Nonlinear Functions — A topic in Designs, Codes and Cryptography

Alexander Pott

Otto-von-Guericke-Universität Magdeburg

September 21, 2007

Alexander Pott (Magdeburg)

Nonlinear Functions

September 21, 2007

slide 1

- Designs and their groups.
- Planar (or perfect nonlinear) functions and projective planes.
- Almost perfect nonlinear functions (APN).
 - Semi-Biplanes
 - Crooked functions
 - Bent functions
 - Codes
- Goal: Connection between APN's and designs.

- point set \mathcal{P} , block set \mathcal{B}
- incidence relation $I \subseteq \mathcal{P} \times \mathcal{B}$.
- **Description** using incidence matrix $\mathbf{M}(\mathcal{D})$.
 - rows indexed by points p
 - columns indexed by blocks B
 - (p, B)-entry is 1 if $(p, B) \in I$, otherwise 0.

Assumption: All rows and columns are different.

0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 1 1 õ 0 ō ĺ 1 0 0 0 0 1 0 0 1 0 0 0 0 Ō 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0 1 1 1 0 n n

16 points and 16 blocks, blocksize 6, any two different points are joined by precisely 2 blocks ... and vice versa.

Examples of incidence matrices / Designs

13 points and 13 blocks, blocksize 4, any two different points are joined by precisely 1 block ... and vice versa.

 \mathcal{D} and \mathcal{D}' are isomorphic if and only if there is an incidence preserving map between the point sets of \mathcal{D} and \mathcal{D}' .

In matrix terms:

 $\mathbf{M}' = \mathbf{P} \cdot \mathbf{M} \cdot \mathbf{Q}$

for permutation matrices P, Q.

Automorphisms, Automorphism group

Problem: Distinguish non-isomorphic designs!

- Rank of incidence matrix.
- Smith Normal Form of incidence matrix (Q. XIANG).
- Automorphism groups.
- intersection patterns (triple intersection numbers).

In our examples: There is an automorphism group acting regularly on points and blocks: regular: For two points p, q, there is precisely one $g \in G$ such that g(p) = q.

- Points can be identified with group elements, after fixing some base point.
- Blocks are subsets of *G*. Let *D* be the set of points corresponding to some base block.
- Two points g and h are joined by λ blocks if and only if g − h has λ representations g − h = d − d' with d, d' ∈ D.

- All information about the design is stored in *D*.
- The design can be reconstructed from *D*:
 - point set G.
 - blocks: $D + g := \{d + g : d \in D\}$
 - development of D.
- difference representations = joining numbers.
- Construction method for designs.

Example

1 1 1 1 0 0 1 1 1 0 0 Ō 0 1 1 1 0 1 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 Ō 0 0 0 1 Ô $D = \{ \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1\\1\\1 \end{pmatrix}\} \subset \mathbb{F}_2^4$

Relative difference sets

 $G = H \times N$ splitting abelian group.

•
$$|N| = n$$
, $|G| = m \cdot n$

•
$$D \subseteq G$$
, $|D| = m$

• {*
$$d - d' \mid d, d' \in D, d \neq d' *$$
} = $\frac{m}{n}(G \setminus N)$.

$(m, n, m, \frac{m}{n})$ relative difference set.

Constructions from designs (projective planes!) with regular automorphism group.

D also defines a function $f : H \rightarrow N$, and vice versa any function defines a set (graph of *f*)

$$D(f) := \{(x, f(x)) : x \in H\} \subset H \times N$$

Example

- |N| = 2: classical bent functions.
- $\{(0,0), (1,1), (2,1)\}$ is a (3,3,3,1) relative difference set.

$f: H \rightarrow N$ bent function or perfect nonlinear if

$$|\{x \in H : f(x+a) - f(x) = b\}|$$

is |H|/|N| for all $a \neq 0$.

 $f: H \rightarrow N$ bent if and only if

$$D(f) := \{(x, f(x)) : x \in H\} \subset H \times N$$

is a relative difference set.

Bent functions correspond to designs!

Let $f, f' : H \to N$, $D(f) = \{(x, f(x)) : x \in H\}$ equivalent if there is $\varphi \in Aut(H \times N)$ such that

$$\varphi(D(f)) = D(f') + (a, b).$$

 $\varphi(N) = N$: affine equivalence. Necessary if *f* bent!

f, f' equivalent \Rightarrow developments of D(f) and D(f') are isomorphic, but <u>not</u> vice versa

Projective planes

A projective plane is an incidence structure where

- # points = # blocks
- Any two different points are on a unique line (block).
- Constant line size n + 1.
- There is a quadrangle (to avoid trivial cases).

Remarks:

- n: order.
- $n^2 + n + 1$: \sharp points.
- n + 1 lines through any point.

Example

development of $D = \{1, 2, 4\} \subset \mathbb{Z}_7$ describes a projective plane of order 2.

"Classical" constructions for all prime powers n.

 Π projective plane, (p, L) incident point-line pair. Delete all lines through p and all points on L.

- Residual incidence structure contains n^2 points and lines.
- Point set can be partitioned uniquely into point classes of points not joined.
- Residual design (net) may have an automorphism group H × N acting regular on points and lines.
- Difference set description via (n, n, n, 1) relative difference set.
- Bent functions $\mathbb{F}_n \to \mathbb{F}_n$ (*n* odd prime power).
- Impossible if *n* even.

(Bent) functions corresponding to planes: planar functions

Examples $f : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$

f: planar functions (PN perfect nonlinear)

Power PN mappings

function	conditions	Proved in	
x ²	none	trivial	
$x^{\frac{p^{k}+1}{2}}$	p = 3, gcd $(n, k) = 1$, k is odd	Coulter, Matthews (1997) Helleseth, Martinsen (1997)	
<i>x</i> ^{<i>p</i>^{<i>k</i>}+1}	$n/\gcd(n,k)$ is odd	DEMBOWSKI, OSTROM (1968)	

Difference set $\{(x, x^2) : x \in \mathbb{F}_q\}$ describes the classical planes.

function	conditions	Proved in	
$x^{10} - x^6 - x^2$	<i>p</i> = 3, <i>n</i> odd	Ding, Yuan (2006)	
$x^{10} + x^6 - x^2$	<i>p</i> = 3, <i>n</i> odd	Coulter, Matthews (1997)	

Dembowski-Ostrom polynomials $\mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$

$$f(x) = \sum_{i,j} a_{i,j} x^{p^i + p^j}$$
 in $\mathbb{F}_{p^n}[x]$

• f(x+a) - f(x) - f(a) is linear if and only if *f* is Dembowski-Ostrom.

If f planar Dembowski-Ostrom polynomial, then p odd and

$$L_a := \{(x, f(x + a) - f(x) - f(a))\}$$

are p^n disjoint subspaces in \mathbb{F}_p^{2n} of dimension *n*.

- Cosets of L_a's form a (residual) projective plane T(f) (translation plane).
- The two planes T(f) and D(f) are isomorphic!
- Translation plane + planar function = commutative semifield plane.
- commutative semifield plane: *f* must be Dembowski-Ostrom (PIERCE, KALLAHER (2005)).

More examples, but no "easy" description (Dickson semifields)

Alexander Pott (Magdeburg)

Nonlinear Functions

- Some more (new) sporadic examples (GAOBING WENG)
- Infinite family of binomials (HELLESETH, KYUREGHYAN, NESS, POTT (2007).
- Constructions of Hadamard matrices / Paley type difference sets (DING, YUAN (2006))
- Find more!
- Characterize monomial x^d or binomial $x^{d_1} + \alpha x^{d_2}$ planar functions!

No planar functions $H \rightarrow N$ if |H| = |N| is even SCHMIDT (2000), NYBERG (1994).

More generally: No relative difference sets / bent functions with parameters

 $(2^n, 2^m, 2^n, 2^{n-m})$

if 2*m* > *n*.

Optimal case for n = m:

$$|\{x : f(x+a) + f(x) = b\}| \in \{0,2\}$$

for all $a \neq 0$ (almost perfect nonlinear).

Incidence structure corresponding to the development of

$$D(f) = \{(x, f(x)) : x \in \mathbb{F}_{2^n}\}$$

is a semi-biplane: Two different points are on 0 or 2 lines.

- Relation "joined" defines a graph!
- There is a design behind an APN function.
- Characterization of those semi-biplanes which correspond to APN functions, GÖLOĞLU, POTT (2007).

	d	Condition
Gold	2 ⁱ + 1	gcd(i, n) = 1
Kasami	$2^{2i} - 2^i + 1$	gcd(i, n) = 1
Welch	$2^{t} + 3$	<i>n</i> = 2 <i>t</i> + 1
Niho	$2^{t} + 2^{\frac{t}{2}} - 1$, <i>t</i> gerade	<i>n</i> = 2 <i>t</i> + 1
	$2^{t} + 2^{\frac{3t+1}{2}} - 1$, t ungerade	
inverse	$2^{2t} - 1$	n = 2t + 1
DOBBERTIN	$2^{4t} + 2^{3t} + 2^{2t} + 2^t - 1$	n = 5t

GOLD: Quadratic or Dembowski-Ostrom: f(x + a) - f(x) - f(a) is linear.

- *f* and *f'* are CCZ-equivalent if there is an automorphism φ of \mathbb{F}_2^{2n} such that $\varphi(D(f)) = D(f') + (a, b)$. (CCZ = CARLET, CHARPIN, ZINOVIEV (1998))
- CCZ automorphism group (or multiplier group): $\{\varphi : \varphi(D(f)) = D(f) + (a, b)\}.$
- *f* and *f'* are affine equivalent if $\varphi(D(f)) = D(f') + (a, b)$ and $\varphi(N) = N$.
- affine group: $\{\varphi: \varphi(D(f)) = D(f) + (a, b), \varphi(N) = N\}$
- If *f* is bijective, we may interchange *H* and *N* (Subcase of CCZ equivalence).

Results, Problems, Questions I

- CCZ is "strictly" more general than affine equivalence BUDAGHYAN, CARLET, POTT (2005).
- The known APN functions are affine inequivalent.
- There are a lot more CCZ inequivalent quadratic APN polynomials BUDAGHYAN, CARLET, DILLON, EDEL, FELKE, KYUREGHYAN, LEANDER, POTT.
- The GOLD and KASAMI APN functions are CCZ inequivalent BUDAGHYAN, CARLET, FELKE, LEANDER.
- The newly constructed APN's are CCZ inequivalent to GOLD and KASAMI.
- CCZ groups?
- GOLD: affine automorphism group = CCZ group? (true in small cases n > 3, EDEL).
- non GOLD: affine equivalence = CCZ equivalence? (true in small cases, EDEL).
- CCZ equivalence does not preserve the size of the affine group.

- Not much is known about the non-isomorphism of the corresponding semi-biplanes!
- "CCZ Equivalence" implies "Isomorphism of semi-biplanes". Converse? I believe NO.
- Automorphism groups of semi-biplanes?
- Find new invariants and/or compute the known invariants.
- Using ranks of incidence matrices, EDEL, KYUREGHYAN and POTT (2005) have shown that the semi-biplanes of small examples are non isomorphic (different approach than BCFL which show "only" inequivalence).

 $f: \mathbb{F}_2^n \to \mathbb{F}_2^n$ is crooked if

$$\{f(x+a) - f(x) - f(a) : x \in (\mathbb{F}_2)^n\}$$

is a subspace of dimension n-1 for all $a \neq 0$.

Examples: Quadratic functions (Dembowski-Ostrom).

Main Problem: Nonquadratic crooked functions? NO for monomials and binomials, BIERBRAUER, KYUREGHYAN (2007).

- Formulation of "crooked" such that it is invariant under CCZ equivalence, GÖLOĞLU, POTT (2007).
- Crooked is the analogue of translation plane + planar function (commutative semifield).
- All recently constructed APN's are crooked.
- Does the number of inequivalent crooked functions grow exponentially?

Bent: $|\{x : f(x+a) - f(x) = b\}| = const.$ Let $H = N = \mathbb{F}_2^n$, $f : H \to N$ arbitrary, and $U \le \mathbb{F}_2^n$. $f_U := H \to N/U, \quad x \mapsto f(x) + N$

Question: Is it possible that f_U is bent, in particular if f is APN? **Necessary condition:** n even, $|U| \ge 2^{n/2}$.

If dim(U) = n - 1, then f_U is classical bent function.

- If dim(U) = n 1, projections may be described by trace function.
 This is not true if dim(U) is smaller.
- Start with power (APN) mappings.
- In some small cases, GOLD and KASAMI exponents yield bent functions (𝔽₂)ⁿ → (𝔽₂)^{n/2}, POTT.
- Bent functions using other power mappings? Problem: There are many, many subspaces *U*!
- There are investigations if dim(U) = n 1 DILLON, DOBBERTIN (2004), LANGEVIN, LEANDER, CHARPIN, KYUREGHYAN

Consider the code with the $(2n + 1) \times 2^n$ parity check matrix

$$\left(\begin{array}{cccc}1&\cdots&\cdots&1\\0&\cdots&x&\cdots\\0&\cdots&f(x)&\cdots\end{array}\right)$$

Rank 2m + 1: the kernel of **H** is a $[2^n, 2^n - 2n + 1, d]_2$ code.

Theorem (Dodunekov, Zinoviev 1987; Brouwer, Tolhuizen 1993)

Minimum distance \leq 6. Equality if and only if f is APN.

Consider code with generator matrix

$$\left(\begin{array}{cccc}1&\cdots&\cdots&1\\0&\cdots&x&\cdots\\0&\cdots&f(x)&\cdots\end{array}\right)$$

- CCZ equivalence is code equivalence.
- CCZ equivalence is more than affine equivalence if the code contains more than just one Simplex code!
- If *f* is bijective, there are (trivially) two Simplex codes!
- CCZ group is automorphism group of the code!

- Problems on planar functions.
- Problems on APN functions.
- Similarities between both cases from a design theoretic (geometric) perspective.
- Relevance of the designs?