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Content

Designs and their groups.
Planar (or perfect nonlinear) functions and projective planes.
Almost perfect nonlinear functions (APN).

Semi-Biplanes
Crooked functions
Bent functions
Codes

Goal: Connection between APN’s and designs.

Alexander Pott (Magdeburg) Nonlinear Functions September 21, 2007 slide 2



university-logo

What is a design D

point set P, block set B
incidence relation I ⊆ P × B.
Description using incidence matrix M(D).

rows indexed by points p
columns indexed by blocks B
(p,B)-entry is 1 if (p,B) ∈ I, otherwise 0.

Assumption: All rows and columns are different.
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Examples of incidence matrices / Designs

0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0
1 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0
1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0
0 1 0 0 1 0 1 1 0 1 0 0 0 1 0 0
0 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0
0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0
0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0
0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0
0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1
0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 1
0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0

16 points and 16 blocks, blocksize 6, any two different points are
joined by precisely 2 blocks ... and vice versa.
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Examples of incidence matrices / Designs

1 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 1 0 0 0
1 0 0 0 0 0 0 0 0 0 1 1 1
0 1 0 0 1 0 0 0 1 1 0 0 0
0 1 0 0 0 1 0 1 0 1 0 0 0
0 1 0 0 0 0 1 1 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 1 1
0 0 1 0 0 0 0 0 1 0 1 0 1
0 0 1 0 0 0 0 0 0 1 0 1 1
0 0 0 1 0 1 1 0 0 0 1 0 0
0 0 0 1 1 0 1 0 0 0 0 1 0
0 0 0 1 1 1 0 0 0 0 0 0 1

13 points and 13 blocks, blocksize 4, any two different points are joined
by precisely 1 block ... and vice versa.
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Iso-/Automorphisms

D and D′ are isomorphic if and only if there is an incidence preserving
map between the point sets of D and D′.
In matrix terms:

M′ = P ·M ·Q
for permutation matrices P, Q.

Automorphisms, Automorphism group
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Invariants for isomorphic designs

Problem: Distinguish non-isomorphic designs!

Rank of incidence matrix.
Smith Normal Form of incidence matrix (Q. XIANG).
Automorphism groups.
intersection patterns (triple intersection numbers).
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Regular automorphism groups

In our examples: There is an automorphism group acting regularly on
points and blocks: regular: For two points p,q, there is precisely one
g ∈ G such that g(p) = q.

Points can be identified with group elements, after fixing some
base point.
Blocks are subsets of G. Let D be the set of points corresponding
to some base block.
Two points g and h are joined by λ blocks if and only if g − h has λ
representations g − h = d − d ′ with d ,d ′ ∈ D.
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Regular automorphism groups II

All information about the design is stored in D.
The design can be reconstructed from D:

point set G.
blocks: D + g := {d + g : d ∈ D}

development of D.
difference representations = joining numbers.
Construction method for designs.
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Example

0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0
1 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0
1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0
0 1 0 0 1 0 1 1 0 1 0 0 0 1 0 0
0 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0
0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0
0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0
0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0
0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1
0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 1
0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0

D = {




1
1
0
0


 ,




1
1
1
0


 ,




1
1
0
1


 ,




0
0
1
1


 ,




1
0
1
1


 ,




0
1
1
1


} ⊂ F

4
2
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Relative difference sets

G = H × N splitting abelian group.

|N| = n, |G| = m · n
D ⊆ G, |D| = m
{∗ d − d ′ | d ,d ′ ∈ D,d 6= d ′ ∗} = m

n (G \ N).

(m,n,m, m
n ) relative difference set.

Constructions from designs (projective planes!) with regular
automorphism group.

D also defines a function f : H → N, and vice versa any function
defines a set (graph of f )

D(f ) := {(x , f (x)) : x ∈ H} ⊂ H × N

Example
|N| = 2: classical bent functions.
{(0,0), (1,1), (2,1)} is a (3,3,3,1) relative difference set.
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Bent functions

f : H → N bent function or perfect nonlinear if

|{x ∈ H : f (x + a)− f (x) = b}|
is |H|/|N| for all a 6= 0.

f : H → N bent if and only if

D(f ) := {(x , f (x)) : x ∈ H} ⊂ H × N

is a relative difference set.

Bent functions correspond to designs!
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Equivalence of functions

Let f , f ′ : H → N, D(f ) = {(x , f (x)) : x ∈ H}
equivalent if there is ϕ ∈ Aut(H × N) such that

ϕ(D(f )) = D(f ′) + (a,b).

ϕ(N) = N: affine equivalence. Necessary if f bent!

f , f ′ equivalent ⇒ developments of D(f ) and D(f ′) are isomorphic,
but not vice versa
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Projective planes

A projective plane is an incidence structure where
] points = ] blocks
Any two different points are on a unique line (block).
Constant line size n + 1.
There is a quadrangle (to avoid trivial cases).

Remarks:
n: order.
n2 + n + 1: ] points.
n + 1 lines through any point.

Example
development of D = {1,2,4} ⊂ Z7 describes a projective plane of
order 2.

“Classical” constructions for all prime powers n.
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Residual planes / nets

Π projective plane, (p,L) incident point-line pair. Delete all lines
through p and all points on L.

Residual incidence structure contains n2 points and lines.
Point set can be partitioned uniquely into point classes of points
not joined.
Residual design (net) may have an automorphism group H × N
acting regular on points and lines.
Difference set description via (n,n,n,1) relative difference set.
Bent functions Fn → Fn (n odd prime power).
Impossible if n even.

(Bent) functions corresponding to planes: planar functions
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Examples f : Fpn → Fpn

f : planar functions (PN perfect nonlinear)

Power PN mappings
function conditions Proved in

x2 none trivial

x
pk +1

2 p = 3, gcd(n, k) = 1, k
is odd

COULTER, MATTHEWS (1997)
HELLESETH, MARTINSEN

(1997)
xpk +1 n/gcd(n, k) is odd DEMBOWSKI, OSTROM (1968)

Difference set {(x , x2) : x ∈ Fq} describes the classical planes.

function conditions Proved in
x10 − x6 − x2 p = 3, n odd DING, YUAN (2006)
x10 + x6 − x2 p = 3, n odd COULTER, MATTHEWS (1997)
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Dembowski-Ostrom polynomials Fpn → Fpn

f (x) =
∑

i ,j

ai ,jxpi +pj
in Fpn [x ]

f (x + a)− f (x)− f (a) is linear if and only if f is Dembowski-Ostrom.
If f planar Dembowski-Ostrom polynomial, then p odd and

La := {(x , f (x + a)− f (x)− f (a)}

are pn disjoint subspaces in F2n
p of dimension n.

Cosets of La’s form a (residual) projective plane T (f ) (translation
plane).
The two planes T (f ) and D(f ) are isomorphic!
Translation plane + planar function = commutative semifield plane.
commutative semifield plane: f must be Dembowski-Ostrom
(PIERCE, KALLAHER (2005)).

More examples, but no “easy” description (Dickson semifields)
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New results and problems on planar functions

Some more (new) sporadic examples (GAOBING WENG)
Infinite family of binomials (HELLESETH, KYUREGHYAN, NESS,
POTT (2007).
Constructions of Hadamard matrices / Paley type difference sets
(DING, YUAN (2006))
Find more!
Characterize monomial xd or binomial xd1 +αxd2 planar functions!
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Planar functions or bent functions on F2n?

No planar functions H → N if |H| = |N| is even SCHMIDT (2000),
NYBERG (1994).

More generally: No relative difference sets / bent functions with
parameters

(2n,2m,2n,2n−m)

if 2m > n.
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Almost perfect nonlinear functions f : F n
2 → F n

2

Optimal case for n = m:

|{x : f (x + a) + f (x) = b}| ∈ {0,2}
for all a 6= 0 (almost perfect nonlinear).

Incidence structure corresponding to the development of

D(f ) = {(x , f (x)) : x ∈ F2n}

is a semi-biplane: Two different points are on 0 or 2 lines.
Relation “joined” defines a graph!
There is a design behind an APN function.
Characterization of those semi-biplanes which correspond to APN
functions, GÖLOĞLU, POTT (2007).
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Power APN’s f (x) = xd , f : F2n → F2n

d Condition
GOLD 2i + 1 gcd(i ,n) = 1

KASAMI 22i − 2i + 1 gcd(i ,n) = 1
WELCH 2t + 3 n = 2t + 1
NIHO 2t + 2

t
2 − 1, t gerade n = 2t + 1

2t + 2
3t+1

2 − 1, t ungerade
inverse 22t − 1 n = 2t + 1

DOBBERTIN 24t + 23t + 22t + 2t − 1 n = 5t

GOLD: Quadratic or Dembowski-Ostrom: f (x + a)− f (x)− f (a) is
linear.
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On the equivalence of APN’s

f and f ′ are CCZ-equivalent if there is an automorphism ϕ of F2n
2

such that ϕ(D(f )) = D(f ′) + (a,b). (CCZ = CARLET, CHARPIN,
ZINOVIEV (1998))
CCZ automorphism group (or multiplier group):

{ϕ : ϕ(D(f )) = D(f ) + (a,b)}.
f and f ′ are affine equivalent if ϕ(D(f )) = D(f ′) + (a,b) and
ϕ(N) = N.
affine group: {ϕ : ϕ(D(f )) = D(f ) + (a,b), ϕ(N) = N}
If f is bijective, we may interchange H and N (Subcase of CCZ
equivalence).
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Results, Problems, Questions I

CCZ is “strictly” more general than affine equivalence
BUDAGHYAN, CARLET, POTT (2005).
The known APN functions are affine inequivalent.
There are a lot more CCZ inequivalent quadratic APN polynomials
BUDAGHYAN, CARLET, DILLON, EDEL, FELKE, KYUREGHYAN,
LEANDER, POTT.
The GOLD and KASAMI APN functions are CCZ inequivalent
BUDAGHYAN, CARLET, FELKE, LEANDER.
The newly constructed APN’s are CCZ inequivalent to GOLD and
KASAMI.
CCZ groups?
GOLD: affine automorphism group = CCZ group? (true in small
cases n > 3, EDEL).
non GOLD: affine equivalence = CCZ equivalence? (true in small
cases, EDEL).
CCZ equivalence does not preserve the size of the affine group.
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Results, Problems, Questions II

Not much is known about the non-isomorphism of the
corresponding semi-biplanes!
“CCZ Equivalence” implies “Isomorphism of semi-biplanes”.
Converse? I believe NO.
Automorphism groups of semi-biplanes?
Find new invariants and/or compute the known invariants.
Using ranks of incidence matrices, EDEL, KYUREGHYAN and POTT

(2005) have shown that the semi-biplanes of small examples are
non isomorphic (different approach than BCFL which show “only”
inequivalence).
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Crooked functions

f : F n
2 → F n

2 is crooked if

{f (x + a)− f (x)− f (a) : x ∈ (F2)n}

is a subspace of dimension n− 1 for all a 6= 0.

Examples: Quadratic functions (Dembowski-Ostrom).

Main Problem: Nonquadratic crooked functions? NO for monomials
and binomials, BIERBRAUER, KYUREGHYAN (2007).
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Problems and results on crooked functions

Formulation of “crooked” such that it is invariant under CCZ
equivalence, GÖLOĞLU, POTT (2007).
Crooked is the analogue of translation plane + planar function
(commutative semifield).
All recently constructed APN’s are crooked.
Does the number of inequivalent crooked functions grow
exponentially?
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Almost perfect nonlinear and bent functions f : H → N

Bent: |{x : f (x + a)− f (x) = b}| = const.

Let H = N = F n
2 , f : H → N arbitrary, and U ≤ F n

2 .

fU := H → N/U, x 7→ f (x) + N

Question: Is it possible that fU is bent, in particular if f is APN?

Necessary condition: n even, |U| ≥ 2n/2.

If dim(U) = n− 1, then fU is classical bent function.
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Observations, Results, Questions

If dim(U) = n − 1, projections may be described by trace function.
This is not true if dim(U) is smaller.
Start with power (APN) mappings.
In some small cases, GOLD and KASAMI exponents yield bent
functions (F2)n → (F2)n/2, POTT.
Bent functions using other power mappings? Problem: There are
many, many subspaces U!
There are investigations if dim(U) = n− 1 DILLON, DOBBERTIN

(2004), LANGEVIN, LEANDER, CHARPIN, KYUREGHYAN
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APN and Codes

Consider the code with the (2n + 1)× 2n parity check matrix



1 · · · · · · 1
0 · · · x · · ·
0 · · · f (x) · · ·




Rank 2m + 1: the kernel of H is a [2n,2n − 2n + 1,d ]2 code.

Theorem (DODUNEKOV, ZINOVIEV 1987; BROUWER, TOLHUIZEN
1993)
Minimum distance ≤ 6. Equality if and only if f is APN.
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Code and CCZ equivalence

Consider code with generator matrix



1 · · · · · · 1
0 · · · x · · ·
0 · · · f (x) · · ·




CCZ equivalence is code equivalence.
CCZ equivalence is more than affine equivalence if the code
contains more than just one Simplex code!
If f is bijective, there are (trivially) two Simplex codes!
CCZ group is automorphism group of the code!
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Conclusion

Problems on planar functions.
Problems on APN functions.
Similarities between both cases from a design theoretic
(geometric) perspective.
Relevance of the designs?
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