are equivalent.

The following result belongs to folklore, but we provide an explicit proof
for completeness.

Lemma 2.26. Let K be a field of characteristic 2 and K' a (possibly triv-
ial) inseparable (multiple) quadratic field extension of K. Let B 1(K,K') be
embedded in PG(n,K). Then every secant intersects B 1(K,K') in a mized
projective subline. The latter exists of only two points if, and only if, the
embedding is universal.

Proof. Let L be a secant. Denote d := dimg(K’). Note that the embedding
must be a projection from the universal one as given in Example (i) by
Lemma [2.23] (i). So we may interpret PG(n,K) as a subspace of PG(3+d, K).
Denote the coordinates of a point of the latter as (z_o,2_1, (¥:)ier, 1, Z2)
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with I an index set of cardinality d. Without loss of generality, we may now
suppose that L is given by the equations z_; = 0,27 = 0 and y; = 0 for
all i € I. As explained in paragraph 3.4 of [23], we may also suppose that
B21(K,K’) is embedded in PG(3 + d,K) as the null set of

T_2T2 +T_1%1 = Z aiy7:27

iel
for some a; with i € I forming a base of K'? over K2. Since the projection
must be injective, we may suppose that PG(n,K) is the subspace given by
the equations y; = 0 for all j € J for some J < I and that the projection is
from the subspace given by the equations z = 0 for all k € {—2,—1,1,2} and
y; = 0 for all ¢ € I\J. Then By (K, K') is given in PG(n,K) as the following
set of points:

{(x_2,2_1, (Yi)ien\s, T1,22) [3(2j)jes € K

2 2
T_oXo +T_1X1 + Z a;y; = Z ajzj}.
i€l\J jeJ

Now the intersection of L and this set of points is the set

{ (1,0, 0,0, ajA§> |(A)jes € ]K} U {(0,0,0,0,1)},

jeJ
which forms clearly a mixed projective subline.

The last claim follows now easily, noting that this corresponds to the
case J = (7. o

Finally we note down the classification of non-hyperbolic non-embeddable
polar spaces as give by Tits [20].

Lemma 2.27 (9.1 of [20]). Every non-hyperbolic non-embeddable polar space
of rank 3 is isomorphic to C31(0,K) for some field K and some octonion
division algebra O over F .

For completeness (but irrelevant for us) we mention that the same source
also implies that hyperbolic non-embeddable polar spaces are the line Grass-

mannians of projective spaces of dimension 3 over a non-commutative skew
field.

3. Veronese varieties

Since several arguments to prove our main results will involve Veronese va-
rieties and Veronese representations of projectie planes, we review the main
properties of these objects that we will use, and prove some new ones. A good
reference is [15].

The reason why Veroneseans like that turn up is that, if a dual polar
space is embedded universally in a projective space, then the point residual
is a Veronese variety (see for example [8], or Remark [£.8).
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Definition 3.1. Let x — T be the standard involution of A as a quadratic
alternative division algebra over K. Then A can be seen as a vector space
over K and we can consider the projective space PG(V), with V = K@K @
K®APDA®A. Note dimV = 3dimg(A) + 2. Consider the following points
of PG(V), given by their coordinates:

p(z,y) = (1,2Z,9y9; 27,9, T), x,y € A;
p(y) = (0,1,47;7,0,0), yeA;
p(w) = (0,0,1;0,0,0).

Then we call 75(K,A) = {p(z,y) | #,y € A} v {p(y) | y € A} U {p(x)} a
Veronese variety, or briefly a Veronesean (associated to PG(2, A)).

We now consider p(x,y),p(y) and p(o0) as points of PG(2,A) with re-
spective coordinates (x,y,1),(1,4,0) and (0,1,0). Then the lines are given
as follows: the line L,, , with equation y = mz + ¢, m,q € A consist of the
points p(z, mz+q) (x € A) and p(m); the line L, with equation z = a, a € A,
consist of the points p(a,y) (y € A) and p(o0); and the line Ly, consists of
the points p(y) (y € A) together with p(c0). These lines then correspond to
quadrics of Witt index 1 in the subspaces of PG(V') that they generate. We
will refer to such quadrics as the ovoids of the Veronesean.

When A is associative, we can directly and homogeneously define the
Veronese variety from the projective plane PG(2, A) as

plx,y, z) = (aT, yy, 2Z; yZ, 2T, 7).

By Theorem 3.2 of [I5], every translation of PG(2,A) is induced by a
collineation of PG(V) stabilising #3(K, A) (a translation of a projective plane
is a collineation with fixed points precisely the set of points of some line).
Considering the group generated by the translations, we see that the stabiliser
in PG(V) of #3(K, A) acts transitively on the set of ordered triples of non-
collinear points, and, likewise, on the set of ordered triples of non-concurrent
lines of PG(2,A) (in other words, on ordered triples of ovoids not having a
common point).

Furthermore we will need the following results.

Lemma 3.2 (Theorem 3.3 of [I5]). Let O1, 02 be two ovoids of ¥5(K,A) (em-
bedded in PG(V') as above), for some alternative quadratic division algebra A
over K. Then the intersection {(O1) N {(O2) is a point p of ¥2(K, A).

We will also use Main Result 4.3 of [I2], which says the following.

Proposition 3.3 (Main Result 4.3 of [12]). Let the point set of a projective
plane II be a set of points spanning a projective space PG(W), for some
vector space W (not necessarily finite-dimensional), such that the lines of
IT correspond to quadrics of Witt index 1 in subspaces of PG(W) of given
uniform dimension d such that any two such subspaces intersect in a unique
point (necessarily belonging to I1). Then II is a Veronese variety and the
dimension of W is 3d, except possibly if 11 =~ PG(2,2) (and necessarily d = 2),
or if I = PG(2,4) and d = 3.
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In [12] also the case I =~ PG(2,q), (¢,d) = (2,2),(4,3), is considered.
The arguments in [12] §7.3.1,§7.3.2] easily imply the following statements.

Lemma 3.4. Let the point set of a projective plane Il = PG(2,q), ¢ = 2,4, be
a set of points of a projective space PG(n,2), for some n = 2, such that the
lines of I correspond to quadrics of Witt index 1 in subspaces of PG(n,2) of
dimension 2 if ¢ = 2, and of dimension 3 if ¢ = 4, such that any two such
subspaces intersect in a unique point (necessarily belonging to I1). Suppose
also that the natural action of PGLs(q) on II is induced by PGL,,+1(2). Then
either 11 is a Veronese variety, or ¢ = 2, n = 6 and I1 is a set of seven points
generating PG(6,2), or ¢ = 4, n = 10 and there is a unique such example.
In the last case, let, for each point p € 11, T, be the subspace generated by
the tangent planes at p to the quadrics of Witt index 1 corresponding to the
lines of PG(2,4) through p. Then, for each p € II, dim T, = 6, each triple of
tangent planes at p to the quadrics of Witt index 1 through p generates T),.
The intersection of all these T}, is a line L the projection of I from which is
a Veronesean ¥2(2,4) and the stabilisator of 11 in PG(10,4) acts transitively
on L.

The next result probably belongs to folklore, but we provide a proof for
completeness.

Lemma 3.5. Let C be a plane conic completely contained in ¥5(K,A), for
some alternative quadratic division algebra A over K, and suppose |K| > 2.
Then C is contained in an ovoid of ¥5(K, A).

Proof. By the properties of the full collineation group of PG(V') stabilising
%5 (K, A) mentioned above, we may assume that, if three points of C' are not
contained in a common ovoid of ¥3(K, A), then they have respective coordi-
nates (1,0,0;0,0,0), (0,1,0;0,0,0) and (0,0, 1;0,0,0). Clearly, no nontrivial
linear combination of these points, except for the points themselves, belongs
to #3(K,A), as A has no zerodivisors. o

A skeleton of a projective plane is an ordered quadruple of points such
that no three are on a line.

Lemma 3.6. Let C1, Cs be two intersecting conics contained in distinct ovoids
of ¥2(K,A). Then there exists a unique Veronese variety that is isomorphic
to ¥2(K,K) containing both Cy and Cz and itself contained in %5(K, A).

Proof. Since the collineation group of PG(2, A) acts transitively on skeletons
of PG(2, A) (see Satz 4.1.2 and 7.3.14 of [19]), we may assume that C contains
the points a; = (1,0,0;0,0,0), as = (0,1,0;0,0,0) and a12(1,1,0;0,0,1), and
Cy contains the points a; = (1,0,0;0,0,0), az = (0,0,1;0,0,0) and a5 =
(1,0,1;0,1,0). If ¥5 is a Veronese variety isomorphic to ¥3(K,K) containing
C7 u s, then it should also contain a conic C' through as and a3, and a conic
C’ through a1 and a13. Moreover, the conics C and C’ should meet in a
point. Since conics lie on unique ovoids, the intersection point p of C and C’
is the intersection of the ovoid O of ¥3(K, A) through as and a3 with the ovoid
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O’ through a5 and a;3. Since, with above notation, O corresponds to the line
Ly, and O’ to the line L_; ; of PG(2, A), it follows that p = p(—1) and hence
has coordinates (0,1,1;—1,0,0). Since the six points a1, as, a3, a1, , a3 and
p(—1) uniquely define the six-dimensional subspace KPKAPKPKPKPK
of V' (with each K of the last three components the natural inclusion of K in
A), the lemma is proved. o

In the case ¥5(K,K), the ovoids are plane conics. When charK = 2,
then each conic has a nucleus, which is, geometrically, the intersection of all
tangent lines, or, algebraically, the radical of the bilinear form associated to
the quadratic form defining the conic. Now we note the following, which is
known in the finite case, but we need it in full generality:

Lemma 3.7. Assume charK = 2. The set of nuclei of conics of ¥5(K,K) is
the plane consisting of the points (0,0,0;a,b,c), a,b,c € K, not all zero.

Proof. The lemma is proved if we show that the point (0,0,0;a,b,c) is the
nucleus of the conic C' determined by the image of the line of PG(2,K) with
equation ax + by + cz = 0. Without loss of generality, we may assume c = 1.
Then an arbitrary point of the conic is (22,42, a®2? + b%y?, axy + by?, ax® +
bxy, xy), and all points lie in the plane « given by the equations

aXo+ X4+ 0X5 =0,
bX, + X3+ aX5 =0,
Xo+bX3+aX, =0,

which is clearly disjoint from the plane m with equations Xg = X; = X5 = 0.
Projecting o from 7 onto the plane § with equations Xo = X3 = X, = 0, we
obtain as projection of C' the conic with equations XoX; + X2 = Xp = X3 =
X4 = 0, which has nucleus n’ = (0,0,0;0,0,1). The projection of n’ from 7
onto « is (0,0,0;a,b, 1), what we had to prove. o

We will refer to this plane as the nucleus plane of ¥5(K, K).

Lemma 3.8. Let % (K,K) be the quadric Veronesean naturally embedded in
PG(5,K), and given by the points with coordinates (X2,Y?, Z2 Y Z,ZX,XY),
X,Y,Z € K. Then every point of PG(5,K) not contained in the nucleus plane
if charK = 2, is equivalent to some point with last three coordinates zero.

Proof. First note that the nucleus plane is the plane consisting of the points
with coordinates (0, 0,0, a, b, ¢) with a, b, ¢ € K. Each such point is the nucleus
of a conic on the Veronesean, in particular (0,0, 0, a, b, ¢) is the nucleus of the
conic that comes from the line aX + bY + ¢Z = 0 in PG(2,K).

A linear transformation of PG(2,K) with matrix

a1l a2 ais
a21 A2z (23
aszy asz G33
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and seen as an automorphism of ¥5(K,K), extends to (or is induced by) a
linear transformation of PG(5,K) with matrix

2 2 2

aty ajg ais 2(112(113 2(1110,13 2a11a12
2 2 2

a5q a5 ass 2@22&23 20,210,23 2(1210,22
2 2 2

azy a39 ass 2a32a33 2a31a33 2az1a32

a21G31 (22032 (23333 (22033 + 423032 (210433 + A23a31 A21032 + Q22031
a11a31  @12032 Q13033 Q12033 + A13032 A11033 + A13G31 Q11032 + Q12031
a11021 G12G22 013023 (22013 + G23G12 Q21013 + 423011 G21G12 + G22G11

Let p = (A, B,C, D, E, F) be an arbitrary point of PG(5,K), not in the
nucleus plane if char K = 2. Clearly, if char K = 2, one of A, B, C' is nonzero.
We can also assume this if charK # 2, since if then A = B = C' = 0 at
least one of D, E/, F' must be nonzero. Let for example D # 0, then the linear
transformation inducing

1 00
010
0 11

maps p to (A, B',C’, D', E', F') with C’ nonzero. So we may suppose
without loss of generality in both cases that C' # 0.

If p € #(K,K), then regardless of the characteristic of K, the transfor-
mation defined by

QAlm

1

maps p to a point with last three coordinates zero.
So from now on we assume that p ¢ ¥2(K, K). Suppose first that BC —
D? # 0. Now one calculates that the transformation defined by

O O =
O = O

gy = — D
a2 Q13 23 — C
: _ DE-CF
1 a93 with 12 = BC—_D2
DF—BE
0 1 a13 = Bo—p2

1
0
0

maps p to a point with last three coordinates zero.

Let now charK # 2. We claim that, then we may always assume that
BC—D? # 0 and the above transformation does the job. Indeed, suppose not.
By cyclic permutation, we then have, besides BC' —D? = 0, also AC— E? = 0.
If also CF — DE = 0, then p € % (K), hence CF — DE # 0. Then the linear

transformation inducing
1 00
1 10
0 01
maps p to (A", B",C", D" E"F") = (A,A+ B+2F,C,D+ E,E,A+ F)

with B"C" — D"* = AC + BC + 2CF — D* — E* — 2DE = (AC — E?) +
(BC — D?) + 2(CF — DE) # 0. Hence the claim.
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So let now char K = 2. Then, similarly as above, the assertion follows if
BC —D? # 0 or AC —E? # 0. Hence suppose BC = D? and AC = E?. Then
AB # F?, as otherwise p € %,(K). By cyclic permutation, we may therefore
assume A = B = 0. Then we have the point (0,0, C, 0,0, F'), which is mapped
onto a point with coordinates (x,#,:#,0,0,0) by the linear transformation
defined by

1 0 1
F
0 é ol
1 7 1
The lemma is proved. o

Lemma 3.9. Let K be a field distinct from Fo and Fs. Then no proper injective
projection from a subspace not contained in the nucleus plane of the quadric
Veronesean ¥5(K) is contained in a (proper) quadric.

Proof. Suppose for a contradiction that a proper projection of #2(K) (from a
subspace not contained in the nucleus plane) is contained in a quadric. Then
¥5(K) is contained in a degenerate quadric ) with at least one vertex v not
contained in the nucleus plane of #5(K). The point v is not contained in any
secant line of ¥5(K). We now determine all quadrics that contain ¥5(K).
We write a generic point of #3(K) in coordinates as (X2,Y?2, 22 Y Z, Z X,

XY). Let
Z aijzixj
0<i<j<5
be an equation of a generic quadric containing #3(K). Then, for all X,Y, Z €
K, we have

a00X4+(a05Y+a04Z)X3+((a01+a55)Y2+(a03+a45)YZ+(a02+a44)Z2)X2+
+ (a15Y3 + (a14 + 0,35)Y2Z + ((134 + a25)Y22 + a2423)X+
+ a11Y4 + a13Y3Z + (a12 + (133)Y222 + a23YZ3 + a22Z4 =0
Setting Y = Z = 0, we obtain agp = 0 and similarly a;; = ass = 0. Fixing
arbitrary Y and Z, we get a cubic equation that must admit all field elements
X as roots. Since the field has at least four elements, all coefficients of the
cubic have to be zero. Hence, we have the following identities in Y, Z.
apsY + apgeZ =0,
(ao1 + as5)Y? + (ao3 + as5)Y Z + (a2 + asa) Z* = 0,
a15Y3 + (&14 + a35)Y2Z + (a25 + CL34)YZ2 + Cl24Z3 =0,
(113YBZ + (a12 + (133)Y222 + (123YZ3 —0.
The first identity clearly yields ags = ags = 0. The second one yields (putting
Y =0 and Z arbitrary, and Z = 0 and Y arbitrary)
aor + ass =0,
ap2 + aqq =0,
ap3 + aq5 = 0.
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Cyclic permutation X — Y — Z — X quickly yields a15 = a13 = agq4 =
as3 = 0, and then it is easy to see that the third and fourth identities above
yield

aiq +ags =0,

azs +azq =0,

a1z + azz = 0.
Hence a generic quadric containing ¥5(K) has equation

A(zy19 — 23) + B(xowy — 23) + Clzoz; — )
+D(zox3 — 2425) + E(x124 — 2325) + F(2205 — 2324) = 0.

Hence we may assume that this is the equation of (), for some constants A,
B,C,D, E,F.

Since almost every point of the projective space is equivalent to some
point with coordinates (x, #,*,0,0,0) by Lemma we may assume that v
has coordinates (k, ¢, m,0,0,0), with k, ¢, m € K\{0} as otherwise v is con-
tained in the plane of a conic of ¥#5(K), contradicting the assumption that v
is not a nucleus and the embedding is injective. The fact that v is a vertex
is equivalent to v lying on @ and the tangent space at v being the whole
projective space. Since an equation of the tangent space at v is

(Cl+ Bm)xo + (Ck + Am)z1 + (Bk + Al)xg + Dkas + Elxy + Fmas = 0,

we have the identities

A B C _
z+7+a—0,
51—,

44+ -,

A_ B

Z+7:O’

D=E=F=0,

which implies A= B =C =D = E = F = 0, a contradiction. =

4. Isometricity and locality

First we take a closer look at trace geometries in metasymplectic spaces. One
easily observes the following for these geometries.

Lemma 4.1. Let A be a metasymplectic space. Then any trace geometry is
isomorphic to a dual polar space of rank 3 and is isometrically embedded.
In particular, if A = Fq1(K,A) then the trace geometry is isomorphic to
C33(A,K), and if A = F44(K,A) then the trace geometry is isomorphic to
BB,S(Kv A)

Proof. The fact that the trace geometries are of the described form follows
immediately from the observation that a trace geometry is always isomorphic
to a point residual. The isometricity follows from the fact that, if two points
of a trace geometry pt n ¢* (for some opposite points p and ¢ of A) are
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collinear in A, they must be contained in a plane with p and consequently
the line containing them is the intersection of ¢ with this plane. o

In the rest of the paper we will try to prove that in general the converse
of this lemma is true. In this section we will prove that the embedding of
a dual polar space of rank three in a metasymplectic space is in general
isometric and contained in the perp of a point of the metasymplectic space.
The fact that they are also (exactly) the points not opposite another point,
will be proved in the next sections (and it will turn out not to be true in all
cases).

4.1. Isometricity

First we start by proving an equivalent definition of “isometric” for dual polar
spaces fully embedded in metasymplectic spaces. It is actually intuitively
closer to what one expects from something “isometric”.

Lemma 4.2. The embedding of a dual polar space §2 in a metasymplectic space
A is isometric if, and only if,

[Col]l two points collinear in Q0 are also collinear in A;

[Sym] two points at distance two in Q are symplectic in A;

[Spel two points at distance three in ) are special in A.

Proof. If the embedding has the mentioned properties, then it is clearly iso-
metric (points of Q collinear in A are also collinear in 2 and hence joined by
a line).

Now suppose the embedding of €2 in A is isometric. Clearly, [Col] holds.
Also, two points at distance two in £ must be symplectic or special in A. The
latter is impossible since there are no special pairs of points in a dual polar
space of rank three. This implies that [Sym] holds. Finally, let p,q be two
points at distance 3 in € and let x,y be points of Q such that p L« Ly 1 ¢
(in Q). If g € £(p, y), then ¢ is collinear in A to a point z of (p,z) < Q. This
produces a line (g, z) in A through two points of  which does not belong to
2, a contradiction. So ¢ ¢ £(p,y) and then by Proposition [Point-Sympl]
the point ¢ is special to p, proving [Spe]. o

The following lemma is an immediate consequence of Lemma[2.22] Since
we will however use this often, we formulate (and prove) this here.

Lemma 4.3. Let Q be a dual polar space of rank 3 fully embedded in a meta-
symplectic space A. Let € be a symplecton of Q. Then £ is isometrically em-
bedded in a unique symplecton €4 of A.

Proof. By Lemma & must be isometrically embedded in a symplecton
&2 of A, since £ does contain two disjoint lines while a maximal singular
subspace of A, i.e. a projective plane, does not. Clearly this symplecton is
unique, since it is determined by two non-collinear points. O

From now on, we will often use this A-notation &4 for the symplecton
of A containing the symplecton £ of 2. Now we are in a position to prove the
general result of this paragraph.
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Proposition 4.4. Let Q be a dual polar space of rank 3, fully embedded in a
metasymplectic space. Then the embedding is either contained in a symplec-
ton, or is isometric.

Proof. By Lemmawe immediately have that two collinear (resp. symplec-
tic) points in Q are also collinear (resp. symplectic) in A. Let now a and d
be two opposite points in 2. Then there exists a patha L b 1 ¢ L din Q. By
Proposition [Point-Symp], a is contained in or close to the symplecton
&(b,d). In the latter case we get immediately that a is special to d.

We claim that, in the former case,  is contained in £(b,d). Remark
that we may assume that a is symplectic to d as all the points of ab\{b} are
opposite d in € and at most one of them could be collinear to d in A. So we
may assume that £(b,d) = £(a,d). Every point in § collinear to a (or to d)
is contained in this symplecton by the following reasoning. Every line of 2
through a (or through d) contains a point b’ at distance 2 from d (or from a)
in © and this point must then be symplectic to d (or to a) in A. But a (or
d) must then by the above argument also be contained in (', d) (or (b, a))
and consequently £(V,d) = £(a,d) = £(b,d). The claim is now proved using
a connectivity argument and the fact that for every point a’ € Q collinear to
a (in Q), there exists a point d’ € Q collinear to d (in ), such that o’ and d’
are opposite in  and not collinear in A.

Note now that if our chosen a and d were special, we get that this must
be the case for every pair of opposite points in €2 by the previous paragraph.
So the embedding is isometric. o

In the rest of this subsection, we discuss when both situations (contained
in a symp and isometric) can occur. It will follow that in the separable Fy 4-
case the embedding must be isometric, while in the inseparable case there
are examples of embeddings in symplecta. In the separable F4 i-case, it is
not clear if there could be embeddings in a symplecton. However those could
never be isomorphic to a point residual, while they can be in the inseparable
case. We start by studying the separable F4 4-case.

Lemma 4.5. Let Q) be a dual polar space of rank 3, fully embedded in a sep-
arable metasymplectic space A = Fy4(K,A). Then every symplecton & of Q
arises as the common perp of two opposite points in a symplecton €4 of A.

Proof. First remark that £ is isometrically embedded in a symplecton 4 of

A by Lemma

Suppose now that A is not an octonion division algebra over K. Let
&4 ~ C31(A,K) be universally (by Lemma embedded in PG(5,A) as
in Example (i) and denote with p the defining polarity. By the Main
Theorem of [3], £ is the intersection of the polar space £* with a subspace U
of PG(5,A). As £ contains two opposite lines, but no planes, the dimension
of U is 3 or 4.

We claim that the dimension of U is 3. Suppose first that the polar
space Q* dual to Q is not embeddable. From Lemma we infer that
0* =~ C3,1(0,F) (and consequently = C3 3(O, F)) for some field F and some
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octonion division algebra O over F. Then § = C22(0,F) = By 1(F,Q), which
has a unique embedding in PG(11,F) by Lemma[2.23 (i) and is consequently
not embeddable in PG(3,A) or PG(4,A), a contradiction. So 2* must be
embeddable and consequently also the dual £* of £ is embeddable. With
Proposition 10.10 of [20] we then get that £ (and £*) is of the form Bg ; (F,B)
or Co1(B,F), with F a field and B a quadratic associative division algebra
over F. Suppose first that £ = C31(B,F) and B is not an inseparable multiple
quadratic extension over F if char(F) = 2 (including F = B), then U has
dimension 3, by Lemma[2.23| (i7). So it suffices to exclude that ¢ is isomorphic
to Ba 1 (F,B) for some field F and some quadratic associative division algebra
B (taking Remark into account). Suppose now for a contradiction that
¢ is of this form. Then ¢ has a universal embedding in PG(3 + n,F) with
n = dimp(B) and must also be embedded in PG(5,A). So we get that A =TF
must be a field, so either A = K and char(K) # 2 or A = L is a separable
quadratic field extension of K. Recall that the hyperbolic line of Cs;(A,K)
through two opposite points x and y is the intersection of the projective line
(x,y) of PG(5,A) with C31(A,K) (see Lemma [2.25 (iv])). First suppose that
the induced embedding of ¢ in the subspace X of PG(5,A) that it spans
is the universal one, as given in Example (7). Then the projective line
through two opposite points x and y of ¢ intersects £ in only those two
points, a contradiction since £ arises as the intersection of X with £4 by [3].
So we may suppose that £ is not universally embedded in X. This implies
by Lemma [2.23] (i) that char(F) = 2, B is an inseparable multiple quadratic
extension over F (including F = B) and A = F = L is a separable quadratic
field extension of K. Let now L be a secant to ¢ in this embedding. Then L
intersects ¢ in a mixed projective subline of at least three points over L2 by
Lemmam However, by Remark L intersects £4 in a projective subline
over K. This yields that L.? < K, contradicting Remark

So U is spanned by two opposite lines L and M of £. Let now 7,7’ be
two (locally opposite) planes through L, then each of these planes contains a
unique point (p,p’ respectively) collinear to M. Applying p to the projective
line {p, p’) we obtain a three-dimensional subspace of PG(5, A) containing the
span of L and M. Consequently & = p- ~ p/* in £A.

Suppose now that A is an octonion division algebra, then we can apply
Main Result 1 from [I7], which gives us that £ is the common perp of two
points of &4, o

Proposition 4.6. Let Q be a dual polar space of rank 3, fully embedded in
a separable metasymplectic space A = F44(K,A). Then the embedding is
1sometric.

Proof. By Proposition [£.4]it suffices to prove that € cannot be contained in a
symplecton. Suppose for a contradiction that €2 is contained in a symplecton
&* of A. Let p be a point of . The point residual Res¢a(p) of p in &4 is
a generalised quadrangle Cy 1 (A, K) (where points correspond to lines of {4
through p and lines correspond to planes of &4 through p). However the
point residual of p in , notation Resq(p), is a projective plane (where points
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correspond to lines of € through p and lines correspond to symplecta of 2
through p). We interpret now the lines of Resq(p) in Resea(p). Let ¢ be a
symplecton of  through p. Then by Lemma ¢ is the common perp
of two points a,b in £A\Q. These points determine lines pa and pb and we
denote by o', V', respectively, the corresponding points in Resea (p). Now the
symplecton ¢ seen as line in Resq(p) corresponds to all points of Resea (p)
collinear to a’ and 0’ in Res¢a (p).

We now dualise Resga (p). This is an orthogonal generalised quadrangle
Q = By1(K, A), which has a unique (by Lemma (7)) embedding as a
quadric in IT = PG(3+n, K) with n = dimg (A) (described in Example[2.§|4)).

The points of Resq (p) are certain lines on (. Note that two such disjoint
lines, say L, M, span a three-dimensional subspace S of II, which intersects
the quadric necessarily in a hyperbolic quadric, i.e. a grid, since this is the only
non-degenerate quadric of Witt index 2 embedded in three dimensions. By
the above interpretation of the lines of Resq(p), the regulus of this hyperbolic
quadric containing L and M, notation (L, M), corresponds to a line of
Resq(p). Note further that every projective line in S intersecting all lines of
the opposite regulus of Z(L, M) is itself a line of Z(L, M).

Now we express that the lines and reguli corresponding to the points
and lines of Resq(p) form a projective plane, since Resq(p) is a projective
plane. Take three such “non-collinear” lines X,Y, Z, i.e. three disjoint lines
on @ (corresponding to points of Resq(p)) not contained in the same regulus.
These must span the projective plane, so this plane is contained in the five-
dimensional subspace T of II spanned by these three lines. The latter can
not be four-dimensional since then Z must intersect the subspace (X,Y)
in a point (necessarily on the quadric) of a line U of Z(X,Y"). This would
contradict the fact that there must be a regulus through the two lines Z, U of
the projective plane. Let y € Y be a point and denote by x, z the respective
unique points on X, Z collinear to y. We now claim that x must be collinear
to z, contradicting the fact that ¢ does not contain planes.

Therefore let Y’ be a line on Z(X, Z) different from X and Z and let Z’
vary over Z(X,Y). Then (Y’, Z") has dimension 3 and must intersect (Y, Z)
in a line X’ of Z(Y, Z), since every two lines in a projective plane intersect.
Now also the three-dimensional space {(ry,Y’) must intersect (Y,Z) in a
line and by the above intersections, this line must intersect each line of the
regulus Z(Y, Z). So this must be a line of the opposite regulus. Since y is
clearly contained in this intersection, this intersection is the line yz. Then
the plane {(z,Y”’) intersects (Y, Z) in the point z. Since this plane intersects
Q at least in the line Y, it must be a tangent plane. Since the points z and
z are not contained in Y’, they must be contained in the other line of @ in
this tangent plane and are consequently collinear. =

Now we’ll take a closer look at the F4 1-case.

Lemma 4.7. Let Q be a dual polar space of rank 3, fully embedded in a meta-
symplectic space A = Fq1(K,A). Then Q = C33(B,K) for some quadratic
alternative division algebra B over K.
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Proof. Let 2* be the dual of 2. If Q* is non-embeddable, it must be C3 1 (0, K)
with O an octonion division algebra over K by Lemma

So we may from now on assume that Q* is embeddable. Let £ be a sym-
plecton of €, then ¢ is embeddable as it must, by Lemmal[£.3] be isometrically
embedded in a symplecton of A which is isomorphic to the embeddable polar
space Bs 1 (K, A). Since Q* is also embeddable, also the dual £* of £ must be
embeddable. With Proposition 10.10 of [20] we then get that & (and £*) is of
the form Bg 1 (F,B) or Co 1 (B,F), with F a field and B a quadratic associative
division algebra over F. If B is not an inseparable field extension, we claim
that the latter is impossible. Suppose for a contradiction that Cq1(B,F) is
isometrically embedded in Bj (K, A), which is universally (by Lemma
embedded in PG(5,A) as described in Example (i). By Theorem 1 of
[3], Co.1(B,F) then arises as an intersection of Bs (K, A) with a subspace
U of PG(5,A). However, this induced embedding of C31(B,F) in U must be
as described in Example (i) by Lemma (#4). This contradicts the
fact that in these embeddings secants intersect Co 1 (B, F) in more than two
points, while they intersect Bz (K, A) in only two points. So § is isomor-
phic to By 1(F,B) for some field F and some quadratic associative division
algebra B (possibly inseparable by Remark . Then one concludes that
F = K by looking at the universal embeddings (Lemma [2.23) of Bs 1 (K, A)
and By 1 (F,B) and consequently € is isomorphic to Cs 3(B, K). O

An explicit description of the dual polar spaces of rank 3 isomorphic
to C33(B,K), with B an alternative quadratic division algebra over K, via
an embedding in a projective space PG(V'), can be found in [8]; we will call
this embedding the standard embedding. Explicitly, using the version of [IT],
Definition 10.1], set

V=KeKOPKAKEBEBEBAKAKOAK®BEBPBPK,

and, for |K| > 2, define the embedding parametric as the projective closure
(that is, the smallest overset of points the complement of which intersects no
Ine in exactly one point) of the set of all points

(L k,6,m,x,y, z,2T — bm,yy — km, 2Z — kl, kT — yz, 0y — zx, mz — xy,

kxT + lyy + mzZ — (zy)z — Z(YT) — klm,
with k,¢,m € K and z,y, z € B, and x — T is the standard involution in B. If
|K| = 2, one has first to consider a suitable overfield, or explicitly enumerate
the other points, as done in [§] (however, we will not need this).
It is shown in [8] that this embedding is always homogeneous and even
universal if K # Fs.

Remark 4.8. Taking p = (1,0,...,0) and ¢ = (0,0,...,0,1), the set p* n g
is given by
{(0,k, ¢,m,x,y,2,0,...,0) |aT —bm = yg —km = 2Z — kl =
kT —yz = ly — zz = mZ — zy = 0}.
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If k#0,wecanset k=1;if k =0 and ¢ # 0, we can set £ = 1. This way we
obtain

{(0,1,22,y7,27,9,2,0,...,0) | y, z € B}u
{(0,0,1,27,7,0,0,...,0)} U {(0,0,0,1,0,0,0,...,0)},

which, after some easy recoordinatising, is seen to coincide with a Veronese
variety as in Definition (3.1

Remark 4.9. In the above representation, a (standard) symp of Cs 3(B, K) is
given by the intersection with the subspace (x,0,#,*,%,0,0,%,0,...,0), and
appears in its universal embedding, as one easily checks.

The following lemmas combine some observations about these dual polar
spaces and their embeddings and will turn out to be convenient to know in
the sequel of our paper. The first lemma holds for all dual polar spaces of
rank 3.

Lemma 4.10. Let Q) be a dual polar space of rank 3 and let x and y be opposite
points in Q. Then Q is spanned by z+ and y*.

Proof. Let S be the subspace of Q spanned by z+ and y=, i.e. the intersection
of all subspaces of 2 containing z+ and y=*. It suffices to prove that all points
of © are contained in S. By dualising to Q* the polar space of rank 3 dual
to €, it suffices to prove that S*, the set of planes corresponding to points
contained in S, contains all planes of Q*. Let m,,m, be the planes of Q*
corresponding with x and y. It is then clear that those planes are opposite in
Q. Note further that the definition of S as a subspace translates to the the
fact that if two planes of Q* intersecting in a line are contained in S*, then
all planes of Q* through that line must be contained in S*.

Let m be a plane of Q. If m equals 7, or m,, or intersects one of both
in a line, it is contained in S* by definition. Suppose now that 7 intersects
both, 7, Ty, in a point. Then we can project these points on the other plane
(project TN T, onto 7y and 7N Ty onto ) to get two planes of the previous
type intersecting 7 in the same line. This yields by the previous observations
that m € S*. So suppose that 7 intersects only one of the planes 7,7, in
a point a and is disjoint from the other. Without loss of generality, we may
assume that a € 7. Let m, be the plane spanned by a and its projection
onto 7. Suppose first that there exists a plane a through a intersecting both
7z and 7 in a line, but intersecting 7, only in a. Then a n 7, = @ and the
plane 3 spanned by a n 7 and its projection on 7, is distinct from a. Both
planes a and 8 belong to S*, and hence by a previous consideration, also 7
does. Suppose now that every plane through «a intersecting 7, and 7 in a line,
intersects also 7, in a line. Then this is not true for any plane 7’ intersecting
7 in a line through a. Hence every plane intersecting 7 in a line through a
belongs to S*, and with that, 7 € S*. Finally let 7 be a plane disjoint from
7 and m, and let L be a line of 7. Projecting this line to 7, and to m, yields
two planes contained in S* through this line, which concludes the proof if
these two planes are really distinct, But if for each choice of L, these planes
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coincide, then the duality of m given by projecting first to 7, then 7, to m,
and this back to m maps each line L to a point p € L, a contradiction since
there do not exist null polarities in a plane. o

Lemma 4.11. The only homogeneous embedding of C33(2,2) in PG(13,2) is
the standard embedding.

Proof. The standard embedding is homogeneous as is shown in [8]. Suppose
now that there is another homogeneous embedding in 13 dimensions. Since
the universal embedding of C33(2,2) is in PG(14,2) by [24 §6.4], both em-
beddings in 13 dimensions arise as the projection of the universal embedding
from a point onto a hyperplane. By the homogeneity of the embeddings,
this point must be fixed under the extensions to PG(14,2) of the automor-
phisms of C33(2,2). Suppose now that Cs3(2,2) is embedded in the stan-
dard way in PG(13,2) and denote (Xo, X1,...,X13) for the codrdinates of
the embedding given above (note K = B = F5). Then there is a projec-
tion of this C33(2,2) onto PG(7,2) from the so called nucleus space. It is
the natural projection from the 5-dimensional subspace of PG(13,2) given by
XO = Xl = X2 = X3 = X7 = Xg = Xg = X13 = 0 onto the 7-dimensional
subspace given by X, = X5 = Xg = X190 = X171 = X312 = 0. This projection
is, as point set, the hyperbolic quadric in 7 dimensions, in particular given
by the equations Xy X135 + X1 X7 + XoXg + X3X9 = 0. The second homoge-
neous embedding gives rise to a point of PG(13,2) fixed under the extensions
to PG(13,2) of the automorphisms of Cs3(2,2). The latter can clearly not
be contained in the nucleus subspace Cs 3(2,2) in PG(13,2) by the automor-
phisms given in Table 2 of [§] (the automorphism group acts on the nucleus
subspace as a symplectic group). So we still have a fixed point under the
extensions of the automorphisms of Cs3(2,2) to PG(7,2). That is a contra-
diction since through each point of PG(7,2) goes at least one secant to the
hyperbolic quadric, giving rise to an imprimitive action of the automorphism
group of C33(2,2). o

Lemma 4.12. Suppose ' = C33(B,K) is isometrically embedded in Q =
C3,3(A,K). Then B must be a subalgebra of A. If furthermore the dimensions
of A and B over K are finite and Q is universally embedded (resp. embedded
in a standard way) in the projective space I, then ' is universally embedded
or embedded in a standard way (resp. embedded in a standard way) in the
subspace of I spanned by its points.

Proof. The first statement follows immediately by looking at a point residual
which yields a projective subplane PG(2,B) of PG(2, A).

Suppose now that d := dimg(A) and d’' := dimg(B) are finite. Let then
Q be homogeneously embedded in the projective space II and denote by IT’
the subspace of II spanned by the points of Q. Let z,y be opposite points
of €. Then they must also be opposite in Q by the isometricity and similar
arguments as in the proof of Lemma [4.2] Denote with ¥ the set of points of
Qin 2t~y and with ¥’ those of ' in 1+ ~ yL.
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Assume first that K # Fy. In this case the standard and universal em-
bedding coincide, so suppose {2 is embedded in this way in IT = PG(6d+7, K).
It suffices then to prove that the dimension of II' over K equals 6d’ + 7. Note
that in this case ¥ is the Veronesean ¥5(KK, A) and ¥’ is a projection of the
Veronesean ¥ (K,B). We claim that this is not a proper projection.

Let &; and &, be symps of Q' through x and let £; and & be the respective
corresponding symps in 2. From now on let ¢ = 1,2. Denote by O; the
intersection of & with ¥, and by O} the intersection of & with ¥”, note
that both are the quadrics of Witt index 1. By Lemma we get that the
intersection (O1) " {Os) is a point. This implies immediately that also (O})n
{04 is a point. Note however that since §; must be universally embedded in
its span, also & must be, by combining Lemma with the Main result of
[3]. Consequently (O} has dimension d’ + 1, and the claim now follows from
Proposition |3.3

By interchanging the roles of x and y above, we find that the subspaces
spanned by z1 and y* in I’ have both dimension at least 3d’ + 3. However
they must be disjoint as well, since they are contained in the disjoint sub-
spaces z+ and y* in II. This shows Q' spans a subspace of at least (and hence

precisely) dimension 6d’ + 7.

So assume now that K = Fy. If A = B, the claim follows immediately
since the finiteness implies = Q'. So we suppose that A = F4 and B =
Fy. It is known that the embedding rank of € is then 22 (see [24] §7.1] or
Corollary proved independently of the current lemma) and the one of Q'
is 15 (see [24} §6.4]). Note that the assumptions of Lemma [3.4) are satisfied for
both ¥ and ¥”, by Lemma (z) and Remarkso the induced embedding
of ¥ is in PG(8,2) or PG(10,2) and the one of ¥” is in PG(5,2) or PG(6,2).

Let first ©Q be embedded universally in IT = PG(21,2). Then ¥ must
be embedded in 10 projective dimensions, by Lemma Now ¥’ must
be embedded in 6 dimensions, since for the Veronesean ¥5(2,2) the tangent
lines to the ovoids through a point lie in a plane (see for example [14], p.152]),
which is not compatible with the last statement of Lemma [3.4] Similarly as
before, we get that the subspaces of II spanned by 2zt and y' have both
dimension 11 and intersect in a line, while those of II' spanned by x and
y* have dimensions 7. The latter intersect of course in at most a line, which
yields similarly as before that IT' has at least dimension 13. The embedding
of " in II" is however still homogeneous. So with Lemma [4.11| we get that it
must be the universal embedding, as in the standard embedding, ¥ is clearly
embedded in 5 dimensions.

Let now the embedding of Q in IT = PG(19,2) be the standard embed-
ding. It follows immediately from the description in [§], see also Remark
that 7 is then embedded as a Veronesean in 8 dimensions. The subspaces
of I spanned by z* and y* have both dimension 9 and are disjoint. This
implies that also the subspaces of II’ spanned by ' and y' must be disjoint.
Consequently they cannot be 7-dimensional and so the embedding of €’ in
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IT" must be in 13 dimensions, which implies it is also the standard embedding

by Lemma o

The following lemma does not immediately yield conditions for our
dual polar space in order that it is embedded isometrically, but this follows
then easily when combined with previous results such as Proposition and
Lemma as will be done in the Proof of Main Result [A] (see Section[5.3.4).

Lemma 4.13. Let A and B be quadratic alternative division algebras over K
such that one of the following is satisfied
(i) K is finite;
(ii) A =B =K;
(iii) dimg(A) < dimg(B) and B is not an inseparable (multiple) quadratic
field extension K.
Then there does not exist a full embedding of ? = C3 3(B,K) in ¢ = B3 1 (K, A).

Proof. First assume that K is finite and denote k := |[K|,a := |A[,b := |B].
One easily calculates that the number of points in ¢ is a = ak* + ak? + ak? +
k? + k + 1. In the same way one calculates that the number of planes in a
polar space of type C3 1(B,K) is 8 = b3k3 + b3k + b2k? + bk? + b2k + bk + k + 1.
This is exactly the number of points in the dual polar space 2. Now clearly
a < B, keeping in mind that 0 < k < a,b < k? (since there are no quaternions
over nor inseparable extensions of finite fields), which proves that € cannot
be contained in (.

From now on we may assume that K is infinite, so |[K| > 3 and denote
n := dimg(A) and m := dimg(B). Suppose for a contradiction that € is
fully embedded in ¢ and let the latter be universally embedded in PG(n +
5,K). Take a point p in Q and let ¢ be an opposite point in . Let W be
the projection of the point residual Resq(p) onto pt n ¢-. Then W is a
projection of the Veronesean ¥ := ¥#3(K,B) embedded in PG(n + 3,K). By
the assumptions on the dimensions of the algebras, W must now be a proper
projection of ¥ onto pt N ¢t =~ By (K, A).

We now prove that no conic of ¥ is mapped to a line under this projec-
tion. Let C be a conic of ¥'. Since, by Lemma|3.5] every conic on a Veronesean
is the intersection of a plane with one of the ovoids and every ovoid corre-
sponds in W to the intersection of W with a symplecton of Q through p,
the projection of C' is contained in a unique symplecton & of Q2 through p.
Note now that £ = By1(K,B) is embedded universally in ¢ by Lemma [2.22}
Consequently the projection of C' cannot be a line, since the intersection of
W with this symplecton does not contain lines.

If now B = K, we get a contradiction with Lemma [3.9] since the pro-
jection is from a subspace disjoint from the nucleus plane if charK = 2 by
the previous paragraph. So suppose now that B # K. Let O; and Oy be
the projections of two ovoids of ¥ onto W and let from now on i = 1,2.
Denote by &; the unique symplecton of €2 through p containing O; and
by X; the subspaces of PG(n + 5,K) such that & = X; n ( (this exists
by [3]). Then X, has dimension m + 3 by Lemma and O; spans a
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subhyperplane of X; since it is contained in p* n ¢t (in (), so the di-
mension of (O;) equals m + 1. Since both O; and O are contained in
pt N ¢F, the dimension of (O, 05) is at most n + 3. Now the dimension
formula dim{O;) + dim{O3) = dim{{01),{02)) + dim({O1) N {O3)) yields
dim({01) n{02)) =z (m+1)+(m+1)—(n+3)=2m—n—1> 0. Let = be
the unique point in O; N O3 and let L be a line in {(O1) N {O3). Taking now
the intersection of a plane through L in {O;) delivers a conic C;. Lemma
yields a (unique) projection W’ of a Veronesean ¥4 (K, K) containing C; L Cs.
Since L is the tangent line at x to both C; and Cs, W’ is a proper projection
from a subspace disjoint from the nucleus plane by the previous paragraph if
char K = 2. This contradicts again Lemma |3.9 o

Ezxample 4.14. Define the following function fields
K= Fo(... 12, t2 12 12 15 12 13, 12,42, ..,
Bi=Fo(... 12, t2 12, 13,12 13 13 t5, Lg, . . .),
A=TFo(. 125, 12 13,1y, ta, g, ta, b5, Lg, - . ),
andlet V> (KOKOKOKAKAKOKOK)® (APADADADADA)
(as vector spaces over K). We now prove that in this case the dual polar
space Cz 3(B,K) can fully be embedded in Bs 1 (K, A). The former is clearly
isomorphic to C3 3(A,K) since A and B are isomorphic as algebra’s. So this
example will show that in the inseparable case it is possible that a geometry
isomorphic to a trace geometry of a metasymplectic space is fully embedded
in a symp of the metasymplectic space. We use therefore the description of
Cs3,3(B,K) as given in [§], in particular the one given in Proposition 3.9 where
it is given as the set of points in the projective space PG(V') satisfying 26
equations. We will take a linear combination of six of these equations and
show that they determine a polar space of rank 2. Clearly Cs 3(B, K) is then
also contained in this polar space.
Denote a point of PG(V) as
(Yla }/27 Y37 Y47 Y57 YG) Y7; }/87 Y97 Y107 Ylla Y127 Y13, Y14)7
with Y17 }/27 }/37 Y47 Y87 Y97 YlOa Y14 € K and }/’5’ }/Ga Y77 Y]la Y127 YIS € B. Define
the quadric
0=[YZ2+ Y3, +VYs] + 13- [V + YaYs 4+ V1Ye]
+ 13- [Y2 + YaYs + ViYio] + (8313 + t383) - [V + YoYio + YoYiu ]+
+13 - [V + YsVio + YaYia] + 63 - [V + YaVo + YaYia).
(The six quadratic forms between brackets are obtained from [8, Proposi-
tion 3.9].) So after the codrdinate transformation

Vi =132+ t2 23+ X o, Yo=2y, Ys=11Z) +t324+ X 4,
Yy =121 +t324+ X1,Ys = Z5,Ys = Z, Y7 = Z7,Ys = t1 20 + 13573 + Xo,
Yo=125, Yi=23, Yiu=2s, Yia=2Z2y, Yiz=Zi, Yia=Z4,
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we get the quadric with equation

X oXo+ X 1 Xy = 1377 + 3375 + 131375 + t5t3 73
+ 22272 1272 4+ (2 + 33 22 + 1222 + 12 73,
in PG(6n + 7,K) with X; e Kfor -2 <i(#0) <2, Z; e Kfor 1 <j <4 and

Zy € B for 5 <1 < 10. This quadric is clearly embedded in the nondegenerate
quadric By 1 (K, A).

4.2. Collinear to a point

Now we take a closer look at the isometric case. In this case all points of the
embedded dual polar space are collinear to one point of the metasymplectic
space.

Proposition 4.15. Let 2 be a dual polar space of rank 3 isometrically embedded
in a metasymplectic space A. Then there exists a unique point p € A with
Q < pt such that every line through p contains at most one point of €.

Proof. Let a and d be two opposite points in 2. Then these points are special
in A. Let p be the unique point collinear to both in A. Let L be a line through
a in Q. Then there is a unique point [ on L at distance two from d in 2, since
the latter is a dual polar space of rank 3. Note that, by the isometricity, [ is
symplectic to d in A. Let ¢ be the symp of A containing [ and d. Then a is
close to ¢ and hence a* n ¢ =: K is a line containing p. It follows that all
other points of L are special to d and collinear to p. Consequently all points
collinear to a in 2 (and similarly to d) are collinear to p in A. Since every
point in a has an opposite point in d*, it follows now by a connectivity
argument that every point of €2 is collinear to p.

It is clear that every line through p contains at most one point of €,
since p ¢ Q. o

In the separable case the “at most” in the previous proposition can often
be exchanged by “exactly”, as is shown in the rest of this subsection.

Proposition 4.16. Let Q) be a dual polar space of rank 3 isometrically embedded
in a separable metasymplectic space A = Fy4(K,A). Then there exists a
unique point p € A with Q S p* such that every line through p contains
exactly one point of Q. Consequently Q must be isomorphic to B 3(K, A).

Proof. Denote with p the unique point of A such that Q < p* from Proposi-
tion [£15] It suffices then to prove that every line through p contains a point
of Q. We prove that a geometry I' = B3 3(K, A) (with dual I'* = B3 ; (K, A))
does not contain a proper full subgeometry  isomorphic to the dual of a
polar space Q* of rank 3. Let x L y L z 1l x be three points of §2, corre-
sponding to the planes «, 3,7 in Q*, respectively. Then « and ~ intersect
B in two different lines. Denote the intersection of these lines as c. As the
embedding of Q in I' is full, every plane in I'* through a line of Q* is a plane
of 2*. So, using the terminology of [22], the point residual of ¢ in Q* is an
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ideal subquadrangle of the point residual of ¢ in I"*. Hence by Proposition
5.9.4 of [22] these point residuals coincide. Let now 7 be a plane through ¢ in
I'*, then it must be contained in Q* and consequently it contains a second
point ¢’ of Q*. As the same reasoning can be applied to ¢, all lines through
¢ or through ¢’ are contained in 2* and so are their intersection points as
the embedding is isometric. So every point of 7 is contained in Q*. By a
connectivity argument, one now proves that Q* = I'* and consequently also
Q=T. =

Lemma 4.17. Let Q = C33(A,K) be isometrically embedded in a separable
metasymplectic space A = Fy1(K,A). Then every symplecton & of Q arises
as the common perp of two opposite points in a symplecton €4 of A. These
points are also the unique points of A collinear to all points of €.

Proof. Denote for every symplecton £ in Q by &4 the corresponding sym-
plecton in A and E¢ := {z € €A | 2 € €1}, Then by our assumptions, ¢ is
isomorphic to By 1 (K, A) and £ is isomorphic to Bs 1 (K, A). Suppose that the
latter is universally embedded in the projective space II as in Example i)
and denote with p the defining polarity. By the uniqueness of the embeddings
of these spaces (see Lemma m(z)), the codimension of the projective space
U spanned by the points of £ in IT is 2. So U” is a projective line K. Clearly
the point p of Proposition[4.15]is contained in this line. Suppose now that this
is the only point of €4 on K. Then K is contained in the tangent hyperplane
p? which implies that p € U. But this contradicts the fact that p is collinear
to all points of £, that £ does not contain planes, and that U n &4 = £ (by the
main result of [3]). It is immediately clear that K is not completely contained
in £4 by the non-degeneracy of £. So K intersects £4 in exactly two points,
E¢ consists of two points and the common perp of these two points is exactly

3 o

Proposition 4.18. Let Q =~ C3 5(A, K) be isometrically embedded in a separable
metasymplectic space A = Fy1(K,A). Then there exists a unique point p € A
with Q < p* such that every line through p contains exactly one point of €.

Proof. Denote with p the unique point of A such that Q < p* from Propo-
sition It suffices to prove that every line through p intersects 2. By
Lemma [£.17] we see that for every symp & in © there exists a unique point in
A different from p collinear to all points of £&. Denote this point by ¢ and let
again {4 = £(p, ¢¢) be the unique symp of A containing {. Let now x € Q2 be
random. We will prove that the cone with p as vertex and Resq(z) as base
coincides with Resa (x) (with as point set the lines through x, as line set the
planes through 2 and inclusion as incidence relation). Then a connectivity
argument concludes the proof.

Note first that Resa(x) is isomorphic to a dual polar space of rank 3
and Resq(x) is isomorphic to a projective plane. The points of this plane
correspond to the points in Resa(z) collinear to p’ and to some g; (with
§ a symp in Q containing p), where p’ and ¢; are the points of Resa(z)
corresponding to the lines pxr and xq¢ respectively. Every line in this plane
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corresponds to such a qé and consists exactly of the points in the common
perp of p’ and g;. By dualising Resa (), we see that (p')* is a plane in a polar
space of rank 3 and (qé)* is a plane intersecting this plane in a point. Now
the points on the line of Resq(x) corresponding to q’5 are exactly the planes
intersecting both planes (g¢)* and (p)* in a line in the dual of Resa(x).
Since we are working in a polar space, every line through (qé)* A (p)* in
(p")* corresponds to such a plane. So we can interpret the dual of Resq(z) as
an ideal subplane of the plane (p’)*. Since clearly proper ideal subplanes do
not exist, we find that every plane through pz intersects (2 in a line, which
concludes the proof. o

We now have almost immediately the following corollary. However since
it uses a lot of previous results we provide a proof for completeness.

Corollary 4.19. Let 2 = C3 3(A,K) be isometrically embedded in a separable
metasymplectic space A = Fy1(K, A) and let p be a point of A such that Q <
pt. Then every symplecton €& of A through p intersects Q in a symplecton
£.

Proof. Let L be a line of A through p contained in &4, let « and 3 be
two planes through L contained in £4. By « and S intersect € in two
intersecting lines; denote those as L, and Lg, respectively, and let 2 be the
intersection point. Let a and b be points of L,\x and Lg\z, respectively.
Then, by Lemma [I.2] @ and b determine a symplecton & of Q. The latter
is contained in £4 by Lemma Now &4 N Q cannot contain a point not
contained in &, since that point would then be at distance at most 2 from all
points in &, by Lemma which is impossible in a dual polar space of rank
3. O

We give one more interesting lemma about this connection between sym-
plecta of a metasymplectic space and those of a dual polar space isometrically
embedded in it.

Lemma 4.20. Let  be a dual polar space of rank 3 isometrically embedded in
a metasymplectic space A. Let & and  be two opposite symplecta in Q. Then
the corresponding symplecta in A are locally opposite through p, with p the
unique point collinear to all points of @ as in Proposition [L.15]

Proof. Note that by Lemma [4.3] and Proposition ¢ and ¢ are isometri-
cally embedded in symplecta £ and (4, respectively, of A through p. Since
¢ and (¢ are opposite in £ (a dual polar space of rank 3), we know that for
every point g of £ there is a unique point in { collinear to ¢ in €2, but also
at least one point opposite ¢ in Q. Suppose now that £4 and (4 are not lo-
cally opposite through p. They cannot coincide, since then there cannot be
a point in ¢ opposite to ¢ in €2, or in other words, special to ¢ in A by the
isometricity of the embedding. So £4 and ¢4 must intersect in a plane. Then
all the points of (4 collinear to q are contained in this plane, but this plane is
disjoint from  (since £ and ¢ are disjoint). This means that ¢ cannot contain
a point collinear to ¢, a contradiction. o
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5. The separable case

In this section we prove that almost all dual polar spaces isometrically embed-
ded in a separable metasymplectic space are contained in a trace geometry,
and classify the exceptions. Together with the previous section, this allows
us to prove Main Results[A] and [B] We start with the metasymplectic spaces
of type Fy4 4, since the results and proofs are more concise in this case.

5.1. Separable metasymplectic spaces of short root type

Proposition 5.1. Let €2 be a dual polar space of rank 3, isometrically embedded
in a metasymplectic space A = Fyq4(K,A). Then Q is contained in a trace
geometry, i.e. ) © pt A g® for some opposite points p,q e A.

Proof. By Proposition we know that Q < pt for some p € A and every
line through p intersects {2 in at most one point. Denote for every symplecton
& in Q by &* the corresponding symplecton in A and define E¢ := {z € £* |
x € &1}, which is a hyperbolic line in ¢4 by Lemma

Let & and & be two opposite symplecta in . By Lemma the
symplecta €4 and £4 are locally opposite through p and consequently every
point a € E¢ \p is opposite every point b € Eg,\p. Fix such an a and b
arbitrarily and let ¢ be a point of E(a,b) opposite p.

We claim that E; < f’?(p, q) for every symplecton ¢ in 2. Suppose first
that ¢ = &. Since a € E(p, q) and ¢* intersects E(p7 q) in a hyperbolic line
h by [16, Lemma 2.6.18], we conclude h = h(p,a) = E¢,. In the same way
one shows that also Fg, < E (p,q). Suppose now that ¢ intersects & and &
in a line. Then it is obvious that E; < E(a,b) < E(p, q). If ¢ intersects &
in a line, but is disjoint from &3, then ¢ corresponds in Q* to a point ¢*
collinear to & and not collinear to £ . Two locally opposite planes through
the line (£, ¢*) of Q* now yield two opposite points in (£)* n (£€4)*. Denote
the corresponding symplecta as &, &, and note that each of them fulfil the
assumptions for ¢ of the previous case. So we already know that Eg, B¢ <

~

E(a,b) and we can take opposite a’, b’ in F¢,, E¢, respectively, so that E¢ <
E(d,V) < E (p,q) (the latter inclusion follows by again combining Lemma
2.6.18 and Proposition 2.6.15 of [16]).

Now we get similarly as in the previous case that E, < E(d’, V). Suppose
finally that ( is disjoint from both &; and &. Then in Q* the point ¢* is not
collinear to either & or &5. Let L, M be locally opposite lines through ¢*.
Both contain a point collinear to &§, which are contained in E(a, b) by the
previous cases. Then we can conclude in a similar way as in the previous case
that B, < E(p7 q).

Now ¢ is symplectic to some point of E¢ for every symplecton ¢ in €,
by Proposition 2.6.15 of [16], and, by Proposition [Point-Symp]|, we see
that Q < ¢#. Thus (2 is contained in a trace geometry. =

Note that we now have proved all components of Main Result [B] We
combine them in the proof below.



Dual polar spaces embedded in metasymplectic spaces 37

Proof of Main Result[B, From Proposition[4.6]it follows that the embedding
must be isometric. Then Proposition combined with Proposition [5.1
delivers the first statement. The second statement follows immediately from
Lemma [£.11 o

5.2. A consequence

Proof of Corollary[4] Let A be isomorphic to F44(K, A), separable, and let
first Q2 be a dual polar space of rank 4 fully embedded in A. We denote by Q*
the corresponding polar space (the “dual”). Each point z of Q* defines a dual
polar space 2, of rank 3 fully embedded in A by considering all maximal
singular subspaces of Q* through x. Then Proposition yields a unique
point p, of A collinear to each point of .. If y is a point of Q* collinear
to x, then Q, and €2, intersect in a symp &, of €. Since p,,py € Sfy, we
find p, AL py, p. L py or p, = py. However, the latter two are impossible
since p, L p, would imply that A does contain three-dimensional subspaces
and p, = p, would imply that {2, and 2, would intersect in a hyperplane by
Proposition [£.16] a contradiction since they only share a symp.

Now suppose z L y in Q*, but z not collinear to z. Then &, and &, are
opposite symps of 2,. Hence, the unique symps «Egjy and «Ey‘z of A containing
&xy and ., respectively, are locally opposite at p, by Lemma @ This
implies that p, and p, are opposite in A.

Define £ = {pz |  a point of Q*}. The previous paragraph implies
that £ only contains symplectic and opposite pairs of points. Let x and z
be as above, then we claim £ = E(pI,pZ). Indeed, let £ be any symp of
A through p,, then it must intersect 2, in a symplecton . However, the
latter must be contained in another dual polar space of rank 3, say Q,,
corresponding to some point y’ of Q* collinear to x. Let now y be the point
on the line zy’ of Q* collinear to z. Then Q, must intersect Q, in ¢ and
consequently we may assume without loss of generality that {* = £2, . So &%
contains a point, p,,, of E symplectic to p,. This shows E(ps,p:) S E. Now let
u € E(pmpz)\E(pmpz). Then there exist opposite points uy,us € E(pz,p:)
symplecic to u and the previous argument shows u € E. Hence E (P2 py) S E.
Conversely, if w is a point of Q* collinear to both x and z, then p, 1L p,, 1L p,
and hence p,, € E(px,pz). If w is a point of Q* not collinear to both z and
z, then there are non-collinear points wi,ws of Q* collinear to z,z and w,
and the previous arguments imply p, € E(Puw,,Pw,) S E(pz,py). Hence
Ec E'(pgc,pz)7 and thus E = E(pm,pz), which proves the claim.

Note that every point of  is contained in some &/, for a’,y' € Q*.
Furthermore py N p; = &y by Lemma so every point collinear to two
points of E is contained in €. So we conclude that, by definition, the tropics
geometry associated to E is precisely €.

Next, let I be a dual polar space of rank at least 5 fully embedded in
A, and let IV be a subspace of I" isomorphic to a dual polar space of rank 4.
If ¢ is a symp of I, then every point of - occurs as a point of the extended
equator geometry corresponding to I'V. Let now I'” be another subspace of
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I' isomorphic to a dual polar space of rank 4, containing £ and let p be the
unique point of A collinear to £. Then I'V and I'” intersect p respectively in
¥’ and X", which are dual polar spaces of rank 3. These should only intersect
in &, but as above ¥’ n X" is a geometric hyperplane in both ¥/ and ¥’ a
contradiction as there are lines in ¥’ disjoint from &.

The proof of Corollary [A]is complete. =

5.3. Separable metasymplectic spaces of long root type

In this case we have no longer the extended equator geometries as a tool.
However we are able to define some other interesting geometries. We start
by recalling some lemmas and notation from the previous sections. We will
eventually have to distinguish between |K| = 2 and |K| > 3, but we start
with general considerations.

5.3.1. General considerations. Let = C3 3(A,K) be an isometrically fully
embedded subgeometry of a separable metasymplectic space A = Fy 1 (K, A).
Let p be the unique point such that Q < p (exists by Proposition .
Denote for every symplecton £ in € the corresponding symplecton in A as
&4 (which exists by Lemma ; denote by g the unique point in £* such
that ¢ = p* n qé (exists by Lemma . Now we can define the following
geometries.

Definition 5.2 (The point-line geometry I'g = (Xq,.-%)). The geometry I'g
is the point-line geometry (Xq,.%n) with point set X = {g¢ | £ symp of 2}
and line set %o = {{qe € Xq | L' € £} | L' line of Q}.

Note that this geometry clearly is isomorphic to the dual of the point
residual of p in A, ie. C31(A,K). We now define in this polar space an
analogue for the equator geometries in metasymplectic spaces (see Defini-

tion .

Definition 5.3 (The point-line geometry Er,(q,q’)). Let ¢ and ¢ be non-
collinear points of I'g. Then Er,(q,q’) is the equator geometry defined by ¢
and ¢’ in ', i.e. the point-line geometry with point set the points collinear
to g and ¢’ in I'q, and line set the lines of I'q included in this point set.

Clearly the latter could be defined in all polar spaces of rank at least
3 and will always be isomorphic to a point residual. Also, the points of
Er,(q,q") form a subset of those of E(q,q'). We will make use of this in-
clusion of these geometries later on. First we prove some more properties
about this inclusion.

Lemma 5.4. Let Q = C3 3(A,K) be an isometrically fully embedded subgeom-
etry of a separable metasymplectic space A = Fy1(K,A). Then two points
of T'q are collinear in U'q if, and only if, they are symplectic in A; they are
non-collinear in T'q if, and only if, they are opposite in A. Consequently if q
and q' are opposite points in Tq, then two points of Fr,(q,q') are collinear
in Er,(q,q") if, and only if, they are collinear in E(q,q").
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Proof. Tt is clear that, if two points are contained in a line of I'q, then they
are symplectic in A, since the corresponding symplecta in A intersect in
a plane and both points are collinear in A to the same line of this plane.
Conversely if two points x, y of I'q are symplectic in A, then p is close to the
corresponding symplecton £(z,y) and the symplecta £(p,z),£(p,y) contain
the line £(x,y) N p*, which is contained in  as it is contained in p* n 2. If
now two points of I'g are not contained in a line of I', then the corresponding
symplecta in  are opposite. By Lemma [£:20] the corresponding symplecta
in A are locally opposite through p and so the points are opposite in A. The
converse follows from the same lemma.

The last statement follows now immediately from the definition of lines
in an equator geometry of a metasymplectic space. o

In the next proof, we make use of central elations (see Definition [2.24]).

Lemma 5.5. Let Q = C3 3(A,K) be an isometrically fully embedded subgeom-
etry of a separable metasymplectic space A = F41(K,A) and let ¢ and ¢’ be
opposite points in T'q. Then the hyperbolic lines in Er,(q,q’) are subsets of
hyperbolic lines in E(q,q’).

Proof. By Lemmas 2.10.5 and 6.5.1 of [16] a hyperbolic line in E(q, ¢’) through
two opposite points a, b is the set {b? | 6 central elation of A with centre a}u
{a}. So we have to prove that, for a and b not collinear in Er,, the group of
central elations with centre a in A acts transitively on the set of points of
the hyperbolic line through @ and b (except a) in Er,(q,¢’). Note that every
central elation 6 of A with centre a induces by restriction a central elation
of Er,(q,q") with centre a by the following reasoning. Since a is collinear
with a symplecton &, of € and every other point of Q is collinear with at
least one point of &,, we see that 6 stabilises 2. Consequently 6 stabilises
Xq and even fixes ¢ and ¢/, since the corresponding symps of € intersect &,
in a line. Let now ¢ be an arbitrary point of this hyperbolic line through a
and b in Fr,(q,q') different from a. Then by Lemma there exists a
central elation 0’ of Er, (g, q") with centre a that maps b to c. First note that
this extends unambiguously to a central elation of I', since the hyperbolic
lines through a and b coincide in both geometries (this follows for example
from Lemma ) and Lemma also holds in I'n. Suppose we can
show that this is the restriction of a central elation in A; then the symplecton
&, = pt nat in Q is pointwise fixed and every line intersecting this symp in
a point is stabilised. Let ¢t € Q be a point on such a line (not contained in
&.) and let ¢ be the image. Then these correspond to planes in I'g through
a line L’ collinear with a. It follows from Lemma that the central
elations of I'g with centre a act sharply transitively on these planes. So there
is a unique central elation with centre a in I'g that could extend to one in A
mapping ¢ to t’. Since there is a unique central elation in A with centre a that
maps t to ¢’ by Lemma 6.5.1 of [16], we can indeed extend ' unambiguously
to a collineation of A. =
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Lemma 5.6. Let Co =~ Co1(A,K) be isometrically fully embedded in Cs =
C31(A,K) with A over K separable. Let L1 and Lo be two disjoint lines of
Co. Then Li n Ly is a hyperbolic line h in C3 and every point of h is collinear
to all points of Cs.

Proof. Since the embedding is isometric, L; and Ly are opposite in Cz. Then
L{ n L3 is a hyperbolic line h of C3 by Lemma [2.25((iii). Let now x be
an arbitrary point of h. Since x is collinear to both L; and Lo, it must be
collinear to the subquadrangle spanned by them in C5. However the latter has
no proper full subquadrangles by the dual of [22, Proposition 5.9.4] (keeping
in mind that A is separable over K). o

The following lemma allows us to recognise subgeometries of equator
geometries in A.

Lemma 5.7. Let E = C31(A,K) be a point-line geometry (X,.Z) with X a
subset of points of a separable metasymplectic space A = Fq1(K, A) and £
a set of lines of the form {x € ¢ | v € Lt n M*} with ¢ a symplecton in A
and L, M two opposite lines in &, such that two points are collinear in E if
they are symplectic in A and not collinear in E if they are opposite in A.
Then E is contained in an equator geometry E(p,q) for some opposite points
p,q € A, with €(p,q) independent of p and q.

Proof. Let a € X be arbitrary. Denote with Resg(a) the point residual of a
in F; then it is clear that Resg(a) = Co1(A,K). We now claim that this can
be interpreted as an isometric subgeometry of the dual point residual of a
in A, Resa(a)* = C31(A,K). Note that the points of Resg(a) correspond to
lines of E through a, while those of Resa(a)* correspond to symplecta of A
through a; and furthermore the lines of Resg(a) correspond to planes of E
through a, while those of Resa(a)* correspond to planes of A through a.

To make this identification, we first prove that every symplecton con-
tains at most one line of E (note that the converse is trivially true: every line
of E is contained in exactly one symplecton). Suppose for a contradiction that
the symplecton ¢ does contain two lines of E. If these lines are not contained
in a plane, this would imply that { contains a pair of opposite points by the
assumptions, a contradiction. However, if these lines would span a plane ,
one gets a contradiction by taking a point r of E\mr, which must then be
opposite and symplectic to multiple points of this symplecton (impossible by
Proposition [Point-Symp]). So we can unambiguously identify the set of
points of Resg(a) with a subset of the set of points of Resa (a)*.

We now prove that the same can be done for the sets of lines. Consider a
line in Resg(a) corresponding to a plane 7 of E through a. Let L', M’ € 7 be
two lines of E through a and denote with £, £as the corresponding symplecta.
A point of L'\{a} must be collinear in A to a line K of &5, which is collinear in
A to all points of M’. Note that a € L’ and consequently K is also contained
in &r,. So &, and &)y intersect in the plane (a, K) of A. Furthermore all points
of L’ must be collinear in A to this line K (by Proposition[2.12|[Point-Symp]).
Let now = be an arbitrary point of 7 different from a. Then x lies on a line
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Im of E with [ € L'\{a} and m € M'\{a}. But then z is collinear to K as a is
close to £(I,m), a is collinear to the line K of {(I,m) and z is symplectic to
a. Consequently all symplecta through a corresponding to lines of E through
a in 7 contain the plane <{a, K). Fix some [ € L'\{a} and m € M'\{a}. It
suffices now to prove that every symplecton through {(a, K) intersects the
line Im of F in a point. Let § be an arbitrary symplecton through {a, K).
Then it intersects £(I,m) in a plane of A through K. So it suffices to prove
that every plane o through K in £(I,m) contains a point of the line Im of E.
Let a be such a plane of A through K and let L, M be opposite lines of A in
€(1,m) such that Im = L+~ M~ (these exist by our assumptions on the lines
of E). Denote with s the unique point of « collinear in A with all points of
M and note that s ¢ K since all points of Im must be collinear to K and M.
Denote with ¢ the unique point of (M, s) collinear in A with all points of L.
Then t must be collinear with K in A by the previous reasoning, since it is
contained in the line Im of E. Since (M, s) has a unique point collinear with
all points of K in A, t = s and this point is contained in the intersection
anlilm.

It follows now easily that the above identification leads to Resg(a) being
isometrically fully embedded in Resa(a)*. So with Lemma we find two
locally opposite symplecta &, of A through a that both intersect each sym-
plecton through a which corresponds to a point of Resg(a) (in some plane).
Now let b be an arbitrary point of E opposite a in E. Then clearly b is also
opposite a in A and defines two opposite points p := & b and ¢ := ¢ n b
We claim that £ € F(p,q). So let ¢ be an arbitrary point of E. We show
that ¢ € E(p,q). If ¢ = a or ¢ = b, this is trivial; so we suppose that ¢ # a,b.

Suppose first that ¢ is collinear to @ and bin E. Set « := £né(a, ¢). Then
by the possible point-line relations in A (Corollary 2.5.2 in [I6]), b is special
to all points of a unique line B in « and consequently p and ¢ are collinear
to this line (by Proposition [Point-Symp| and the fact that p 1L b 1L ¢).
So ¢ is symplectic or collinear to p. But note that c is clearly not collinear to
p as the only points collinear to ¢ in £(a,p) are contained in a.

Suppose now that ¢ is collinear to b but not to a in E. Denote ¢ :=
£(b,c)na't. Let L, and L), be two lines of E through ¢’ contained in a** n b,
denote by (1, (s the respective corresponding symplecta of A and let from
now on ¢ € {1,2}. Then these symplecta must be locally opposite as there are
no planes of E' that are collinear to a and b in E. Denote by 7; the intersection
of ¢; with £(b,c). As all points of the line L of E are symplectic in A to all
points of the line bc of E, the plane m; contains a line K; collinear with all
points of both lines be and L} of E. Note that £ is adjacent to &(a,a;), for
every a; € L;. Hence p is not opposite any point of &;, which implies that ¢;
and £(p, ') are adjacent. Looking now, for fixed 4, at the pairwise adjacent
symplecta (;,£(b,¢),&(p, ') through ¢/, these correspond to three pairwise
collinear points in Resa(¢’)*. So, the intersection planes of the symplecta
must have one line M; of A through ¢’ in common (if they would have a
plane in common, then replacing p with ¢, that plane has a point collinear
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to g, contradicting the fact that no point of that plane is special to p). Let
now m; € M; be the unique point collinear to p. Then m; = K; n M;, as p
is symplectic to all points of L, by the previous case. So we constructed two
points m1,ms € p- et and ¢ is again symplectic or collinear to p. Note that
clearly c¢ is again not collinear to p.

Suppose now that c¢ is not collinear in E to either a or b, but there
exists a point ¥ of E collinear in F to b and ¢, but not to a. We can then
replace b by ¥’ in the previous two paragraphs to conclude respectively that
all points of E in a't n ¥ and all points of E in b1t are symplectic to p. So
c is symplectic to p.

So the only case that is left is a point ¢ of E such that all points collinear
in F to both b and ¢ are also collinear in E to a, or, in other words, ¢ is
contained in the hyperbolic line through a and b in E. Let K’ be some line
through c in E, let £ be the unique symplecton containing K’ and let x and
y be two points of K’ different from ¢. Then p is symplectic to z and y by the
previous cases, since there are no collinear points on a hyperbolic line. Now
Lemma applied to ¢ =~ C31(A,K) implies that also ¢ is symplectic
to p (choose as L in the statement of that lemma the line p N ¢). o

Even though we use similar techniques, we make from now on a dis-
tinction between fields with at least three elements and the field with two
elements. We start with the fields with at least three elements.

5.3.2. Separable metasymplectic spaces of long root type over a field of at
least three elements.

Lemma 5.8. Let Co = Cy1(A’,K) be embedded in a polar space C3 = C3 1 (A, K)
with K a field of order at least 3 and A, A’ separable quadratic alternative di-
vision algebras over K, such that

(i) the points of Co form a subset of the set of points of Cs;

(#4) two points in Co are collinear if and only if they are collinear in Cs;
(#i1) the hyperbolic lines of Co are subsets of hyperbolic lines of Cs.
Then the lines of Co are subsets of lines of Cs.

Proof. We prove this by contradiction. Suppose that a, b, c are three collinear
points in Co which are not collinear in Cg. Since they are however pairwise
collinear by , they must be contained in a plane of C3. Then a,b,c are
contained in a(n ideal) sub polar space C;, = Cy1(K,K) of Cy. The latter
still satisfies the assumptions of this lemma for C,, since hyperbolic lines
are preserved under taking this sub polar space, as all lines of Cs through a
point of C} are also contained in Cj. Let C, be universally embedded as in
Example zz) in ITs =~ PG(3,K). Then the lines through a point correspond
to all lines through that point in the tangent hyperplane of II;. Furthermore,
by Lemma , the hyperbolic line through two opposite points in this
embedding is just the projective line of II5. Let L be the line in C, through
a,b,c and let b” be a point of C) collinear to a but not contained in L. Let
Ch =~ C5,1(K,K) be a sub polar space of C3 containing a,b, ¢ and b”. Let C
now as well be universally embedded as in i1) in I3 =~ PG(5,K). The
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hyperbolic line through two opposite points is then again the projective line
of II3 containing these points, by Lemma .

Remark that C) is no longer necessarily embedded in C;. However, we
claim that still all points collinear to a in C, are contained in Cj. Indeed,
note first that hyperbolic lines are also preserved under taking the sub polar
space Cf of Cs, by a similar argument as for C,. Denote by H := {a, b,b”) the
tangent hyperplane of Iy to C, at a. Let p be an arbitrary point in H not
contained in L. Then h(b,b”) must intersect h(c,p) in a point ¢, since both
correspond to projective lines in H. This point ¢ is contained in h(b,b") < C}
and consequently p is contained in h(c,q) € Cs. A similar argument now
shows that also all points of L must be contained in Cj.

Denote by L” the line of C, through a and b” and let L’ be a line of C}
different from L and L” through a. By the above observations the hyperbolic
line h(b,b”) must intersect L’ in a point, say b’. Similarly we find a point ¢’ as
the intersection of h(c,b”) and L’. In C% the line L corresponds to a plane 7y,
containing a, b, c. First we prove that L' and L” correspond to planes 7, and
7, respectively, of C, which intersect 77, both in the same line A. Suppose
for a first contradiction that a, b’ and ¢’ are collinear in C5. Then the plane
7 of I3 spanned by h(b,b') and h(c,¢’) must contain a, which contradicts
the fact that a, b and ¢ are not collinear in Cj. So L’ corresponds to a plane
7 in C5. Similarly one shows that also L” corresponds to a plane mp» of
C%. Then in 7 the projective lines (b, ¢y and (¥, ¢’y must intersect in a point
different from a (since a ¢ ), so the planes 77, and 7, intersect in a line of
C4. Similarly one shows that also the planes 7, and 7~ and the planes 7y
and 7z~ intersect in a line of C4. Since C4 does not contain three-dimensional
projective spaces, we get that the three planes intersect in the same projective
line A of II5.

Denote by d the intersection of the projective line (b, c) with A in 7.
We prove now that every point from L\{a} is contained in {b,c). Let p be
such a point. In IT; we see immediately that h(b,b’) must intersect h(p,c’) in
a point of C, let’s say g, collinear to a. In I3 we first get that g € h(b, V') S 7
and consequently also p € h(c,q) € 7. But p is also contained in 7 and
consequently must be contained in the intersection of these two planes, i.e.
the projective line (b, ¢y of II3. So all points of L except a are contained in one
line of C%, repeating the argument switching the roles of @ and b for example,
we find that a must also lie on this line since |K| > 2, a contradiction. o

Proposition 5.9. Let Q = C33(A,K) be an isometric subgeometry of a sep-
arable metasymplectic space A = Fy1(K,A) with K a field of order at least
3. Then Q is a trace geometry, i.e. Q = pt n g% for some opposite points
p,q€A.

Proof. Recall the point-line geometry I'q from Definition We will show
that this geometry satisfies the conditions of Lemma [5.7] which will almost
complete the proof. With Lemma [5.4] it suffices to prove that the lines of I'q
correspond to sets of points of the form {x € ¢ | x € K+ n K'*} with ¢ a
symplecton in A and K, K’ two opposite lines in £. Let L be a line of I'q.
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Let g¢,,qe,,qe, € L be points of I'g with respective corresponding symplecta
£1,& and &3 in Q and denote with L’ the line of Q contained in these three
symplecta. First we claim that g, € £(ge,, ge,)- Indeed, let ¢, (' be two symps
of Q intersecting L' in two different points. Then these correspond to opposite
points g¢, g of I'g both collinear to g, , ge,, ge, in 'a. So ¢¢,, ge,, e, are con-
tained in Erg, (gc, ger) = Co1(A, K) which is clearly embedded in the equator
geometry defined by ¢¢ and g¢ in A, that is, E(q¢, q¢r) = Cs,1(A, K). Translat-
ing our claim to this setting, it suffices to prove that every line of Er, (qc, gc)
is contained in a line of E(q¢,qc/). Taking Lemma and Lemma into
account, we see that we can apply Lemma So, we obtain ge, € £(ge,, ge,)
and denote &1, := &(qe,, ge, )-

Let now m, 7’ be two locally opposite planes through L in I'g, with
corresponding points k, k’, respectively, on L', and let g,,q be arbitrary
points of 7\L, 7"\L, respectively. Note that ¢, and ¢, are opposite in A,
since they cannot be collinear in I'g as there are no 3-dimensional subspaces
in I'g and non-collinear points of I'q, are opposite in A by the first paragraph.
However g, and ¢,~ are close to {1, as they are collinear to a point of £, (i.e.
the points k, K/, respectively), but not contained in &, (since otherwise they
are not mutually opposite in A). So, by Corollary 2.5.4 of [I6], they define
opposite lines K, K’ in &;, and all points of the line L of I'g are collinear
in A to these lines, as they must be symplectic to ¢, and ¢g,» in A. We now
prove that an arbitrary point d in £;, collinear to K, K’ is actually contained
in L. Note that d and p are symplectic, since k € K and k' € K’ (d is
not collinear to p, since this would contradict the opposition of K and K').
Now the symplecton £(p,d) of A intersects Q in a symp of Q through L by
Corollary So £(p, d) must contain a point of L € I', which must by the
previous argument be collinear with K, K’. If these lines are not contained in
the symplecton, there can at most be one point of £(p, d) collinear to both.
Since this is the case for d, we can then conclude that d is indeed contained in
L. So we need to exclude that K is contained in {(p,d) (a similar argument
shows the same for K’). Suppose that K is contained in £(p,d). Then ¢, is
close to or contained in this symplecton. The latter is impossible, since g,
is not far from this symp as it is collinear to k’. So ¢, is close to £(p,d) and
symplectic to p. Then p must be collinear to K, which contradicts L being
the only line of £;, collinear to p.

So we finally checked all the assumptions to apply Lemmal[5.7 and get a
point ¢ € A opposite p symplectic to all points of I'q. Consequently Q < ¢7
by [16, Corollary 2.5.3] and so ) is contained in a trace geometry. With
Proposition we get that Q must coincide with the trace geometry pt n
qr. o

5.3.3. Separable metasymplectic spaces of long root type over the field with
two elements. So the only separable case left are the dual polar spaces isomet-
rically embedded in Fy 1 (F2,F4). Contrary to expectations, we will encounter
here dual polar spaces embedded isometrically that are not contained in a
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trace geometry. Since this is a finite case, some counts will be done, such as
in the following lemma.

Lemma 5.10. Let C3 = C31(F4,F3) be a polar space and let oo be a point of
C3. Then C3 has 2'° embedded subgeometries isomorphic to Cp,1(F4,F2) such
that hyperbolic lines of both geometries coincide, points in the subgeometry
are collinear if, and only if, they are collinear in C3 and all the points in the
subgeometry are collinear to co. In 28 of these subgeometries the lines coincide
with lines of C3, but in the other 3-28 subgeometries no three collinear points
are contained in a line of Cs.

Proof. Consider the universal embedding of C3 in PG(5,4) as given in Exam-
ple m) and let C; be embedded in C3 such that hyperbolic lines of both
geometries coincide and points in Cy are collinear if, and only if, they are
collinear in Cs.
Let
L ={zy,29, 25,24, T5},
L' = {zh, wy.a5, 2y, x5},
L" = {af, of, «5, x5}
be three different lines of Co through the point x5. Writing z; as 4, «} as ¢/
and z! as ¢, we may assume that the following are hyperbolic lines (with
obvious notation):
11/1// 12/2// 13/3// 14/4//
21/2// 22/1// 23/4// 24/3//
31'3"  32/4" 331" 342"
41/4// 42/3// 43/2// 44/1//
Suppose first that L contains three points x1,x3,z3 of a line M of Cs.
We claim that then also x4 belongs to M. Let my be the plane of PG(5,4)
containing z1,x2,z3 and z}. Since hyperbolic lines of both geometries co-
incide and those of Cs are projective lines of PG(5,4) by Lemma ,
we conclude that mg also contains z¥, 25 and z%. The hyperbolic line 122"
yields z, € mp, and similarly the hyperbolic line 42'3” yields x4 € my. Now
x4 € {x1,22) = M, since otherwise my = {(x1,x2,x4) must be a plane of
Cs, while it contains hyperbolic lines. Similarly, z5 € M. Note that, by the
above, the line L’ is also contained in 7y and since its points are pairwise
collinear, we conclude that also L’ is a line of C3. By connectivity, Co is an
ordinary embedding in Cs, i.e. lines of Cy are lines of C3. Combining the
main result of [3] with Lemma [2.23(ii), we get that Cy is the intersection of
a three-dimensional subspace U of PG(5,4) with C3. Suppose now that all
points of Cy must be collinear to the point oo of Cg, then o0 € U” with p
the defining polarity of C3 in PG(5,4). However the line U” intersects Cs in
three points, since it is no tangent line. Denote by z, z’ the points contained
in this intersection different from oo, then Cy = - noot = 2’+ noot. Clearly
each such point x opposite oo gives rise to such a Cy. So, since C3 contains
29 points opposite o0, there are 2% such embeddings.
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So, from now on we may assume that no 3 points of any line of Cy
are contained in a line of Cz. It follows (by [6, Theorem 4.9] for example)
that each line L of C; is a non-degenerate conic in some plane 7wy of Cs.
Denote by 7p, 7} and w7 the planes of Cs spanned by the points of L, L’
and L”, respectively. We claim that 7z, 77, 77 intersect in a common line K
and that the nuclei of the corresponding conics coincide with a single point
n on K. Indeed, the plane {x1,x9,z}) of PG(5,4) contains the points 7, 25
and x%; hence the lines {z1,z2) and {(zf,z}) intersect in a point z12 # 5.
Similarly the line {x/, %) must intersect both {(x1,z2) and {(x7,x%). Since
C3 has rank three, we get that this is also in the point z15. Hence the line
K := (x5, z12) is contained in each of the planes 7,7} ,77. If we define z;
as {z;} = K n{x;,xj), 1 <i < j < 4, then, similarly as above, we have
{z1;} = K n (a},2)) = K n(2],27), 2 < j < 4. Hence the nucleus of the
conic L in 7, is the unique point n of K\{xs, 212, 213, 214}, and the same
holds for the nucleus of L’ in 7} and the nucleus of L” in #7. The claim is
proved. By connectivity the nucleus of the conic corresponding to any line of
Cs inside the plane it spans on C3 is n. Hence all points of C, are collinear to
a common point n of Cz, and n corresponds to the point o0 in the statement
of this lemma. Let II be the 4-space of PG(5,4) spanned by cot. Then IT
contains C.

Now consider at the embedding of C, in PG(3,4) as in Example [2.8](i7).
Let m be a plane in PG(3,4) that is not a tangent plane to Cy. Then
intersects Cq in an ovoid O of Cy (a set of points intersecting each line of Cy
in exactly one point), which forms an affine plane AG(2,3) of order 3 when
structured with its hyperbolic lines. Consequently also in IT the points of O
are contained in a plane 7’. Now let h,h',h” be parallel lines of AG(2,3).
Define then the following hyperbolic lines of Co: g := ht, ¢ := W't and
g" := h"*. Let x be a point of g (and consequently also of C5). We now claim
that the 3-space X := (O, z) of II intersects Cy exactly in the 18 points of Cs
contained in the hyperbolic lines h, h',h”, g,¢ and ¢g” and that these form a
2-ovoid O (a set of points intersecting each line of Cy in exactly two points).
First we prove that these 18 points are contained in 3. This is clear for the
points of h,h’ and h”. Note that in PG(3,4) the projective lines containing
g,g and h" are contained in the (projective) plane (h n h')*. Clearly this is
also a non-tangent plane intersecting Cs in an ovoid and consequently these
three hyperbolic lines are also coplanar in IT and contained in ¥. Similar one
proves that ¢” is contained in X.. The fact that every line of Cy intersects this
set of points O in exactly two points follows immediately by the fact that 7
is a hyperplane of PG(3,4) and the definition of the lines g, ¢’, g”. So suppose
for a contradiction that there exists a point a in (Co N X)\O2. By the above
we then find two other points b,c of Co N X on a line of Cy with a, so the
points a, b, c,00 are coplanar in II. This implies that also oo is contained in
Y. This is impossible since then the projective line (o0, ) must intersect the
plane 7', necessarily in a point of h, contradicting the fact that z and this
point must lie on an conic with nucleus co.
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Now let Ly, Lo, L3, Ly and Ls be different lines of C3 through oo, such
that the first three are pairwise locally opposite, L4 is coplanar with Lo
and with Lz, and L is contained in the plane (L3, Ly). We claim that Cs is
completely determined by its points on these lines. Clearly, every C, gives rise
to exactly one point on each line. We now prove that given 5 points y; € L;,
with 1 < ¢ < 5, such that y5 ¢ {(ys,ys), there exists at most one possible Cy
embedded in C3 such that the assumptions of the lemma are satisfied and
no three collinear points of Cy are contained in a line of C3. We first show
that y1, y2, ys and y4 determine the only 18 points of Cy in the 3-dimensional
space spanned by them. First note that, with similar reasonings as before, Cg
intersects the plane m := (y1,y2,ys) of II in exactly nine points forming an
AG(2, 3) when structured with its hyperbolic lines. Since the hyperbolic lines
of C5 and C3 coincide and an AG(2, 3) is spanned by three non-collinear points,
these nine points must be contained in Cs (and no other of 7). Now applying
the same reasoning to the planes (y4,l) and (y4,"), with [,I’ the two lines
parallel to, but disjoint from the line through ys and ys in this AG(2, 3), one
finds 8 more points of Cs in the 3-dimensional space {y1, Y2, ys, y4). One shows
easily that these 18 points are in the same configuration as in the previous
paragraph, and those are then all the points of C; in this 3-dimensional space
and form a 2-ovoid in Cs by the reasoning at the end of that paragraph. Now
all the other points are determined by the fact that four points of PG(2,4) no
three on a line determine a unique hyperoval of PG(2,4) (a set of six points no
three of which collinear) and the geometry of 27 points and 27 lines obtained
from C5(4,2) by removing the points of a 2-ovoid is connected. The latter is
the case since three points of C5(4,2) on a line not contained in the 2-ovoid
are collinear to 12 other points of Cs not contained in the 2-ovoid, so each
connected component of the new geometry contains at least 15 points, which
is more than half, and hence there is only one component.

For the points y1, %2, y3,y4 and ys there are 3 - 4* possible choices. If we
can prove that there exists at least one geometry C, = Cy1(4,2) satisfying
the assumptions in the statement of the lemma while no three collinear points
of C, are contained in a line of C3, we can conclude that there are exactly
3-2% such subgeometries in Cz by the following reasoning. We already proved
that for given y; with 1 < ¢ < 5 there exists at most one Cy through them
in the previous paragraph. However we can transform our example to one
through these points, so there is at least one as well. This transformation
goes as follows. Let y; denote the point on L; of C, for 1 < i < 5. First apply
the translation of II with center oo that maps the hyperplane <y}, y5, ¥4, ¥4
to the hyperplane (y1, Y2, y3, y4) and denote by yZ the image of yf under this
map. Then apply the homology of IT with center oo and axis (Y1, Y2, Y3, Ya)
that maps y7 to ys. As a composition of collineations, this is a collineation
of IT fixing o0 and preserving the necessary conditions for C,.

To conclude the proof, we construct such an example C;. Let C3 be given
as in Example zz) and let o0 be the point with codrdinates (0,0,0,0,0,1).
Then IT has equation z_3 = 0 and the points of cot in this space are given
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by 22,29 + 2% 21 + 2321 + 232_5 = 0. After a codrdinate transforma-
tion, we can denote the points of IT with codrdinates (21, 22, 23, 24, 25) such
that oo has codrdinates (0,0,0,0,1) and the points of cot are exactly those
with 23 + 25 + 23 4+ 2z} = 0. We then choose the points of C) to be those
with 2§ + 25 + 23 + 23 = 0 and 25 = 21222324. These are well-defined since
€t = ¢, for each ¢ € Fy. By explicitly enumerating all points (an elemen-
tary exercise which we shall not do), one checks that the set of these points
together with the line set existing of sets of points contained in the same
plane of Cg through co form a point-line geometry isomorphic to Cz1(4,2).
Points are then collinear in C) if, and only if, they are in Cz. Further-
more there is at least one line of C, not contained in a line of C3, namely
{(1,1,1,1,1),(1,1,0,0,0),(0,0,1,1,0), (1, 1,¢,¢,¢€2), (1,1,€2, €2, €)}, so by the
second paragraph of this proof, we get that all lines are like this. To finally
conclude that C) is indeed an example of a geometry described in the previ-
ous paragraph, one only has to check that it is closed under taking hyperbolic
lines in C3. So suppose we have two noncollinear points of C,. Note that the
geometry is preserved under the following automorphisms of II: multiplying
the last coordinate and one other codrdinate with a non-zero element; per-
muting the four first codérdinates; the field automorphism of F,. If one of the
points has only nonzero codrdinates, we can suppose without loss of generality
by the above that it is (1,1,1,1,1). Then we can again by the above suppose
that the other point is one of the following three: (1,¢,0,0,0), (1,1,¢,€2,1)
and (1,1,1,¢,¢) where Fy = {0, 1,¢,€2}. One sees immediately that the third
point on the hyperbolic line through these two is now contained in C, since it
has codrdinates (e2,¢,1,1,1), (0,0,¢2,¢,0) and (1,1,1, €2, €2) respectively. If
now both points have codrdinates equal to zero, we can suppose without loss
of generality that the first one has cooérdinates (1,1,0,0,0) and the second
(1,60,0,0) or (1,0,1,0,0). Then the third point on the hyperbolic line is
also contained in C) since it is (1,€2,0,0,0) or (0,1,1,0,0), respectively. o

Lemma 5.11. Let A = Fy 1(F2,F4) be a separable metasymplectic space and
let 0 be a point of A. Then oot contains 222 subgeometries Q) ~ C3,3(F4,F2)
embedded isometrically in /. For 220 of these subgeometries, each line in T'q
is contained in a symp of A; while for the other 3-22° subgeometries no three
points on a line of ' are contained in a symp of A.

Proof. Let Q =~ C33(4,2) be isometrically embedded in oot. By Proposi-
tion 18] oo is the only point of A collinear to all points of £ and each line
through oo contains exactly one point of Q. Let now &8 and & be two locally
opposite symps of A through p and define &; := & n Q. Then §; is a symp
of Q by Corollary Let finally (qo,q1) be the pair of points such that
ol ngt =QnEA for i = 0,1, which exists by Lemma @L

Note that there are in total 26 - 26 = 212 possibilities for (qo, q1) as pair
of points with ¢; € £* opposite .

Fix now such a pair (go, g1). We determine how many isometric subge-
ometries 2 = C33(4,2) of oo’ correspond to this pair, such that oot n g =
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QnEr By Lemmaand Lemma Er, (g0, q1) is an embedded subgeom-
etry of E(qo, ¢1) with the properties described in Lemma We claim that
Q is completely determined by this Er,(go,q1). Note that, since each plane
of Tq =~ C31(4,2) has at least one point in common with the intersection
of two point-perps, the point set of € coincides with the union of all sets
ot ngt, with ¢ € Fry,(qo,q1). Now we determine the line set of Q. There
are two different types of lines, so the line set is the union of the two sets
described in the rest of this paragraph. First we have the lines that are con-
tained in some oot N ¢, with ¢ € Er,,(qo, ¢1). These correspond with lines of
I, intersecting or contained in Er,(qo, ¢1). They are determined in the same
way as we determined the point set: it are the lines contained in oot N ¢t
for some q € Er,(qo,q1). The second type of lines are those not contained
in any such oot n ¢, with ¢ € Er,(qo,q1). So they correspond to lines of
I'q disjoint from Er,(qo, q1)- Each such line L’ existing of the points z’, 3/, 2’
in Q corresponds in I'g to three planes m,,m,, 7, respectively intersecting
in a line L of I'g. However each of these planes intersects Fr(qo,¢1) in a
point, let’s say x,y, z respectively, forming a hyperbolic line of Er,(qo,q1)-
The latter can be seen as follows: look at the universal embedding of I'q
in PG(5,4), then Er,(q0,q1) = ¢5 N ¢i and (7, m,, 7,y = L+ are intersec-
tions of I'g with 3-dimensional subspaces by the main result of [3] combined
with Lemma m(”)v so these subspaces intersect in a projective line. Let
now &g, &y, &2, respectively, be the symps in {2 corresponding to these points.
Then L' must be a line intersecting those symps. Now by Lemmal[5.5] keeping
in mind that in this case the number of points is finite, we get that the hy-
perbolic lines of Er,(qo,q1) are just those of E(qo,q1) completely contained
in the point set of Er,(qo, ¢1). Furthermore the number of lines collinear to z
and z in I'g (which is the number of lines in Cy (4, 2)) is exactly the same as
the number of lines intersecting &,, &, and &., (which is the number of points
in B31(2,4)). So we can reconstruct the lines of the second type by taking
all lines intersecting each three symps of {2 corresponding to the three points
on a hyperbolic line of E(qo, q1) contained in Er,(qo,q1)-

Let now Cy = C51(4,2) be embedded in E(qo, ¢1) such that hyperbolic
lines of Cy coincide with hyperbolic lines of E(qo, g1), points are collinear in
Cy if and only if they are in E(qgo,g1) and all points of Cy are collinear to
00. We claim that using the methods described in the previous paragraph to
construct a point set and a line set (with two types of lines), we get an Q
satisfying the conditions in the beginning of the previous paragraph. Note first
that we reconstruct the correct amount of points and lines by the previous
paragraph. Furthermore these lines are clearly full. If we can now prove that
every line through oo contains at most one point of the constructed point
set, we get that the embedding is also isometric and isomorphic to Cs 3(4,2).
Suppose for a contradiction that one line M through oo contains two points
of the constructed set, let’s say m and m’. Then there exist points n and n’

in Cy such that m € ot A nt and m’ € oot A n/t. But then the symplecta
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&(oo,n) and &(oo,n’) of A intersect in a plane and n and n’ are symplectic.
This yields m = m’ by Proposition [Point-Symp], a contradiction.

So the number of possibilities for § given o is equal to 2'2 times 2'°
by Lemma [5.10] Let now 2 be such a subgeometry. We claim that as soon as
some symplecton of A contains three points of a line of ', each line of T'q is
contained in a symplecton. Recall therefor that lines of an equator geometry
of a metasymplectic space are given by the intersection of the point set with
symplecta. Suppose that three points of the line N of ', are contained in one
symplecton of A and let M be another arbitrary line of I'q. Let 7, 7’ be two
locally opposite planes in I'g through N. Suppose first that M is opposite
N in T'g and denote by 7,7’ the respective projections of M onto m and 7’.
Then both N and M are contained in Er,(r,7’) which is again by Lemma[5.4]
and Lemma a subgeometry of E(r,r’) as described in Lemma Since
three points of N are contained in a line of E(r,r’) by assumption, the latter
lemma implies that both N and M are lines of E(r,r’) and consequently
each contained in a symplecton. If now M is not opposite N, then we find a
line M’ of T'q; opposite both by Proposition 1.6.16 of [23] and can apply the
previous reasoning twice to get the same conclusion, which proves the claim.
It is now clear that the last statement of this lemma now also follows from

Lemma [5.10 o

The following result was already known and proved by Yoshiara in |24,
§7.2]. However we give here an alternative proof that only uses elementary
geometry and the existence of the metasymplectic space F4 1(2,4).

Corollary 5.12. The embedding rank of C33(4,2), the dual polar space related
to the unique non-degenerate Hermitian variety in PG(5,4) (also denoted by
DH(5,4)), is 22.

Proof. Let @ = C33(4,2) be a dual polar space related to the unique non-
degenerate Hermitian variety in PG(5,4) and denote by n its embedding rank.
Let A be the Fa-cone over €. More exactly, let oo be an additional point, and
define for each point p of Q an additional point p’ (not belonging to ). Then
the points of A are oo, all points p of  and all points p’. The lines are all lines
of Q, the subsets {0, p,p’}, with p a point of , and, for each line {p, ¢, r} of
Q, the subsets {p, ¢, 7'}, {p’,¢,7'} and {p', ¢, r}.

We now show that the number of isometrically embedded geometries
isomorphic to 2 in A equals 2". It is obvious that the embedding rank of A is
n+1. Suppose now that we have a universal embedding of A in PG(n, 2). Then
every hyperplane of PG(n, 2) not containing oo intersects A in an isometrically
embedded subgeometry isomorphic to 2. Conversely, let d be the (projective)
dimension of the subspace of PG(n, 2) spanned by an isometrically embedded
geometry in A isomorphic to €2. Then, by the definition of embedding rank,
we have d < n — 1. This inequality must be an equality, since adding the
point o0 gives a set spanning the whole space PG(n,2) (note that by the
finiteness every line of A through co must contain exactly one point of the
subgeometry). It follows that the number of fully embedded geometries in A
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isomorphic to €2 and not containing oo is equal to the number of hyperplanes
in PG(n,2) not containing oo, i.e. 2™.

Let now A and o be as in Lemma then clearly cot =~ A. It is
obvious that a subgeometry of oot is embedded isometrically in A if, and
only if, it is in 0co. So when we combine the result in the previous paragraph
with Lemma [5.17] we get that n = 22. o

The following is an immediate consequence of the previous two results.

Corollary 5.13. Let A be the Fy-cone over Q = C3.3(4,2). If A is embedded in
IT = PG(22,2) such that § is embedded universally, then there is a bijection
between the hyperplanes of I1 not containing the vertex of the cone and the
isometric subgeometries of the cone isomorphic to €.

Lemma 5.14. Let A =~ Fy;1(F2,Fy) be a separable metasymplectic space and
let p,p’ be two opposite points of A. Then there exists a full embedding of A
in a projective space such that p= n p'% is embedded in the standard way in
PG(19,2).

Proof. Let ¢ be a prime power. Look at the following chain of full embeddings:
Cs,3(¢°,9) € Fa1(q:4°) < Es2(q) < PG(77,q).

The last embedding here is due to section 4.3 of [I] and this is homogeneous.
The middle embedding is by Galois descent due to [2I]. Note now that Galois
descent preserves homogeneity, again by [21].

Let now ¢ = 8. Then the embedding of C3 3(64, 8) induced by the above
chain is the standard (and universal) one in PG(19,8), since this is the only
homogeneous embedding by [§].

Applying now Galois descent from Fg to Fy (by using the irreducible
polynomial 22 + x + 1) to the whole chain above gives an embedding of
F41(2,4) inducing the standard embedding of C3 3(4,2) in PG(19,2), by ho-
mogeneity. o

Finally we are now able to prove Main Result [A]

5.3.4. Proof of Main Result A. Lemma yields 2 = C33(B,K) for some
quadratic alternative division algebra B over K. Combining then Proposi-
tion [£:4) and Lemma yields that the embedding is isometric or we are
in case (i7). So from now on we may assume isometricity. Then with Propo-
sition we find a unique point p of A such that Q < p' and each line
through p contains at most one point of .

Suppose now that K # Fy and let ¢ be a point of A opposite p. Then
pt N ¢ is isomorphic to Cs,3(A,K) by Lemma and can be universally
embedded in PG(6n+7,K) by []], where n = dimg(A). Consequently the cone
with vertex p and base this p~ N ¢# can be embedded in II := PG(6n + 8, K).
Let €' be the projection of Q from p onto pt N ¢#. Then ' =~ C33(B,K)
and if we denote by S’ the subspace of II spanned by the points of £, we get
that €' is embedded universally in S’ by Lemma and B is a subalgebra
of A. So the dimension of S equals 6d + 7 with d = dimg(B). This implies
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that also the dimension of the subspace S of II spanned by the points of Q2
has this dimension and that S does not contain p. So we can extend S to a
hyperplane H of II not containing p which intersects the cone in a geometry
Qs = C33(A,K). The latter is clearly isometrically embedded in A. Now
Proposition [5.9] yields that Q4 is a trace geometry, which leads immediately
to case (7). Note that the last statement of that case is just Lemma

If now K = Fy, then A = F, by the separability. Suppose first that
Q = C33(4,2). Then we get by Lemma that it is possible that Q is
(contained in) no trace geometry, since for trace geometries, Er, must be an
equator geometry and must consequently have lines contained in symplecta.
This also follows from the following counting argument. One counts that p has
221 opposite points in A. Each such point gives rise to a trace geometry in p=.
Let now ¢ be such a point opposite p. Then € (p, ¢) contains one more point,
let’s say ¢'. Now E(p,q) = E(p,q’) by Lemma 2.10.4 of [23] and consequently
the trace geometries pt N ¢# and pt N ¢'F coincide as well. So we have at
most 220 trace geometries contained in pt, which shows that case (iii) does
occur for Q = C3 3(4,2) when combined with Lemma

Suppose now that 2 = C3 3(2,2). It is clear that Q can be contained in a
trace geometry. We now show that it is also possible that €2 is not contained
in a trace geometry. Let ¢ be a point opposite p and let A be embedded as in
Lemmasuch that p ng# is embedded in a standard way in PG(19,2). We
claim that the cone over this geometry with vertex p is embedded in PG(20, 2).
Indeed, the only other option is PG(19,2), in which case p is contained in the
subspace spanned by all points of ¢7, contradicting the observation in [I] that
the embedding of A is polarized, that is, for each point x of A, the subspace
spanned by all points of A not opposite x is a proper subspace and hence
does not contain any point of A opposite . Since p N ¢7 is the intersection
of this cone with a hyperplane, since the embedding of A is homogeneous,
since the stabilisator of p in A acts transitively on the points opposite p by
the BN-pair property due to Tits (see |20, Theorem 5.2]) and since there are
exactly 220 trace geometries in the cone and hyperplanes in PG(20,2) not
through p, every trace geometry corresponds to such a hyperplane.

We now take a look at the projection of the cone with vertex p over the
universal embedding of pt N ¢7 in Ilyy = PG(22,2) (let’s say K’) onto the
cone with vertex p over the standard embedding (let’s say K). Then K is the
projection of K’ onto a subspace Ilyg = PG(20, 2) from a line L (disjoint from
K’ and Tly). By Corollary and the previous paragraph, the hyperplanes
through L not containing p intersect K’ in a trace geometry, while those
not through L not containing p intersect K’ in an isometric subgeometry
isomorphic to Cz3(4,2) that is no trace geometry. Let Q' = Cz3(4,2) be
such an isometric subgeometry of K’ that is not a trace geometry, denote
with II5; the subspace it spans and denote with L’ the intersection of IIa;
with {(p, L) (L' is a line not through p different from L). Note that then
Iy < Iy = PG(21,2). Let ' = C33(2,2) be an isometric subgeometry of
. By Lemma Q' spans a 14-dimensional projective space II;4, which
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must intersect I in a subspace not containing p, so we can take a hyperplane
IT19 of II5y containing I114 N II5¢ but not containing p. Now projecting €2’ onto
this g from {p, L) yields the standard embedding by Lemma This
implies that II14 NIl is 13-dimensional and the unique point p’ of 1114 from
which we can project €’ onto its standard embedding, is contained in L’.
By combining the last statement of Lemma with the homogeneity of the
universal embedding, the case p’ # LN L’ does occur. In that case, there are no
hyperplanes containing IT;4 and L not through p and consequently €’ is not
contained in a trace geometry. So this ' is projected onto some Q = C3 3(2, 2)
isometrically embedded in A not contained in a trace geometry. Note that by
the previous reasoning, it is clear that exactly half of the C53(2,2) that are
isometrically embedded in F4 1(2,4), are not contained in any trace geometry.

The uniqueness up to isomorphism of the embeddings described in Main
Result [Af(éi) follows from some transitivity arguments. Note first that the
group of automorphisms of Il induced by an automorphism of K (i.e. the
extension of the corresponding automorphism on K'), are exactly the auto-
morphisms of ITy5 induced by automorphisms of K’ that stabilise L. We will
restrict ourselves to these automorphisms for the rest of this proof. It follows
similarly as before from Lemma [3.4] that they act transitively, more exactly
cyclically, on the set of three lines of (p, L) not containing p and different from
L. So for the case 2 = C3 3(4,2) it suffices to prove that this group also acts
transitively on the set of hyperplanes through such a line. This is the case
since the group acts transitively on the set of hyperplanes through L as these
correspond to hyperplanes of Ilyy, but at the same time, the automorphisms
fixing such a hyperplane through L act transitive, more exactly, cyclically, on
(the set of points of) L. So the automorphism group G pointwise fixing L (and
consequently {p, L) ), also acts transitively on the set of hyperplanes through
L. This now implies that G also acts transitively on the set of hyperplanes
through any other line of {p, L) not containing p by a counting argument,
taking into account that the stabilisers of such hyperplanes all have the same
size.

So suppose now that Q =~ Cj3 3(2,2). By the arguments of the previous
paragraph we only have to show that it can be mapped to any other ' x~
Cs3,3(2,2) that has the same projection point py in {p, L) and is contained in
the same Qy = C33(4,2), by an automorphism of K’ stabilising L. Now, all
of Q,€ and Qg are embedded in K’. Inside the hyperplane Hy containing
Qop, there clearly exists an automorphism of €y mapping 2 to €’ and one can
extend that automorphism uniquely to one, say ¢, of Ilsy by assuming that
also p is fixed. Then K’ is stabilised. We only have to show that also L is
stabilised. Clearly, ¢ stabilises the unique line Ly of {p, L) contained in Hy,
and it fixes pg € Lg by assumption. Since the stabiliser of €y inside Hy acts
cyclically on the points of Ly, ¢ pointwise fixes Lg. Since it aso fixes p, it
pointwise fixes (p, L) and the proof is complete. o

Remark 5.15. Note that similar arguments as in the last part of the above
proof, could also be used to proof that there are indeed geometries isomorphic
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to Cs3(4,2) isometrically embedded in F41(2,4) not contained in a trace
geometry. In this way, Lemma [5.10] and Lemma [5.11] would be redundant,
but then the embedding rank of Cs3(4,2) is needed and so one uses [24]
§6.5]. The authors found it more interesting to give an explicit proof that
this can be done without using that and even prove that fact. However, for
the geometries isomorphic to Cs 3(2,2) isometrically embedded in F41(2,4)
not contained in a trace geometry, we did make use of the results in [24] to
limit the length of the article.

6. The inseparable case

Let A be a metasymplectic space Fy 1 (K, K') with K a field of characteristic 2
and K’ a (possibly trivial) inseparable (multiple) quadratic field extension of
K, i.e. (K)? < K < K'). Then as for the metasymplectic space Fy 1(F2,Fq), A
contains many dual polar spaces of rank 3 fully and isometrically embedded,
but not contained in a trace geometry. Since one can no longer count in this
case and our interest does not lie in classifying exactly those, we provide an
example of such an embedding. Note that by Proposition this geometry
will still be contained in the perp of a point. Also, by our observations in
the introduction, it should arise from the universal embedding of a point
perp. The difficulty is to explicitly exhibit such an embedding and show it is
not contained in a trace. Our technique consists in choosing a symp that is
already not embeddable in a trace.

Ezxample 6.1. Let p, ¢ be two opposite points of A and let © be the point-
line geometry consisting of the points in p* N ¢# and the lines completely
contained in this set. Then @ = C;3(K’,K), since it is isomorphic to the
point residual of p. Let (* be a symp of A through p. This intersects 2 in a
quadrangle ¢ = pt n qCl with g¢ the unique point of (* symplectic to g.

We now take a look at the universal embeddings of (4,¢ and Q. Let (4
be given by the equation

T_3T3 + T 22 +T_121 = x%

with (z_3,7_2,7_1,%0,71,72,73) E K x Kx K x K x K x K x K where x
can be written as (x,0,Z0,1,...) I K = KxKx--- (dimg(K’) factors). Fur-
ther assume that p has codrdinates (1,0,0,0,0,0,0) and g has coérdinates
(0,0,0,0,0,0,1). Then ¢ is given in this projective space by the system of
equations

T_oXy +T_12x1 = x%,

r3 = 0,

r_3 = 0.
However, by Remark we can embed € in a projective space II' over K,
such that ¢ (as subspace of ) is universally embedded. Let the cone with

vertex p over §) be embedded in a projective space II over K of one dimension
more than II’ such that the induced embedding of Q is the one described in
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[8]. Then the universal embedding of the cone with vertex p over ( arises as
the intersection of a subspace S of II with this embedding.

Now let ¢’ be the intersection of (* with the subhyperplane x3 = z_3 +
x0,0 = 0. Then ¢’ is isomorphic to By 1 (K, K’). It is clearly contained in the
cone with vertex p over ¢ and it arises in the universal embedding of the latter
as the intersection with a hyperplane H of S not containing p. Consequently
it is embedded in the cone with vertex p and base ) as the intersection of a
subspace H of Il not containing p. So we can extend this H to a hyperplane
H’ of TI not containing p. Denote by ' the intersection of the cone with H’.
This is clearly an isometric subgeometry of A isomorphic to C3 3(K', K).

So suppose now for a contradiction that it would be contained in a trace
geometry, let’s say Q' € pt N ¢’# with ¢/ some point of A opposite p. Then
Q' A (A = ¢ must be contained in pt N q'gL with g¢ the unique point of ¢*
symplectic to ¢'. So ¢; = (y-3,Y-2,...,y3) € (* is collinear to all points of ¢’
in ¢A. All points pap.c = (a,1,b,a,c,a®+be,0) with a, b, ¢ € Fo are contained
in ¢'. Expressing that g; L po,0,0 yields yo = 0, that ¢ L po,1,0 yields y1 = 0,
that g L poo,1 yields y—1 = 0, that also g¢ L po1,1 yields y_» = 0 and that
q/C 1 p1,0,0 yields y3 = 0. Finally expressing that qg is contained in (4, yields
yo = 0, which means q’c = p, a contradiction.

Note that the following proof could be given before this example. How-
ever the example concludes that all cases of Main Result [C] do occur.

Proof of Main Result[(] With Lemma we get that Q = C33(B,K) for
some quadratic alternative division algebra B over K. Combining then Propo-
sition [£.4] and Lemma yields that the embedding is isometric or we are
in case (7i¢). Note that the latter indeed occurs sometimes by Example [4.14
So from now on we may assume isometricity. Then with Proposition [4.15
we find a unique point p of A such that © < p and each line through p
contains at most one point of . Let now ¢ be a point of A opposite p. Then
pt N g% is isomorphic to C3 3(A, K) by Lemma so after projection of Q2
onto pt N ¢, we get a full embedding of C3 3(B,K) into Cs3(K’,K). This
implies by Lemma [£.12] that B(=: K”) is a subalgebra of K'. Finally both (i)
and (i7) occur by Lemma (which also proves the last statement of (7))
and Example respectively. =

Remark 6.2. Call an isometric embedding of a dual polar space €2 in a meta-
symplectic space A mazimal if every line through the unique point p of A
collinear to each point of €2 contains a point of 2. Using arguments similar to
the ones in the proof of Main Result|A|for the case (K, A) = (F3,Fy4), one can
refine the statements of Main Result z) and (i¢) for maximal embeddings as
follows. First suppose K # Fy. Then the universal embedding of Cs 3(K’, K)
is the standard one, say in PG(V'), with V' as defined just before Remark
This has a nucleus space N of codimension 7, just like in the case K = Fs,
cf. the proof of Lemma [4.11] Now embed PG(V') in a projective space PG(V")
as a hyperplane and consider the cone with base Cs3(K',K) < PG(V) and
vertex some point p in PG(V”) not in PG(V'). Then there is a natural bijective
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correspondence between the maximal isometric embeddings of Cs 3(K', K and
the hyperplanes H of PG(V’) not containing p. Moreover, the hyperplanes
through IV precisely correspond to the traces.

In particular, for a perfect field, the nucleus subspace N has dimension
5 and the automorphism group acts transitively on the hyperplanes. This
implies that, in the perfect case, there are, up to isomorphism, exactly two
maximal isometric embeddings of a dual polar space. In the finite case, say
K = Fy, this implies that, for a given point p of A, the number of embedded
dual polar spaces in p* is equal to ¢'*, from which 2% are a trace. If we call a
symp £ of an isometric embedded dual polar space straight if it arises as the
intersection of two point perps in its ambient symp £4, then every embedding
of C33(F,,F,) in A that is not a trace contains precisely ¢° symps that are
not straight (that is, the number of points of N\H).

If K = Fg, the universal embedding of Cs 3(K,K) happens in PG(14, 2)
and hence, similarly as before, there are 2'® embedded dual polar spaces in
pt, fr a given point p of A. This time, the nucleus subspace of the universal
embedding has the structure of an orthogonal (parabolic) space (meaning
that the set of nuclei of the symps forms a parabolic quadric @), which itself
has a nucleus point n € N. This implies that, up to isomorphism, there are
exactly three embeddings of dual polar spaces: 2% traces (the hyperplane
H, with above notation, contains N), 2'* — 2% embeddings with exactly 2°
symps that are not straight (the hyperplane H contains n but not N), and
2% embeddings with exactly 2° — 22 = 28 symps that are not straight (the
hyperplane H does not contain n and hence intersects () in a hyperbolic
quadric). We omit the details of the proofs.

It now also follows that, in the standard embedding of F44(K,K) in
PG(25,K), every hyperplane section in the subspace spanned by p*, for any
point p of F44(K,K), is a trace. This now holds for every field K.

Data availability statement

There was no data generated for this research.

Acknowledgment
The second author is supported by the Fund for Scientific Research, Flanders,

through the project G023121N. The authors have no competing interests to
declare that are relevant to the content of this article.

References

[1] R. J. Blok, Highest weight modules and polarized embeddings of shadow spaces,
J. Alg. Combin. 34 (2011), 67-113.

[2] F. Buekenhout & A. Cohen, Diagram geometry Related to classical groups and
buildings, EA Series of Modern Surveys in Mathematics 57, Springer, Heidel-
berg, 2013.

[3] I. Cardinali, L. Giuzzi & A. Pasini. Nearly all subspaces of a classical polar
space arise from its universal embedding, Lin. Alg. Appl. 627 (2021), 287-207.



Dual polar spaces embedded in metasymplectic spaces 57

[4] A.M. Cohen, An axiom system for metasymplectic spaces, Geom. Dedicata 12
(1982), 417-433.

[5] B. N. Cooperstein & H. Van Maldeghem, Subgeometries in exceptional Lie
incidence geometries, Bull. Belg. Math. Soc. Simon Stevin 31 (2024), 446-463.

[6] B. De Bruyn. An introduction to Incidence Geometry, Frontiers in Mathemat-
ics, Birkhauser, Basel, 372pp, 2016.

[7] B. De Bruyn & H. Van Maldeghem, Non-embeddable polar spaces, Miinster J.
Math. 7 (2014), 557-588.

[8] B. De Bruyn & H. Van Maldeghem, Dual polar spaces of rank 3 defined over
quadratic alternative division algebras, J. Reine Angew. Math. 715 (2016), 39—
74.

[9] A. De Schepper, N. S. N. Sastry & H. Van Maldeghem, Buildings of exceptional
type in buildings of type E7, Dissertationes Math. 573 (2022), 1-80.

[10] A. De Schepper, O. Krauss, J. Schillewaert & H. Van Maldeghem, Veronesean
representations of projective spaces over quadratic associative division algebras,
J. Algebra 521 (2019), 166-199.

[11] A. De Schepper, J. Schillewaert, H. Van Maldeghem & M. Victoor, Construc-
tion and characterization of the varieties of the third row of the Freudenthal-
Tits magic square, Geom. Dedicata 218 (2024), Paper No. 20, 57pp.

[12] A. De Schepper & H. Van Maldeghem, Veronese representation of Hjelmslev
planes over Cayley-Dickson algebras, Results Math. 75 (2020), paper No 9,
51pp.

[13] A. De Schepper & H. Van Maldeghem, On inclusions of exceptional long root
geometries of type E, Innov. Incid. Geom. 20 (2023), 247-293.

[14] J. W. P. Hirschfeld & J. A. Thas, General Galois Geometries, Springer Mono-
graphs in Mathematics, Springer-Verlag London, 2016.

[15] O.Krauss, J. Schillewaert & H. Van Maldeghem, Veronesean representations of
Moufang planes, Michigan Math. J. 64 (2015), 819-847.

[16] L. Lambrecht & H. Van Maldeghem, Automorphisms and opposition in spheri-
cal buildings of exceptional type, III. Metasymplectic spaces, submitted. Avail-
able at https://cage.ugent.be/~hvm/artikels/DomesticF4-submit.pdf

[17] A. Pasini & H. Van Maldeghem, An essay on Freudenthal-Tits polar spaces, J.
Algebra 656 (2024), 367-393.

[18] S. Petit & H. Van Maldeghem, Generalized hexagons embedded in metasym-
plectic spaces, J. Korean Math. Soc. 60 (2023), 907-929.

[19] G. Pickert, Projektive Ebenen, Springer-Verlag, Berlin, 1955.

[20] J. Tits, Buildings of Spherical Type and Finite BN-Pairs, Springer Lecture
Notes Series 386, Springer-Verlag, Berlin, 1974.

[21] J. Tits, Classification of simple algebraic groups, in Algebraic groups and dis-
continuous subgroups, Proc. Summer Mathematical Inst., Boulder, July 5—
August 6, 1965, Proc. Symp. Pure Math. 9, Amer. Math. Soc., Providence,
RI (1966), 33-62.

[22] H. Van Maldeghem, Generalized Polygons, Modern Birkhatiser Classics,
Birkhaiiser Verlag, Basel, 1998.

[23] H. Van Maldeghem, Polar Spaces, Miinster Lectures in Mathematics, Europ.
Math. Soc. Press, 2024.



58 Linde Lambrecht and Hendrik Van Maldeghem

[24] S. Yoshiara, Embeddings of flag transitive classical locally polar geometries of
rank 3, Geom. Dedicata 43 (1992), 121-165.

Linde Lambrecht

Department of Mathematics, Statistics and Computer Science,
Ghent University,

Krijgslaan 281, S9,

B-9000 Gent,

Belgium

e-mail: Linde.Lambrecht@UGent.b

Hendrik Van Maldeghem

Department of Mathematics, Statistics and Computer Science,
Ghent University,

Krijgslaan 281, S9,

B-9000 Gent,

Belgium

e-mail: dHendrik.VanMaldeghem@UGent .be



	1. Introduction
	2. Preliminaries and statement of the Main Results
	2.1. Point-line geometries
	2.2. Polar and parapolar spaces
	2.3. Main Results
	2.4. Some more preliminaries

	3. Veronese varieties
	4. Isometricity and locality
	4.1. Isometricity
	4.2. Collinear to a point

	5. The separable case
	5.1. Separable metasymplectic spaces of short root type
	5.2. A consequence
	5.3. Separable metasymplectic spaces of long root type
	5.3.1. General considerations
	5.3.2. Separable metasymplectic spaces of long root type over a field of at least three elements
	5.3.3. Separable metasymplectic spaces of long root type over the field with two elements
	5.3.4. Proof of Main Result A


	6. The inseparable case
	Data availability statement
	Acknowledgment

	References

