Nonlinear Functions - A topic in Designs, Codes and Cryptography

Alexander Pott

Otto-von-Guericke-Universität Magdeburg

September 21, 2007

Content

- Designs and their groups.
- Planar (or perfect nonlinear) functions and projective planes.
- Almost perfect nonlinear functions (APN).
- Semi-Biplanes
- Crooked functions
- Bent functions
- Codes

Goal: Connection between APN's and designs.

What is a design \mathcal{D}

- point set \mathcal{P}, block set \mathcal{B}
- incidence relation $I \subseteq \mathcal{P} \times \mathcal{B}$.
- Description using incidence matrix $\mathbf{M}(\mathcal{D})$.
- rows indexed by points p
- columns indexed by blocks B
- (p, B)-entry is 1 if $(p, B) \in I$, otherwise 0 .

Assumption: All rows and columns are different.

Examples of incidence matrices / Designs

$\left.\begin{array}{llllllllllllllll}0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0\end{array}\right]$

16 points and 16 blocks, blocksize 6, any two different points are joined by precisely 2 blocks ... and vice versa.

Examples of incidence matrices / Designs

1	1	1	1	0	0	0	0	0	0	0	0	0
1	0	0	0	1	1	1	0	0	0	0	0	0
1	0	0	0	0	0	0	1	1	1	0	0	0
1	0	0	0	0	0	0	0	0	0	1	1	1
0	1	0	0	1	0	0	0	1	1	0	0	0
0	1	0	0	0	1	0	1	0	1	0	0	0
0	1	0	0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	1	0	0	0	1	1
0	0	1	0	0	0	0	0	1	0	1	0	1
0	0	1	0	0	0	0	0	0	1	0	1	1
0	0	0	1	0	1	1	0	0	0	1	0	0
0	0	0	1	1	0	1	0	0	0	0	1	0
0	0	0	1	1	1	0	0	0	0	0	0	1

13 points and 13 blocks, blocksize 4, any two different points are joined by precisely 1 block ... and vice versa.

Iso-/Automorphisms

\mathcal{D} and \mathcal{D}^{\prime} are isomorphic if and only if there is an incidence preserving map between the point sets of \mathcal{D} and \mathcal{D}^{\prime}.

In matrix terms:

$$
\mathbf{M}^{\prime}=\mathbf{P} \cdot \mathbf{M} \cdot \mathbf{Q}
$$

for permutation matrices \mathbf{P}, \mathbf{Q}.
Automorphisms, Automorphism group

Invariants for isomorphic designs

Problem: Distinguish non-isomorphic designs!

- Rank of incidence matrix.
- Smith Normal Form of incidence matrix (Q. XIANG).
- Automorphism groups.
- intersection patterns (triple intersection numbers).

Regular automorphism groups

In our examples: There is an automorphism group acting regularly on points and blocks: regular: For two points p, q, there is precisely one $g \in G$ such that $g(p)=q$.

- Points can be identified with group elements, after fixing some base point.
- Blocks are subsets of G. Let D be the set of points corresponding to some base block.
- Two points g and h are joined by λ blocks if and only if $g-h$ has λ representations $g-h=d-d^{\prime}$ with $d, d^{\prime} \in D$.

Regular automorphism groups II

- All information about the design is stored in D.
- The design can be reconstructed from D :
- point set G.
- blocks: $D+g:=\{d+g: d \in D\}$
development of D.
- difference representations = joining numbers.
- Construction method for designs.

Example

$$
\begin{aligned}
& \begin{array}{llllllllllllllll}
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array} \\
& D=\left\{\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right)\right\} \subset \mathbb{F}_{2}^{4}
\end{aligned}
$$

Relative difference sets

$G=H \times N$ splitting abelian group.

- $|N|=n, \quad|G|=m \cdot n$
- $D \subseteq G,|D|=m$
- $\left\{* d-d^{\prime} \mid d, d^{\prime} \in D, d \neq d^{\prime} *\right\}=\frac{m}{n}(G \backslash N)$.
($m, n, m, \frac{m}{n}$) relative difference set.
Constructions from designs (projective planes!) with regular automorphism group.
D also defines a function $f: H \rightarrow N$, and vice versa any function defines a set (graph of f)

$$
D(f):=\{(x, f(x)): x \in H\} \subset H \times N
$$

Example

- $|N|=2$: classical bent functions.
- $\{(0,0),(1,1),(2,1)\}$ is a $(3,3,3,1)$ relative difference set.

Bent functions

$f: H \rightarrow N$ bent function or perfect nonlinear if

$$
|\{x \in H: f(x+a)-f(x)=b\}|
$$

is $|H| /|N|$ for all $a \neq 0$.
$f: H \rightarrow N$ bent if and only if

$$
D(f):=\{(x, f(x)): x \in H\} \subset H \times N
$$

is a relative difference set.
Bent functions correspond to designs!

Equivalence of functions

Let $f, f^{\prime}: H \rightarrow N, \quad D(f)=\{(x, f(x)): x \in H\}$
equivalent if there is $\varphi \in \operatorname{Aut}(H \times N)$ such that

$$
\varphi(D(f))=D\left(f^{\prime}\right)+(a, b)
$$

$\varphi(N)=N$: affine equivalence. Necessary if f bent!
f, f^{\prime} equivalent \Rightarrow developments of $D(f)$ and $D\left(f^{\prime}\right)$ are isomorphic, but not vice versa

Projective planes

A projective plane is an incidence structure where

- $\#$ points $=\sharp$ blocks
- Any two different points are on a unique line (block).
- Constant line size $n+1$.
- There is a quadrangle (to avoid trivial cases).

Remarks:

- n : order.
- $n^{2}+n+1: \sharp$ points.
- $n+1$ lines through any point.

Example

development of $D=\{1,2,4\} \subset \mathbb{Z}_{7}$ describes a projective plane of order 2.
"Classical" constructions for all prime powers n.

Residual planes / nets

Π projective plane, (p, L) incident point-line pair. Delete all lines through p and all points on L.

- Residual incidence structure contains n^{2} points and lines.
- Point set can be partitioned uniquely into point classes of points not joined.
- Residual design (net) may have an automorphism group $H \times N$ acting regular on points and lines.
- Difference set description via ($n, n, n, 1$) relative difference set.
- Bent functions $\mathbb{F}_{n} \rightarrow \mathbb{F}_{n}$ (n odd prime power).
- Impossible if n even.
(Bent) functions corresponding to planes: planar functions

Examples $f: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}$

f : planar functions (PN perfect nonlinear)
Power PN mappings

function	conditions	Proved in
x^{2}	none	trivial
$x^{\frac{p^{k}+1}{2}}$	$p=3, \operatorname{gcd}(n, k)=1, k$ is odd	COULTER, MATTHEWS (1997) HELLESETH, MARTINSEN (1997)
$x^{p^{k}+1}$	$n / \operatorname{gcd}(n, k)$ is odd	DEMBOWSKI, OSTROM (1968)

Difference set $\left\{\left(x, x^{2}\right): x \in \mathbb{F}_{q}\right\}$ describes the classical planes.

function	conditions	Proved in
$x^{10}-x^{6}-x^{2}$	$p=3, n$ odd	DING, YUAN (2006)
$x^{10}+x^{6}-x^{2}$	$p=3, n$ odd	COULTER, MATTHEWS (1997)

Dembowski-Ostrom polynomials $\mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}$

$$
f(x)=\sum_{i, j} a_{i, j} x^{p^{i}+p^{j}} \quad \text { in } \quad \mathbb{F}_{p^{n}}[x]
$$

- $f(x+a)-f(x)-f(a)$ is linear if and only if f is Dembowski-Ostrom.
- If f planar Dembowski-Ostrom polynomial, then p odd and

$$
L_{a}:=\{(x, f(x+a)-f(x)-f(a)\}
$$

are p^{n} disjoint subspaces in $\mathbb{F}_{p}^{2 n}$ of dimension n.

- Cosets of L_{a} 's form a (residual) projective plane $T(f)$ (translation plane).
- The two planes $T(f)$ and $D(f)$ are isomorphic!
- Translation plane + planar function = commutative semifield plane.
- commutative semifield plane: f must be Dembowski-Ostrom (Pierce, Kallaher (2005)).
More examples, but no "easy" description (Dickson semifields)

New results and problems on planar functions

- Some more (new) sporadic examples (GAOBING WENG)
- Infinite family of binomials (Helleseth, Kyureghyan, Ness, POTT (2007).
- Constructions of Hadamard matrices / Paley type difference sets (Ding, YUAN (2006))
- Find more!
- Characterize monomial x^{d} or binomial $x^{d_{1}}+\alpha x^{d_{2}}$ planar functions!

Planar functions or bent functions on $\mathbb{F}_{2^{n}}$?

No planar functions $H \rightarrow N$ if $|H|=|N|$ is even Schmidt (2000), Nyberg (1994).
More generally: No relative difference sets / bent functions with parameters

$$
\left(2^{n}, 2^{m}, 2^{n}, 2^{n-m}\right)
$$

if $2 m>n$.

Almost perfect nonlinear functions $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$

Optimal case for $n=m$:

$$
|\{x: f(x+a)+f(x)=b\}| \in\{0,2\}
$$

for all $a \neq 0$ (almost perfect nonlinear).

- Incidence structure corresponding to the development of

$$
D(f)=\left\{(x, f(x)): x \in \mathbb{F}_{2^{n}}\right\}
$$

is a semi-biplane: Two different points are on 0 or 2 lines.

- Relation "joined" defines a graph!
- There is a design behind an APN function.
- Characterization of those semi-biplanes which correspond to APN functions, GÖLOĞLU, POTT (2007).

Power APN's $f(x)=x^{d}, f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$

	d	Condition
GoLD	$2^{i}+1$	$\operatorname{gcd}(i, n)=1$
KASAMI	$2^{2 i}-2^{i}+1$	$\operatorname{gcd}(i, n)=1$
WELCH	$2^{t}+3$	$n=2 t+1$
NIHO	$2^{t}+2^{\frac{t}{2}}-1, t$ gerade $2^{t}+2^{\frac{3 t+1}{2}}-1, t$ ungerade	$n=2 t+1$
inverse	$2^{2 t}-1$	$n=2 t+1$
DOBBERTIN	$2^{4 t}+2^{3 t}+2^{2 t}+2^{t}-1$	$n=5 t$

Gold: Quadratic or Dembowski-Ostrom: $f(x+a)-f(x)-f(a)$ is linear.

On the equivalence of APN's

- f and f^{\prime} are CCZ-equivalent if there is an automorphism φ of $\mathbb{F}_{2}^{2 n}$ such that $\varphi(D(f))=D\left(f^{\prime}\right)+(a, b) .(C C Z=$ CARLET, CHARPIN, ZINOVIEV (1998))
- CCZ automorphism group (or multiplier group):

$$
\{\varphi: \varphi(D(f))=D(f)+(a, b)\}
$$

- f and f^{\prime} are affine equivalent if $\varphi(D(f))=D\left(f^{\prime}\right)+(a, b)$ and $\varphi(N)=N$.
- affine group: $\{\varphi: \varphi(D(f))=D(f)+(a, b), \varphi(N)=N\}$
- If f is bijective, we may interchange H and N (Subcase of CCZ equivalence).

Results, Problems, Questions I

- CCZ is "strictly" more general than affine equivalence Budaghyan, Carlet, Pott (2005).
- The known APN functions are affine inequivalent.
- There are a lot more CCZ inequivalent quadratic APN polynomials Budaghyan, Carlet, Dillon, Edel, Felke, Kyureghyan, LEANDER, Pott.
- The Gold and Kasamı APN functions are CCZ inequivalent Budaghyan, Carlet, Felke, Leander.
- The newly constructed APN's are CCZ inequivalent to GoLD and KASAMI.
- CCZ groups?
- GoLD: affine automorphism group = CCZ group? (true in small cases $n>3$, EDEL).
- non GoLD: affine equivalence $=C C Z$ equivalence? (true in small cases, EDEL).
- CCZ equivalence does not preserve the size of the affine group.

Results, Problems, Questions II

- Not much is known about the non-isomorphism of the corresponding semi-biplanes!
- "CCZ Equivalence" implies "Isomorphism of semi-biplanes". Converse? I believe NO.
- Automorphism groups of semi-biplanes?
- Find new invariants and/or compute the known invariants.
- Using ranks of incidence matrices, EdEL, KYUREGHYAN and POTT (2005) have shown that the semi-biplanes of small examples are non isomorphic (different approach than BCFL which show "only" inequivalence).

Crooked functions

$f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is crooked if

$$
\left\{f(x+a)-f(x)-f(a): x \in\left(\mathbb{F}_{2}\right)^{n}\right\}
$$

is a subspace of dimension $n-1$ for all $a \neq 0$.
Examples: Quadratic functions (Dembowski-Ostrom).
Main Problem: Nonquadratic crooked functions? NO for monomials and binomials, Bierbrauer, Kyureghyan (2007).

Problems and results on crooked functions

- Formulation of "crooked" such that it is invariant under CCZ equivalence, GÖLOĞLU, POTT (2007).
- Crooked is the analogue of translation plane + planar function (commutative semifield).
- All recently constructed APN's are crooked.
- Does the number of inequivalent crooked functions grow exponentially?

Almost perfect nonlinear and bent functions $f: H \rightarrow N$

Bent: $\quad|\{x: f(x+a)-f(x)=b\}|=$ const.
Let $H=N=\mathbb{F}_{2}^{n}, f: H \rightarrow N$ arbitrary, and $U \leq \mathbb{F}_{2}^{n}$.

$$
f_{U}:=H \rightarrow N / U, \quad x \mapsto f(x)+N
$$

Question: Is it possible that f_{U} is bent, in particular if f is APN? Necessary condition: n even, $|U| \geq 2^{n / 2}$.
If $\operatorname{dim}(U)=n-1$, then f_{U} is classical bent function.

Observations, Results, Questions

- If $\operatorname{dim}(U)=n-1$, projections may be described by trace function. This is not true if $\operatorname{dim}(U)$ is smaller.
- Start with power (APN) mappings.
- In some small cases, Gold and KASAMI exponents yield bent functions $\left(\mathbb{F}_{2}\right)^{n} \rightarrow\left(\mathbb{F}_{2}\right)^{n / 2}$, POTT.
- Bent functions using other power mappings? Problem: There are many, many subspaces U!
- There are investigations if $\operatorname{dim}(U)=n-1$ DILLON, DOBBERTIN (2004), Langevin, Leander, Charpin, Kyureghyan

APN and Codes

Consider the code with the $(2 n+1) \times 2^{n}$ parity check matrix

$$
\left(\begin{array}{cccc}
1 & \cdots & \cdots & 1 \\
0 & \cdots & x & \cdots \\
0 & \cdots & f(x) & \cdots
\end{array}\right)
$$

Rank $2 m+1$: the kernel of \mathbf{H} is a $\left[2^{n}, 2^{n}-2 n+1, d\right]_{2}$ code.

Theorem (Dodunekov, Zinoviev 1987; Brouwer, Tolhuizen 1993)

Minimum distance ≤ 6. Equality if and only if f is APN.

Code and CCZ equivalence

Consider code with generator matrix

$$
\left(\begin{array}{cccc}
1 & \cdots & \cdots & 1 \\
0 & \cdots & x & \cdots \\
0 & \cdots & f(x) & \cdots
\end{array}\right)
$$

- CCZ equivalence is code equivalence.
- CCZ equivalence is more than affine equivalence if the code contains more than just one Simplex code!
- If f is bijective, there are (trivially) two Simplex codes!
- CCZ group is automorphism group of the code!

Conclusion

- Problems on planar functions.
- Problems on APN functions.
- Similarities between both cases from a design theoretic (geometric) perspective.
- Relevance of the designs?

