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Abstract5

Given a finite Lie incidence geometry which is either a polar space of rank at least 36

or a strong parapolar space of symplectic rank at least 4 and diameter at most 4, or the7

parapolar space arising from the line Grassmannian of a projective space of dimension at8

least 4, we show that its point graph is determined by its local structure. This follows9

from a more general result which classifies graphs whose local structure can vary over all10

local structures of the point graphs of the aforementioned geometries. In particular, this11

characterises the strongly regular graphs arising from the line Grassmannian of a finite12

projective space, from the half spin geometry related to the quadric Q+(10, q) and from the13

exceptional group of type E6(q) by their local structure.14
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1 Introduction17

Let, with standard notation, Γ = (V,∼) be a graph and for each v ∈ X, let Γ(v) be the local18

graph at v, that is, the graph induced on the neighbours of v. We say that a graph Γ is locally19

isomorphic to a graph Γ′ if the set of local graphs {Γ(v) | v ∈ V} is a subset of {Γ′(v′) | v′ ∈ V ′}20

(identifying isomorphism types). If all local graphs in Γ′ are isomorphic, then one wishes21

to conclude that each connected locally isomorphic graph is (globally) isomorphic. In this22

case, we say that Γ is determined by its local structure. Call a graph Γ locally Λ if all Γ(v) are23

isomorphic to Λ. For a graph Γ locally Λ, it seems fair to say that the larger the diameter of24

Γ, the less likely it is that it is unique as being locally Λ, since in this case it is more likely that25

nontrivial quotients exist. In particular, Weetman [25] shows that if Λ is a finite graph of girth26

at least six, then there exists an infinite graph Γ which is locally Λ.27

Nevertheless, for many choices of Λ all graphs Γ which are locally Λ have been classified. For28

instance, Hall shows that there are precisely three graphs which are locally Petersen [16]. More29

generally, for at least the following Λ a classification or at least a partial classification is known30
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(ordered by the date of publication): graphs which are locally polar of order 2 [11], locally co-31

triangular graphs [19], locally icosahedral graphs [4], locally Λ graphs for small Λ [17], locally32

Kneser graphs [18], locally 4-by-4 grid graphs [2], locally Petersen or K3,3-graphs [3], locally33

Paley graphs [7], locally co-Heawood graphs [8]. Weetman [26] and Brouwer [6] show that Γ34

has finite diameter if it is locally Λ for many choices in which Λ is strongly regular. In partic-35

ular, for such Λ there is a finite list of graphs for which Γ is locally Λ. The characterisation by36

local graphs is also crucial in the characterisation of distance-regular graphs, for instance see37

Corollary 5.6 in [20] in case of the characterisation of certain Grassmann graphs, or also [21].38

Here it is usually assumed that Γ is distance-regular.39

In the present paper, we deal with local characterisations of distance regular graphs arising40

from spherical buildings by taking one type of vertices of the building as the vertices of our41

graph, adjacent when contained in adjacent chambers. These graphs are the point graphs of42

the corresponding so-called Lie incidence geometries, that is, incidence geometries arising from43

spherical buildings in a well-defined way. The idea is to use some local characterisation of44

the underlying geometries. In order to do so, we must overcome two difficulties: (1) We must45

define the lines of the geometry from the given graph and the local data; (2) Since most local46

geometric characterisations use the framework of the (strong) parapolar spaces, we must show47

that the obtained point-line geometry is a parapolar space. The case where we start with the48

point graph of a polar space has to be considered separately and shall be done using the axiom49

system of Buekenhout & Shult [10].50

With the notation that we shall introduce in Section 2, the following general local recognition51

theorem is a main consequence of our results.52

Main Result 1.1. Let ∆ be a finite Lie incidence geometry, which is either a strong parapolar space53

with symplectic rank at least 4 and diameter at most 4, or the parapolar space arising from the line54

Grassmannian of a projective space of dimension at least 4, or a polar space with rank at least 3. Then55

the point graph of ∆ is, as a connected graph, completely determined by its local structure.56

This will be a consequence of the more detailed Main Results 2.1 and 2.2, which we will state57

after introducing some preliminaries in the next section. The other sections are then devoted58

to the proofs of these main results.59

Main Result 1.1 implies that the following strongly regular graphs are determined by their60

local structure: the graphs on the lines of (finite) projective spaces (adjacent when non-disjoint),61

the point graphs of polar spaces, the graph on half of the maximal singular subspaces of the62

hyperbolic quadric Q+(10, q) (adjacent when intersecting in a plane) and the E6,1(q) graph63

(with notation and terminology of [9]).64

The case of being locally isomorphic to the line Grassmannian of a projective space of dimen-65

sion at least 4 is also covered by Corollary 5.6 of [20], although under the additional assumption66

that Γ is strongly regular and has the right parameters.67

2 Preliminaries68

The main players in this paper are some Lie incidence geometries arising from spherical build-69

ings. Since these are point-line geometries, we first introduce some terminology concerning70

these.71
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2.1 Point-line geometries72

A point-line geometry is a pair ∆ = (X, L ) with X a set and L a set of subsets of P . The73

elements of X are called points, the members of L are called lines. If p ∈ X and L ∈ L with74

p ∈ L, we say that the point p lies on the line L, and the line L contains the point p, or goes75

through p. If two (not necessarily distinct) points p and q are contained in a common line, they76

are called collinear, denoted p ⊥ q (since we will always deal with geometries in which each77

point lies on at least one line, we always have p ⊥ p, for each p ∈ X). If they are not contained78

in a common line, we say that they are noncollinear. For any point p and any subset P ⊂P , we79

denote80

p⊥ := {q ∈P | q ⊥ p} and P⊥ :=
⋂
p∈P

p⊥.

A partial linear space is a point-line geometry in which every line contains at least three points,81

and where there is a unique line through every pair of distinct collinear points p and q. That82

line is then denoted with pq. A point-line geometry is degenerate if there is some point collinear83

to each point.84

Let ∆ = (X, L ) be a partial linear space. A subset S ⊆ X is called a subspace of ∆ when every85

line L of L that contains at least two points of S, is contained in S. A subspace S in which all86

points are mutually collinear, or equivalently, for which S ⊆ S⊥, is called a singular subspace.87

If S is moreover not contained in any other singular subspace, it is called a maximal singular88

subspace.89

We now take a look at two specific classes of point-line geometries: the polar and the parapolar90

spaces.91

2.2 Polar and parapolar spaces92

Concerning polar spaces, we take the viewpoint of Buekenhout–Shult [10]. Since it suffices in93

this paper to consider polar spaces of finite rank and which are not degenerate, we include this94

in our definition.95

A gamma space is a point-line geometry ∆ = (X, L ) such that for each line L ∈ L and each96

point p ∈ X, either no, or exactly one, or all points of L are collinear to p.97

A Shult space is a point-line geometry ∆ = (X, L ) such that for each line ∈ L and each point98

p ∈ X, either exactly one, or all points of L are collinear to p.99

A polar space (of rank r), 2 ≤ r ∈ N, is a Shult space that is not degenerate and for which the100

maximal singular subspaces are projective spaces of dimension r− 1.101

Concerning parapolar spaces, we take the viewpoint of Cooperstein [13], as explained in Chap-102

ter 13 of [23]. Again, it suffices to consider parapolar spaces of finite symplectic rank. The103

following definition is motivated by Lemma 13.4.2 of [23].104

A parapolar space of symplectic rank at least r (resp. uniform symplectic rank r), 3 ≤ r ∈ N,105

is a gamma space ∆ = (X, L ) such that for each pair of distinct non-collinear points x, y ∈ X,106

the geometry with point set x⊥ ∩ y⊥ and set of lines all members of L completely contained107

in x⊥ ∩ y⊥ is either empty, a single point, or a polar space of rank at least r − 1 (resp. exactly108

rank r− 1), and such that for every line L ∈ L , the set L⊥ contains at least two non-collinear109

points.110

Let ∆ = (X, L ) be a parapolar space of symplectic rank at least 3. By Lemma 13.4.1(2) of [23],111

the singular subspaces of ∆ are projective spaces. For x ∈ X, the point residual (at x) is the112
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point-line geometry with point set the set of all lines of ∆ through x and with as set of lines the113

line pencils with vertex x in some singular subspace of ∆ isomorphic to a projective plane.114

Our definition of parapolar spaces does not exclude the possibility of being a polar space. A115

parapolar space ∆ = (X, L ) shall be called proper when it is not a polar space, that is, when116

there exist a point p ∈ X and a line L ∈ L no point of which is collinear to p.117

2.3 Lie incidence geometries118

We now sketch how Lie incidence geometries arise, deferring to the literature for the precise119

definition of the concept of a spherical building (see for instance [1, 24]). As in the latter ref-120

erence, we view a spherical building as a numbered simplicial chamber complex, that is, a121

simplicial complex with a type function on the set of vertices such that each chamber (which122

is a maximal simplex) contains precisely one vertex of each type. Let i be a type of a building123

of type Xn, where Xn is a connected spherical Coxeter diagram. A simplex obtained from a124

chamber by deleting the vertex of type i is called an i-panel. Let X be the set of vertices of type125

i and let L be the set of subsets of X with generic member the set of vertices of type i forming126

a chamber together with a fixed i-panel. Then ∆ = (X, L ) is a point-line geometry, called the127

i-Grassmannian of the corresponding spherical building, and a Lie incidence geometry of type Xn,i.128

If the diagram Xn is simply laced and the building is finite, then the building is defined over a129

unique finite field Fq, for some prome power q and we denote the corresponding Lie incidence130

geometries by Xn,i(q). The Lie incidence geometries of type Bn,1 are polar spaces and we will131

not need a special notation for them depending on the diagram. We just remark that the po-132

lar spaces Dn,1 are the point-line geometries arising from non-degenerate hyperbolic quadrics133

Q+(2n − 1, q) in the projective space PG(2n − 1, q) (using standard notation), and that the134

corresponding so-called half spin geometries HS(2n − 1, q) are the Lie incidence geometries135

Dn,n(q).136

A Lie incidence geometry of type Xn,i is often represented by encircling the node of type i in137

the Coxeter diagram Xn. This representation has the advantage of making the dimensions of138

the maximal singular subspaces apparent: they are equal to the lengths of the longest linear139

subdiagrams where the encircled node is an initial node. For instance, the maximal singular140

subspaces of a Lie incidence geometry of type E6, have dimensions 4 and 5, as is apparent from141

the diagram142

by deleting either the upper vertex, or the two vertices at the right.143

2.4 Restatement of the Main Result144

Denoting the point graph of a Lie incidence geometry Xn,i(q) by Γ(Xn,i(q)), n ∈ N, i ∈145

{1, 2, . . . , n}, q a prime power and Xn a simply laced spherical Dynkin diagram, Main Re-146

sult 1.1 follows from the following more general (concerning hypotheses) and at the same time147

more specific (enumerating all concrete possibilities) results.148

Main Result 2.1. Let Γ′ be the disjoint union of the point graphs of all finite polar spaces of rank at149

least 3. Then any connected graph Γ locally isomorphic to Γ′ is the point graph of a finite polar space of150

rank at least 3.151
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Note that we do not even require that different connected components of Γ′ in Main Result 2.1152

are defined over the same finite field, nor do we assume that the graph Γ is finite.153

For parapolar spaces, there is an explicit list [22] of Lie incidence geometries that are strong154

parapolar spaces of symplectic rank at least 4 and diameter at most 4, or of symplectic rank 3155

and diameter 2. This allows of the following statement.156

Main Result 2.2. Let Γ be a connected graph locally isomorphic to the disjoint union of Γ(An,2(q)),157

n ≥ 4, q ranging over all prime powers, Γ(Dn,n(q)), 5 ≤ n ≤ 9, q ranging over all prime powers,158

Γ(E6,1(q)), q again ranging over all prime powers, and Γ(E7,7(q)), q once again ranging over all prime159

powers. Then Γ is isomorphic to either Γ(An,2(q)), n ≥ 4, Γ(Dn,n(q)), 5 ≤ n ≤ 9, Γ(E6,1(q)), or160

Γ(E7,7(q)), for some prime power q.161

Note that, for any prime power q, Γ(An,2(q)), n ≥ 4, Γ(D5,5(q)) and Γ(E6,1(q)) are strongly162

regular (hence have diamter 2), whereas Γ(D6,6(q)), Γ(D7,7(q)) and Γ(E7,7(q)) have diameter 3,163

and Γ(D8,8(q)) and Γ(D9,9(q)) have diameter 4.164

Since the vertices of the graphs we will consider are the points of a Lie incidence geometry, we165

will from now on deviate from standard notation and denote the vertex set of a graph by X.166

3 Proof of Main Result 2.1 and most of Main Result 2.2167

Le Γ = (X,∼) be a graph and q a natural number. The q-clique extension qΓ of Γ is the graph168

with vertices ti(x), i ∈ {1, 2, . . . , q}, x ∈ X, with ti(x) and tj(y) adjacent if either x = y and169

i 6= j, or x ∼ y. If the set of vertices equal or adjacent to a vertex x ∈ X coincides with the set170

of vertices equal or adjacent to y ∈ X, then the sets {ti(x) | i = 1, 2, . . . , q} and {ti(y) | i =171

1, 2, . . . , q} cannot be distinguished in qΓ (in fact, in their union, every vertex plays the same172

role). However, this is the only obstruction, as we will show below. For an arbitrary set S of173

vertices, we denote by S⊥ the set of vertices equal of adjacent to every vertex in S. For S = {x},174

we denote S⊥ = x⊥.175

Lemma 3.1. Let Γ = (X,∼) be a graph and let q be a natural number. Suppose x ∈ X has the property176

that the set (x⊥)⊥ coincides with {x}. Then in qΓ, we have {ti(x) | i = 1, 2, . . . , q} = (tj(x)⊥)⊥, for177

each j ∈ {1, 2 . . . , q}.178

Proof. This follows immediately from the definition of qΓ. �179

Under the assumptions of Lemma 3.1, we call the set {ti(x) | i = 1, 2, . . . , q} a ray, or the ray of180

x, and we say that the ray is reconstructable. Also, the natural number q is called the height of181

the graph and is well defined under the assumptions of Lemma 3.1.182

Since each vertex of the point graph of a polar space has the property mentioned in Lemma 3.1,183

each point of the point graph of any Lie incidence geometry which is a (proper) parapolar space184

also has that property.185

Now let Γ = (X,∼) be a connected graph which has at each of its vertices the local structure of186

the q-clique extension of the point graph of a Lie incidence geometry which is either a parap-187

olar space of symplectic rank at least 3 and diameter 2 in which the lines carry q + 1 points, or188

a polar space of rank at least 2 in which the lines carry exactly q + 1 points (also q depends on189

the vertex). This Lie incidence geometry is called the local geometry at the corresponding vertex190

and denoted ∆(x); hence Γ(x) ∼= q∆(x). Let p ∈ X be an arbitrary vertex of Γ and let x ∼ p;191
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so x ∈ Γ(p). Then, by our observation, the rays of the local graph Γ(p) are reconstructable.192

The ray Rx to which x belongs is equal to (x⊥p)⊥p , where⊥p denotes adjacency in Γ(p). Hence193

x⊥p = (x⊥ ∩ p⊥) \ {p} and so Rx = (((x⊥ ∩ p⊥) \ {p})⊥ ∩ p⊥) \ {p}. Then194

R := Rx ∪ {p} = ((x⊥ ∩ p⊥) \ {p})⊥ ∩ p⊥ = (x⊥ ∩ p⊥)⊥.

Now note that the latter is symmetric in x and p, hence the ray in Γ(x) to which p belongs is195

equal to R \ {x}. Since Rx is determined in Γ(p) by any of its members y, we now deduce that196

R is determined by any pair (p1, p2) of its points as p1 ∪ Rp2 , with Rp2 the ray in Γ(p1) to which197

p2 belongs. We denote the set R by R[p1, p2] and call it an extended ray. This already has, by198

connectivity, the following consequence.199

Lemma 3.2. The heights of the local graphs at two distinct vertices of Γ coincide.200

We now define the set L as the set of all extended rays R[p1, p2], with p1 ∼ p2, for p1, p2 ∈ X201

and we define the geometry ∆ = (X, L ). Clearly, the point graph of ∆ is Γ. Also, the fact that202

lines are determined by any pair of their points translates in the property that ∆ is a partial203

linear space.204

Lemma 3.3. The geometry ∆ = (X, L ) is a gamma space.205

Proof. Let p, x, y ∈ X, with p ∼ x ∼ y ∼ p and R[p, x] 6= R[p, y]. Note that the rays in Γ(p)206

correspond to the points of ∆(p). Since in ∆(p) the line through two collinear points u, v is207

given by (u⊥ ∩ v⊥)⊥ (with ⊥ the usual collinearity relation including equality), in Γ(p), the208

union U of the rays corresponding to the line of ∆(p) through the points R[p, x] \ {p} and209

R[p, y] \ {p} is given by210

U = (((x⊥ ∩ y⊥ ∩ p⊥) \ {p})⊥ ∩ p⊥) \ {p},

which, as above, equals211

(x⊥ ∩ y⊥ ∩ p⊥)⊥ \ {p}.
Since R[x, y] does not contain p and since212

(x⊥ ∩ y⊥)⊥ ⊆ (x⊥ ∩ y⊥ ∩ p⊥)⊥,

we see that R[x, y] ⊆ U. Now R[x, y] has at most one vertex in common with each ray in213

Γ(p) (as extended rays are determined by two points and R[x, y] does not contain p). Since214

|R[x, y]| = q + 1 and there are precisely q + 1 rays of Γ(p) in U (as there are q + 1 points on215

each line in ∆(p)), we conclude that p is collinear to all points of R[x, y] in ∆. �216

The proof of Lemma 3.3 yields the following consequence.217

Corollary 3.4. Let x, y, z ∈ X be pairwise adjacent with x /∈ R[y, z]. Then π := (x⊥ ∩ y⊥ ∩ z⊥)⊥218

is, endowed with all members of L contained in it, a projective plane. In each of Γ(x), Γ(y), Γ(z), the219

point set π minus x, y, z, respectively, represents a line in the corresponding local geometry.220

Proof. Just like extended rays are determined by any pair of its points, one shows that π is de-221

termined by any triple of its points not contained in a single extended ray. Hence we may think222

of two arbitrary extended rays contained in π as, with the notation of the proof of Lemma 3.3,223

one containing p and the other containing x. Then the proof of Lemma 3.3 shows that these224

two rays intersect in a unique point.225

The last assertion then also follows from thinking of x, y and z as the vertex p in the proof of226

Lemma 3.3. �227
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An immediate consequence of Corollary 3.4 is the following.228

Corollary 3.5. Let C be a maximal clique of Γ and v ∈ C. Then C, endowed with the extended rays, is a229

projective space, say of dimension k which corresponds in the local geometry at v to a maximal singular230

subspace of dimension k− 1.231

It follows now by connectivity that the maximal singular subspaces of all local geometries232

have the same dimension (since all local geometries we consider admit a point transitive auto-233

morphism group). Hence, in order to show Main Result 2.1, it suffices to show the following234

proposition.235

Proposition 3.6. If for each vertex p ∈ X the local geometry ∆(p) is a polar space of rank r ≥ 2 having236

q + 1 points per line, then ∆ is a polar space of rank r + 1 and, consequently, Γ being the point graph of237

∆, it is the point graph of a polar space.238

Proof. We begin with showing that ∆ is a Shult space. Since ∆ is a gamma space, we only have239

to prove that each line L has at least one point collinear with each point p. This is trivial if240

p ∈ L, so assume p /∈ L. Without loss of generality we may assume for a contradiction, and241

by connectivity, that there is no vertex on L adjacent to p in Γ, but there exists a vertex y ∈ X242

adjacent to p and adjacent to some point x ∈ L. Since ∆(x) is a polar space of rank at least 2,243

we find a point z ∈ Γ(x) ∩ Γ(y) not on R[x, y]. In ∆(y), the extended ray R[y, p] represents a244

point p∗ and, by Corollary 3.4, the set π := (x⊥ ∩ y⊥ ∩ z⊥)⊥ represents a line L∗. Then there is245

a point v∗ on L∗ collinear to p∗ in ∆(y). This translates in Γ(y) to the existence of some vertex246

v ∈ π \ {y} adjacent to p. Since v ∼ p, all vertices of R[y, v] are adjacent to all those of R[y, p].247

Again by Corollary 3.4, the sets R[y, v] and R[x, z] intersect in some point s ∼ p.248

If y is adjacent to all vertices of L, then we could have chosen z on L and p ∼ s ∈ L.249

If not, then we can choose z collinear to all points of L; it follows that s is also collinear to250

all points of L. Letting s play the role of y, we are now back to the situation in the previous251

paragraph and find a point on L adjacent to p. This shows that ∆ is a Shult space.252

It remains to show that no vertex is adjacent to all other vertices. If some vertex v were adjacent253

to all other vertices, then clearly, for each w ∈ X \ {v}, the local geometry ∆(w) would be254

degenerate. �255

The parapolar spaces A1,1(q) × An,1(q), n ≥ 2, have maximal singular subspaces which are256

lines. This is not true in any other parapolar space which is isomorphic to a point residual257

of one of the parapolar spaces mentioned in the hypotheses of Main Result 2.2. So we may258

assume that either all local geometries are isomorphic to A1,1(q)× An,1(q), n ≥ 2, or none are.259

In the present section, we continue with the latter assumption, delaying the proof of the former260

to the next section.261

Proposition 3.7. If for each vertex p ∈ X the local geometry ∆(p) is a strong parapolar space of262

uniform symplectic rank r ≥ 3 having q + 1 points per line, then for each pair of points x, y ∈ X of ∆263

at distance 2 in Γ, the subgeometry x⊥ ∩ y⊥ of ∆ is a polar space of rank r.264

Proof. Let x, y ∈ X be two vertices of Γ at mutual distance 2 and let p ∈ x⊥ ∩ y⊥ be arbitrary.265

Let x∗ and y∗ be the points of ∆(p) corresponding to the extended rays R[p, x] and R[p, y],266

respectively. Since ∆(p) is a strong parapolar space of diameter 2 and symplectic rank r ≥ 3,267

the set x∗⊥ ∩ y∗⊥ defines a polar space ∆′(p) of rank r − 1. It follows that the local structure268

of the graph Γ(x) ∩ Γ(y) at p is the q-clique extension of ∆′(p). Since this holds for every269
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p ∈ Γ(x) ∩ Γ(y), Proposition 3.6 implies that Γ(x) ∩ Γ(y) is the point graph of a polar space of270

rank r. Since the extended rays are the lines of that polar space, the geometry x⊥ ∩ y⊥ endowed271

with the extended rays is a polar space of rank r. �272

Remark 3.8. In the previous proposition, we may weaken the assumptions to the local geome-273

tries having symplectic rank at least r ≥ 3 (with the same proof). However, since in all our274

applications, the rank is constant, we limit ourselves to this case. The same remark applies to275

the next proposition.276

Proposition 3.9. If for each vertex p ∈ X the local geometry ∆(p) is always a strong parapolar space277

of uniform symplectic rank r ≥ 3 having q + 1 points per line, then the geometry ∆ is a parapolar space278

of symplectic rank r + 1. Also, the local geometry in Γ at the point p ∈ X is precisely the point residual279

at p in ∆.280

Proof. By the definition of parapolar spaces given in Section 2.2, we have to show that281

(i) ∆ is a connected gamma space. This is true by Lemma 3.3 (and the assumption that Γ is282

connected);283

(ii) for each pair of distinct non-collinear points x, y, the geometry induced on x⊥ ∩ y⊥ is either284

empty, a single point or a polar space. This is true by Proposition 3.7.285

(iii) For each line L, the set L⊥ contains a pair of non-collinear points. This follows from the well-286

definedness of the extended ray R[x, y] in Γ(x), where x, y ∈ L, x 6= y.287

The last assertion is immediate. This completes the proof. �288

We are now ready to prove part of Main Result 2.2. We reformulate.289

Theorem 3.10. Let Γ be a connected graph locally isomorphic to the disjoint union of Γ(Dn,n(q)),290

4 ≤ n ≤ 9, q ranging over all prime powers, Γ(E6,1(q)), q again ranging over all prime powers, and291

Γ(E7,7(q)), q once again ranging over all prime powers. Then all local geometries of Γ are mutually292

isomorphic and Γ is isomorphic to either Γ(Dn,n(q)), Γ(E6,1(q)), or Γ(E7,7(q)), for some prime power293

q.294

Proof. We know by Proposition 3.9 that ∆ = (X, L ) is a parapolar space of symplectic rank295

at least 4. Now consider two adjacent vertices x, y ∈ X of Γ. Then, by Corollary 3.5, the296

dimensions of the maximal singular subspaces in the local geometries ∆(x) and ∆(y), through297

the points corresponding to the extended ray R[x, y], are the same. However, for the given298

parapolar space, these (well-known) dimensions (for each point) are the following:299

A4,2(q) 2 and 3

A5,2(q) 2 and 4

A6,2(q) 2 and 5

A7,2(q) 2 and 6

A8,2(q) 2 and 7

D5,5(q) 3 and 4

E6,1(q) 4 and 5
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Hence all local geometries are isomorphic. If these local geometries, which are the point resid-300

uals, are of type An,2, 4 ≤ n ≤ 8, then by Lemma 4.6 of [12] (see also Lemma 5.3 of [14]),301

∆ is isomorphic to Dn+1,n+1(q). If these local geometries are isomorphic to D5,5(q), then by302

Lemma 5.1 of [14], ∆ is isomorphic to E6,1(q). Finally, if these local geometries are isomorphic303

to E6,1(q), then by Lemma 5.5 of [14], ∆ is isomorphic to E7,7(q).304

Since the point graph of ∆ is Γ, the proof is complete. �305

4 The case of symplectic rank 2 for the local geometry306

In this section, we tackle the remaining case of Main Result 2.2: We assume all local geometries307

of Γ are parapolar spaces isomorphic to A1,1(q)×An,1(q), n ≥ 2, for some (non-constant) prime308

power q and some (non-constant) natural number n. The same arguments as in the previous309

section show that q and n are in fact constants. We define ∆ in the same way as before, and we310

first show that in ∆, for every pair of points x, y at mutual distance 2, the geometry induced on311

x⊥ ∩ y⊥ by the extended rays is a generalised quadrangle isomorphic to a (q + 1)× (q + 1)-312

grid. Where we previously could use Proposition 3.6 to prove that this geometry is a polar313

space, this fails now as it has rank 2. However, we propose an alternative argument in this314

specific case.315

Lemma 4.1. For every pair of points x, y of ∆ at mutual distance 2, the geometry induced on x⊥ ∩ y⊥316

by the extended rays is a (q + 1)× (q + 1)-grid, where q is the size of any ray.317

Proof. Let x ∼ p ∼ y. In Γ(p) we find vertices v and w such that R[p, x] ∼ R[p, v] ∼ R[p, y] ∼318

R[p, w] ∼ R[p, x]. Moreover, we may assume that the planes α1 := (x⊥ ∩ p⊥ ∩ v⊥)⊥ and319

β1 = (y⊥ ∩ p⊥ ∩ w⊥)⊥ correspond to maximal singular subspaces (hence lines) of ∆(p).320

In Γ(x), the extended rays R[x, w] and R[x, v], which correspond to points of ∆(x) at mutual321

distance 2, are adjacent to a unique common ray R[x, r]. Note that the set U1 := x⊥ ∩ r⊥ ∩ v⊥,322

endowed with the extended rays, is an (n + 1)-dimensional projective space.323

Likewise, in Γ(y), there is a vertex s such that R[y, v] ∼ R[y, s] ∼ R[y, w]. The set β2 :=324

y⊥ ∩ v⊥ ∩ s⊥, endowed with the extended rays, is a projective plane, and V1 = y⊥ ∩ s⊥ ∩ w⊥325

defines an (n + 1)-dimensional singular subspace.326

Now, in ∆(v), two maximal singular subspaces of distinct dimension intersect in a unique327

point, hence U1 ∩ β2 = R[v, t], for some t ∈ X. Since β2 is a plane, we can assume t ∈ R[y, s].328

Then t ∈ V1 and so t ∼ w. Hence in x⊥ ∩ y⊥ we find the quadrangle p ∼ v ∼ t ∼ w ∼ p.329

Let z be any vertex on R[t, v]. Then there is a unique (n + 1)-dimensional singular subspace330

V2 of ∆ through R[y, z], and it intersects β1 in a unique extended ray R[y, z′]. Clearly we can331

choose z′ ∈ R[p, w] (since β2 is a projective plane). Likewise, for each vertex u ∈ R[t, w],332

the unique (n + 1)-dimensional singular subspace through R[x, u] intersects the plane α1 in333

a ray R[x, u′], with u′ ∈ R[p, v]. Moreover, α3 := x⊥ ∩ z⊥ ∩ z′⊥ defines a plane and U2 :=334

x⊥ ∩ u⊥ ∩ u′⊥ defines an (n+ 1)-dimensional singular subspace. In ∆(x), these spaces intersect335

in a unique point, which implies that the extended rays R[z, z′] and R[u, u′] intersect in a point.336

Hence, varying z on R[t, v] and u on R[t, w], we obtain a (q + 1)× (q + 1)-grid in x⊥ ∩ y⊥.337

It remains to show that there are no other vertices contained in x⊥ ∩ y⊥. Suppose for a con-338

tradiction that some vertex a ∈ X not on the above grid is adjacent to both x and y. Since339

R[p, v] intersects every maximal singular subspace of dimension n + 1 of ∆ through x, we may340
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assume that a ∈ U1 \ R[v, t]. Then the plane (a⊥ ∩ t⊥ ∩ v⊥)⊥ is contained in the two distinct341

maximal cliques a⊥ ∩ t⊥ ∩ v⊥ ∩ x⊥ and a⊥ ∩ t⊥ ∩ v⊥ ∩ y⊥. This contradicts the local structure342

in Γ(a). �343

Now the proof of Proposition 3.9 can be repeated verbatim, and we have the following exten-344

sion of Theorem 3.10.345

Theorem 4.2. Let Γ be a connected graph locally isomorphic to the disjoint union of Γ(An,2(q)), n ≥ 4,346

q ranging over all prime powers, Γ(Dn,n(q)), 4 ≤ n ≤ 9, q ranging over all prime powers, Γ(E6,1(q)),347

q again ranging over all prime powers, and Γ(E7,7(q)), q once again ranging over all prime powers.348

Then all local geometries of Γ are mutually isomorphic and Γ is isomorphic to either Γ(An,2(q)), n ≥ 4,349

Γ(Dn,n(q)), 4 ≤ n ≤ 9, Γ(E6,1(q)), or Γ(E7,7(q)), for some prime power q.350

Proof. In view of Theorem 3.10, we may assume that at some vertex the local geometry is351

A1,1(q)× An,1(q), for some n ≥ 2 and some prime power q. Lemma 3.2 implies that the local352

geometry at each vertex is defined over Fq. Moreover, since the maximal singular subspaces353

of A1,1(q)×An,1(q) have dimensions 1 and n, the argument in the proof of Theorem 3.10 using354

Corollary 3.5 shows that the local geometry at each vertex is A1,1(q)× An,1(q).355

Hence all point residuals of the parapolar space ∆ are isomorphic to A1,1(q)× An,1(q). Then356

Lemma 5.4 of [14] implies that ∆ is isomorphic to An+2,2(q). Since the point graph of ∆ is Γ, the357

proof is complete. �358

Remark 4.3. One can merge Main Results 2.1 and 2.2 by assuming that each residual geometry359

is either a polar space of rank at least 3, or a parapolar space as in Main Result 2.2. The con-360

clusion is then that Γ is the point graph of either a polar space, or one of the geometries in the361

conclusion of Main Result 2.2. The reason is that polar spaces only have one type of maximal362

singular subspaces, and then with the help of Corollary 3.5, one concludes that in all points363

the residuals are either polar spaces—and we are in the case of Main Result 2.1— or proper364

parapolar spaces—and we are in the case of Main Result 2.2.365

Remark 4.4. In Main Result 2.2 we can slightly relax the restriction on the diameter of Γ(Dn,n(q))366

to also include the case n = 10. Indeed, in this case the proof Theorem 3.10 implies that Γ is367

either Γ(D10,10(q)), or a proper quotient of Γ(D10,10(q)) with respect to a nontrivial automor-368

phism group G. However, suppose we are in the latter case and let g ∈ G be nontrivial. In369

order to preserve the local structure, g must map every vertex to a vertex at distance 5 (see370

Lemma A.5 of [14]), which is an opposite vertex in the corresponding building. This contra-371

dicts Theorem 1.2 of [15]. Hence no proper quotients occur.372

Without proof we mention that more elaborate arguments also prove that Γ(Dn,n(q)), 11 ≤ n ≤373

17, does not admit a quotient with the same local structure.374
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