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ABSTRACT. The Wiegold conjecture holds for the small Ree groups for
k-tuples where k > 5.

1. INTRODUCTION

We prove the following for the small Ree groups:

Main Theorem. The small Ree groups 2Go(3%T1) satisfy the Wiegold con-
jecture for k-tuples, for all e > 1 and all k > 5.

The original motivation of the Wiegold conjecture comes from actions of the
automorphism group of the free group on group presentations.

1.1. Ty-systems and the Wiegold conjecture. Let G be a group. We
call N a G-defining subgroup of a free group Fj if N < Fj, and F,/N = G. If
we denote by ¥ (G) the set of G-defining subgroups of Fj, we can consider
an action of Aut(Fy) on Xx(G). The orbits of this action are T} systems
introduced by Bernhard and Hanna Neumann [22]. The group Aut(F}) is
generated by Nielsen moves, transpositions and inversions (which we will all
call Nielsen moves henceforth). These moves thus define a graph structure
on X (G). Thus, Ti-systems correspond to connected components of X (G).

The unpublished conjecture below, likely inspired by Gilman [I1], is due to
Wiegold. Graham and Diaconis [5] made a similar conjecture for S,.

Wiegold conjecture. For every k > 3 and every nonabelian simple group
G, there exists only one Ty-system, i.e. the graph Xi(G) is connected.

Thus far, the following was known on the above conjecture:

Theorem 1.1. The Wiegold conjecture holds for k-tuples in these cases.

[11] G = PSL(2,p), where p > 5 and k > 3

7] G = PSL(2,2™) or Sz(22™~1), where m > 2 and k > 3
8] G = PSL(2,q) where q is odd and k > 4.

4] G = Alt(6), Alt(7) where k = 3.

24] G = Alt(8), Alt(9), Alt(10) where k = 3.
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Avni and Garion [I] used deep results of Larsen and Pink [I6] on finite
subgroups of algebraic groups to prove that for finite simple groups of Lie
type in characteristic different from 2 and 3 there exists a function ¢, only
depending on the Lie rank 7, such that the Wiegold conjecture holds for
any k > c(r). This is independent of the field but grows exponentially in r.
Avni informed us that even if their methods would be made to work for Ree
groups the constant would be huge.

1.2. Connections of the Wiegold conjecture. Lubotzky [I8] wrote a
very interesting survey on the dynamics of Aut(F},) actions which is closely
related to the Wiegold conjecture. Some connections include the following;:

e Nielsen equivalence classes of generators of a group GG parameterise
free actions of G on handlebodies [18, Theorem 3.4].

e The Wiegold conjecture is equivalent to: for n > 3 and G a finite
simple group the action of Aut(F},) on Epi(F,, G) is transitive. In [10]
Gelander considered an analogous question for compact Lie groups,
non-compact simple analytic groups and simple algebraic groups.

e Product replacement algorithm which we discuss in detail below.

1.3. Product replacement algorithm graph. The product replacement
algorithm was designed by Leedham-Green and Soicher as mentioned in
the first description of it by Celler, Leedham-Green, Murray, Niemeyer and
O’Brien [3]. It very efficiently generates random elements in a finite group.
Lubotzky and Pak [19] explained why the product replacement algorithm
works so well using Kazhdan’s property (T). We closely follow Igor Pak’s
survey paper [24].

Let n > 2 and let G be a finite simple group. Let

Vo(G) ={(91,---,9n) € G" : {g1,...,9n) = G}.

The set V,,(G) is the set of all generating n-tuples of G. Such an n-tuple
is called minimal if no proper subtuple generates G. Otherwise it is called
redundant.

The extended PRA graph X,(G) has vertices given by V,(G) and edges

corresponding to the Nielsen moves Riij,Liij,Pi,j,Ii, for 1 < i # j < n,

where
Rfj: (91,...,91‘,...,gn)—>(gl,...,gigjj.ﬂ,...,gn)7
Lz:-'fj: (g1,...,gi,...,gn)—>(gl,...,gflgi,...,gn),

Pi,j: (glv"'7gi7"'>gj7"'>gn)_>(917"'a.gjv"'agiv"'vgn)v
and
I;: (gl,...,gi,...,gn)—>(gl,...,gi_1,...,gn).

The Wiegold conjecture can be reformulated as:

Wiegold conjecture. Let G be a nonabelian finite simple group. Then
Xn(G) is connected for every n > 3.
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By a celebrated recent result of Burness, Guralnick and Harper [2], finite
simple groups have spread at least two and hence, the graph induced on the
redundant n-tuples of X,,(G) is connected, see e.g. [24, Proposition 2.5.12].
Hence, in order to show that )A(;n(G) is connected, it suffices to show that
every vertex of )?n(G) can be connected via a path to a redundant vector.
In the rest of the paper, we will use the phrase connected to a vector to mean
that two given vectors are in the same connected component of X,,(G) (and
we will only consider n € {3,4,5} and G a small Ree group. Note that
this means that we can change a given vector using only Nielsen moves into
another given vector.

1.4. Wiegold and its variations for more general groups. Let d(G)
denote the minimum number of generators of G. Pak [24] asked whether
there are finite groups such that the extended PRA graph X 1(G) is discon-
nected for k > d(G) + 1. As d(G) = 2 for finite simple groups, conjecturing
this does not happen is a generalisation of the Wiegold conjecture. This
generalisation was proved for abelian groups by the Neumann and Neu-
mann [22] and for solvable groups by Dunwoody [6]. Garion [§] also proved
it for PGL(2, ¢) where ¢ is an odd prime power. The next natural class of
(almost) simple groups to look at are the projective special (general) unitary
groups, which would conclude the rank one case of the Wiegold conjecture.
Although a number of arguments here translate directly to this case extra
complications arise from the richer subgroup structure and the fact that the
characteristic is not uniform.

More broadly, Nielsen equivalence classes of generating tuples have also been
studied extensively for infinite groups. For example Kapovich and Weid-
mann [I4] provided a counterexample to a Wiegold type conjecture for word
hyperbolic groups. If one wishes to disprove (variations of ) the Wiegold con-
jecture for a given group one needs to show that certain generating n-tuples
are not Nielsen equivalent. For concrete small groups this can, in princi-
ple, be done by exhaustive computation. For larger groups or families of
groups a potential strategy consists in using Fox calculus which can provide
obstructions to Nielsen equivalence [20, 21].

As pointed out by Kapovich and Weidmann [I4], Nielsen equivalence is not
decidable for finitely presented torsion-free small cancellation groups since
they do not have a decidable subgroup membership problem (which is a
special case) as shown by Rips [25].

1.5. Proof outline. We basically follow the same strategy as Evans [7]
introduced to handle the Suzuki groups and as was also used later by Garion
[8] for PSL2(q). So, we start off with a generating k-tuple of G := 2Ga(q),
k€ {3,4,5} (we do as much as we can for minimal k € {3,4,5}, the proofs
for larger k being totally similar to the ones for smaller values of k). The
eventual goal is to show that it is connected to a redundant vector. To
accomplish that, there are three major steps. They all use the natural
2-transitive permutation representation of G on a set Ugr(q) with ¢ +1
points. Unlike the situation for the Suzuki groups and PSLy(q), this set
is in fact a rank 2 geometry (and not rank 1) owing to the existence of
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simple subgroups of Lie type over [y, namely PSLy(g). The latter subgroups
stabilise sets of ¢ + 1 points on which they act in the natural way (and so
we can think of each such set of ¢ + 1 points as a projective line over [Fy;
we call it a block). The set of blocks turns Ugr(g) into a unital, that is, a
2 —(¢*+1,q+1,1) design [23]. Now, the eventual goal is to show that we
can connect to a k-tuple containing an element z with the property that all
(k — 1)-subtuples containing = generate subgroups contained in a subfield
subgroup and in no maximal subgroup of another type, and the same holds
for the subgroups generated by x and the conjugates of x by any k& — 2 other
elements of the vector. The first step to accomplish this consists in showing
that we can connect to a vector containing an element z that is neither
unipotent nor involutive (unipotent elements and involutions are precisely
the elements of the Ree group that either fix exactly 1 or ¢+ 1 points of the
corresponding Ree unital). In this first step, understanding the structure of
the point stabiliser is essential and for that, we use the explicit description
using 7 x 7 matrices over F, provided in [26]. We survey this description
in the appendix, where we also prove some more details about it. In the
second step, accomplished in Sections [] and [5] we first show in [] that we
can connect to a k-tuple such that the above subgroups are not contained
in either a point-stabiliser or a block stabiliser. Then in the first part of
Section [5] we further eliminate subgroups contained in maximal subgroups
other than a point-stabiliser, a block stabiliser or a subfield subgroup. In
Step 3, accomplished in the remainder of [5] we use an inductive procedure
(inspired by Evans [7]) to connect to a redundant vector.

Each of these steps needs some additional ideas, compared to [7, §], to
make the strategy work. The Ree groups are generally known to have a
rather peculiar structure. For instance, Guralnick, Kantor, Kassabov and
Lubotzky [12] provide short and small presentations for all finite simple
groups—except for the Ree groups, the latter has been done recently by
Hulpke, Kassabov, Seress and Wilson [13].

On the positive side, the list of maximal subgroups of 2Ga(q) is rather small
and can be compared to the Suzuki groups.

Convention. Throughout the paper lemmas and proofs might be formu-
lated for k-tuples, where in fact the corresponding statements and proofs
are valid for ¢-tuples, ¢ > k. We opted to do this for clarity of exposition;
the reader can easily check there is no harm in taking longer tuples as one
can just leave the appropriate £ — k entries unchanged when repeating the
appropriate arguments for a different k-sub-tuple.

Acknowledgement. We thank Alex Lubotzky who generously shared his
insights on the Wiegold conjecture and pointed out various references.

2. THE sSMALL REE GROUPS

2.1. General notation. Given a finite group GG and a prime p, we denote
Syl,(G) as the collection of Sylow p-subgroups. For a natural number m, we
denote the cyclic subgroup of order m by C,,. For a subgroup H < G, we
denote the centraliser of H in G as Cg(H) and the normaliser of H in G
as Ng(H). We denote the commutator subgroup of G by [G,G], by Z(G)
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the center of G, and by ®(G) the Frattini subgoup of G. Given a group, we
denote |G| as its order and |z| as the order of element z € G. We denote
the greatest common divisor of two integers n and m as ged(m,n).

A Frobenius group G is a transitive permutation group on a finite set X, such
that no nontrivial element fixes more than one point and some nontrivial
element fixes a point. A subgroup H < G fixing a point of X is called a
Frobenius complement. The identity element together with all elements not
in any conjugate of H form a normal subgroup called the Frobenius kernel
K. In particular, G = K x H. There is a unique Frobenius group of order
21 and we denote it by Frob(21). Given a finite group G, a subgroup H < G
is called a Hall subgroup if gcd(|H|, |G : H]) = 1.

Finally we consider actions on the left; hence, our convention is that z¥ =

yry~ 't and Yo =y lay.

2.2. Generalities. There are three types of Suzuki-Ree groups: type 2Ba,
usually called Suzuki groups, types 2Go and 2F4, usually called small and
large Ree groups, respectively. Henceforth, Ree group will mean one of type
2Gy. The Ree group G = 2Ga(q), sometimes also denoted as R(g), has order
(g +1)(qg — 1) where ¢ = 3%¢*1. We denote by 6 the field automorphism
T 1‘3e+1; note 2% = 3. Hence, 6 is the square root of the Frobenius
automorphism. The subgroup structure of the Ree groups was described
by Levchuk and Nuzhin [17], see also Kleidman’s paper [15] and [26, Sec-
tion 9.2.4]. The Ree groups are one of the families of exceptional finite simple
groups of Lie type. From now on we fix ¢ = 32¢*1, ¢ > 1, and denote the Ree
group 2Gz(q) by G. Note that e = 0 corresponds to PSLy(8) x C3 = PI'Ly(8).

The Ree group G has a natural doubly transitive action on its set () :=
Syl;(G) of Sylow 3-subgroups. The stabiliser Gp of P € 2 is given by
Ng(P). The stabiliser Gpg of two members of Syl;(G) is a cyclic subgroup
Cy-1.

A Sylow 2-subgroup P of G is elementary abelian of order 8. Moreover
Cg(P) = P and Ng(P) = 23 x Frob(21), which has order 8- 7 -3 = 168.
As a result, the 2-subgroups of equal order are conjugate. In particular, all
involutions are conjugate to one another. The centraliser of an involution n
is isomorphic to PSLa(q) x (n).

The group G has cyclic Hall subgroups M; (i = £1) of orders ¢ + 1 + 1 -
v/3q. Each subgroup M; coincides with Cg(x) for all nontrivial x € M.
The subgroups Ng(M;) are Frobenius groups with kernel M; and cyclic
complement of order 6. For each subgroup V of order 4, there exists a
cyclic Hall subgroup M of order qj:—l and an element ¢ of order 6 such that
Na(V) = Ng(Mp) =V x (Mo (t)) = (V x (MyxCs)) xCs, where My x Cs
is dihedral of order %. All subgroups of order qg—l, qz—l, q++3q+1, or
q—+/3q+1 are conjugate in G. The same holds for subgroups of order ¢ — 1
and ¢q + 1.

A Sylow 3-subgroup P of G has order ¢3. The following properties can
also be checked directly on the model presented in Section |[A] (but are well
known). The center Z(P) of P is an abelian subgroup of order ¢, P has
nilpotent step length 3, and [P, P| = ®(P) is an elementary abelian subgroup
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of order ¢? containing Z(P). The elements of P\[P, P] have order 9 where
their cubes are forming Z(P)\{1}. The involutions of Ng(P) are conjugate
in Ng(P). We collect some of the above information in a lemma.

Lemma 2.1. The mazimal subgroups of G are exhausted up to conjugacy,
by the following

Ng(P) = P x Cy—1, the normaliser of a Sylow 3-subgroup P;
Ca(n) = PSLa(q) x (n), the centraliser of an involution n;
2Ga(qo),q = ¢}, & being a prime;

Ng(M;), the normaliser of a cyclic Hall subgroup M;, i = —1,0,1,
of order ¢ —/3q+ 1, qZ—l and q 4+ \/3q + 1, respectively.

2.3. The Ree unital Ugr(q). As mentioned earlier, G has a natural 2-
transitive action on its set €0 of Sylow 3-subgroups. We can give () the
structure of a wnital, that is, a 2 — (¢3 4+ 1,¢ + 1,1) design, by defining the
blocks to be the sets of members of €2 fixed by a given involution. No block
is (pointwise) fixed by two distinct involutions; hence, there are

G|
2 - [PSLy(q)]

blocks. Every pair of Sylow 3-subgroups is contained in a unique block,
which we sometimes call the join of the two corresponding elements of ).
In the sequel we will refer to the elements of € as points, and we will denote
the points by Greek lower case letters. The unital will be denoted by Ug(q),
and consists of points and blocks. The unique block containing two given
distinct points o and /5 will be denoted as B(«, ).

If a € Q, it is in fact a Sylow 3-subgroup, but we see it merely as a point.
When we want to emphasise the group structure of a;, we sometimes denote
it also as P,.

=q¢*(¢* —q+1)

We list some properties of the permutation group (G,Ug(q)). For a point
« we denote the set of blocks through a by %,. We say that an element
x € G acts freely on Ug(q) if (x) does.

Lemma 2.2. Let P € Syls(G). Then P fizes a unique point o € Q and
acts sharply transitively on Q \ {a}. In particular, it acts transitively on
PBo. Moreover, each element of P\ [P, P|, which has order 9, acts freely on
the set of blocks, in particular on AB,. Also, each element of [P, P|\ Z(P)
stabilises exactly q° blocks, all belonging to B, and acts freely on the set of
all other blocks. Finally, each member of Z(P), which is the third power of
an element of order 9, acts freely on the set of blocks.

Proof. The first two assertions are easy and immediate, noting P = P,. Now
let x € P have order 9. Suppose z° stabilises a block B, i € {1,2,...,8}.
Since |z%| € {3,9} and |B| = ¢ + 1, ¢ fixes a point on B, and hence, a € B
(by the first assertion). Also,  acts freely on the set of blocks through « if,
and only if, 23 does. Now we use the notation of Section Up to conjugacy,
we may assume x> = (0,0,1)o. Then one calculates z° - Byyr = By i1,
for all b,b" € F,. It follows that both z and 23 act freely on the set of
blocks through «. Now let & = (0,a’,0) be, up to conjugacy, an arbitrary
member of [P, P]\ Z(P). Then x maps the block By, to the block By g5
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It follows that the g blocks By, b’ € Fy, are stabilised, and none of the
other blocks is. A similar argument as for |z| = 9 shows that every element
of P of order 3 acts freely on the set of blocks not containing «.

The lemma is proved. O

We need one more property of the Sylow 3-subgroups.

Lemma 2.3. Let P € Syl;(G), and let a € Q be fized by P. Then the set
of all subsets of B, that are the sets of fixed lines of members of P, forms
a system of imprimitivity for P, pointwise fized under the action of [P, P].
Also, no element of P\ [P, P] stabilises any member of that partition; hence,
every element of P\ [P, P] has orbits of size 3.

Proof. We again use the notation of Section [A] and put o = co. Using the
explicit form of [Py, Py], where P = P4, given there, it is easy to see that
that the system of imprimitivity is

{Boa | d €Fy} |a € Fy).

The lemma is now obvious from the fact that each member of P\ [P, P| has
the form (b,b',b")o with b # 0. O

Lemma 2.4. An element x fixing at least three points not contained in a
common block is the identity. An element x fixing exactly two points o and
B stabilises a unique block, namely B(a, 3).

Proof. The first assertion follows straight from Theorem Now assume
that an element x € G, g stabilises a second block B # B(a, 3). By the
second assertion of Theorem B\ B(a, ) must contain a multiple of
|z| points. Since |x| divides ¢ — 1, it can only divide also |B \ B(«, )] if
|z| =2 and BN B(a, ) = @. But then z is an involution and fixes B(a, f)
pointwise, contrary to our assumption that x fixes exactly two points. [

Orders and fixpoints We will use the following fixpoint properties on a
few occasions. Although they must be well-known, we sketch short proofs.

Lemma 2.5. Let x € G have order k > 1. The one of the following holds.

e k=2 and the points fized by x are the g + 1 points of a block.

e k€ {3,6,9} and z fizes a unique point.

° k\% and x fizes exactly two points.

k\% and x acts freely on 2, hence does not have any fized points.
k|q? —q+1 and x acts freely on Q, in particular it has no fized points.
k # 2 is even and k|q — 1, then x fixes exactly two points.

k # 2 is even and k\%l, then x has no fized points.

Proof. If x fixes at least one point, then it is contained in P x Cy_; for
some P € Syl3(G). From the structure of this point stabiliser then follow
the first three bullet points and the second last. This can also be verified
with the description given in Section[A] Hence, in all other case there are no
fixed points. The free actions follow from the fact that, in the cases under
consideration, each divisor d of k is again relatively prime with ¢3(q — 1),
and hence, % has no fixed points, too. Finally, the fact that no other orders
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show up is due to the structure of the maximal subgroups, in particular the
normalisers of the cyclic Hall subgroups as given above. O

Lemma 2.6. Let o, 8 € Q be distinct. Let P, and Pg be the corresponding
Sylow 3-subgroups. Let x € [Po,P,] \ Z(P) and y € [Pg, Pg] \ Z(P3).
Suppose (x,y) does not stabilise B(a,3). Then x does not stabilise both
blocks B(a,y - a) and B(a,y~' - ) simultaneously.

Proof. We again use the notation of Section [A] and put @ = oo and =
O. Clearly, the statement is trivial if  does not stabilise B(oco,O) and y
does. Hence, we may assume that y does not stabilise B(oco,O). So, up to
conjugation, we may assume that y = (0,4',1)p, and z = (0,d’,a”)o. Then

1 00 0 0 0 0 1 1
i 10 0 0 0 1 0 b0
14 0 1 =¥ 0 -1 v 0 14V
Y- 00 = —1 00 1 0 O 0 0f = -1
1+v4 o 0 1 1 =p? 14| |0 14 potL
- 00 0 0 1 0 0 —y
0 0 0 0 0 1 0 0

0
1-Y b’ 1
=p 14+p0+17 1 4 p0+17 1 4 po+1 )
Now, y~! = (0, b/, —1) and so we find that
1 1+ v 1
Y 0T P\ T et Lo ] ot )

On the other hand, one easily calculates that = maps the block B, . to the
block Be ¢4 q/—qrc, and hence, the block stabilised by x is Bgyg-1 . Clearly

///1

/ / .
at most one of the values 1_53 T Or — 1+1;§ — is equal to a , which proves
the lemma. U

Lemma 2.7. Let o, B € €1 be distinct. Let P, and Pg be the corresponding
Sylow 3-subgroups. Let x € [Py, Py)\ Z(P,) and y € [Pg, Pg| \ Z(Pg). Sup-
pose both x and y stabilise B(«, 3). Then each block distinct from B(a, 3)
and fized by x intersects a unique block distinct from B(«, 8) and fized by y.

Proof. We use the notation of Section Clearly, the elements (0, a,0)qo,
which are precisely those elements of P, stabilising B(oo,O), and which,
apart from the identity, all belong to [P, Poo] \ Z(P)o), stabilise the blocks
Byg,q), containing points of the form p(0,a’,a"). Likewise, (0,a,0)o sta-
bilises all lines containing points of the form ¢(0,¢’,b”). Theorem[A.3|implies
that the common points of the sets

{p(0,d',a") | o' € Fy,a" € F;'} and {q(0,0',0") | b € F,, 0" € F}

are the points p(0,a”~%,a"). It follows that each block B 0.0, @ # 0,
contains a unique such point. This proves the assertion. O

A central element x of order 3 in G is by definition one that is contained in
Z(P), for some Sylow 3-subgroup P of G.
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Lemma 2.8. A central element of order 3 of G does not stabilise any block,
and is not contained in the normaliser of any (cyclic) Hall subgroup.

Proof. The first assertion follows from Theorem From the structure of
Ng(M;), i € {—1,0,1} one sees that each element z of order 3 of N¢(M;)
is contained in a cyclic subgroup of order 6. Hence, there must exist an
involution 7 such that xn has order 6. Clearly n has to fix the fixpoint of x
which by Lemma [2.5] is unique. Hence, with the notation of Section [A] we
can write n = h(—1) and = (0,0,b")s, for some b” € F,. But then one
calculates that xn maps p(a,a’,a”) to p(—a,a’, —a” —b"), and hence, zn has
order 2, a contradiction. O

We now show that the maximal subgroups N (M) are the counterparts of
the stabilisers of (real) triangles in the unitary groups Us(q).

Lemma 2.9. The maximal subgroup N(My) of G, for a Hall subgroup My
of order %(q + 1), stabilises three mutually disjoint blocks, each of them
stabilised by every member of N(My) with an order not divisible by 3, and

permuted around in a cycle by each subgroup of order 3 of N(Mj).

Proof. The subgroup N (M) is the normaliser of a Klein four group V =:
{1,n1,m2,m3}. As such, each member of it permutes the three fix blocks
B; of the n;, respectively, i = 1,2,3, and N(My) does not contain further
involutions. Each 7); itself, ¢ = 1,2,3, centralises V and hence stabilises
each block B;, + = 1,2,3. It follows that By N By = & as otherwise 7;
fixes a unique point of By, leading to 2|¢, a contradiction. Let g € N (M)
be an arbitrary member that does not stabilise all of By, Bs, Bs. Suppose
first that g stabilises By and interchanges Bz and Bs. Then |g| is even. By
the structure of N (M), we see that |g| = 2k, for k& odd. Hence, g* = m
and g* stabilises both By, By, a contradiction. Now assume that ¢ acts as
an order 3 permutation on {By, Bg, Bs}. Then clearly |g| € {3,6} by the
structure of N(Mpy) again (alternatively, note that any element whose order
divides 3 is contained in the centraliser of an order 3 element, which is on
its turn contained in a point stabiliser, from which the claim also follows).
If |g| = 3, then g has a unique fixed point « by Lemma which we claim
is not contained in By U By U Bs. Indeed, suppose for a contradiction that
« € Bi. Then by the disjointness of the blocks By, Bs, Bs, the block Bj is
stabilised by g. But we proved above that in this case also B2 and B3 have
to be stabilised, contradicting Theorem and the fact that By and Bg are
disjoint from Bj. Hence, the claim follows and Theorem implies that ¢
cycles By, By, B around. If |g| = 6, then g2 cycles these blocks around, and
hence also g. O

2.4. Structural subgroups. Structural subgroups are subgroups of the
maximal subgroups (i) Ng(P), for P € Syl3(G), and (ii) Cg(n), where 7 is
an involution.

(7): The normalisers of Sylow 3-subgroups each stabilise a point. Sylow
3-subgroups consist of unipotent elements, have order ¢, their center is
elementary abelian of order ¢, they have class 3 and the Frattini subgroups
equal the commutator subgroups and contain the center.
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The stabiliser of two points «, 3 is a cyclic group W of order ¢ — 1 and
Ng(P) = P x W, where P € Syl3(G) and fixes the point a. The group W
acts by conjugation on the set of elements of [P, P] that stabilise B(a, ) in
exactly two orbits, mapped onto each other by taking inverses.

(77): The centraliser of an involution r is isomorphic to (r) x PSL2(q) and
these are the block stabilisers.

The following table lists the maximal subgroups of G up to conjugacy and
their geometric properties.

Maximal subgroup | Geometric prop. Orders
Ng(P), P € Syl3(G) | Point stabiliser 2,3,6,9
Cga(r), r involution | Block stabiliser 2, 3, 6, divisors of ¢ — 1, (¢ +1)/2
2Ga(qo), g5 = g, | Subunital stabiliser
p prime
Ng(Mir) 2, 3, 6, divisors of g + /3¢ + 1
Na(Mp) | Triangle stabiliser | 2, 3, 6, divisors of (¢ + 1)/2

Subgroups of the first two rows will be referred to as structural subgroups.
Subgroups of maximal subgroups of the form 2Ga(qg) are called subunital
stabilisers or subfield subgroups. All other subgroups will be referred to as
small subgroups.

2.5. Classification of elements in 2Gs(gq) and their normalisers. A
list of conjugacy classes in G is given by the following table, where the
left column denotes either the order of an element, or a multiple m of that
order, and the right column denotes either the number of conjugacy classes
of elements of that given order, or the total number of conjugacy classes of
elements whose order divides m, respectively.

Order Number of conjugacy classes
q++3q+1 “T*/%
Order divides{ 94— V34+1 (I_T\/%
q+1 =3
21 ¢°3
2 2
( 9 3
6 2
Order is 3 3
2 1
1 1

TABLE 1. Number of conjugacy classes in 2Gy(q)

Given this table, the facts listed in Section and the table of maximal
subgroups of G, the following proposition is obvious.
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Proposition 2.10. Let x be a nontrivial element of G. Then Cg(z) is given
by the following subgroups.

Co—1 2] | q;21
C3 x Cans o] | 7
C /3341 x € M,i==+1

Co(z) =4 P x € Z(P), P € Syly(G)
[P,P] x (r), |r|=2 z€[P,P]\ Z(P),P € Syl(G)
Z(P) - (z) z € P\ [P,P],P e Syl(G)
(x) x PSLa(q) |z| =2

Lemma 2.11. Suppose that x,y € G, where x is not an involution, and
that (z,xY) is not a structural subgroup and is not contained in a subgroup
isomorphic to 2Go(3)' = PSLy(8). Then x and x¥ are conjugate in (z,xY).

Proof. This follows readily from the description of the conjugacy classes. For
the Hall subgroup stabilisers, this is a consequence of the fact that they are
normalised by a cyclic group of order 6, whereas the corresponding denom-
inator in the right column of Table 1] is exactly 6. For subfield subgroups
H, this follows from the observation that the number of conjugacy classes
of elements of H of a given order in H is equal to the number of such con-
jugacy classes in G, together with the fact that, if this number is strictly
larger than 1, which happens only if |z| € {3,6,9}, then the following holds.
If |z| = 3, then one class is given by the centre Z(P’) of a Sylow 3-subgroup
P’ of H, where Z(P') < Z(P), for some Sylow 3-subgroup P of G, and
the two other classes are related by inverse (so all three classes are present
in every subfield subgroup). If || = 6, then the two classes are related
by inverse. For |z| = 9, two of the classes are related by inverse and the
third class has, with the notation of Section representative (1, —1,0)s
and hence exists in every Ree subgroup, except in the smallest derived case
2G2(3) =2 PSLy(8). O

Lemma 2.12. Let x be an element which is not an involution in G, and
suppose that x € Ry N Re where Ry and Rs are Ree subgroups of G, distinct
from 2Gy(3). If |Cr, (z)| < |Cr,(z)|, then |R1| < |Ra|.

Proof. This follows from Theorem [2.10] by noting that the orders of the
centralisers depend proportionally on the order of the Ree subgroup. Also,
elements of a given Ree subgroup R; stay “in the same kind of class” when
considered in another Ree subgroup Rs; that is, if Cg, (z) for some member
x € Ry is read on the nth line of the displayed cases in Theorem then
on the same line one reads Cg,(z). This follows from the fact that, if R; is
defined over the field F,, the order |z| of any member x € Ry N Ry divides
¢; +1 if, and only if, it divides ¢+ 1; it divides ¢; — 1 if, and only if, it divides
q — 1, and it divides ¢? — ¢; + 1 if, and only if, it divides ¢*> — ¢ + 1. (These
follow from easy divisibility conditions possibly using elementary cyclotomic
polynomial theory.) O
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2.6. Basic group theory lemmas. We conclude this section with two
basic group theory lemmas that will be useful throughout this article.

Lemma 2.13. Let K be a finite cyclic group generated by {x1,xz2,...,xx}.
Then there exists natural numbers my,...,mg_1 so that

K= {2/ 2" ag).
Proof. This proof follows from [§, Lemma 4.1] and induction. O

The proof of the following lemma is immediate.

Lemma 2.14. Let K = C, x Cp, be a semi-direct product of two cyclic
groups with (n,m) = 1. If the prime p divides m, then the elements g € K
with g’" = 1 form the subgroup C, x C,. If p = 3, then for any pair
g,h € Cp, xCs of elements of order 3 we either have |gh| = 3 and (gh)" =1,
or |gh™Y =3 and (gh=1)" = 1.

We now embark on the proof of Theorem We show that every vertex
of X5(Q), for G = 2Gy(q), is connected to a redundant vector. We prove
as much as we can for shorter vectors, in particular for vectors of length 3.
Globally we show that we can transform any vector (z,vy,z,v,w) € V5(Q)
with a finite number of Nielsen moves to a redundant vector. Obviously we
may assume that (x,y, z,v,w) is not redundant itself, in particular, none of
x,y, 2,v,w is the identity.

3. REDUCTION AWAY FROM INVOLUTIONS AND UNIPOTENT ELEMENTS

This first lemma says that we may connect any generating 3-tuple (z,y, 2)
to a generating 3-tuple (z,%/, 2’) such that 3 and 2’ are not involutions and
where 3" and 2’ do not normalise the cyclic subgroup (z).

Lemma 3.1. Let G be a finite simple group, and let (x,y, z) € V3(G). Then
(x,y,2) is connected to (x,y',2"), where v,z ¢ Ng({x)). Moreover, we may
assume that y' and 2’ are not of order 2.

Proof. Step 1: We observe that y and z cannot both be in the normaliser
N¢g({z)), since G does not normalise (x). We note that if y € Ng((z)) and
z ¢ Ng({z)), then yz ¢ Ng((x)). Thus, we can connect (x,y, z) — (z,yz, 2),
where yz,z ¢ Ng((z)). If yz is an involution, we proceed with Step 2 with
yz in place of y.

Step 2: If y ¢ Ng((z)), but y is an involution, we claim that zy is not an
involution. If it were, then zyxy = 1, which implies z~' = yxy = 2¥. Hence,
a¥ € (z). That implies y normalises (z), which is a contradiction. Thus, if
y has order 2, we may connect (z,y, z) to (x,zy, z) where xy does not have
order 2, and since y ¢ Ng((z)), it follows that zy ¢ Ng({z)). We can do
the same step with z instead of y and arrive at the same assertion. U

Now we show that we can connect every quintuple to a quintuple containing
at least one element that is not unipotent, that is, which does not fix a unique
point (such elements are characterised by the property that they have order
3,6 or 9). Consider the following condition on a quintuple (z,y, z, v, w).
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(*) Either at least one of the elements x,y,z,v,w has order distinct
from 2,3,6 and 9, or none of the elements are involutions and the
subgroups (z,y, z,v), (z,y, z,w), (x,y,v,w) and (x, z, v, w) are sub-
field subgroups over subfields of size at least 27, and the subgroups
(x,2Y), (x,x%), (x,2") and (z,z") are not structural subgroups.

We first show that, in order to prove that for a given generating quintuple
(z,y,2,v,w), we may assume that the subgroup (z,y,z,u) is a subfield
subgroup over a subfield of size at least 27, it suffices to show that it is
not structural.

Lemma 3.2. Let (z,y,z,v,w) € V5(G). Then, if (x,y,z,v) is small, then
(z,y,2,v,w) is connected to a redundant 5-tuple.

Proof. Small subgroups of G lie, by their very definition, in N¢g(M;), which
is the normaliser of the cyclic Hall subgroup M;, i = —1,0,1, of order
q—+3q+1, %, and q + /3¢ + 1, respectively. For i € {—1,1} all sub-
groups of Ng(M;) are either cyclic or 2-generated since then Ng(M;) is
cyclic-by-cyclic. The structure of Ng(My) is given by (V' x My) x (t) where
V is an elementary abelian group of order 4 and ¢ has order 6. We note
that ¢ acts on V by cyclically interchanging the three involutions. Hence,
all subgroups of Ng(Mj) are at most 3-generated. In all cases (z,vy, z,v)
admits a generating set of 3 elements. Now, work of Dunwoody [6] im-
plies that (x,y, z,v) is connected to a redundant generating 4-tuple. Hence,
(z,y,2,v,w) is connected to a redundant 5-tuple. O

Lemma 3.3. Let (x,y,z,v,w) be a generating 5-tuple such that (x,y, z, u)
is either small or isomorphic to either 2Ga(3)" or 2Go(3). Then (z,y, z,v,w)
is connected to a redundant 5-tuple

Proof. For (x,y,z,u) small, this follows directly from Theorem Ob-
serve that 2Gg(3) = PILy(8) = PSLy(8) x 3. Hence, H =: (z,y,z,u) €
{PSL2(8),PSL2(8) x3}. If H = PSL2(8), then by [7], (v, z,v,w) is connected
to a redundant 4-tuple, a contradiction. So we may assume H = PSL(8) %3
and we set H = Hy x (§), with |{| = 3. We may assume w ¢ Hy. Then for
somei € {0,1,2}, w'y € Hy. This yields Nielsen moves to connect (y, z, v, w)
to (y/,2',v,w) with ¢/, 2',v" € Hy. By the classification of subgroups of
PSL2(8), we either have (y',2',v") = PSL9(8), in which case (v/,2',v) is
connected to a redundant triple by [7] again, or (y/,2’,v') is solvable and
generated by at most two elements, implying by [6] that we again can con-
nect (y/,2',v’) to a redundant triple. O

Proposition 3.4. Every quintuple of generating elements of G containing
only elements of orders 2,3,6,9 is connected in X5(G) to a quintuple satis-
fying Condition (*).

Proof. Let the quintuple be given by (z,y,z,v,w). We first note that
not all of x,y, z, v, w are involutions, as, if they mutually commuted, they
would generate an elementary abelian subgroup of order 32, a contradic-
tion. Hence, if x and y are non-commuting involutions, the quintuple
(zy,y,z,v,w) contains an element xy of order at least 3. So, without loss
of generality, we may assume that x is not an involution.
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By Theorem we may assume that all of y, z, v and w are not involu-
tions. Hence, each of z,y, z, v, w fixes a unique point, which we denote by
a, B,7,9,&, respectively. Evidently, we do not have o = 8 = v = § = &.
If o = B, then we may assume without loss of generality that v # « and
we replace (z,y, z,v,w) with (z,y?, z,v,w). Repeating this if necessary, this
produces a quintuple with o ¢ {3,7,6,&}. This already implies that we may
assume that neither (z,y), (z, z), (x,v) nor (x,w) are contained in a point
stabiliser. We divide into cases.

Case 1. Suppose at least one of x,y, z,v,w has order 9. We may assume
that x has order 9. Since elements of order 9 only appear in subfield sub-
groups and point stabilisers, (x,y) is a subfield subgroup. Since z¥ only fixes
the point y - o # «, the group (z, x¥) is a subfield subgroup. Similarly all of
(x,z), (z,2%), (x,v), (x,2"), (r,w) and (z,x") are subfield subgroups and
the assertion follows from the fact that overgoups of subfield subgroups are
subfield subgroups, as is apparent from the list of maximal subgroups. .

Case 2. None of x,y,z,v,w has order 9, but at least one of them is cen-
tral. We may suppose that z is central. By Theorem [2.8] the subgroups
(x,y), (x,zY), (z,2), (z,2%), (z,v), and (z,x") are subfield subgroups. The
assertion again follows.

Case 3. None of x,y,z,v,w have order 9 or are central, and one of
x,y,z,v,w has order 6. We may assume |z| = 6. Note that z stabilises
a unique block, which contains a. Suppose both = and y stabilise B(a, f3).
Then, since we may then assume without loss of generality that z does not
stabilise B(a, 3), one of z or z~! maps 3 outside B(a, 3). Suppose without
loss of generality that z - 5 ¢ B(a, ). Then we replace (z,y,z,v,w) with
(z,y%, z,v,w). Hence, we may assume not both x and y stabilise B(«, ).
Similarly not both x and z stabilise B(«,7), not both x and v stabilise
B(a, ), and not both x and w stabilise B(«,&). Then (z,y), (z,z), (z,v)
and (x,w) are not structural. Hence, (z,y, z,v) is not structural. But it is
not small either by Theorem hence, it is a subfield subgroup. Similarly,
the subgroups (x,y, z,w), (x,y,v,w) and (x, z,v, w) are subfield subgroups.

Suppose x and z¥ stabilise the same block B. Then B contains o and ¥y - a.
Then the block B(a,y ™! - @) is distinct from B and hence not stabilised by
x. It follows that (z,Yx) is not structural. Replacing y with y~!, which is
allowed by the Nielsen moves, we obtain that (z,z¥) is not structural. On
the other hand, if  and z¥ do not stabilise the same block, then (x, z¥) was
not structural in the first place. Similarly, either (z,x*) or (z,?x), either
(x,z") or (x,"x), and either (z,x") or (z,"z) is not structural. Then an
analogous argument as with (z,aY) yields (*).

Case 4. All of x,y, z,v,w have order 3 and are not central. Here, each of
x,y, z, v, w stabilises g blocks through their respective fixed point. We claim
that we may assume that x and y do not share a common fixed block. Indeed,
assume all of x, y, z, u, w pairwise share common fixed blocks. Evidently, this
cannot be the same block for every pair; hence, we may assume that - is not
contained in B(a, ). Theorem then implies that 8 is the unique point
on B(f,7) whose join to « is fixed by z. Consequently, y* does not fix any
block fixed by z, and since we may replace y with y*, the claim follows.
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Hence, (x,y) is not structural and, by Theorem and replacing y by its
inverse if necessary, the subgroup (x,zY) is not structural. We now claim
that we may assume that (z,x*) is not structural. Indeed, this follows from
Theorem [2.6|if x does not fix the block B(«,7). So assume that z stabilises
B(a, 7). Since (x,y) is not structural, the subgroup H := (x,y, u, w) is not
structural and so, by Theorem H is isomorphic to 2Ga(qg) for some 3-
power qo > 27. By field restriction it follows that H acts doubly transitive
on a subunital Qg of €, which contains « as « is the unique fixed point
of x. Let u € H be an element of order 9 fixing a. Then, replacing z
by 2/ = 2%, as is allowed with Nielsen moves, Theorem implies that =
does not fix B(a,u 7). So, again by Theorem and replacing 2’ by its
inverse if necessary, <:1:,3:Z/) is not structural. The claim follows. Similarly
we may assume that (z,z%) and (x,z") are not structural. But then non
of (x,y, z,v), (x,y, z,w), (x,y,v,w) and (x, z,v, w) is structural, and hence,
by Theorem they are all subfield subgroups.

The proof is complete. O

Proposition 3.5. Every quintuple (z,y, z,v,w) of generating elements of G
containing only elements of orders 2,3,6,9 is connected in )?5(6’) to either
a redundant quintuple, or to a quintuple containing at least one element of
order distinct from 2,3,6 or 9.

Proof. By Proposition , we may assume that H := (z,y, z, u) is a subfield
subgroup 2G(qo), with go > 27.

We now claim that the coset wH contains at least one element of order
distinct from 2,3,6 or 9. We proceed by distinguishing the various possible
orders of w. We perform explicit computations using the matrices given in
[26], Section 9.2.4], see Sectionbelow. Those 7x7 matrices over [F, describe
the action of the full Sylow 3-subgroups P, and Py, which fix the two points
oo and O, respectively. Recall that each Sylow 3-subgroup is described by
triples (a,d’,a")s and (a,d’,a”)o, respectively, with a,d’,a” € Fy, Also,
Z(Px) = {(0,0,a")s | " € Fy}, that [Ps, Pso] = (0,d’,a" ) | d',a” € Fy}
(and similarly for Pp), and the stabiliser of the block through co and O in
Py and Pp is {(0,d’,0) | @' € Fy} and {(0,d’,0)0 | @’ € Fy}, respectively.
The 2-point stabiliser G 0 acts by conjugation on P as (a,d’,a")s
(at? a’t?*1 a"t%%2) . Recalling the definition of trace of an element of G
from Section [A] an element of order 3 or 9 has trace 1 and an element of
order 2 or 6 has trace —1 by Theorem

We may assume that w fixes co. Let U be the group of central elements of an
arbitrary Sylow 3-subgroup of H not fixing co. Then, by the 2-transitivity
of (G,Q), we may assume that U fixes O. A generic member u of U is
(0,0,d)o, d € Fy, but note that not all elements of F, provide elements of
U; only gy do. However, we may assume that for those q¢ values, the traces
of wu and wu? are in {1,—1}. We consider all possible orders for w and
prove that under this assumption, each lead to a contradiction.

o Assume that w has order 9. By the action of the 2-point stabiliser
G0, we may assume that w = (1,b, ¢)o, for some b,c € F;. One
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can now explicitly calculate the traces of the matrices corresponding
to the products wu®! and obtain

1+ =+ 09— —b—1)F[d+d° (0> —b—c— F)],
where the minus sign corresponds to wu and the plus sign to wu? =
wu~!. Since these traces belong to {1,—1}, the difference of the
traces of wu and wu~! belongs to {0,1,—1}. Hence, we obtain,
setting b2 — b — ¢ — ¢ = f (possibly f = 0), that d + fd? = ¢, with

e € {0,1,—1}. This implies d’ + f%d® = %, yielding
(fe¥ —e)+d— fo1a® =o.

The latter can only be true for at most three nonzero values of d,
whereas we have gy values of d, a contradiction.

o Assume that w has order 3 and does not fix every block joining its
fixed point oo to a point of the subunital stabilised by H. Similarly as
in the previous case, we may assume that w = (0,b, 1), and both
wu and wu? have trace either 1 or —1 (with u as above). This implies

1+d> + 00 a? 4+ df € {1,-1},
L+d?+00t1a? —df e {1,-1},

which obviously implies d € {0,1,—1}. Since this must be true for
all go values for d, this is again a contradiction.

o Assume that w has order 3 and fizes every block joining its fized
point 0o to a point of the subunital stabilised by H. Here we can take
w = (0,b,0)00 and u = (0,0,d)p. Calculating the trace of wu, we
obtain 1 + b%+1d2, which is only equal to 1 if one of b or d is 0, a
contradiction. If the trace of wu is —1 then b%+1d? = 1. Since there
are at most two solutions for d, we again reached a contradiction.

o Assume finally that w has order 6. Any order 6 element fixing co can
be obtained by multiplying (0, b,0) with the involution 7 that fixes
the block B(oo,O) pointwise, and which is given by the diagonal
matrix Diag(1,1,—1,—1,1,1,—1). The set of elements of the form
(a,0,¢)s acts transitively on the set of blocks through oo, and con-
jugating with an appropriate element of the 2-point stabiliser G 0,
we may assume a = 1. Then one calculates that the trace of

(1,0,¢)22(0,5,0)00n(1, 0, ¢)s0 (0,0, d) o
is equal to
1 ¥ bd + d* — b2d* + ' d? + cd® + Pd® — Pd? £ v9d” £ bed”
where the plus and minus signs should be read consistently. Hence
the difference of these traces is equal to

bd — b%d’ — bed’
Since both traces are either 1 or —1 we obtain that bd—b?d? —bed? = k
where k € {0,1, —1}. Hence also b?d’ — b*d> — bed® = k. Since b # 0
we can compute d’ from the second equation and substitute in the

first to obtain either a linear or a cubic equation in d which can be
satisfied for at most 3 < qg values of d, again a contradiction.
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Hence, the claim is proved. Let h € H be such that the order of wh is
not 2,3,6 or 9. Then we can do Nielsen moves to transform (w, z,y, z) into
(wh, x,y, z) and the proposition follows. O

4. ELIMINATING THE STRUCTURAL SUBGROUPS

In this section, we show that we can connect a generating 5-tuple (z,y, z, v, w),
where |z| ¢ {2,3,6,9}, to a generating 5-tuple where (z, zY), (x, 2?), (x,a")
and (z, z") are not structural subgroups. See Section [2.5|for the list of struc-
tural subgroups of the Ree groups. We proceed based on the fixed point sets
of x.

4.1. x fixes two points. This first proposition allows us to assume when
given a generating 3-tuple (z,y, z) where z fixes exactly two points (hence
|z| # 2), that we may connect (z,y,z) to a generating 3-tuple (z,v/,2’)
where (x,y') , (z, 2’} are not structural subgroups. Moreover, we may assume
that |¢/|,|2'| # 2. For this proposition, when given a point «, we denote
Go = Stabg (), and when given two points «, 3, we write G, g = Go N Gp.
We denote the block through the points o and 8 as B(«, 3), and write its
stabiliser as Gp(a,5) = GB-

Proposition 4.1. Let (z,y, z) € V3(G) where x fizes two points and |z| #
2. Suppose that (x,y,z) is not connected to a redundant 3-tuple. Then
(z,y, z) is connected to (x,y', 2"), where (x,y') and (x,2') are not structural
subgroups. Moreover, neither y' nor 2’ are involutions.

Proof. By Theorem [3.1], we may assume that y, z ¢ N¢((z)) and |y],|z| # 2.
Suppose that = fixes exactly two points a and § and that H = (z,y) is a
structural subgroup. That implies that H is a subgroup of either G, Gg,
or Gp by Lemma We start by assuming H is a subgroup of G,.

Step 1: If y fixes two points, one of them «, we set y; := y and proceed
with step 2. Suppose y fixes only the point «. In this case, we have H < G,,
where G, = Ng(P), P € Syl3(G). In particular, we have G, = P x Gy 3,
where G g is cyclic of order ¢ — 1.

Let o be the involution fixing the block G, g pointwise and set Q@ = P x (o).
Then @ is the set of elements of order 2, 3 or 6 in G,. But @ can also be
described as the set of elements of G, not fixing exactly two points. This
implies y € Q.

Hence, if zy were in Q, then zyy~! € Q, which would imply that = € Q.
This contradicts the fact that x fixes o and 5. We conclude that zy is not
in @. In particular, it must have exactly two fix points, one of which is a.
We set y; := xy and proceed with step 2.

Step 2: y; fixes two points {«,v}.

If v = B, then H is a cyclic subgroup and H < Gp and we can con-
nect (z,y1,2) to (z,2™y1, z), where (z™y;) generates H (cf. Theorem [2.13).
Hence, (x,y1, 2) is then connected to a redundant triple, which implies we
may assume that v # .

Since (z,y1, 2) is a generating 3-tuple, we have z ¢ G,. Hence, z - a # a.
Suppose that z-a = f and 27! -« = B. Then z is an involution (since
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the square of an element of order 6 only fixes one point by Theorem [2.5)), a
contradiction.

Then we define 2/ = 2z if z- a # 8 and 2/ = z~! otherwise. Then 2’ - a # «
and 2’ - a # 3. Given that z is not an involution, the elements g; := 2’2" for
0 <4 < 2 are distinct. We see that

y - (gi- @) = giig; i a =g -a =g,

and similarly, y¥" - (¢; - v) = gi - 7. Hence, y{* € Gy,.a.9,~- Suppose that
gi -y = gj-7, where 0 < i < j < 2. We then have 27" . v = 7. Hence,
we must have j = i. Therefore, there exists an integer k € {0,1,2} such
that g - v ¢ {«, 8} by the pigeon hole principle. Now we also have g - o =
7 - a ¢ {a,B}. Hence, y{* has two fixed points, neither of which is « or
B. If at least one of the two fixed points of yi* is not contained in B(«, 3),
then (z,y{*) is not a structural subgroup. Therefore, we may assume that
(z,y{*) fixes B(a, f).

If at least one of the two fixed points of y/* is not contained in B(«, f3),
then (z,y{*) is not a structural subgroup by Theorem [2.4, Therefore, we

may assume that (z,y?*) stabilises B(a, 3). In this case clearly 2’ does not
stabilise B(a, ).

We claim that (z, (y9%)*') neither stabilises a block, nor fixes a point. As we
noted above, 2’ - B(a, 8) # B(«, 3). But

yi* - (

hence, 2’ - a is one of the fixed points of y{*, which we assume stabilises
B(a, 8). We conclude that 2’ - a = 2’ - B(a, 8) N B(a, §). By our choice of
k, we have 2z’ - a ¢ {«, 8}. Then the claim follows (because the only fixed
block of (y?*)* is ' - B(a, 8) # B(a, B)).

If (x,2') is a structural subgroup, we can then apply the same arguments as
for (z,y).

Step 3: y does not fix either o or 3, but stabilises B(«, ).

Since z does not stabilise B(«, 3) neither does yz. So we replace y by yz,
then either (x,yz) is not a structural subgroup or yz fixes either o or 5 and
we can repeat steps 1 and 2. U

Za)=dakyaTRS T () =2 o

Proposition 4.2. Let (z,y,z) € V3(G) where |z| # 2 and where x fizes
exactly two points. Then we may connect (x,y,z) to a generating 3-tuple

(z,y,2") where <x,azy/> , <$,£Cz/> are not structural subgroups.

Proof. We assume that x fixes the points « and 8 and stabilises the block
B = B(a, ). Theorem implies that we may assume that (z,y) and
(x, z) are both not structural subgroups where y and z are not involutions.
In particular, y, z ¢ Ng((x)).

We will proceed in two stages first proving we can connect (x,y,z) to a
generating 3-tuple (x,y’, z) where <x,$y/> is not a structural subgroup. If

(x,2Y) is not a structural subgroup, then there is nothing to prove. Other-
wise, we note that z¥ € Gy.o 4.3 and that (x,z¥) is a subgroup of G,, Gg,
or Gg. If Y- B = B, then z stabilises y~' - B # B, a contradiction to
Lemma Hence, we may assume that (z,2¥) < G,. Since (z,y) is not
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a structural group, we have y~! - a # o. Hence, we must have y~! - a = .

Given that (z,z) is not a structural subgroup, we must have z - 8 # 8. If
z-a =B and z7! - a = B, then z stabilises B and (r, z) is structural, a
contradiction. Thus, there exists a 2’ € {2,271} such that 2’ - 8 ¢ {«, B}
We also note that z - B # B.

Let g; = 2’2y~  for 0 < i < 3. Then g;-a = 2/ - B ¢ {a,8}. We claim
that g; - 8 # gj - B for 0 < ¢ < j < 3. Suppose otherwise. We then have
iy~ . 3 = y~1B. Tt follows that y=1 - 8 € {a, B} since 27~ only fixes
a and (3. Given that y~!'- 8 # 3, we have y~! - 8 = . Since we assumed

y~! - a = B, this implies that y - B = B, a contradiction.

Therefore, go - 8,91 - 8,92 - B,93 - B are all distinct. Hence, g, - 8 ¢ {a, 5}
for at least two values of k € {0,1,2,3}. Similarly, for at most one value
of k € {0,1,2,3} we have g, - B = B. Hence, we see that there exists at
least one k € {0,1,2,3} such that g; -3 ¢ {a, 8} and g - B # B. Since also
gr - o & {a, B}, we conclude that (z,z9%) is not structural.

We then connect
(2,y,2) = (w,y7",2) = (@, 2fy ™", 2) = (2, 2%y~ 2) = (2,08, 2).
Setting 4’ = g, we may apply the same arguments to (z,2,3) and z to

obtain a generating 3-tuple (z,v’, z’) where <33, l’z/> is not a structural sub-
group. O

It is clear from the proofs that both Theorem [.1] and Theorem [d.2] also hold
for generating k-tuples, with k > 4.

4.2. z fixes no points. From now on, we again consider vectors in V5(G),
that is, of length 5. This allows us to again use Theorem 3.2]and Theorem [3.3]
in the course of our proofs.

Proposition 4.3. Let (z,y, z,v,w) € V5(G) be minimal and not connected
to a redundant vector, where x does not fix any point (in particular |x| #
2). Then either all subgroups (z,y, z,v), (x,y, z,w), (z,y,v,w), (x,z,v,w),
(x,2Y), (x,z%), (r,z") and (x,z") are non-structural, or we can connect
(z,y,2,v,w) to a 5-tuple containing a member of G fixing exactly two points

of Ur(q)-

Proof. By Theorem [3.1] we may assume that y, z,v,w ¢ Ng((x)) and that
lyl, 2|, |v], |lw| # 2. If  does not fix any point, then, by Theorem its
order divides either %(q +1), g++3¢+1, or ¢ —+/3¢+ 1. In the latter two
cases, = is not contained in any structural subgroup, so that all of (z,aY),
(x,2%), (x,2"), (x,2"), (z,y, z,v), (z,y, 2z, w), (z,y,v,w) and (z, z,v,w) are
not structural by the minimality assumption.

Hence, we may assume that |z| divides (¢ 4+ 1). We claim that we may
assume that (y,z,v,w) is a subfield subgroup. Indeed, suppose first that
(y,z,v,w) fixes some point «. Then we can connect (z,y,z,v,w) with
(2, zyr~ 1, 2,u,v), and the subgroup H := (zxyx~!, z, v, w) does not stabilise
« or any other point of  (since all of y, z, v, w fix exactly one point; if they
fixed two points, then the assertion would trivially follow).
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Suppose now that (y,z,v,w) stabilises a block C. Then we obtain that
(y,z,v,w) < PSLa(q) x2. Since, by [27], all soluble subgroups of PSL2(q) are
2-generated, we may, by [6], assume that (y, z,v,w) € {PSL2(qo), PSL2(qo) x
2}, for some 3-power qp with go—1 a divisor of g—1. If (y, z, v, w) = PSLa(qo),
then, by [8], we can connect (y, z,v,w) to a redundant quadruple. We now
show that (y, z, v, w) = PSLs(qg) x 2 leads to our assertion.

Let 1 be the unique involution fixing C' pointwise. We can write (y, z, v, w)
as

("fy Yo, 77€z 20, "76” o, "76w w0)7
where €y, ..., €, € {0,1} and yo, ..., wo € PSLa(qo). It follows from the main
result of [§] that we can connect (yo, 20, vo, wo) to (g, 24, V), wj) with Nielsen
moves, where y;, fixes exactly two points of C. The same Nielsen moves take
(y,2,0,w) to (y*, 2%, v* w*), where y)(y*)~1, ..., wh(w*)~t € {1,n}. But
then clearly, y* fixes exactly two points and the assertion follows.
So we have shown that (y, z,v,w) is not a structural subgroup. Since by
Theorem it is not a small subgroup either the claim follows.
So, let (y,z,v,w) = 2Gy(q1) := H, for some appropriate power q; of 3.
Theorem [3.3limmediately yields g1 > 3. Let b be the size of a block stabiliser
in H. Then we claim that for at most ¢;b members h of H, y maps the
block h - B to itself. Indeed, if (yh) - B = h-B and (yh') - B =1 - B, then
yhW'h=' - B = W'h~! . B. Hence, y stabilises ”’h~! - B. The claim follows
from the fact that y stabilises at most ¢; blocks. Similarly, for at most ¢1b
members h of H, y maps the block h-B to B’ and for at most ¢;b members h
of H, y maps the block h-B to B”. Similar statements hold for the blocks B’
and B” and for z,v and w. Since 36q;b < |*Ga(q1)|, there exists a member
g € H such that all of y,z,v,w map {¢g- B,g-B’,g- B"} to a disjoint set
of blocks. It follows that (z9, (29)Y) is not structural, and the same thing
holds for (z9, (9)%), (x9, (x9)¥) and (z9, (9)Y). The assertion now follows.

The proof is complete. O

5. CONNECTING TO A REDUNDANT VECTOR

In this section, we connect a generating 5-tuple (z,vy, z,v, w) where (z,zY),
(x,2%), (z,x"), and (x,z") are non-structural subgroups to a redundant 5-
tuple. Theorem [3.5]implies that we may assume that there exists an element
of (z,y, z,v,w) which fixes either no points or exactly two points. Thus, up
to Nielsen moves, we may assume that x is that element. By Theorem |4.2
and Theorem we may assume that Ly = (x,2Y), Ly = (z,2%), L =
(x,2"), and Ly = (z,z") are not structural subgroups. Let K1 = (z, z, v, w),
Ky = (x,y,v,w), K3 = (x,y, z,w), and K4 = (x,y, z,v). We then see that
K; are not structural subgroups since they contain non-structural subgroups
for 1 <4 <4.

Theorem [3.3]implies that we may assume that K; are subfield subgroups over
fields of size at least 27 for 1 < i < 4. In particular, we have K; = 2Go(g;)
where q1 > g2 > q3 > q4 > 27.

Proposition 5.1. Using the above notation and assumptions, if g1 > qa,
then one of the following holds:
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(a) (z,y,z,v,w) is connected to a redundant 5 tuple.

(b) (z,y,z,v,w) is connected to a generating H-tuple (z,y, z,v,w) such
that (z,y') is a subfield subgroup, where

4
[z, 2, 0) [+ (2,0, 2, w) [+ {2,y v,w) | + | (2, 2,0,w) | > )| K.
=1

Proof. We claim that we can connect (z,y, z,v,w) to (x,y’, z,v,w) such that

1C 2,200y (T)] < NCla iy 2 0) ()]s
Cla 2,0y ()| < |Clgyr 20y()], and
Cla 2,0y ()] < [Cla gt ) ()]

By Theorem [2.10| C, ., .y (%) is one of the following:

—1
Co-1 x| | 5=
1
C3 x Cayna | |
Cort a1 x € M;,i=+l1

C(m,z,v,w)(qj) = P e Sy|3(2G2(q1)) T € Z(P),P < Sy|3(G)

[P, P> (n), Inl=2 =xe[P,P]\Z(P),P e Syl(G)
Z(P') - (z) 2 P\ [P,P],P € Syly(G)
(x) x PSLa(q1) |x| =2

Therefore, we have a few cases. The first case takes the first and the third
possibility above together and corresponds to C, . , .y (%) being cyclic. The
second case is when Clg . 4 ) (7) = C3 x Cqy11. The last four possibilities

above are when x is either an involution or has order 3,6 or 9. However,
Theorem implies that we may assume that = does not have order 2, 3, 6,
or 9.

Case 1: O, . 0 (7) is cyclic.

In this case, we have Ci, .. ) (2) € {Cg—1,M_1,M;}. Since x and z¥
are conjugate and (x,zY) is not a structural group, by Theorem and
our assumption on K; being subfield subgroups there exists an element d €
(z,xY) such that z¥ = 2¢. Let u = yd~!, which gives u € Clzy) (). Writing
Claz.w) (T) = (c), we claim that (u,c) is cyclic, and we proceed based on
the isomorphism type of Cy; . , ). Since z does not have order 2,3,6 or 9,
we have Cg(l‘) S {Cq_l,M_l,Ml,Cg X C%}.

If Cly vy () = Cgy—1, we then have || q12_1, which implies 2|z| | ¢1 — 1.
Since q; = 32"+ and ¢ = 3?"*! where 2m+1 | 2n+1, we have ¢; —1 | ¢—1.
Therefore, 2|z| | ¢ — 1; hence, |z| | q;zl. Hence, Cg(z) = Cy—1, which is
cyclic. Since (u,c) < Cg(x), it follows that (c,u) is cyclic.

Now suppose that C; ., w) (z) is cyclic of order g1 & +/3¢1 + 1. In this case
the order of x divides ¢ +1/3¢ + 1 and not ¢ + 1, so Cg(x) is again cyclic,
and so is (c,u).

Theorem then implies there exists a natural number m such that
(c,u) = (uc™). Since ™ € (x,z,v,w), we may connect (z,y,z,v,w) to
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(z,yc™, z,v,w). Since
de (z,2%) = <x,fcycm> <Ax,yc™, z,w) N (x,yc™, z,a) N {x,yc™ w,v),
we see that (z,yc™, z,w), (x,yc™, z,v) and (x,yc™, w, v) are subgroups that
contain d which are not structural. Thus,
d ™ = uy tyc™ = uc™ € (z,yc™, z,w) N (x, yc™, z,v) N (z, yc™, w,v) .

Given that C, ., w)(7) = (c) € (uc™), we have

C(x,z,v,w) (aj) < C(a:,yc’",z,w) (‘/L‘) N C(x,yc”,z,v) (aj) N C(x,yc’",w,v) (LE)
Thus, we have [Ci, . 4 w) (2)| < [Clzyem 20y (7)]. Similarly,

|C<x,z,v,w) (l’)‘ < |C<ac,ycm,w,v) (:L')| and ‘C<LU,Z,U,UJ> (:L‘)| < |C($,ycm,z,w) (:U)|
Theorem implies
‘ <w7 Z? v? w> ’ S | <x7 ycm7z7 U) ‘7 ’ <CU7 Z? U? w> | S ‘ <$7 ycm7w7v> ‘7

and
| {2, 2,0,w) [ <[ {2, yc™, z,w) |-

Case 2: (. ) (7) = C3 x C%
This case happens when |z| | %. Since (x,zY) is not a structural group,
by Theorem and our assumption that the K; are subfield subgroups
there exists an element d € (x,zY) such that ¥ = z%. Let u = yd~!, which
gives u € C, (7). Let ¢ € (z,2,v,w) be an order 1(q1 + 1) element such
that Ciy . vy (T) = C3 x (c), where C3 is generated by some two involution
n1,m2. Since |z| divides (g1 4 1), it also divides (g + 1), and hence, there
exists an order % (g+1) element b € G such that Cex(z) = (91, 12) % (b). Then
we have ¢ = b¥, for some k € N, and u = b, for some j € N, n € (11, 12)
and € € {0,1}. It follows that (c,u) < (n) x (b), which is cyclic.

Theorem then implies that there exists a natural number m such that
(c,u) = (uc™), and the rest of the proof of Case 1 can be copied. O

In case g1 = g4 we obtain the following proposition.

Proposition 5.2. With respect to the above notation, if g1 = qu, then
(z,y,2,v,w) is connected to a redundant 5-tuple

Proof. The groups K1, Ks, K3, and K, are all isomorphic to 2Ga(q;). Let
H = (z,v,w) < K1NK>s. Since L3 < H and Lg is not structural, H is either
small or a subfield subgroup. Suppose H is small. Then it is solvable and
generated by two elements. By [6], (z,v,w) is connected to a redundant
triple, and we are done in this case. Hence, we may assume that H is a
subfield subgroup, and hence self-normalising.

Since K; and K» are subfield subgroups of the same order, there exists an
element g € G so that Klg = Ky. Thus, since H < K, we have HI < Ko.
However, H is also a subgroup of Ks. Therefore, H and HY are conjugate in
K>. Hence, as K> is a subfield subgroup, there exists an element i € K5 such
that H9 = H". So, h™'g € Ng(H) = H < K. Consequently, g € Ko. We
now have K; = Kgl = K. Since K; = (z,z,v,w) and Ky = (x,y,v,w),
we have G = (K, K2). The proposition follows. O
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We now come to the proof of our Main Theorem.

Proof. Let (z,y, z,v,w) € V5(G) be a generating 5-tuple. Using Theorem
implies that we may assume that x either fixes exactly two points or fixes
no points. Moreover, using Theorem [4.2] and Theorem [4.3] we may also as-
sume, with previous notation, that L; and K; are not structural subgroups,
i =1,2,3,4. We note that if any of the subgroups K1, Ko, K3, K, are small,
we then have that (z,y, z, v, w) is connected to a redundant 5-tuple, by The-
orem Therefore, we may assume that K1, Ko, K3, and K, are subfield
subgroups. We may apply Theorem possibly interchanging the roles of
Y, z,v and w, finitely many times until we either can connect (z,y, z, v, w)
to a redundant 5-tuple, or |K1| = |K3| = |K3| = |K4|. Theorem [5.2] implies
that (z,y,z,v,w) is connected to a redundant 5-tuple, as desired. O

APPENDIX A. MATRICES FOR THE POINT STABILISERS

In this appendix we review the explicit construction of 2Go(q) given in [26],
Section 9.2.4]. It is used in the present paper to prove various claims about
the action of 2Ga(q) on Ug(q), in particular actions on blocks of this unital.
We start with defining an explicit model of Ur(q). Recall ¢ = 32¢*! and

0:Fg —=Fy:2— 237" We then define Ur(q) to be the set of points of the
projective 6-space PG(6, ¢) with coordinates given by (1,0,0,0,0,0,0) and

(fl (CL, a/7 aﬂ)a —CL/, —a, —(1”, 1a f?(aa alv (I”), f3(a7 ala (1”)) = p(a, alv CL”),

a,a',a” € F, and

fl (a, a/, a”) — —a26+4 o aa”a + a0+1a/9 + a”2 + a/9+1 o a/a9+3 _ a2a/2,
fz(a, a’,a”) — _a0+3 4 a/@ —aa’ + a2a/’
f3(a,a’,a") — _a29+3 . a//@ 4 aea/e) 4 a'a + Cm/Q.

We set oo = (1,0,0,0,0,0,0) and O = (0,0,0,0,1,0,0). Then the Sylow 3-
subgroup Ps, of 2Gy(q) fixing oo is given by the set of linear transformations
(a,d',a" ) (acting on the left) with corresponding matrices

1 P q a’ fl(@, a', a") a — a0+1 a

0 1 a® 0 —a 0 0

0 0 1 0 —a 0 0

0 —a a—att 1 —a” 0 0],
0 0 0 0 1 0 0

0 a? r a fo(a,d,a"”) 1 0

0 —d"’"—ad s —ad  fs(a,d’,ad”) —a? 1

where
p= a0+3 _ a/@ —ad" — a2a/,
qg= _a29+3 + a//9 + aeale + da — aa/Z _ a9+2a/ _ a9+1a”,

r=a’*?+a" - ad,

s = _aea// + a/2 _ a0+1a/.
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The Sylow 3-subgroup Po of 2Gy(q) fixing O is given by the set of linear
transformations (a,ad’,a”)o (again acting on the left) with corresponding
matrices

1 0 0O 0 0 0 0
fa(a,a’,a") 1 0 —a O a?
f3(a,d’,a") —a? 1 d 0 —d —ad s
a”’ 0 0 1 0 a af*tt — o
fl (a’ a/, a//) a —atl 4 —a' 1 P q
—a 0 0 0 0 1 a’
—a 0 0O 0 0 0 1

Its action on Ug(q) can best be seen using an alternative description of
Ur(q) (see also [26 Section 9.2.4]), namely Ugr(q) consists of the point
(0,0,0,0,1,0,0) and the points

Q(av G/, (LH) = (17 f2(a> Cl/, a”)> f3(a7 a,7 a”)7 aﬂv fl (aa ala a”)a _alv _a')v
a,a’,a” € F,. These points are the images of (1,0,0,0,0,0) under the maps
(a,a’,a")o, as is readily checked.

Now we note that the matrices displayed above all have determinant equal
to 1. Since 2Ga(q) = (P, Po), we obtain 2Gy(q) < SLz(g). Also, since
7 does not divide ¢ — 1, every element of 2Ga(q) is represented by exactly
one matrix, and so we can define the trace of an element as the trace of its
matrix. In view of the matrices given above, this immediately leads to the
following observation.

Observation A.1. If z € 2Gy(q) has order 3 or 9, then (the corresponding
matriz of) x (in SL7(q)) has trace 1. If x € 2Gy(q) has order 2 or 6, then
(the corresponding matriz of ) x (in SL7(q)) has trace —1.

One verifies easily the following multiplication law: (a,d’,a” ) (b, V', 0" )00 =
(a+b,a +b +a’b,d" + 0" —ab +a'b—a’1b)s.

Note that this differs slightly from the expression in |26, Section 9.2.4] as

we consider here action on the left, whereas the action is on the right in [26,

Section 9.2.4]. We deduce

(a,a,a") oo - p(b, 0, 0") = pla+b,a’ + b +a’b,d” + V" — ab + a'b — a®b).

The inverse is given by

(CL, CL,, a”)gol = (_a’v —CL, + a9+17 _a’”)oo-

It is easy to check now that
Z(Ps) = {(0,0,0") | a" € IF‘t]},
[Poo, Poo] = {(0,d',a")o | &', 0" € Fy}
{23 |z € Py} = Z(Px).
The two-point stabiliser G o is given the following action on Ug(q).
h(t) - p(b, b, b") = p(bt? BOTL "10F2) ¢ bW Y € R,

We find that h(—1) is an involution fixing the point set {oco} U {p(0,?’,0) |
b € F,}, which is — by definition — the block B(co,O). The other blocks
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through oo can be obtained by the image of B(co,O) under the elements
(a,0,d")s0, a,a” € Fy (since (0,a’,0)s stabilises B(oo,0)). A generic block
like that looks like

{p(a,b',a" —ab") |V € Fg} =: By gr.
The following is immediate.

Observation A.2. Every nontrivial member of G0 fizes exactly two
points (0o and O), except h(—1), which fizes B(oco,O) pointwise, but no
point off that block. Moreover, Goo.0 acts freely on Ug(q) \ B(oo,O).

The second assertion of the previous observation follows from the fact that, if
p(bt? b0+ 5"942) = p(buf, bulTt b uf*2), for arbitrary b,V V" t,u € Fy,
then either b = b = 0, or t = u (noting that ¢ ~ t2 is injective).

Using the explicit form of the multiplication, inverse and action of the two-
point stabiliser, one calculates that the elements (1,0,0)s, (1,1,0)s and
(1,—1,0)o are representatives of the three different conjugacy classes of
elements of order 9 of P, whereas (0,0,1), (0,1,0)s and (0,—1,0) are
representatives of the three different conjugacy classes of elements of order
3 of Py. Also,

p(b, v, 0") — p(—=b,b' +1,—-b" —b) and p(b, b, b") — p(=b, v/ —1,—-b" +b)

are representatives of the two conjugacy classes of elements of order 6.

Finally we make the following observation.

Observation A.3. The point p(0,d’,ad"), with a” # 0, coincides with the
point q(0,6',0"), V" # 0, if, and only if, b =b"0~1 = "0 = o'~1.

Proof. We write the points p(0,d’,a”) and ¢(0,V',b") in projective coordi-
nates and obtain

p(O, a/’ a//) — (a//2 + a'9+1, _a/’ 0, _a//’ 1, ale’ _a//O + a’a”) —:p,
q(07 b,, b”) — (17 b/@7 _p'"? 4 b/b”, b//7 b2 4 b/9+1, —b,, 0) =:q.

— b//0 19—1

If p = ¢, then clearly a’a” = "% and v'b" . Hence, a’ = a and
b = %=1 Since projective coordinates are determined up to a non-zero
scalar factor, we can rewrite the projective coordinates of p and ¢ as follows:

p= (_a//27 _a/le—l7 07 _a//, 17 a//3—07 0)7
q= (_b//—z’ _b//1—9, O, _b//—17 17 b//973’ 0)7

from which the assertion readily follows, noting that the converse is easy. [
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