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1. Introduction

The goal of this paper is to understand the algebraic structure of the adèle class space HK =
AK/K× of a global field K. In our recent work [5], we have shown that the introduction of an ele-
mentary theory of algebraic geometry over the absolute point SpecF1 reveals the role of the natural
monoidal structure of the adèle class space AK/K× of a global field. This structure is used to reformu-
late, in a more conceptual manner, the spectral realization of zeros of L-functions. In the subsequent
paper [6], we have given substantial evidence to the statement that idempotent analysis and tropi-
cal geometry determine, through the theory of idempotent semi-rings, a natural framework where to
develop mathematics in “characteristic one”.

A key role in the formulation of these ideas is played by the procedure of de-quantization that
requires the replacement of the use of real analysis by its idempotent version, and the implementa-
tion of the semifield Rmax

+ in place of the classical R+ . Long ago, M. Krasner devised an analogous
procedure that can be performed at a finite place of Q (cf. [27]). His construction shows how to ap-
proximate a local field Fq((T )) of positive characteristic by a system of local fields of characteristic
zero and with the same residue field, as the absolute ramification index tends to infinity. Krasner’s
method is based on the idea of class field and on the generalization of the classical additive law
in a ring by the structure of a hypergroup in the sense of F. Marty [34]. This process produces the
notion of a (Krasner) hyperring (cf. [28]) which fits perfectly with our previous constructions and in
particular with the framework of noncommutative geometry.

In the usual theory of semi-rings, it is not possible to reconcile the characteristic one property
stating that x + x = x for all elements x of a semi-ring R , with the additive group law requiring that
every element in R admits an additive inverse. On the other hand, the existence of an additive inverse
plays a crucial role when, for instance, tensor products are involved. The structure of a hyperring
makes this compatibility – between characteristic one and existence of additive inverse – possible.
Remarkably, the adèle class space HK = AK/K× of a global field K turns out to possess the correct
hyperring structure that combines the two above properties and in particular one has x + x = {0, x}
for all x ∈HK .

This formula means that HK is a hyperring extension of the simplest hyperfield K that is defined
as the set {0,1} endowed with the obvious multiplication and a hyper-addition requiring that 1+1 =
{0,1}. Moreover, while the quotient of a ring R by a subgroup G ⊂ R× of its multiplicative group is
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always a hyperring (cf. [28]), we find that R/G is an extension of K exactly when G ∪ {0} is a subfield
of R (cf. Proposition 2.7).

We explicitly remark here that the “absolute point” SpecF1 (cf. [4,21,29,31,33,39,42]) should not
be confused with SpecK, in fact while SpecF1 sits under SpecZ, SpecK is the natural lift of SpecF1
above the generic point of SpecZ.

SpecZ SpecK

SpecF1

(1)

In this paper we show that after suitably extending the classical definition of a Z-scheme, by replacing
the category of (commutative) rings with that of hyperrings (as was done e.g. in [36]), the spectrum
SpecK plays the role of the “generic point” in algebraic geometry. In fact, in Proposition 2.14 we prove
that for any scheme X of finite type over Z, there is a canonical identification of sets

X * Hom
(
Spec(K), X

)
. (2)

One should not confuse the content of a geometry over SpecF1, that essentially means a theory of
(pointed) monoids (cf. [13] and [5]), with the more refined geometric theory over SpecK that no
longer ignores the additive structure. For instance, one finds that the prime spectrum of the monoid
AK/K× involves all subsets of the set ΣK of places of the global field K, while the prime spectrum of
the hyperring HK is made by the subsets of ΣK with only one element. By restricting this study to the
ideals which are closed in the natural topology, one obtains the natural identification Spec(HK) = ΣK .

The examples of tensor products of hyperrings that we consider in this paper, which are of the
form A⊗B C where A and B are rings and C = K or S are the simplest hyperfields, allow us to under-
stand, at a more conceptual level, several fundamental constructions of noncommutative geometry. In
particular, this provides a new perspective on the structure of the BC-system [9].

The rule of signs is a basic principle in elementary arithmetic. It is a simple fact that while the
sign of the product of two numbers is uniquely determined by their respective signs, the sign of
the sum of a positive and a negative number is ambiguous (i.e. it can be +,−,0). As a straightfor-
ward encoding of this rule, one can upgrade the monoid F12 into a hyperfield with three elements:
S = {−1,0,1}. Following this viewpoint, one discovers that the BC-system is directly related to the
following hyperring extension of S

ZS := Ẑ⊗Z S,

which is obtained by implementing the natural sign homomorphism Z → S and the embedding
Z→ Ẑ of the relative integers into the profinite completion. By taking the topological structure into
account, the spectrum Spec(ZS) is isomorphic to Spec(Z), but unlike this latter space, Spec(ZS) maps
naturally to SpecS. Incidentally, we remark that the map Spec(ZS)→ SpecS should be viewed as
a refinement (and a lift) of the obvious map Spec(Z)→ SpecF1.

The process of adjoining the archimedean place is obtained by moving from finite adèles to the full
adèles AQ over Q. Following the hyperring structures, one sees that the hyperfield K is the quotient
of S by the subgroup {±1}. This fact determines a canonical surjection (absolute value) π : S→ K
which is used to show that the adèle class space is described by the hyperring

HQ = AQ ⊗Z K

whose associated spectrum is Spec(HQ) = Spec(Z)∪ {∞} = ΣQ .
In Section 3, we take the viewpoint of W. Prenowitz [35] and R. Lyndon [32] to explain a natural

correspondence between K-vector spaces and projective geometries in which every line has at least
4 points. By implementing some classical results of incidence geometry mainly due to H. Karzel [22],
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we describe the classification of finite hyperfield extensions of K. This result depends on a conjec-
ture, strongly supported by results of A. Wagner [43], on the non-existence of finite non-Desarguesian
planes with a simply transitive abelian group of collineations. The relation between K-vector spaces
and projective geometries also shows that, in the case of the adèle class space HQ , the hyperring
structure encodes the full information on the ring structure on the adèles: cf. Theorem 7.5 and Propo-
sition 7.7.

In [6], we showed that in a field endowed with a given multiplicative structure, the additive struc-
ture is encoded by a bijection s of the field satisfying the two requirements that s(0) = 1 and that
s commutes with its conjugates under multiplication by non-zero elements. In the same paper, we
also proved that if one replaces the condition for s to be a bijection by that of being a retraction (i.e.
s2 = s ◦ s = s), one obtains instead an idempotent semi-field. Therefore, it is natural to wonder if one
can encode, with a similar construction, the additive structures of the hyperfield extensions of K and
S respectively. In Sections 4 and 5 of this paper, we show that given a multiplicative structure on
a hyperfield, the additive structure is encoded by

(i) an equivalence relation commuting with its conjugates, on a hyperfield extension of K,
(ii) a partial order relation commuting with its conjugates, on a hyperfield extension of S.

This reformulation of the additive law in hyperfields shows that these generalized algebraic structures
occupy a very natural place among the more classical notions. Along the way, we also prove that the
second axiom of projective geometry (saying that if a line meets two sides of a triangle not at their
intersection then it also meets the third side) is equivalent to the commutativity of the equivalence
relations obtained by looking at the space from different points (cf. Lemma 4.1). We also give an
example, using the construction of M. Hall [19], of an (infinite) hyperfield extension of K whose
associated geometry is a non-Desarguesian plane.

In Theorem 5.8 we prove that the ordinary real numbers are endowed with a natural structure
of hyperfield extension Rconvex of S which is a refinement of the semi-field Rmax

+ commonly used in
idempotent analysis and tropical geometry. The hyperfield Rconvex has characteristic one and possesses
a one parameter group of automorphisms which plays the role of the Frobenius in characteristic one.

In the paper we also start to investigate the content of an algebraic geometry over K. The cate-
gory of commutative hyperring extensions of K is inclusive of: algebras over fields with semi-linear
homomorphisms, abelian groups with injective homomorphisms (as explained in Proposition 3.6) and
a rather exotic land comprising homogeneous non-Desarguesian planes. In Section 7.2, we analyze the
notion of algebraic function on Spec(HQ) defined, as in the classical case, by means of elements of
the set Hom(Z[T ],HQ). We use the natural coproducts $+(T ) = T ⊗ 1 + 1⊗ T and $×(T ) = T ⊗ T
on Z[T ] to obtain the elementary operations on functions.

When K is a global field, the set P (HK) of prime elements of the hyperring HK inherits a natural
structure of groupoid with the product given by multiplication and units the set of places of K. The
product of two prime elements is a prime element when the two factors sit over the same place,
and over each place v there exists a unique idempotent pv ∈ P (HK) (i.e. p2

v = pv ). The idèle class
group CK = H×K acts by multiplication on P (HK). When K is a function field over Fq , we denote by
X the non singular projective algebraic curve with function field K and we let π : Xab→ X be the
abelian cover associated to a fixed maximal abelian extension Kab of K. We denote by Πab

1 (X) the
fundamental groupoid associated to π and Πab

1 (X)′ ⊂Πab
1 (X) the subgroupoid of loops (i.e. of paths

whose end points coincide). In the final part of the paper we show (Theorem 7.13) that Πab
1 (X)′ is

canonically isomorphic to the groupoid P (HK) and that this isomorphism is equivariant for the action
of the idèle class group CK = H×K on P (HK) and the action of the abelianized Weil group on Πab

1 (X)′ .
When char(K) = 0, the above geometric interpretation is no longer available. On the other hand,

the arithmetic of the hyperring HK continues to hold and the groupoid P (HK) appears to be a nat-
ural substitute for the above groupoid of loops and it also supports an interpretation of the explicit
formulae of Riemann–Weil.



A. Connes, C. Consani / Journal of Number Theory 131 (2011) 159–194 163

2. Hyperrings and hyperfields

In this section we shall see that the natural multiplicative monoidal structure on F1 = {0,1} which
ignores addition can be refined, within the category of hyperrings, to become the most basic example
of a hyperfield (cf. [28]). We will refer to it as to the Krasner hyperfield K. The algebraic spectrum
SpecK of this hyperstructure is the most natural lift of SpecF1 from under SpecZ to a basic structure
mapping to SpecZ.

In a hyperfield the additive (hyper)structure is that of a canonical hypergroup (cf. [34] and [28]).
We start by reviewing the notion of a canonical hypergroup H . For our applications it will be enough
to consider this particular class of hypergroups. We denote by + the hyper-composition law in H .
The novelty is that now the sum x + y of two elements in H is no longer a single element of H but
a non-empty subset of H . It is customary to define a hyper-operation on H as a map

+ : H × H→ P(H)∗

taking values into the set P (H)∗ of all non-empty subsets of H . Thus, ∀a,b ∈ H , a+ b is a non-empty
subset of H , not necessarily a singleton. One uses the notation ∀A, B ⊆ H , A + B := {∪(a + b) | a ∈
A, b ∈ B}. The definition of a canonical hypergroup requires that H has a neutral element 0 ∈ H (i.e.
an additive identity) and that the following axioms apply:

(1) x+ y = y + x, ∀x, y ∈ H ,
(2) (x+ y) + z = x+ (y + z), ∀x, y, z ∈ H ,
(3) 0+ x = x = x+ 0, ∀x ∈ H ,
(4) ∀x ∈ H ∃! y(=−x) ∈ H s.t. 0 ∈ x+ y,
(5) x ∈ y + z1⇒ z ∈ x− y.

The uniqueness, in (4), of the symmetric element y =−x, for any element x ∈ H , rules out1 the trivial
choice of taking the addition to be the full set H , except for the addition with 0.

Property (5) is usually called reversibility. In this paper we shall always consider canonical hyper-
groups.

Let (H,+) be a (canonical) hypergroup and x ∈ H . The set

O (x) =
{
r ∈ Z

∣∣ ∃n ∈ Z: 0 ∈ rx+ n(x− x)
}

is a subgroup of Z. We say that the order of x is infinite (i.e. o(x) =∞) if O (x) = {0}. If o(x) (=∞,
the smallest positive generator h of O (x) is called the principal order of x (cf. [10, Definition 57]). Let
q = min{s ∈N | ∃m (= 0, 0 ∈mhx+ s(x− x)}. The couple (h,q) is then called the order of x.

The notion of a hyperring (cf. [27,28]) is the natural generalization of the classical notion of a ring,
obtained by replacing a classical addition law by a hyperaddition.

Definition 2.1. A hyperring (R,+, ·) is a non-empty set R endowed with a hyperaddition + and the
usual multiplication · satisfying the following properties:

(a) (R,+) is a canonical hypergroup.
(b) (R, ·) is a monoid with multiplicative identity 1.
(c) ∀r, s, t ∈ R: r(s + t) = rs + rt and (s + t)r = sr + tr.
(d) ∀r ∈ R:r · 0 = 0 · r = 0, i.e. 0 ∈ R is an absorbing element.
(e) 0 (= 1.

In the original definition of a (Krasner) hyperring, (R, ·) is only assumed to be a semi-group satis-
fying (d) (cf. [12, Definition 3.1.1]).

1 As soon as H has more than two elements.
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Let (R1,+1, ·1), (R2,+2, ·2) be two hyperrings. A map f : R1→ R2 is called a homomorphism of
hyperrings if the following conditions are satisfied

(1) f (a +1 b)⊆ f (a) +2 f (b), ∀a,b ∈ R1,
(2) f (a ·1 b) = f (a) ·2 f (b), ∀a,b ∈ R1.

A homomorphism is strict when f (a +1 b) = f (a) +2 f (b), ∀a,b ∈ R1. The map f is said to be an
epimorphism if it is a surjective homomorphism such that (cf. [11, Definition 2.8])

x+ y =
⋃{

f (a + b)
∣∣ f (a) = x, f (b) = y

}
, ∀x, y ∈ R2. (3)

It is an isomorphism if it is a bijective homomorphism satisfying f (a+1 b) = f (a) +2 f (b), ∀a,b ∈ R1.
A hyperring (R,+, ·) is called a hyperfield if (R \ {0}, ·) is a group.

Definition 2.2. We denote by K the hyperfield ({0,1},+, ·) with additive neutral element 0, satisfying
the hyper-rule: 1+ 1 = {0,1} and with the usual multiplication, with identity 1.

We let S be the hyperfield S = {−1,0,1} with the hyper-addition given by the “rule of signs”

1 + 1 = 1, −1− 1 =−1, 1− 1 =−1 + 1 = {−1,0,1} (4)

and the usual multiplication also given by the rule of multiplication of signs.

The hyperfield K is the natural extension, in the category of hyperrings, of the commutative
(pointed) monoid F1, i.e. (K, ·) = F1. We shall refer to K as to the Krasner hyperfield. Note that
the order of the element 1 ∈ K is the pair (1,0), i.e. the principal order is 1 since 0 ∈ 1 + 1 and the
secondary order is 0 for the same reason. In a similar manner one sees that the monoid underlying
S is F12 , i.e. (S, ·) = F12 , where the order of the element 1 ∈ S is the pair (1,1). The homomorphism
absolute value π : S→ K, π(x) = |x| is an epimorphism of hyperrings.

Given a hyperring R and a subset S ⊂ R containing 0 and 1 and such that for any x, y ∈ S one has
xy ∈ S , x− y ⊂ S , the subset S is a hyperring with the induced operations. This suggests the following
definition of an extension.

Definition 2.3. Let R1 ⊂ R2 be hyperrings, we say that R2 is an extension of R1 when the inclusion
R1 ⊂ R2 is a strict homomorphism.

Note that this is a stronger requirement than simply asking the inclusion R1 ⊂ R2 to be a homo-
morphism. It implies that for x, y ∈ R1 the sum x+ y is the same when computed in R1 or in R2.

To become familiar with the operations in hyperstructures, we prove the following simple results.

Proposition 2.4. In a hyperring extension R of the Krasner hyperfield K one has x + x = {0, x} for any x ∈ R
and moreover

a ∈ a + b ⇐⇒ b ∈ {0,a}.

In particular, there is no hyperfield extension of K of cardinality 3 or 4.

Proof. Since 1 + 1 = {0,1} one gets x + x = {0, x} using distributivity. Assume that a ∈ a + b in R .
Then since a + a = {0,a} one has −a = a so that by the reversibility condition (6) in the definition of
a hypergroup, one has b ∈ a− a = {0,a}. Conversely, if b ∈ {0,a}, it follows immediately (by applying
the condition (4) for hypergroups) that a ∈ a + b.

If F is a hyperfield extension of K of cardinality 3, then F contains an element α /∈ {0,1}. But then
one gets a contradiction since the subset 1 + α cannot contain 0 (since 1 is its own opposite) or 1
or α (by the first part of this proposition).
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If F is a hyperfield extension of K of cardinality 4, then let ξ j be the three non-zero elements of F .
Then, by applying the first part of this proposition, the sum ξ j + ξk , for j (= k is forced to be the third
non-zero element ξ' of F . This contradicts associativity of the hyperaddition for

∑
ξ j . !

Note that the above proof only uses the structure of K-vector space (cf. Section 3).

Remark 2.5. The same proof shows that in a hyperring extension R of the hyperfield S one has

a ∈ a + b ⇐⇒ b ∈ {0,±a}. (5)

Krasner gave in [28] a construction of a hyperring as the quotient of a ring R by a multiplicative
subgroup G of the group R× of the invertible elements of R . This result states as follows

Proposition 2.6. Let R be a commutative ring and G ⊂ R× be a subgroup of its multiplicative group. Then
the following operations define a hyperring structure on the set R/G of orbits for the action of G on R by
multiplication

• Hyperaddition

x+ y := (xG + yG)/G, ∀x, y ∈ R/G. (6)

• Multiplication

xG · yG = xyG, ∀x, y ∈ R/G.

Moreover for any xi ∈ R/G one has

∑
xi =

(∑
xiG

)/
G. (7)

In particular, one can start with a field K and consider the hyperring K/K× . This way, one obtains
a hyperstructure whose underlying set is made by two classes i.e. the class of 0 and that of 1. If K
has more than two elements, K/K× coincides with the Krasner hyperfield K.

Next, we investigate in the set-up of Proposition 2.6, under which conditions the hyperring R/G is
an extension of the Krasner hyperfield K.

Proposition 2.7. Let R be a commutative ring and G ⊂ R× be a subgroup of the multiplicative group of units
in R. Assume that G (= {1}. Then, the hyperring R/G is an extension of the Krasner hyperfield K if and only if
{0}∪ G is a subfield of R.

Proof. To verify whether R/G is an extension of the Krasner hyperfield K, it suffices to compute
1 + 1 in R/G . By definition, 1 + 1 is the union of all classes, under the multiplicative action of G , of
elements of the form g1 + g2, for g j ∈ G ( j = 1,2). Thus, the hyperring R/G is an extension of K if
and only if G + G = {0} ∪ G . If this equality holds, then {0} ∪ G is stable under addition. Moreover
0 ∈ G + G so that g1 = −g2 for some g j ∈ G and thus −1 = g1g

−1
2 ∈ G . Thus {0} ∪ G is an additive

subgroup of R . In fact, since R× is a group, it follows that G ∪ {0} is a subfield of R . Conversely, let
F ⊂ R be a subfield and assume that F is not reduced to the finite field F2. Then the multiplicative
group G = F× fulfills G (= {1}. Moreover G + G ⊂ F and 0 ∈ G + G as 1− 1 = 0. Moreover, since G
contains at least two distinct elements x, y one has x− y (= 0 and thus G + G = F . Thus, in R/G one
has 1+ 1 = {0,1} and thus R/G is an extension of K. !
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Example 2.8. This simple example is an application of the above results and it shows that there exists
a hyperfield extension of K of cardinality 5. Let H be the union of 0 with the powers of α, α4 = 1. It
is a set with 5 elements and the table of hyper-addition in H is given by the following matrix





0 1 α α2 α3

1 {0,1} {α2,α3} {α,α3} {α,α2}
α {α2,α3} {0,α} {1,α3} {1,α2}
α2 {α,α3} {1,α3} {0,α2} {1,α}
α3 {α,α2} {1,α2} {1,α} {0,α3}




.

This hyperfield structure is obtained, with α = 1 +
√
−1, as the quotient of the finite field F9 =

F3(
√
−1) by the multiplicative group F×3 = {±1}. It follows from Proposition 2.7 that F = F9/F×3 is

a hyperfield extension of K. Notice that the addition has a very easy description since for any two dis-
tinct non-zero elements x, y the sum x+ y is the complement of {x, y,0} (cf. [40] and Proposition 3.6
below for a more general construction).

The notions of ideal and prime ideal extend to the hyperring context (cf. e.g. [36,12]).

Definition 2.9. A non-empty subset I of a hyperring R is called a hyperideal if

(a) a,b ∈ I⇒ a− b⊆ I ,
(b) a ∈ I , r ∈ R⇒ r · a ∈ I .

The hyperideal I ! R is called prime if ∀a,b ∈ R

(c) a · b ∈ I⇒ a ∈ I or b ∈ I .

For any hyperring R , we denote by Spec(R) the set of prime ideals of R (cf. [36]). The following
proposition shows that the hyperfield K plays, among hyperrings, the equivalent role of the monoid
F1 among monoids (cf. [6, Prop. 3.32]).

Proposition 2.10. For any hyperring R, the map

ϕ : Spec(R)→ Hom(R,K), ϕ(p) = ϕp,

ϕp(x) = 0, ∀x ∈ p, ϕp(x) = 1, ∀x /∈ p (8)

determines a natural bijection of sets.

Proof. The map ϕp : R→ K is multiplicative since the complement of a prime ideal p in R is a mul-
tiplicative set. It is compatible with the hyperaddition, using reversibility and Definition 2.9(a). Thus
the map ϕ is well defined. To define the inverse of ϕ , one assigns to a homomorphism of hyperrings
ρ ∈ Hom(R,K) its kernel which is a prime ideal of R that uniquely determines ρ . !

Affine Z-schemes, when viewed as representable functors from the category Ring of (commu-
tative) rings to sets, extend canonically to the category of hyperrings as representable functors
(they are represented by the same ring). This construction applies in particular to the affine line
D = Spec(Z[T ]), and one obtains D(R) = Hom(Z[T ], R) for any hyperring R . Notice though, that
while for an ordinary ring R , Hom(Z[T ], R) coincides with the set underlying R , this fact no longer
holds for hyperrings. For instance, by applying Proposition 2.10 one sees that D(K) = Spec(Z[T ])
which is an infinite set unlike the set underlying K.

To describe the elements of the set Hom(R,S), for any ring R , we first recall the definition of
a symmetric cone in R: cf. [26].
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Definition 2.11. Let R be a ring. A symmetric cone P in R is a subset P ⊂ R such that

• 0 /∈ P , P + P ⊂ P , P P ⊂ P ,
• Pc + Pc ⊂ Pc where Pc is the complement of P in R ,
• a ∈ P and ab ∈ P imply b ∈ P ,
• P − P = R .

The following proposition shows that the notion of a symmetric cone in a hyperring is equivalent
to that of an element of Hom(R,S).

Proposition 2.12.

(1) A homomorphism from a ring R to the hyperring S is determined by its kernel p ∈ Spec(R) and a total
order on the field of fractions of the integral domain R/p.

(2) A homomorphism from a ring R to the hyperring S is determined by a symmetric cone of R in the sense of
Definition 2.11.

Proof. (1) Let ρ ∈ Hom(R,S). The kernel of ρ is unchanged by composing ρ with the absolute value
map π : S→ K, π(x) = |x|. Thus ker(ρ) is a prime ideal p ⊂ R . Moreover the map ρ descends to
the quotient R/p which is an integral domain. Let F be the field of fractions of R/p. One lets P ⊂ F
be the set of fractions of the form x = a/b where ρ(a) = ρ(b) (= 0. This subset of F is well defined
since a/b = c/d means that ad = bc and it follows that ρ(c) = ρ(d) (= 0. One has ρ(0) = 0, ρ(1) = 1
and ρ(−1) =−1 since 0 ∈ ρ(1) + ρ(−1). Thus P is also stable by addition since one can assume, in
the computation of a/b + c/d, that ρ(a) = ρ(b) = ρ(c) = ρ(d) = 1, so that ρ(ad + bc) = ρ(cd) = 1.
P is also multiplicative. Moreover for x ∈ F , x (= 0 one has ±x ∈ P for some choice of the sign. Thus
F is an ordered field and ρ is the composition of the canonical morphism R → F with the map
F → F/F×+ ∼ S. Conversely if one is given an order on the field of fractions of the integral domain
R/p, one can use the natural identification F/F×+ ∼ S to obtain the morphism ρ .

(2) Follows from (1) and Theorem 2.3 of [26]. In fact one can also check directly that given a sym-
metric cone P ⊂ R , the following formula defines an element ρ ∈ Hom(R,S):

ρ(x) =
{1, ∀x ∈ P ,
−1, ∀x ∈−P ,
0, otherwise.

(9)

Moreover, one easily checks that if ρ ∈ Hom(R,S) then P = ρ−1(1) is a symmetric cone. !

One can then apply Corollary 3.8 of [26] to obtain the following

Proposition 2.13. The elements of D(S) = Hom(Z[T ],S) are described by

ωλ

(
P (T )

)
= Sign

(
P (λ)

)
, ∀λ ∈ [−∞,∞] (10)

and, for λ ∈ Q̄∩R, by the two elements

ω±
λ

(
P (T )

)
= lim

ε→0+
Sign

(
P (λ ± ε)

)
. (11)

Proof. This follows from Corollary 3.8 of [26] for the total orders and from the first part of Proposi-
tion 2.12 for the symmetric orders. !

One can extend the above statements from the case of affine schemes to the general case (of
non-affine schemes). First of all, we recall from [36] that to any hyperring R is associated its prime
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spectrum Spec(R). This is a topological space endowed with a sheaf of hyperrings. Note that it is not
true for general hyperrings R that the canonical map from R to global sections of the structural sheaf
on Spec R is bijective.

A geometric hyperring space (X, OX ) is a topological space X endowed with a sheaf of hyperrings
OX (the structural sheaf). As for geometric Z-schemes (cf. [14, Chapter I, § 1, Definition 1.1]), one
needs to impose the condition that the stalks of the structural sheaf of a geometric hyperring space
are local algebraic structures, i.e. they have only one maximal ideal. A homomorphism ρ : R1→ R2 of
(local) hyperrings is local if the following property holds

ρ−1(R×2
)
= R×1 . (12)

A morphism ϕ : X→ Y of geometric hyperring spaces is a pair (ϕ,ϕ-) of a continuous map ϕ : X→ Y
of topological spaces and a homomorphism of sheaves of hyperrings ϕ- : OY → ϕ∗OX , which satisfy
the property of being local, i.e. ∀x ∈ X the homomorphisms connecting the stalks ϕ-

x : OY ,ϕ(x)→OX,x
are local (cf. (12)).

With these notations we obtain the following result.

Proposition 2.14. For any Z-scheme X, one has a canonical identification of sets

X * Hom
(
Spec(K), X

)
.

Moreover, an element of Hom(Spec(S), X) is completely determined by assigning a point x ∈ X and a total
order of the residue field κ(x) at x.

Proof. Since K is a hyperfield, {0}⊂ K is the only prime ideal and SpecK consists of a single point κ .
Let ρ ∈ Hom(Spec(K), X) be a morphism and x = ρ(κ) ∈ X . The morphism ρ# is uniquely deter-
mined by the local morphism ρ#

x : OX,x→ K. Since the ring OX,x is local, there exists only one local
morphism ρ#

x : OX,x→ K. Thus the map ρ 7→ ρ(κ) ∈ X is an injection from Hom(Spec(K), X) to X .
The existence of the local morphism OX,x→ K for any x ∈ X shows the surjectivity. The same proof
applies to describe the elements of Hom(Spec(S), X) using Proposition 2.12. !

3. K-vector spaces and projective geometry

Let R be a hyperring extension of the Krasner hyperfield K. In this section we show, following
W. Prenowitz [35] and R. Lyndon [32] that the additive hyperstructure on R is entirely encoded by
a projective geometry P such that

• The set of points of P is R \ 0.
• The line through two distinct points x, y of P is given by

L(x, y) = (x+ y)∪ {x, y}. (13)

We shortly review the axioms of projective geometry. They are concerned with the properties of
a family L of subsets L of a set P . The elements L ∈ L are called lines. These axioms are listed as
follows

P1: Two distinct points of P determine a unique line L ∈L i.e.

∀x (= y ∈ P, ∃!L ∈ L, x ∈ L, y ∈ L.

P2: If a line in L meets two sides of a triangle not at their intersection then it also meets the third
side, i.e.
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∀x (= y ∈ P and z /∈ L(x, y), one has

L(y, z)∩ L(t,u) (= ∅, ∀t ∈ L(x, y) \ {x}, u ∈ L(x, z) \ {x}.

P3: Every line in L contains at least three points.

We shall consider the following small variant of the axiom P3

P′3: Every line in L contains at least 4 points.

We use the terminology K-vector space to refer to a (commutative) hypergroup E with a compati-
ble action of K. Since 0 ∈ K acts by the retraction to {0} ⊂ E and 1 ∈ K acts as the identity on E ,
the K-vector space structure on E is in fact uniquely prescribed by the hypergroup structure. Thus
a hypergroup E is a K-vector space if and only if it fulfills the rule

x+ x = {0, x}, ∀x (= 0. (14)

The next result is due essentially to W. Prenowitz [35] and R. Lyndon [32] cf. also [10, Chapter I,
Theorems 30 and 34].

Proposition 3.1. Let E be a K-vector space. Let P = E \ {0}. Then, there exists a unique geometry having P as
its set of points and satisfying (13). This geometry fulfills the three axioms P1 , P2 , P′3 of a projective geometry.

Conversely, let (P , L) be a projective geometry fulfilling the axioms P1 , P2 , P′3 . Let E = P ∪ {0} endowed
with the hyperaddition having 0 as neutral element and defined by the rule

x+ y =
{
L(x, y) \ {x, y}, if x (= y,
{0, x}, if x = y.

(15)

Then E is a K-vector space.

Before starting the proof of Proposition 3.1 we prove the following result.

Lemma 3.2. Let E be a K-vector space. Then for any two subsets X, Y ⊂ E one has

X ∩ Y (= ∅ ⇐⇒ 0 ∈ X + Y . (16)

Proof. If x ∈ X ∩ Y then 0 ∈ (x + x)⊂ X + Y . Conversely, if 0 ∈ X + Y , then 0 ∈ x + y, for some x ∈ X
and y ∈ Y . By reversibility one gets x ∈ 0− y = {y} and x = y so that X ∩ Y (= ∅. !

Proof of Proposition 3.1. We define L as the set of subsets of P = E \0 of the form L(x, y) = (x+ y)∪
{x, y} for some x (= y ∈P . Let us check that the axiom P1 holds. We need to show that for a (= b ∈P ,
any line L(x, y) containing a and b is equal to L(a,b). We show that if z ∈ L(x, y) is distinct from
x, y, then L(x, z) = L(x, y). One has z ∈ x + y and hence by reversibility y ∈ x + z. Thus x + y ⊂
x + x + z = z ∪ (x + z) and L(x, y)⊂ L(x, z). Moreover, since y ∈ x + z one gets in the same way that
L(x, z)⊂ L(x, y). This proves that for any two (distinct) points a,b ∈ L(x, y) one has L(a,b) = L(x, y).
Indeed

a ∈ L(x, y) ⇒ L(x, y) = L(a, x), b ∈ L(x, y) = L(a, x) ⇒ L(a,b) = L(a, x) = L(x, y).

We now check the axiom P2. Let t ∈ L(x, y) \ {x}, u ∈ L(x, z) \ {x}. Then x ∈ (y + t)∩ (u + z) so that by
Lemma 3.2 one has 0 ∈ y + t + u + z. It follows again from Lemma 3.2 and the commutativity of the
sum, that (y + z)∩ (u + t) (= ∅ and L(y, z)∩ L(t,u) (= ∅. Note that to get x ∈ (y + t)∩ (u + z) one uses
y (= t and z (= u but the validity of P2 is trivial in these cases. Thus one has P2.
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By Proposition 2.4 one has x /∈ (x + y) for x (= y ∈ P and thus every line contains at least three
points so that axiom P3 holds true. Let us show that in fact one has P′3. Assume x + y = {z}. Then
(x + y) + z = {0, z}. Since 0 ∈ x + (y + z) one has x ∈ y + z, but then x ∈ x + (y + z) = {0, z} which is
a contradiction.

Conversely, let (P , L) be a projective geometry fulfilling axioms P1,P2,P′3 and endow E = P ∪ {0}
with the hyperaddition as in (15). This law is associative since when x, y, z ∈ P are not collinear one
checks that the sum x+ y + z is the plane they generate with the three sides of the triangle deleted.
For three distinct points on the same line L, their sum is L ∪ {0} if the cardinality of the line is > 4
and the complement of the fourth point in L ∪ {0} if the cardinality of the line is 4.

Let us show that ∀x ∈ E ∃!y(=−x), 0 ∈ x + y. We can assume x (= 0. One has 0 ∈ x + x. Moreover
for any y (= x one has 0 /∈ x+ y = L(x, y) \ {x, y}.

Finally we need to prove the reversibility which takes the form x ∈ y + z⇒ z ∈ x + y. If y = 0 or
z = 0, the conclusion is obvious, thus we can assume that y, z (= 0. If y = z then y + z = {0, z} and
one gets z ∈ x + y. Thus we can assume y (= z. Then x ∈ y + z means that x ∈ L(y, z) \ {y, z} and this
implies z ∈ L(x, y) \ {x, y}. !

Remark 3.3. Let V be a K-vector space. For any finite subset F = {x j} j∈ J ⊂P = V \ {0}, the subset

E =
{ ∑

j∈ J

λ jx j

∣∣∣ λ j ∈ K
}

is stable under hyperaddition and it follows from the formula (x + x) = {0, x} that E coincides with∑
j∈ J (x j + x j). Thus, W = E \ {0} is a subspace of the geometry P i.e. a subset of V \ {0} such that

∀x (= y ∈W , L(x, y)⊂W (17)

and the restriction to W = E \ {0} of the geometry of P is finite dimensional. We refer to [40] for
the notion of dimension of a vector space over a hyperfield. Here, such dimension is related to the
dimension dimW of the associated projective geometry by the equation

dimW = dimK E − 1. (18)

Next result shows that hyperfield extensions of K correspond precisely to the “Zweiseitiger Inzi-
denszgruppen” (two-sided incidence groups) of [15]. In particular, the commutative hyperfield ex-
tensions of K are classified by projective geometries together with a simply transitive action by
a commutative subgroup of the collineation group. We first recall the definition of a two-sided in-
cidence group.

Definition 3.4. Let G be a group which is the set of points of a projective geometry. Then G is
called a two-sided incidence group if the left and right translations by G are automorphisms of the
geometry.

We can now state the precise relation between hyperfield extensions of K and two-sided incidence
groups ([15] and [16]) whose projective geometry satisfies the axiom P′3 in place of P3.

Proposition 3.5. Let H⊃ K be a hyperfield extension of K. Let (P , L) be the associated geometry (cf. Proposi-
tion 3.1). Then, the multiplicative group H× endowed with the geometry (P , L) is a two-sided incidence group
fulfilling P′3 .

Conversely, let G be a two-sided incidence group fulfilling P′3 . Then, there exists a unique hyperfield exten-
sion H⊃ K such that H = G ∪ {0}. The hyperaddition in H is defined by the rule

x+ y = L(x, y) \ {x, y} for any x (= y ∈ P

and the multiplication is the group law of G, extended by 0 · g = g · 0 = 0, ∀g ∈ G.
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Proof. For the proof of the first statement it suffices to check that the left and right multiplication
by a non-zero element z ∈ H is a collineation. This follows from the distributivity property of the
hyperaddition which implies that

zL(x, y) = z(x + y)∪ {zx, zy} = L(zx, zy). (19)

A similar argument shows that the right multiplication is also a collineation.
Conversely, let G be a two-sided incidence group fulfilling P′3. Let H = G ∪ {0} and define the

hyperaddition as in Proposition 3.1. With this operation, H is an additive hypergroup. Let the multi-
plication be the group law of G , extended by 0 · g = g · 0 = 0, ∀g ∈ G . This operation is distributive
with respect to the hyperaddition because G acts by collineations. Thus one obtains an hyperfield H.
Moreover, by construction, the projective geometry underlying H is (P , L). !

Let H be an abelian group. We define the geometry on H to be that of a single line. By applying
Proposition 3.5, we obtain the following result (cf. [40, Proposition 2]).

Proposition 3.6. Let H be an abelian group of order at least 4. Then, there exists a unique hyperfield extension
K[H] of K whose underlying monoid is F1[H] and whose geometry is that of a single line.

The assignment H 7→ K[H] is functorial only for injective homomorphisms of abelian groups and for the
canonical surjection K[H]→ K.

Proof. Let R = H ∪ {0} viewed as a monoid. The construction of Proposition 3.5 gives the following
hyperaddition on R = K[H] (cf. [32])

x+ y =
{ x, if y = 0,

{0, x}, if y = x,
R \ {0, x, y}, if #{0, x, y} = 3.

(20)

One easily checks that this (hyper)operation determines a hypergroup law on K[H], provided that the
order of H is at least 4. Moreover, since the left multiplication by a non-zero element is a bijection
preserving 0, one gets the distributivity. Let then ρ : H1 → H2 be a group homomorphism. If ρ is
injective and x (= y are elements of H1 then, by extending ρ by ρ(0) = 0, one sees that ρ(x + y)⊂
ρ(x) + ρ(y). If ρ is not injective and does not factor through K[H1]→ K ⊂ K[H2], then there ex-
ists two elements of H1, x (= y such that ρ(x) = ρ(y) (= 1. This contradicts the required property
ρ(x+ y)⊂ ρ(x)+ρ(y) of a homomorphism of hyperrings (cf. Section 2) since ρ(x)+ρ(y) = {0,ρ(x)}
while 1 ∈ x+ y so that 1 = ρ(1) ∈ ρ(x+ y). !

Remark 3.7. The association H→ K[H] determines a functor from abelian groups (and injective mor-
phisms) to hyperfield extensions of K. This functor does not extend to a functor from monoids to
hyperring extensions of K since the distributivity (of left/right multiplication) with respect to the
addition (19) fails in general when H is only a monoid.

One can show that all commutative hyperring extensions R of K such that dimK(R) = 2 are of
the form R = K[H]( j) for some j ∈ {0,1,2} where H is an abelian group of cardinality > 3− j. Here
K[H](0) = K[H], K[H](1) = K[H]∪{ a} with the presentation

a2 = 0, au = ua = a, ∀u ∈ H (21)

while K[H](2) = K[H]∪{ e, f } with the presentation (cf. [40])

e2 = e, f 2 = f , ef = f e = 0, au = ua = a, ∀u ∈ H, a ∈ {e, f }. (22)

Next result is, in view of Proposition 3.5, a restatement of the classification of Desarguesian “Kom-
mutative Inzidenszgruppen” of [22–25].
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Theorem 3.8. Let H ⊃ K be a commutative hyperfield extension of K. Assume that the geometry associated
to the K-vector space H is Desarguesian2 and of dimension ! 2. Then, there exists a unique pair (F , K ) of a
commutative field F and a subfield K ⊂ F such that

H = F/K×. (23)

Proof. By applying Proposition 3.5 one gets a Desarguesian geometry with a simply transitive action
of an abelian group by collineations. It follows from [22] (§5 Satz 3) that there exists a normal near-
field (F , K ) such that the commutative incidence group is F×/K× . By [22] (§7 Satz 7), the near-field
F is in fact a commutative field. The uniqueness of this construction follows from [22, §5, (5.8)]. !

Remark 3.9. By applying the results of H. Wähling (cf. [45]), the above Theorem 3.8 is still valid
without the hypothesis of commutativity (for the multiplication) of H. The field F is then a skew
field and K is central in F .

Theorem 3.8 generalizes to the case of commutative, integral hyperring extensions of K.

Corollary 3.10. Let H⊃ K be a commutative hyperring extension of K. Assume that H has no zero divisors and
that dimK H > 3. Then, there exists a unique pair (A, K ) of a commutative integral domain A and a subfield
K ⊂ A such that

H = A/K×. (24)

Proof. By [36, Props. 6 and 7] (cf. also [11]), H embeds in its hyperfield of fractions. Thus, by applying
Theorem 3.8 one obtains the desired result. !

3.1. Finite extensions of K

In view of Theorem 3.8, the classification of all finite, commutative hyperfield extensions of K
reduces to the determination of non-Desarguesian finite projective planes with a simply transitive
abelian group G of collineations.

Theorem 3.11. Let H⊃ K be a finite commutative hyperfield extension of K. Then, one of the following cases
occurs

(1) H = K[G] (cf. Proposition 3.6), for a finite abelian group G.
(2) There exists a finite field extension Fq ⊂ Fqm of a finite field Fq such that H = Fqm/F×q .
(3) There exists a finite, non-Desarguesian projective plane P and a simply transitive abelian group G of

collineations of P , such that G is the commutative incidence group associated to H by Proposition 3.5.

Proof. Let G be the incidence group associated to H by Proposition 3.5. Then, if the geometry on
G consists of a single line, case (1) applies. If the geometry associated to H is Desarguesian, then
by Theorem 3.8 case (2) applies. If neither (1) nor (2) apply, then the geometry of H is a finite
non-Desarguesian plane with a simply transitive abelian group G of collineations. !

Remark 3.12. There are no known examples of finite, commutative hyperfield extensions H ⊃ K
producing projective planes as in case (3) of the above theorem. In fact, there is a conjecture
(cf. [1, p. 114]) based on results of A. Wagner and T. Ostrom (cf. [1, Theorems 2.1.1 and 2.1.2], [43,
44]) stating that such case cannot occur. A recent result of K. Thas and D. Zagier [41] relates the exis-
tence of potential counter-examples to Fermat curves and surfaces and number-theoretic exponential

2 This is automatic if the dimK H is > 3.
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sums. More precisely, the existence of a special prime p = n2 +n+1 in the sense of [41, Theorem 3.1]
(other than 7 and 73) would imply the existence of a non-Desarguesian plane Π = Π(Fp, (F×p )n) as
in case (3) of the above theorem. Note that, by a result of M. Hall [19] there exists infinite non-
Desarguesian projective planes with a cyclic simply transitive group of collineations. We shall come
back to the corresponding hyperfield extensions of K in Section 4.

3.2. Morphisms of quotient hyperrings

Let E, F be K-vector spaces. Let T : E → F be a homomorphism of hypergroups (respecting the
action of K). The kernel of T

Ker T = {ξ ∈ E | T ξ = 0}

intersects PE = E \ {0} as a subspace N = Ker T ∩ PE of the geometry (PE , LE). For any η ∈ PE , the
value of T (η) only depends upon the subspace N(η) of PE generated by N and η, since T (η + ξ)⊂
T (η) + T (ξ) = T (η) for ξ ∈ N . One obtains in this way a morphism of projective geometries in the
sense of [17] from (PE , LE) to (PF , LF ). More precisely the restriction of T to the complement
of Ker T in PE satisfies the following properties:

(M1) N is a subspace of PE .
(M2) a,b /∈ N , c ∈ N and a ∈ L(b, c) imply T (a) = T (b).
(M3) a,b, c /∈ N and a ∈ b ∨ c imply T (a) ∈ T (b)∨ T (c).

In the last property one sets x ∨ y = L(x, y) if x (= y and x ∨ y = x if x = y. Note that (M3) implies
that if T (b) (= T (c) the map T injects the line L(b, c) in the line L(T (b), T (c)).

Conversely one checks that any morphism of projective geometries (fulfilling P′3) in the sense of
[17] comes from a unique morphism of the associated K-vector spaces.

A complete description of the non-degenerate3 morphisms of Desarguesian geometries in terms of
semi-linear maps is also given in [17]. In our context we use it to show the following result.

Theorem 3.13. Let A j ( j = 1,2) be a commutative algebra over the field K j (= F2 , and let

ρ : A1/K
×
1 → A2/K

×
2

be a homomorphism of hyperrings. Assume that the range of ρ is of K-dimension > 2, then ρ is induced by
a unique ring homomorphism ρ̃ : A1→ A2 such that α = ρ̃|K1 is a field inclusion α : K1→ K2 .

Proof. Since ρ is a homomorphism of K-vector spaces, it defines a morphism of projective geometries
in the sense of [17]. Moreover, since ρ is non-degenerate by hypothesis, there exists by [17, Theo-
rem 5.4.1] (cf. also [18, Theorem 3.1]), a semi-linear map f : A1→ A2 inducing ρ . We let α : K1→ K2
be the corresponding morphism of fields. Moreover, f is uniquely determined up to multiplication by
a scalar, and hence it is uniquely fixed by the condition f (1) = 1 (which is possible since ρ(1) = 1
by hypothesis). Let us show that, with this normalization, the map f is a homomorphism. First of all,
since ρ is a homomorphism one has

f (xy) ∈ K×2 f (x) f (y), ∀x, y ∈ A1. (25)

3 A morphism is non-degenerate when its range is not contained in a line.
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Let us then show that if ρ(x) (= 1 one has f (xy) = f (x) f (y) for all y ∈ A1. We can assume, using (25),
that f (x) f (y) (= 0 and we let λx,y ∈ K×2 be such that f (xy) = λx,y f (x) f (y). We assume λx,y (= 1 and
get a contradiction. Let us show that

ξ(s, t) = 1+ α(s) f (x) + α(t) f (y) ∈ K2 f (x) f (y), ∀s, t ∈ K×1 . (26)

This follows from (25) which proves the collinearity of the vectors

f
(
(1+ sx)(1 + ty)

)
= ξ(s, t) + α(st) f (xy) = ξ(s, t) + α(st)λx,y f (x) f (y),

f (1+ sx) f (1 + ty) = ξ(s, t) + α(st) f (x) f (y).

Thus by (26) the vectors ξ(s, t) are all proportional to a fixed vector. Taking two distinct t ∈ K×1 shows
that f (y) is in the linear span of the (independent) vectors 1, f (x) i.e. f (y) = a + bf (x) for some
a,b ∈ K2. But then taking t with 1+α(t)a (= 0 and two distinct s ∈ K×1 contradicts the proportionality
since 1, f (x) are independent, while

ξ(s, t) =
(
1+ α(t)a

)
1+

(
α(s) + α(t)b

)
f (x).

Thus we have shown that if ρ(x) (= 1 one has f (xy) = f (x) f (y) for all y ∈ A1. Let then x0 ∈ A1 be
such that ρ(x0) (= 1. One has f (x0 y) = f (x0) f (y) for all y ∈ A1. Then for x ∈ A1 with ρ(x) = 1 one has
ρ(x+ x0) (= 1 and the equality f ((x+ x0)y) = f (x+ x0) f (y) for all y ∈ A1 gives f (xy) = f (x) f (y). !

Corollary 3.14. Let A and B be commutative algebras over Q and let

ρ : A/Q× → B/Q×

be a homomorphism of hyperrings. Assume that the range of ρ is of K-dimension > 2, then ρ is induced by
a unique ring homomorphism ρ̃ : A→ B.

Remark 3.15. Let A and B be commutative Q-algebras and let

ρ : A→ B/Q×

be a homomorphism of hyperrings. One has ρ(1) = 1 by hypothesis. By induction one gets ρ(n) ∈
{0,1} for n ∈ N. Moreover, since 0 = ρ(0) ∈ ρ(1) + ρ(−1), ρ(−1) is the additive inverse of 1 in
B/Q× , it follows that ρ(−1) = 1. By the multiplicativity of ρ one gets ρ(n) ∈ {0,1} for n ∈ Z. Using
the property that n · 1/n = 1 one obtains ρ(n) = 1 for n ∈ Z, n (= 0. Again by the multiplicativity of ρ ,
it follows that ρ induces a homomorphism A/Q× → B/Q× and Corollary 3.14 applies.

Remark 3.16. Let A, B,ρ be as in Corollary 3.14. Assume that the range ρ(A) of ρ has K-dimension
" 2. Then, one has ρ(1) = 1 ∈ ρ(A), and either ρ(A) = K or there exists ξ ∈ ρ(A), ξ /∈ K such that
ρ(A)⊂Q + Qb ⊂ B/Q× where b ∈ B is a lift of ξ . Since ρ is multiplicative, one has ξ2 ∈ ρ(A) and b
fulfills a quadratic equation

b2 = α + βb, α,β ∈Q.

One can reduce to the case when b fulfills the condition

b2 = N, N ∈ Z, N square free. (27)
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Thus the morphism ρ : A/Q× → B/Q× factorizes through the quadratic subalgebra Q(
√
N) :=

Q[T ]/(T 2 − N)

ρ : A/Q× →Q(
√
N)/Q× → B/Q×. (28)

Let us consider the case N = 1. In this case Q(
√
N) is the algebra B0 = Q⊕Q direct sum of two copies

of Q. For n ∈ N, an odd number, the map ρn : B0→ B0, ρn(x) = xn is a multiplicative endomorphism
of B0. Let P̃1 = B0/Q× be the quotient hyperring. The corresponding geometry is the projective line
P1(Q) and for any x (= y ∈ P̃1 \ {0} one has

x+ y = P̃1 \ {0, x, y}.

Since ρn induces an injective self-map of P̃1, one gets that

ρn(x + y) = ρn
(
P̃1 \ {0, x, y}

)
⊂ P̃1 \

{
0,ρn(x),ρn(y)

}
= ρn(x) + ρn(y).

Thus ρn : B0/Q× → B0/Q× is an example of a morphism of hyperrings which does not lift to a ring
homomorphism. The same construction applies when the map x 7→ xn is replaced by any injective
group homomorphism Q× →Q× .

4. The equivalence relation on a hyperfield extension of K

In this section we prove that the addition in a hyperfield extension F of the Krasner hyperfield
K is uniquely determined by an equivalence relation on F whose main property is that to commute
with its conjugates by rotations.

4.1. Commuting relations

Given two relations T j ( j = 1,2) on a set X , one defines their composition as

T1 ◦ T2 =
{
(x, z)

∣∣ ∃y ∈ X, (x, y) ∈ T1, (y, z) ∈ T2
}
.

By definition, an equivalence relation T on a set X fulfills $⊂ T , where $ = $X denotes the diagonal.
Moreover, one has T−1 = T where

T−1 =
{
(x, y)

∣∣ (y, x) ∈ T
}

and finally T ◦ T = T .
We say that two equivalence relations T j on a set X commute when any of the following equiva-

lent conditions hold:

• T1 ◦ T2 = T2 ◦ T1,
• T1 ◦ T2 is an equivalence relation,
• T1 ◦ T2 is the equivalence relation generated by the T j .

Notice that any of the above conditions holds if and only if for any class C of the equivalence relation
generated by the T j , the restrictions of the T j to C are independent in the sense that any class of T1|C
meets every class of T2|C .
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4.2. Projective geometry as commuting points of view

Given a point a ∈ P in a projective geometry (P , L), one gets a natural equivalence relation Ra
which partitions the set of points P \ {a} as the lines through a. We extend this to an equivalence
relation Ra , denoted ∼a , on P ∪ {0} such that 0∼a a and for x (= y not in {0,a}

x∼a y ⇐⇒ a ∈ L(x, y). (29)

We now relate the commutativity of these equivalence relations with the axiom P2. More precisely,
we have the following

Lemma 4.1. The axiom P2 of a projective geometry (P , L) is equivalent to the commutativity of the equiva-
lence relations Ra.

Proof. Let us first assume that the axiom P2 holds and show that the relations Ra ’s commute pair-
wise. Given two points a (= b in P , we first determine the equivalence relation Rab generated by Ra
and Rb . We claim that the equivalence classes for Rab are

• The union of L(a,b) with {0}.
• The complement of L(a,b) in any plane containing L(a,b).

One checks indeed that these subsets are stable under Ra and Rb . Moreover let us show that in each
of these subsets, an equivalence class of Ra meets each equivalence class of Rb . In the first case, Ra
has two classes: {0,a} and L(a,b) \ {a} (similarly for Rb), so the result is clear. For the complement
of L(a,b) in any plane containing L(a,b), each class of Ra is the complement of a in a line through a
and thus meets each class of Rb , since coplanar lines meet non-trivially. Thus Ra commutes with Rb .

Conversely, assume that for all a (= b the relation Ra commutes with Rb . Let then x, y, z, t,u as in
the statement of the axiom P2. One has t ∼y x and z ∼u x. Thus z ∈ Ru R y(t). Then z ∈ R y Ru(t) and
L(y, z)∩ L(t,u) (= ∅. !

We can thus reformulate the axioms of projective geometry in terms of a collection of commuting
points of view, more precisely:

Proposition 4.2. Let X = P ∪ {0} be a pointed set and let {Ra; a ∈P } be a family of equivalence relations on
X such that

(1) Ra commutes with Rb, ∀a,b ∈P ,
(2) {0,a} is an equivalence class for Ra, for all a ∈P ,
(3) Each equivalence class of Ra, other than {0,a}, contains at least three elements.

For a (= b ∈ P let L(a,b) be the intersection with P of the class of 0 for Ra ◦ Rb. Define a collection L of lines
in P as the set of all lines L(a,b). Then (P , L) is a projective geometry fulfilling the axioms P1 , P2 and P′3 .

Proof. One has Rb(0) = {0,b} and thus the points of L(a,b) \ {a} are those of Ra(b). The same state-
ment holds after interchanging a and b. Let us show that if c ∈ L(a,b) is distinct from both a and b,
then L(a, c) = L(a,b). The points of L(a, c) \ {a} are those of Ra(c) and c ∈ Ra(b) since c ∈ L(a,b) \ {a}.
By transitivity it follows Ra(c) = Ra(b). Thus L(a, c) \ {a} = L(a,b) \ {a} and L(a, c) = L(a,b). Hence,
for any two (distinct) points a,b ∈ L(x, y) one has L(a,b) = L(x, y). Thus, if we let the set L of
lines in P be given by all L(a,b) axiom P1 follows while the condition (3) ensures P′3. For x (= y
not in {0,a}, one has that a ∈ L(x, y) iff x ∈ Ra(y). Indeed, if a ∈ L(x, y) then L(x, y) = L(y,a) and
x ∈ L(y,a) \ {a} = Ra(y). Conversely, if x ∈ Ra(y), then x ∈ L(y,a) and a ∈ L(x, y). Thus, by Lemma 4.1
one gets P2. !
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4.3. The basic equivalence relation on a hyperfield extension of K

In the case of a hyperring containing K, the following statement shows that the equivalence rela-
tion associated to the unit 1 plays a privileged role.

Proposition 4.3. Let R be a hyperring extension of K. We introduce the multi-valued map s : R→ R, s(a) =
a + 1. Then, the following conditions are equivalent. For x, y ∈ R

(1) x = y or x ∈ y + 1,
(2) x∪ (x+ 1) = y ∪ (y + 1),
(3) s2(x) = s2(y) (s2 = s ◦ s).

The above equivalent conditions define an equivalence relation∼R on R.

Proof. We show that (1) implies (2). Assume x ∈ y + 1. Then x + 1 ⊂ y + 1 + 1 = y ∪ (y + 1). Thus
x ∪ (x + 1)⊂ y ∪ (y + 1). By reversibility one has y ∈ x + 1 and thus y ∪ (y + 1)⊂ x ∪ (x + 1) so that
x∪ (x+ 1) = y ∪ (y + 1).

Next, we claim that (2) and (3) are equivalent since s2(a) = a+1+1 = a∪ (a+1) for any a. Finally
(2) implies (1), since if x (= y and (2) holds one has x ∈ y + 1. !

One knows by Proposition 2.4 that a /∈ s(a) provided that a (= 1. It follows that the map s is in fact
completely determined by the equivalence relation ∼R . Thus one obtains

Corollary 4.4. Let R be a hyperring extension of the Krasner hyperfield K and let ∼R be the associated equiv-
alence relation. Then one has

x+ 1 = {y ∼R x, y (= x}, ∀x ∈ R, x (= 1. (30)

In particular, when R is a hyperfield its additive hyper-structure is uniquely determined by the equivalence
relation∼R .

We now check directly the commutativity of ∼R with its conjugates under multiplication by any
element a ∈ R× .

Lemma 4.5. Let R be a hyperring extension of the Krasner hyperfield K and let ∼R be the corresponding
equivalence relation. Then ∼R commutes with its conjugates under multiplication by any element a ∈ R× .

Proof. Let T =∼R . One has T (x) = x + 1 + 1 for all x ∈ R . It follows that for the conjugate relation
T a := aTa−1 one has T a(x) = x+ a + a. Thus

T ◦ T a(x) = 1+ 1+ (a + a + x) = a + a + (1+ 1+ x) = T a ◦ T (x). !

Thus, one can start with any abelian group H (denoted multiplicatively) and by applying Corol-
lary 4.4, consider on the set R = H ∪ {0} an equivalence relation S which commutes with its conju-
gates under rotations. Let us assume that {0,1} forms an equivalence class for S . In this generality, it
is not true that the multivalued map s : R→ R defined by

s(x) =
{
y ∈ S(x), y (= x

}
, ∀x ∈ R, x (= 1, s(1) = {0,1} (31)

commutes with its conjugates under rotations. One can consider, for example, H = Z/3Z and on the
set R = H ∪ {0} one can define the equivalence relation S with classes {0,1} and { j, j2}. This relation
S commutes with its conjugates under rotations, but one has (for s j(x) := js(xj−1))

s j
(
s(1)

)
=

{
j, j2

}
, s

(
s j(1)

)
= j.
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But the commutativity of s with its conjugates holds provided the equivalence classes for S other
than {0,1} have cardinality at least three. One in fact obtains the following

Proposition 4.6. Let H be an abelian group. Let S be an equivalence relation on the set R = H ∪ {0} such that

• {0,1} forms an equivalence class for S.
• Each class of S, except {0,1}, contains at least three elements.
• The relation S commutes with its conjugates for the action of H by multiplication on the monoid R.

Then with s defined by (31), the law

x+ y :=
{
y if x = 0,
xs(yx−1) if x (= 0

(32)

defines a commutative hypergroup structure on R. With this hyper-addition the monoid R becomes a commu-
tative hyperfield extension of K.

Proof. For x ∈ H , we let Sx = xSx−1 be the conjugate relation. One has

z ∈ Sx(y) ⇔ z ∈ xSx−1(y) ⇔ x−1z∼ x−1 y (S).

In other words the equivalence classes for Sx are of the form xC where C is an equivalence class
for S . Note in particular that {0, x} is an equivalence class for Sx and that any other equivalence class
of Sx contains at least three points. Thus the three conditions of Proposition 4.2 are verified and one
gets a geometry fulfilling axioms P1, P2 and P′3. By Proposition 4.2 the lines of this geometry are
such that the equivalence classes for Sx , other than {0, x}, are of the form L(x, y) \ {x}. By (31) one
has, when x (= 0,

xs
(
yx−1) =

{
z ∈ Sx(y)

∣∣ z (= y
}
, ∀y (= x, xs

(
yx−1) = {0, y} for y = x.

Thus

xs
(
yx−1) = L(x, y) \ {x, y}, ∀y (= x.

Now by (32) we thus get

x+ y :=






y if x = 0,
L(x, y) \ {x, y} if x (= y, x (= 0,
{0, x} if x = y,

(33)

which shows that the hyperaddition defined by (32) coincides with the hyperaddition associated to
the geometry by Proposition 3.1. By construction the abelian group H acts by collineations on this
geometry and thus Proposition 3.5 applies. !

Note that one can give a direct proof of Proposition 4.6, in fact we shall use that approach to treat
a similar case in Section 5.

Example 4.7. The construction of projective planes from difference sets (cf. [38]) is a special case of
Proposition 4.6. Let H be an abelian group, and D ⊂ H be a subset of H such that the following map
is bijective

D ×D \ $→ H \ {1}, (x, y) 7→ xy−1
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(where $ is the diagonal). Then the partition of H \ {1} into the subsets D × {u} for u ∈ D defines
on R = H ∪ {0} an equivalence relation S which fulfills all conditions of Proposition 4.6. By [19,
Theorem 2.1] one obtains in this manner all cyclic projective planes i.e. in the above context all
hyperfield extensions of K whose multiplicative group is cyclic and whose associated geometry is
of dimension 2. By [19, Theorem 3.1], difference sets D exist for the infinite cyclic group Z and
thus provide examples of hyperfield extensions of K whose multiplicative group is cyclic and whose
associated geometry is non-Desarguesian.

5. The order relation on a hyperfield extension of S

Let S be the hyperfield of Definition 2.2. Recall that S = {−1,0,1} with hyper-addition given by the
“rule of signs” (4), and the (classical) multiplication also given by the rule of signs. In this section, we
generalize the results proved in Section 4 for extensions of the hyperfield K, to hyperfield extensions
of S. In particular, we show that one can recast the hyperaddition in a hyperfield extension of S by
implementing an order relation commuting with its conjugates.

Proposition 5.1. Let R be a commutative ring and let G ⊂ R× be a subgroup of its multiplicative group. Assume
that −1 /∈ G (= {1}. Then, the hyperring R/G is an extension of S if and only if {0} ∪ G ∪ (−G) is an ordered
subfield of R with positive part {0}∪ G.

Proof. Let F = {0} ∪ G ∪ (−G). If (F ,G) is an ordered field, then F/G = S and R/G is an extension
of S. Conversely one notices that H = G ∪ (−G) is a multiplicative subgroup H ⊂ R× and that the
hyperring R/H is an extension of K. Thus, by Proposition 2.6, {0}∪G ∪ (−G) is a subfield F of R . This
subfield is ordered by the subset {0} ∪ G = F+ . Indeed, from 1 + 1 = 1 in S one gets that G + G = G
and for x, y ∈ F+ , both x+ y and xy are in F+ . The statement follows. !

Proposition 5.2. Let R be a hyperring extension of S. Then, the following condition defines a partial order
relation "R on R

x "R y ⇐⇒ y ∈ x+ 1 or y = x. (34)

Proof. We show that the relation (34) is transitive. Assume x "R y and y "R z. Then unless one
has equality one gets y ∈ x + 1 and z ∈ y + 1 so that z ∈ (x + 1) + 1 = x + 1 since 1 + 1 = 1. It
remains to show that if x "R y and y "R x then x = y. If these conditions hold and x (= y one gets
x ∈ y + 1⊂ (x + 1) + 1 = x + 1. Thus x ∈ x + 1 but by the reversibility condition (5) on hypergroups
one has 1 ∈ x− x but x− x = {−x,0, x} and one gets that x = ±1. Similarly y = ±1, and since x (= y,
one of them say x is equal to 1 and one cannot have y ∈ x+ 1 = 1. !

Corollary 5.3. Let R be a hyperring extension of S and let "R be the corresponding partial order relation. Then

x+ 1 = {y !R x, y (= x}, ∀x ∈ R, x (= ±1. (35)

When R is a hyperfield, its additive structure is uniquely determined by the partial order relation "R .

Proof. By (5), if x (= ±1 one has x /∈ x + 1 and thus using (34) one gets (35). This determines the
operation x 7→ x + 1 for all x, including for x ∈ S ⊂ R . When R is a hyperfield this determines the
addition. !

Corollary 5.4. Any hyperfield extension of S is infinite.
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Proof. Let F be a hyperfield extension of S, and x ∈ F , x /∈ S⊂ F . Then (x+1)∩ S = ∅, since otherwise
using reversibility, one would obtains x ∈ S. Let x1 ∈ x + 1. Then, one has x <F x1 and iterating this
construction one defines a sequence

x <F x1 <F x2 <F · · · <F xn.

The antisymmetry of the partial order relation shows that the xk are all distinct. !

Lemma 5.5. Let R be a hyperring extension of S and let "R be the corresponding partial order relation. Then,
"R commutes with its conjugates under multiplication by any element a ∈ R× .

Proof. Let T ="R . One has T (x) = (x + 1) ∪ x for all x ∈ R . It follows that for the conjugate relation
T a = aTa−1 one obtains T a(x) = (x+ a)∪ x. Thus

T ◦ T a(x) = (x+ a) + 1∪ (x + 1)∪ (x+ a)∪ x = T a ◦ T (x). !

Proposition 5.6. Let H be an abelian group and let 1 (= ε ∈ H be an element of order two. Let S be a partial
order relation on the set R = H ∪ {0} such that

• S(ε) = {ε,0,1}, S(0) = {0,1}, S(1) = 1 and

x "S y ⇐⇒ ε y "S εx. (36)

• The map s defined by s(ε) = {ε,0,1}, s(0) = 1, s(1) = 1 and

s(x) =
{
y ∈ S(x), y (= x

}
, ∀x ∈ R, x /∈ {ε,0,1} (37)

fulfills s(x) (= ∅ for all x and commutes with its conjugates for the action of H by multiplication on R.

Then, the hyperoperation

x+ y :=
{
y if x = 0,
xs(yx−1) if x (= 0

(38)

defines a commutative hypergroup law on R. With this law as addition, the monoid R becomes a commutative
hyperfield extension of S.

Proof. For x ∈ R× , let sx be the conjugate of s by multiplication by x, i.e.

sx(y) := xs
(
yx−1), ∀y ∈ R.

The commutation s ◦ sx = sx ◦ s gives, when applied to y = 0 and using s(0) = 1, and sx(0) = x

s(x) = xs
(
x−1).

Assume that x (= 0, y (= 0, then

x+ y = xs
(
yx−1) = yXs

(
X−1) = ys(X) = y + x, X = xy−1.

The same result holds if x or y is 0 (if they are both zero one gets 0, otherwise one gets 0+ y = y =
y + 0 since s(0) = 1). Moreover, one has the commutation

sx ◦ sz = sz ◦ sx, ∀x, z ∈ R×
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which shows that, provided both x and z are non-zero

(x+ y) + z = sz
(
sx(y)

)
= sx

(
sz(y)

)
= x+ (y + z).

If x = 0 one has (x + y) + z = y + z = x + (y + z), and similarly for z = 0. Thus the addition is
associative. The distributivity follows from the homogeneity of (38).

Next, we show that ∀x ∈ R , ∃!y(= −x), 0 ∈ x + y. Take y = εx then, provided x (= 0, one has
x+ y = xs(ε) = {εx,0, x} so that 0 ∈ x+ y. We show that y = εx is the unique solution. For x (= 0 and
0 ∈ x + y one has 0 ∈ s(yx−1). Thus it is enough to show that 0 ∈ s(a), a (= 0, implies a = ε . Indeed,
one has a "S 0 and thus 0 "S εa by (36), thus εa = 1, since S(0) = {0,1}.

Finally one needs to show that x ∈ y + z⇒ z ∈ x + ε y. One can assume that y = 1 using distribu-
tivity. We thus need to show that

x ∈ s(z) ⇒ z ∈ x+ ε.

In fact, it is enough to show that εz !S εx and this holds by (36). !

Example 5.7. Let F = U (1)∪ {0} be the union of the multiplicative group U (1) of complex numbers of
modulus one with {0}. F is, by construction, a multiplicative monoid. For z, z′ ∈ U (1), let (z, z′)⊂ U (1)
be the shortest open interval between z and z′ . This is well defined if z′ (= ±z. One defines the hyper-
addition in F so that 0 is a neutral element and for z, z′ ∈ U (1) one sets

z + z′ =






z, if z = z′,
{−z,0, z}, if z =−z′,
(z, z′), otherwise.

(39)

This determines the hyperfield extension of S: F = C/R×+ . This hyperfield represents the notion of the
argument of a complex number. The quotient topology is quasi-compact, and 0 is a closed point such
that F is its only neighborhood. The subset U (1) ⊂ F is not closed but the induced topology is the
usual topology of U (1).

We now apply Proposition 5.6 to define, on the set of the real numbers R, a structure of hyperfield
extension of S.

Theorem 5.8. On R there exists a unique hyperfield extension Rconvex of S = {−1,0,1} such that

(a) The multiplicative structure on Rconvex is the same as that on R.
(b) The hyperaddition on R>0 is defined as follows

x+ y =
{
λx+ (1− λ)y

∣∣ λ ∈ (0,1)
}
.

Moreover, the group Aut(Rconvex) of automorphisms of Rconvex is the multiplicative group R× acting by the
automorphisms

ϑs(x) = xs, ∀x > 0, ϑs(v) = v, ∀v ∈ S⊂R. (40)

Proof. We write R = H ∪ {0}, where H = R× . We let ε =−1 and following Proposition 5.6 we define
the partial order relation S on R as: S(−1) = {±1,0}, S(0) = {0,1} and

S(x) =
{
λx+ (1− λ)x

∣∣ λ ∈ (0,1]
}
, ∀x > 0
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while for x < 0, x (=−1, we set

S(x) =
{

(x,0)∪ (1,∞), if |x| < 1,
(−∞, x)∪ (0,1), if |x| > 1.

We define the map s : R→R as in Proposition 5.6. Then, the existence of the additive hyperstructure
on R as in (b) follows. One can also show that the additive hypergroup (Rconvex,+) is isomorphic to
the complement of {−1,1} in the additive hypergroup of Example 5.7.

To prove uniqueness, one uses reversibility and distributivity to get from (b) that for 0< x < y,

x− y = (0, x)∪ (−∞,−y).

To prove the final statement, we note first that the ϑs are automorphisms of Rconvex since they are
compatible with the product and the hypersum. Moreover, any automorphism α ∈ Aut(Rconvex) in-
duces on R×+ a monotonic group automorphism and is hence equal to ϑs for some s ∈R× . !

Note that the automorphisms ϑs are the analogue of the Frobenius automorphisms in finite char-
acteristic (we are here in characteristic one). One should view the hyperfield Rconvex as a refinement
of the semi-field Rmax

+ implemented in tropical geometry and idempotent analysis.

Remark 5.9. In Section 3 we showed that K-vector spaces are projective geometries. Similarly, one
can interpret S-vector spaces in terms of spherical geometries. In the Desarguesian case, any such
geometry is the quotient V /H+ of a left H-vector space V over an ordered skew field H by the
positive part H+ of H . It is a double cover of the projective space P(V ) = V /H× . More generally,
a S-vector space E is a double cover of the K-vector space E ⊗S K. We shall not pursue further this
viewpoint in this paper, but refer to Theorem 28 of Chapter I of [10] as a starting point. This extended
construction is the natural framework for several results proved in this section.

6. Relation with BBB and FFF1

A hypersemiring (R,+, ·) is a multiplicative monoid (R, ·) with identity 1 and an absorbing ele-
ment 0 (= 1 which is also endowed with an additive hyper-operation + : R × R→P (R)∗ such that:

(a) (R,+) is a commutative and associative hyperstructure with neutral element 0, i.e.

∀a,b, c ∈ R, (a + b) + c = a + (b + c), r + 0 = {r}, ∀r ∈ R.

(b) The distributivity law holds, i.e.

∀a,b, c ∈ R: a(b + c) = ab + ac, (b + c)a = ba + ca.

By definition, a homomorphism of hypersemirings f : R1→ R2 is a homomorphism of multiplicative
monoids which also fulfills the property

f (x+ y)⊂ f (x) + f (y), ∀x, y ∈ R1. (41)

Thus there is no homomorphism of hypersemirings f : Z→ B to the semifield B = {0,1} (1 + 1 = 1
in B, cf. [30]) such that f (0) = 0, f (1) = 1. Indeed f (−1) should be an additive inverse of 1 in B
which is a contradiction. On the other hand, the similar map σ : Z→ S does extend to a hyperring
homomorphism

σ : Z→ S, σ (n) = sign(n), ∀n (= 0, σ (0) = 0. (42)
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Such map is in fact the unique element of Hom(Z,S). Moreover, the identity map id : B→ S is a
hypersemiring homomorphism since 1 + 1 = 1 in S. Thus one can identify B as the positive part
of S: B = S+ . Notice also that K is the quotient of S by the subgroup {±1}. One deduces a canonical
epimorphism (absolute value) π : S→ K. Thus, by considering the associated geometric spectra (and
reversing the arrows), we obtain the following commutative diagram

SpecS SpecK

SpecZ SpecB

SpecF1

(43)

6.1. The BC-system as ZS = Ẑ⊗Z S

It follows from what has been explained above that SpecS sits over SpecZ and that the map from
SpecK to the generic point of SpecZ factorizes through SpecS. To introduce in this set-up an algebraic
geometry over SpecS, it is natural to try to lift SpecZ to an object over SpecS. This is achieved by
considering the spectrum of the tensor product ZS = Ẑ⊗Z S, using the natural sign homomorphism
Z→ S and the embedding of the relative integers in their profinite completion. Notice that, since the
non-zero elements of S are ±1, every element of Ẑ⊗Z S belongs to Ẑ⊗Z 1. Thus the hyperring ZS is,
by construction, the quotient of Ẑ by the equivalence relation

x∼ y ⇐⇒ ∃n,m ∈N×, nx =my.

This is precisely the relation that defines the noncommutative space associated to the BC-system.
Geometrically, it corresponds to a fibered product given by the commutative diagram

SpecZS

Spec Ẑ SpecS

SpecZ

(44)

Using the morphism h = π ◦ σ of (42), one can perform the extension of scalars from Z to K. The
relation between −⊗Z K and −⊗Z S is explained by the following result.

Proposition 6.1. Let R be a (commutative) ring containing Q. Let R/Q× be the hyperring quotient of R by the
multiplicative group Q× of Q. Then one has

R ⊗Z K = R/Q×. (45)

Let R/Q×+ be the hyperring quotient of R by the positive multiplicative group Q×+ . Then one has

R ⊗Z S = R/Q×+. (46)
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Proof. Every element of R ⊗Z K arises from an element of R in the form a⊗ 1K . Moreover one has,
for n ∈ Z, n (= 0

na⊗ 1K = a⊗ h(n)1K = a⊗ 1K.

This shows that for any non-zero rational number q ∈Q× one has

qa⊗ 1K = a⊗ 1K.

Thus, since R/Q× is a hyperring over K, by Proposition 2.7 one gets (45). The proof of the second
statement is similar. !

When R = AQ, f the ring AQ, f = Ẑ⊗Z Q of finite adèles over Q, since any class in R/Q×+ has a
representative in Ẑ, Proposition 6.1 yields the hyperring ZS . Taking R = AQ , the ring of adèles over Q,
and tensoring by K one obtains the hyperring HQ of adèle classes over Q (cf. Theorem 7.1 below). At
the level of spectra one obtains

Spec(HQ) = Spec(AQ)×Spec(Z) Spec(K)

where HQ is the hyperring of adèle classes over Q. When combined with (43), this construction
produces the following (commutative) diagram

SpecHQ

SpecAQ SpecK

SpecZ SpecB

SpecF1

(47)

6.2. The profinite completion Z→ Ẑ and ideals

Let us consider the (compact) topological ring R = Ẑ. Given a closed ideal J ⊂ R , we define

∞√ J =
{
x ∈ R

∣∣ lim
n→∞ xn ⊂ J

}
. (48)

In this definition we are not assuming that xn converges and we define limn→∞ xn as the set of limit
points of the sequence xn . Thus x ∈ ∞√ J means that xn → 0 in the quotient (compact) topological
ring R/ J .

Lemma 6.2. Let ' ∈ΣQ be a finite place.

(a) For a = (aw) ∈ Ẑ∼∏
Zp , the condition a' = 0 defines a closed ideal p' ⊂ Ẑ which is invariant under the

equivalence relation induced by the partial action of Q× on Ẑ by multiplication.
(b) The intersection Z∩ ∞√p' is the prime ideal (')⊂ Z.
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Proof. (a) The ideal p' is closed in Ẑ∼∏
Zp by construction. For any prime ', the ring Z' contains

Z and has no zero divisor, thus a' = 0⇔ na' = 0 for any non-zero n ∈N.
(b) For a = (aw) ∈ Ẑ ∼∏

Zp , one has a ∈ ∞√p' if and only if the component a' belongs to the
maximal ideal 'Z' . The result follows. !

The relations between the various algebraic structures discussed above are summarized by the
following diagram, with ZK = ZS ⊗S K = ZS/{±1},

SpecZS SpecZK SpecHQ

Spec Ẑ SpecS SpecK

SpecZ SpecB

SpecF1

(49)

7. Arithmetic of the hyperring HHHKKK of adèle classes

The quotient construction of Proposition 2.7 applies, in particular, to the ring R = AK of adèles
over a global field K, and to the subgroup K× ⊂A×K . One then obtains a new algebraic structure and
description of the adèle class space as follows

Theorem 7.1. Let K be a global field. The adèle class space AK/K× is a hyperring HK over K. By using the
unique morphism K→ K for the extension of scalars one has HK = AK ⊗K K.

Proof. The fact that HK = AK/K× is a hyperring follows from the construction of Krasner. This
hyperring is an extension of K by Proposition 2.7. The identification with AK ⊗K K follows as in
Proposition 6.1. !

This section is devoted to the study of the arithmetic of the hyperring HK of the adèle classes
of a global field. In particular we show that, for global fields of positive characteristic, the action of
the units H×K on the prime elements of HK corresponds to the action of the abelianized Weil group
Wab ⊂ Gal(Kab : K) on the space Val(Kab) of valuations of the maximal abelian extension Kab of K
i.e. on the space of the (closed) points of the corresponding projective tower of algebraic curves. More
precisely we shall construct a canonical isomorphism of the groupoid of prime elements of HK with
the loop groupoid of the above abelian cover.

7.1. The space Spec(HK) of closed prime ideals of HK

Given a finite product of fields R = ∏
v∈S Kv , an ideal J in the ring R is of the form

J Z =
{
x = (xv) ∈ R

∣∣ xw = 0, ∀w ∈ Z
}

where Z ⊂ S is a non-empty subset of S . To see this fact one notes that if x ∈ J and the component
xv does not vanish, then the characteristic function 1v (whose components are all zero except at v
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where the component is 1) belongs to J since it is a multiple of x. By adding all these 1v ’s, one gets
a generator p = ∑

1v of J .
Let K be a global field. We endow the ring AK of adèles with its locally compact topology. For any

subset E ⊂Σ(K) of the set of places of K, one has the convergence

∑

F

1v → 1E (50)

where F runs through the finite subsets of E , and 1E is the characteristic function of E .

Proposition 7.2. There is a one to one correspondence between subsets Z ⊂ Σ(K) and closed ideals of AK
( for the locally compact topology) given by

Z 7→ J Z =
{
x = (xv) ∈AK

∣∣ xw = 0, ∀w ∈ Z
}
. (51)

Proof. First of all we notice that, by construction, J Z is a closed ideal of AK , for any subset Z ⊂Σ(K).
Let J be a closed ideal of AK . To define the inverse of the map (51), let E ⊂Σ(K) be the set of places
v of K for which there exists an element of J which does not vanish at v . One has 1v ∈ J for all
v ∈ E . Thus, since J is closed one has 1E ∈ J by (50). The element 1E is a generator of J , since for
j ∈ J all components jw of j vanish for w /∈ E , so that j = j1E is a multiple of 1E . By taking Z = Ec

to be the complement of E in Σ(K), one has J = J Z . !

Proposition 7.2 applies, in particular, in the case Z = {w}, for w ∈ Σ(K) and it gives rise to the
closed ideal of the hyperring HK = AK/K×

pw = {x ∈HK | xw = 0}. (52)

Notice that the ideal pw is well defined since the condition for an adèle to vanish at a place is
invariant under multiplication by elements in K× . The set pw is in fact a prime ideal in HK whose
complement is the multiplicative subset

pcw = {x ∈HK | xw (= 0}.

Proposition 7.3. There is a one to one correspondence between the set Σ(K) of places of K and the set of
closed prime ideals of HK ( for the quotient topology) given by

Σ(K)→ Spec(HK), w 7→ pw . (53)

Proof. The projection π : AK→HK gives a one to one correspondence for closed prime ideals. Thus,
it is enough to prove the statement for the topological ring AK . One just needs to show that an ideal
of the form J Z in AK is prime if and only if Z = {w} for some place w ∈ Σ(K). Assume that Z
contains two distinct places w j ( j = 1,2). Then one has 1w j /∈ J Z , while the product 1w11w2 = 0.
Thus J Z is not a prime ideal of AK . Since we have just proved that the pw ’s are prime ideals of HK ,
we thus get the converse. !

Remark 7.4. When viewed as a multiplicative monoid, the adèle class space AK/K× has many more
prime ideals than when it is viewed as a hyperring. This is a consequence of the fact that any union
of prime ideals in a monoid is still a prime ideal. This statement implies, in particular, that all subsets
of the set of places determine a prime ideal.
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7.2. Functions on Spec(HQ)

In algebraic geometry one defines a function on a scheme X , viewed as a covariant functor
X : Ring→Sets, as a morphism of functors f : X → D to the (functor) affine line D = spec(Z[T ])
(whose geometric scheme is Spec(Z[T ]), cf. [5]). For X = Spec(R), where R is an object of Ring (i.e.
a commutative ring with unit), one derives a natural identification of functions on X with elements
of the ring R

HomRing
(
Z[T ], R

)
* R. (54)

In the category of hyperrings, the identification (54) no longer holds in general as easily follows
from Proposition 2.10. Indeed, K has only two elements while HomHring(Z[T ],K) * Spec(Z[T ]) is
countably infinite. The next Theorem describes the functions on Spec(HK), for K = Q.

Theorem 7.5. Let HQ be the hyperring of adèle classes over Q, and let ρ ∈ HomHring(Z[T ],HQ). Then, either
ρ = ξa

ξa
(
P (T )

)
= P (a)Q× ∈HQ, ∀P ∈ Z[T ] (55)

for a unique adèle a ∈AQ , or ρ factorizes through Q[eZ ]/Q× , where eZ is the idempotent of AQ associated to
a subset Z ⊂ΣQ .

Proof. Assume first that the range ρ(Z[T ]) is contained in L ∪ {0} where L is a line of the projective
space HQ \ {0}. Let π : AQ →HQ be the projection. The two dimensional subspace E = π−1(L ∪ {0})
of the Q-vector space AQ contains 1 since ρ(1) = 1. Unless ρ(Z[T ]) = K, the line L is generated by
1 and ξ ∈ ρ(Z[T ]), ξ (= 1. Let x ∈ E with π(x) = ξ . Since ξ2 ∈ ρ(Z[T ]) one has x2 ∈ E and x2 = ax+ b
for some a,b ∈ Q. As in Remark 3.16, one can assume that x2 = N for a square free integer N . But
the equation y2 = N has no solution in AQ except for N = 1. It follows that Q[x] ⊂ AQ is a two
dimensional subalgebra over Q of the form Q[eZ ] where eZ is the idempotent of AQ associated to
a subset Z ⊂ΣQ . Thus ρ factorizes through Q[eZ ]/Q× . We can thus assume now that ρ(Z[T ]) \ {0}
is not contained in a line L of the projective space HQ \ {0}. The restriction of ρ to Z ⊂ Z[T ] is a
morphism from Z to K and its kernel is a prime ideal p⊂ Z. If p (= {0}, one has p = pZ for a prime
number p. Then

ρ
(∑

(pan)Tn
)

= ρ(p)ρ
(∑

anTn
)

= 0, ∀ak ∈ Z

and the inclusion ρ(x + y)⊂ ρ(x) + ρ(y) shows that ρ(P (T )) only depends upon the class of P (T )
in Fp[T ]. Since ρ(F×p ) = 1 one gets a morphism,4 in the sense of [17], from the projective space
(Fp[T ]/F×p ) \ {0} to the projective space HQ \ {0}. Since ρ(Z[T ]) \ {0} is not contained in a line L of
the projective space HQ \ {0}, this morphism is non-degenerate. By [17, Theorem 5.4.1] (cf. also [18,
Theorem 3.1]) there exists a semi-linear map inducing this morphism but this gives a contradiction
since there is no field homomorphism from Fp to Q. Thus one has p = {0} and ρ(n) = 1 for all
n ∈ Z \ {0}. One can then extend ρ to a morphism

ρ ′ : Q[T ]→HQ, ρ ′
(
P (T )

)
= ρ

(
nP (T )

)
, ∀n (= 0, nP (T ) ∈ Z[T ].

By Corollary 3.14 one then gets a unique ring homomorphism ρ̃ : Q[T ]→ AQ which lifts ρ ′ . This
gives a unique adèle a ∈AQ such that (55) holds. !

4 Note that this holds even for p = 2 even though F2[T ]/F×2 is not a K-vector space.
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The above result shows that there are two different types of “functions” on Spec(HQ): functions
corresponding to adèles (which recover the algebraic information of the ring AQ) and functions fac-
torizing through Q[eZ ]/Q× . These latter functions should be thought of as “two-valued” functions, in
analogy with the case of continuous functions on a compact space X . Indeed, the range of f ∈ C(X,R)
has two elements if and only if the subalgebra of C(X,R) generated by f is of the form R[e] for some
idempotent e ∈ C(X,R). In the above case of Spec(HQ) the subset Z ⊂ΣQ * Spec(HQ) and its com-
plement specify the partition of Spec(HQ) corresponding to the two values of ρ . Once this partition
is given, the remaining freedom is in the set HomHring(Z[T ], (Q⊕Q)/Q×). We shall not attempt to
describe explicitly this set here, but refer to Remark 3.16 to show that it contains many elements.

Let H be a commutative ring, and let $ : H → H ⊗Z H be a coproduct. Given two ring homo-
morphisms ρ j : H → R ( j = 1,2) to a commutative ring R , the composition ρ = (ρ1⊗ρ2) ◦$ defines
a homomorphism ρ : H → R . When R is a hyperring, one introduces the following notion

Definition 7.6. Let (H,$) be a commutative ring with a coproduct and let R be a hyperring. Let
ρ j ∈ HomHring(H, R), j = 1,2. One defines ρ1 3$ ρ2 to be the set of ρ ∈ HomHring(H, R) such that
for any x ∈H and any decomposition $(x) = ∑

x(1) ⊗ x(2) one has

ρ(x) ∈
∑

ρ1(x(1))ρ2(x(2)). (56)

In general ρ1 3$ ρ2 can be empty or it may contain several elements. When ρ1 3$ ρ2 = {ρ} is
made by a single element we simply write ρ1 3$ ρ2 = ρ .

When H = Z[T ], $+(T ) = T ⊗ 1 + 1 ⊗ T and $×(T ) = T ⊗ T , this construction allows one to
recover the algebraic structure of the ring of adèles, in terms of functions on Spec(HQ) (cf. Theo-
rem 7.5).

Proposition 7.7. Let ρ j = ξa j ∈ HomHring(Z[T ],HQ) ( j = 1,2), be the homomorphisms uniquely associated
to a j ∈AQ by (55). Assume that monomials of degree " 2 in a j are linearly independent over Q. Then one has

ρ1 3$+ ρ2 = ξa1+a2 , ρ1 3$× ρ2 = ξa1a2 . (57)

Proof. Let ρ̃ j ∈ Hom(Z[T ],AQ), ρ̃ j(P (T )) = P (a j) be the lift of ρ j . Then ρ+ = (ρ̃1 ⊗ ρ̃2) ◦$+ fulfills
the equation

ρ+(x) =
∑

ρ̃1(x(1))ρ̃2(x(2))

for any decomposition $+(x) = ∑
x(1) ⊗ x(2) . Thus, since ξa1+a2 = π ◦ ρ+ (with π : AQ → HQ the

projection) one gets, using (7), that ξa1+a2 ∈ ρ1 3$+ ρ2. In a similar manner one obtains ξa1a2 ∈
ρ1 3$× ρ2. It remains to show that they are the only solutions. We do it first for $× . Let ρ ∈
ρ1 3$× ρ2. Since $×(T ) = T ⊗ T , (56) gives ρ(T ) = a1a2 ∈ HQ . Similarly ρ(T 2) = a21a

2
2 ∈ HQ . Thus

since 1,a1a2,a21a
2
2 are linearly independent over Q, the range of ρ is of K-dimension ! 3 and by The-

orem 7.5 there exists a ∈ AQ such that ρ = ξa . Moreover a = λa1a2 for some λ ∈Q× and it remains
to show that λ = 1. One has

$×(1+ T ) = (1− T )⊗ (1− T ) + T ⊗ 1+ 1⊗ T .

Thus (56) shows that 1+ a belongs to (1− a1)(1− a2)Q× + a1Q× + a2Q×. But by Q-linear indepen-
dence the only element of this set which is of the form 1+λa1a2 is 1+a1a2 which implies that λ = 1
and thus that ρ = ξa1a2 . Let now ρ ∈ ρ1 3$+ ρ2. One has

$+(T ) = T ⊗ 1+ 1⊗ T = (1+ T )⊗ (1 + T )− 1⊗ 1− T ⊗ T
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which implies by (56) that ρ(T ) = λ(a1 +a2) for some λ ∈Q× . Since ρ(T 2) ∈ a21Q×+a1a2Q×+a22Q×
the range of ρ is of K-dimension ! 3 and by Theorem 7.5 there exists a ∈ AQ such that ρ = ξa . One
has a = λ(a1 + a2) and to show that λ = 1 one proceeds as above using

$+(1+ T ) = (1+ T )⊗ (1 + T )− T ⊗ T . !

Remark 7.8. The function theory on SpecK is developed in [7] where we show also, using the above
coproducts $∗ , how to recover the field of real numbers from a purely algebraic construction, as the
function theory over SpecS.

7.3. The groupoid P (HK) of prime elements of HK

The notion of principal prime ideal in a hyperring is related to the following notion of prime
element

Definition 7.9. In a hyperring R , an element a ∈ R is said to be prime if the ideal aR is a prime ideal.

We let P (HK) be the set of prime elements of the hyperring HK = AK/K× , for K a global field.

Theorem 7.10.

(1) Any principal prime ideal of HK is equal to pw = aHK for a place w ∈ Σ(K) uniquely determined by
a ∈HK .

(2) The group CK = A×K/K× acts transitively on the generators of the principal prime ideal pw .
(3) The isotropy subgroup of any generator of the prime ideal pw is K×w ⊂ CK .

Proof. (1) Let p = aHK be a prime principal ideal in HK . We consider the support of a i.e. the set
S = {v ∈Σ(K) | av (= 0}. We shall prove that the characteristic function 1S generates the same ideal
as a, i.e. aHK = 1SHK , where 1S ∈HK is the class of the adèle α = (αv), with αv = 1 for v ∈ S and
αv = 0 otherwise. For each v ∈ Σ(K), let O×

v be the multiplicative group O×
v = {x ∈ Kv : |x|v = 1}

of elements in Kv of norm 1. When the place v is non-archimedean this is the group of invertible
elements of the local ring Ov . We let a = (av) be an adèle in the given class and first show that there
exists a finite subset F ⊂Σ(K) such that

av ∈O×
v , ∀v ∈ S, v /∈ F . (58)

Otherwise, there would exist an infinite subset Y ⊂ S such that

|av |v < 1, ∀v ∈ Y .

Let then Y ′ be an infinite subset of Y whose complement in Y is infinite. Consider the adèles y, z ∈
AK defined by

yv =
{
1, v /∈ Y ′,
av , v ∈ Y ′,

zv =
{
av , v /∈ Y ′,
1, v ∈ Y ′.

By construction yz = a. The same equality holds in HK . Since the ideal p = aHK is prime, its com-
plement in HK is multiplicative and thus y ∈ p or (and) z ∈ p. However y /∈ aAK since |yv |v > |av |v
on the complement of Y ′ in Y which is an infinite set of places. Similarly z /∈ aAK since |zv |v > |av |v
on Y ′ . Thus one gets a contradiction and this proves (58). In fact one may assume, without changing
the principal ideal p = aHK , that

av ∈O×
v , ∀v ∈ S. (59)
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Since the ideal p = aHK is non-trivial the complement Z of S in Σ(K) is non-empty. Assume that
Z contains two places v1 (= v2. Let 1v be the (class of the) adèle all of whose components vanish
except at the place v where its component is 1 ∈Kv . Then one has 1v j /∈ p = aHK , but the product
1v11v2 = 0 ∈ p = aHK which contradicts the fact that p = aHK is prime. This shows that Z = {w} for
some w ∈Σ(K) and that aHK = pw using (59).

(2) Let b, c ∈ HK be two generators of the ideal pw . Let β,γ ∈ AK be adèles in the classes of b
and c respectively. Then by (58), the equality

jv = γv/βv , ∀v (= w, jw = 1

defines an idèle such that jβ = γ . This shows that the group CK acts transitively on the generators
of pw .

(3) Let a ∈ HK be a generator of the principal ideal pw and let α be an adèle in the class of a.
For g ∈ CK the equality ga = a in HK means that for j an idèle in the class of g , there exists q ∈K×
such that jα = qα. In other words one has q−1 jα = α. Since all components αv are non-zero except
at v = w one thus gets that all components of q−1 j are equal to 1 except at w . The component jw
can be arbitrary and thus, the isotropy subgroup of any generator of pw is K×w ⊂ CK . !

On P (HK) we define a groupoid law given by multiplication. More precisely,

Proposition 7.11. Let K be a global field and s : P (HK)→ΣK the map which associates to a prime element
of HK the principal prime ideal of HK it generates. Then P (HK) with range and source maps equal to s and
partial product given by the product in the hyperring HK , is a groupoid.

Proof. Since the source and range maps coincide, one needs simply to show that each fiber s−1(w) is
a group. For each place w ∈ΣK , there is a unique generator pw of the prime ideal pw which fulfills
p2
w = pw . It is given by the class of the characteristic function 1S where S is the complement of w

in ΣK . Any other element of s−1(w) is, by Theorem 7.10, of the form γ = upw where u ∈ CK/K×w is
uniquely determined. The product in s−1(w) corresponds to the product in the group CK/K×w . !

Note that the product p1p2 of two prime elements is a prime element only when these factors
generate the same ideal.

7.4. The groupoids Πab
1 (X)′ and P (HK) in characteristic p (= 0

Let K be a global field of characteristic p > 0 i.e. a function field over a constant field Fq ⊂K. We
fix a separable closure K̄ of K and let Kab ⊂ K̄ be the maximal abelian extension of K. Let F̄q ⊂ K̄
be the algebraic closure of Fq . We denote by Wab ⊂ Gal(Kab : K) the abelianized Weil group, i.e. the
subgroup of elements of Gal(Kab : K) whose restriction to F̄q is an integral power of the Frobenius.

Let Val(Kab) be the space of all valuations of Kab. By restriction to K⊂Kab one obtains a natural
map

p : Val
(
Kab)→Σ(K), p(v) = v|K. (60)

By construction, the action of Gal(Kab : K) on Val(Kab) preserves the map p.

Proposition 7.12. Let w ∈Σ(K).

(1) The abelianized Weil group Wab acts transitively on the fiber p−1(w) of p.
(2) The isotropy subgroup of an element in the fiber p−1(w) coincides with the abelianized local Weil group

Wab
w ⊂Wab .
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Proof. This follows from standard results of class field theory but we give the detailed proof for
completeness. Let v ∈ Val(Kab) with p(v) = w . By construction, the completion Kab

v of Kab at v
contains the local field Kw completion of K at w . The subfield Kw ∨Kab of Kab

v generated by Kab and
Kw coincides with the maximal abelian extension Kab

w of Kw . One has the translation isomorphism
(cf. [2, Theorem V, A.V.71])

Gal
((

Kw ∨Kab) : Kw
)∼= Gal

(
Kab :

(
Kw ∩Kab))⊂ Gal

(
Kab : K

)
(61)

obtained by restricting an automorphism to Kab.
The subgroup Gal(Kab : (Kw ∩Kab))⊂ Gal(Kab : K) is the isotropy subgroup Γv of the valuation v

i.e. an element g ∈ Gal(Kab : K) fixes v if and only if g fixes pointwise the subfield Kw ∩Kab ⊂Kab.
Indeed, if g fixes v it extends uniquely by continuity to an automorphism of Kab

v . This automor-
phism is the identity on K and hence also on the completion Kw of K at w and thus on Kw ∩Kab.
Next, let g ∈ Gal(Kab : K) be the identity on Kw ∩Kab. The fact that g fixes v follows from (61). In-
deed, this shows that any element g ∈ Gal(Kab : (Kw ∩Kab)) is the restriction of an automorphism in
Gal((Kw ∨Kab) : Kw) and preserves v since the valuation w of the local field Kw extends uniquely
to finite algebraic extensions of Kw , and thus to Kw ∨Kab, by uniqueness of the maximal compact
subring.

(1) Let us check that the abelianized Weil group Wab acts transitively on the valuations in the set
p−1(w). The Galois group Gal(Kab : K) acts transitively on p−1(w). Indeed the space of valuations
extending w is by construction the projective limit of the finite sets of valuations extending w over
finite algebraic extensions of K. The Galois group Gal(Kab : K) is a compact profinite group which
acts transitively on the finite sets of valuations extending w over finite algebraic Galois extensions
of K [37, § 9, Proposition 9.2]. Thus it acts transitively on the fiber p−1(w). It remains to show that
the transitivity of the action continues to hold for Wab ⊂ Gal(Kab : K). It is enough to show that the
orbit Wabv of a place v ∈ p−1(w) is the same as its orbit under Gal(Kab : K). This is a consequence
of the co-compactness of the isotropy subgroup Γv ∩ Wab ⊂ Wab but it is worthwhile to describe
what happens in more details. In the completion process from K to Kw , the maximal finite subfield
(constant field) passes from Fq to a finite extension Fq' . Let Kun

w ⊂ Kab
w be the largest unramified

extension of Kw inside Kab. It is obtained by adjoining to Kw all roots of unity of order prime to p
which are not already in the constant field Fq' of Kw . One has [46, VI], [3, Chapter VII]

Gal
(
Kab

w : Kun
w

)∼= Gal
(
Kab :

(
Kun

w ∩Kab))⊂ Gal
(
Kab :

(
Kw ∩Kab)).

The extension Kun
w ∩Kab contains K′ = F̄q⊗Fq K. This determines the following diagram of inclusions

of fields

Kab
w = Kw ∨Kab ⊂ (Kab)v Kab

Kun
w Kun

w ∩Kab K′

Kw Kw ∩Kab K

The topological generator of Gal(Kun
w : Kw) induces the '-th power σ ' of the Frobenius automor-

phism on K′ and the same holds for the topological generator of Gal((Kun
w ∩Kab) : (Kw ∩Kab)). The

abelianized Weil group Wab ⊂ Gal(Kab : K) is defined by

Wab = ρ−1{σZ}
, ρ : Gal

(
Kab : K

)
→ Gal

(
K′ : K

)
, σZ ⊂ Gal

(
K′ : K

)
.



192 A. Connes, C. Consani / Journal of Number Theory 131 (2011) 159–194

Thus, the statement that the group Wab ⊂ Gal(Kab : K) acts transitively on the fiber p−1(w) is equiv-
alent to the fact that the dense subgroup Z⊂ Ẑ acts transitively on the finite space Ẑ/'Ẑ.

(2) By the remarks made at the beginning of the proof, an element g ∈ Gal(Kab : K) fixes the
valuation v ∈ p−1(w) if and only if it is the restriction to Kab of an element h ∈ Gal(Kab

w : Kw)
(cf. (61)). Since both induce the same automorphism on the algebraic closure of Fq one gets that
h ∈Wab

w ⇐⇒ g ∈Wab as required. !

We now implement the geometric language. Given an extension E of F̄q of transcendence de-
gree 1, it is a well-known fact that the space of valuations of E , Val(E), coincides with the set of
(closed) points of the unique projective nonsingular algebraic curve with function field E . Moreover,
one also knows (cf. [20, Corollary 6.12]) that the category of nonsingular projective algebraic curves
and dominant morphisms is equivalent to the category of function fields of dimension one over F̄q .
Given a global field K of positive characteristic p > 1 with constant field Fq , one knows that the max-
imal abelian extension Kab of K is an inductive limit of extensions E of F̄q of transcendence degree 1.
Thus the space Val(Kab) of valuations of Kab, endowed with the action of the abelianized Weil group
Wab ⊂ Gal(Kab : K), inherits the structure of a projective limit of projective nonsingular curves. This
construction determines the maximal abelian cover π : Xab→ X of the non singular projective curve
X over Fq with function field K.

Let π : X̃→ X be a Galois covering of X with Galois group W . The fundamental groupoid of π is
by definition the quotient Π1 = ( X̃× X̃)/W of X̃× X̃ by the diagonal action of W on the self-product.
The (canonical) range and source maps: r and s are defined by the two projections

r(x̃, ỹ) = π(x̃) = x, s(x̃, ỹ) = π( ỹ) = y. (62)

Let us consider the subgroupoid of loops i.e.

Π ′
1 =

{
γ ∈Π1

∣∣ r(γ ) = s(γ )
}
. (63)

Each fiber of the natural projection r = s : Π ′
1→ X is a group. Moreover, if W is an abelian group one

defines the following natural action of W on Π ′
1

w · (x̃, ỹ) = (wx̃, ỹ) =
(
x̃, w−1 ỹ

)
. (64)

We consider the maximal abelian cover π : Xab→ X of the non singular projective curve X over Fq

with function field K. We view X as a scheme over Fq . In this case, we let W = Wab ⊂ Gal(Kab : K)

be the abelianized Weil group. Even though the maximal abelian cover π : Xab→ X is ramified, its
loop groupoid Πab

1 (X)′ continues to make sense. Since the two projections from Xab × Xab to X are
W -invariant, Πab

1 (X)′ is the quotient of the fibered product Xab ×X Xab by the diagonal action of W .
We identify the closed points of Xab ×X Xab with pairs of valuations of Kab whose restrictions to K
are the same.

We obtain the following refinement of Proposition 8.13 of [8].

Theorem 7.13. Let K be a global field of characteristic p (= 0, and let X be the corresponding non-singular
projective algebraic curve over Fq.

• The loop groupoid Πab
1 (X)′ is canonically isomorphic to the groupoid P (HK) of prime elements of the

hyperring HK = AK/K× .
• The above isomorphism Πab

1 (X)′ * P (HK) is equivariant for the action of W on Πab
1 (X)′ and the action

of the units H×K = CK on prime elements by multiplication.

Proof. Under the class-field theory isomorphism W = Wab ∼ CK , the local Weil group at a place
w ∈ ΣK corresponds to the subgroup K×w ⊂ CK . By applying Proposition 7.12, this shows that given
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two elements v j ∈ Val(Kab) above the same place w ∈ΣK , there exists a unique element γ (v1, v2) ∈
CK/K×w such that (under the class field theory isomorphism)

γ (v1, v2)(v2) = v1. (65)

For a place w ∈ ΣK we let pw ∈ P (HK) be the unique idempotent element (i.e. p2
w = pw ) which

generates the ideal pw . We define the map (cf. (60))

ϕ : Πab
1 (X)′ → P (HK), ϕ(v1, v2) = γ (v1, v2)pw , ∀v j ∈ p−1(w). (66)

The map ϕ is well defined since by Theorem 7.10 the isotropy subgroup of points above w in P (HK)
is K×w and one has γ (uv1,uv2) = γ (v1, v2) for all u ∈Wab ∼ CK . One also checks the equivariance

ϕ(u · α) = uϕ(α), ∀u ∈Wab ∼ CK. (67)

Finally, the equality

γ (v1, v2)γ (v2, v3) = γ (v1, v3) (68)

together with apvbpv = abpv show that the map ϕ is a morphism of groupoids which is also bijective
over each place in ΣK , by Proposition 7.12 and Theorem 7.10. Thus ϕ is an isomorphism. !

Supplementary material

The online version of this article contains additional supplementary material. Please visit
doi:10.1016/j.jnt.2010.09.001.
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