
Different attacks on the RC4 stream cipher

Andreas Klein

Ghent University
Dept. of Pure Mathematics and Computer Algebra

Krijgslaan 281 - S22
9000 Ghent

Belgium



Overview

The RC4 algorithm

Wireless LAN

Distinguishing Attacks

Fortuitous states

Weaknesses in the key scheduling phase
The FMS-attack

A new attack
A correlation in the RC4 pseudo random generator
The basic version of the attack
Using only few sessions
Optimisation for WEP

RC4A



Overview

The RC4 algorithm

Wireless LAN

Distinguishing Attacks

Fortuitous states

Weaknesses in the key scheduling phase
The FMS-attack

A new attack
A correlation in the RC4 pseudo random generator
The basic version of the attack
Using only few sessions
Optimisation for WEP

RC4A



Overview

The RC4 algorithm

Wireless LAN

Distinguishing Attacks

Fortuitous states

Weaknesses in the key scheduling phase
The FMS-attack

A new attack
A correlation in the RC4 pseudo random generator
The basic version of the attack
Using only few sessions
Optimisation for WEP

RC4A



Overview

The RC4 algorithm

Wireless LAN

Distinguishing Attacks

Fortuitous states

Weaknesses in the key scheduling phase
The FMS-attack

A new attack
A correlation in the RC4 pseudo random generator
The basic version of the attack
Using only few sessions
Optimisation for WEP

RC4A



Overview

The RC4 algorithm

Wireless LAN

Distinguishing Attacks

Fortuitous states

Weaknesses in the key scheduling phase
The FMS-attack

A new attack
A correlation in the RC4 pseudo random generator
The basic version of the attack
Using only few sessions
Optimisation for WEP

RC4A



Overview

The RC4 algorithm

Wireless LAN

Distinguishing Attacks

Fortuitous states

Weaknesses in the key scheduling phase
The FMS-attack

A new attack
A correlation in the RC4 pseudo random generator
The basic version of the attack
Using only few sessions
Optimisation for WEP

RC4A



Overview

The RC4 algorithm

Wireless LAN

Distinguishing Attacks

Fortuitous states

Weaknesses in the key scheduling phase
The FMS-attack

A new attack
A correlation in the RC4 pseudo random generator
The basic version of the attack
Using only few sessions
Optimisation for WEP

RC4A



The RC4 algorithm

RC4 key scheduling

1: {initialization}
2: for i from 0 to n − 1 do
3: S [i ] := i
4: end for
5: j := 0
6: {generate a random permutation}
7: for i from 0 to n − 1 do
8: j := (j + S [i ] + K [i mod l ]) mod n
9: Swap S [i ] and S [j ]

10: end for



The RC4 algorithm

RC4 pseudo random generator

1: {initialization}
2: i := 0
3: j := 0
4: {generate pseudo random sequence}
5: loop
6: i := (i + 1) mod n
7: j := (j + S [i ]) mod n
8: Swap S [i ] and S [j ]
9: k := (S [i ] + S [j ]) mod n

10: print S [k]
11: end loop



Wireless LAN

Ô Wireless LAN encrypts the packages with RC4.

Ô The older protocol WEP uses keys of the form
initialisation vector|main key.

Ô The newer protocol WPA uses a temporal key hash to
compute the session key.

Ô WEP is broken.



Wireless LAN

Ô Wireless LAN encrypts the packages with RC4.

Ô The older protocol WEP uses keys of the form
initialisation vector|main key.

Ô The newer protocol WPA uses a temporal key hash to
compute the session key.

Ô WEP is broken.



Wireless LAN

Ô Wireless LAN encrypts the packages with RC4.

Ô The older protocol WEP uses keys of the form
initialisation vector|main key.

Ô The newer protocol WPA uses a temporal key hash to
compute the session key.

Ô WEP is broken.



Errors in WEP

Ô The main key has only 5 bytes. (Corrected in later
implementations.)

Ô The initialisation vector consists of only 3 bytes. This leads to
a birthday attack.

Ô The protocol adds CRC-checksums to the packages before
encrypting. This is the wrong order.

Ô Public known header informations are encrypted. This leads to
known plain text attacks without an enhancement of security.

Ô People use wireless LAN where they could use standard LAN,
even in high security areas.



Errors in WEP

Ô The main key has only 5 bytes. (Corrected in later
implementations.)

Ô The initialisation vector consists of only 3 bytes. This leads to
a birthday attack.

Ô The protocol adds CRC-checksums to the packages before
encrypting. This is the wrong order.

Ô Public known header informations are encrypted. This leads to
known plain text attacks without an enhancement of security.

Ô People use wireless LAN where they could use standard LAN,
even in high security areas.



Errors in WEP

Ô The main key has only 5 bytes. (Corrected in later
implementations.)

Ô The initialisation vector consists of only 3 bytes. This leads to
a birthday attack.

Ô The protocol adds CRC-checksums to the packages before
encrypting. This is the wrong order.

Ô Public known header informations are encrypted. This leads to
known plain text attacks without an enhancement of security.

Ô People use wireless LAN where they could use standard LAN,
even in high security areas.



Errors in WEP

Ô The main key has only 5 bytes. (Corrected in later
implementations.)

Ô The initialisation vector consists of only 3 bytes. This leads to
a birthday attack.

Ô The protocol adds CRC-checksums to the packages before
encrypting. This is the wrong order.

Ô Public known header informations are encrypted. This leads to
known plain text attacks without an enhancement of security.

Ô People use wireless LAN where they could use standard LAN,
even in high security areas.



Errors in WEP

Ô The main key has only 5 bytes. (Corrected in later
implementations.)

Ô The initialisation vector consists of only 3 bytes. This leads to
a birthday attack.

Ô The protocol adds CRC-checksums to the packages before
encrypting. This is the wrong order.

Ô Public known header informations are encrypted. This leads to
known plain text attacks without an enhancement of security.

Ô People use wireless LAN where they could use standard LAN,
even in high security areas.



Distinguishing Attacks

Goal

Distinguish the RC4 pseudo random sequence from a true random
sequence.

Ô Golić 1997: The sum of the last bits at time step t and t + 2
is correlated to 1, ≈ 240 bytes of the RC4 pseudo random
sequence are distinguishable from a true random sequence.

Ô Fluhrer, McGrew 2000: Correlations between two successive
output bytes, ≈ 230 bytes are sufficient to distinguish RC4
from random noise.



Distinguishing Attacks

Goal

Distinguish the RC4 pseudo random sequence from a true random
sequence.

Ô Golić 1997: The sum of the last bits at time step t and t + 2
is correlated to 1, ≈ 240 bytes of the RC4 pseudo random
sequence are distinguishable from a true random sequence.

Ô Fluhrer, McGrew 2000: Correlations between two successive
output bytes, ≈ 230 bytes are sufficient to distinguish RC4
from random noise.



Distinguishing Attacks

Goal

Distinguish the RC4 pseudo random sequence from a true random
sequence.

Ô Golić 1997: The sum of the last bits at time step t and t + 2
is correlated to 1, ≈ 240 bytes of the RC4 pseudo random
sequence are distinguishable from a true random sequence.

Ô Fluhrer, McGrew 2000: Correlations between two successive
output bytes, ≈ 230 bytes are sufficient to distinguish RC4
from random noise.



Fortuitous states

Defintion

An RC4 state (S-Box, i and j) in which only m consecutive S-Box
elements are known and only those m elements participate in
producing the next m successive outputs, is call a fortuitous state
of length m.

length m 2 3 4 5 6

number of fortuitous states 516 290 6540 25419 101819

Ô If we observe the output of a fortuitous state, we know the
corresponding S-Box entries with probability 1

n .

Ô Predictive states and non-fortuitous states are generalisation
of that concept.

Ô No practical attack using fortuitous states is known.



Fortuitous states

Defintion

An RC4 state (S-Box, i and j) in which only m consecutive S-Box
elements are known and only those m elements participate in
producing the next m successive outputs, is call a fortuitous state
of length m.

length m 2 3 4 5 6

number of fortuitous states 516 290 6540 25419 101819

Ô If we observe the output of a fortuitous state, we know the
corresponding S-Box entries with probability 1

n .

Ô Predictive states and non-fortuitous states are generalisation
of that concept.

Ô No practical attack using fortuitous states is known.



Fortuitous states

Defintion

An RC4 state (S-Box, i and j) in which only m consecutive S-Box
elements are known and only those m elements participate in
producing the next m successive outputs, is call a fortuitous state
of length m.

length m 2 3 4 5 6

number of fortuitous states 516 290 6540 25419 101819

Ô If we observe the output of a fortuitous state, we know the
corresponding S-Box entries with probability 1

n .

Ô Predictive states and non-fortuitous states are generalisation
of that concept.

Ô No practical attack using fortuitous states is known.



Fortuitous states

Defintion

An RC4 state (S-Box, i and j) in which only m consecutive S-Box
elements are known and only those m elements participate in
producing the next m successive outputs, is call a fortuitous state
of length m.

length m 2 3 4 5 6

number of fortuitous states 516 290 6540 25419 101819

Ô If we observe the output of a fortuitous state, we know the
corresponding S-Box entries with probability 1

n .

Ô Predictive states and non-fortuitous states are generalisation
of that concept.

Ô No practical attack using fortuitous states is known.



Fortuitous states

Defintion

An RC4 state (S-Box, i and j) in which only m consecutive S-Box
elements are known and only those m elements participate in
producing the next m successive outputs, is call a fortuitous state
of length m.

length m 2 3 4 5 6

number of fortuitous states 516 290 6540 25419 101819

Ô If we observe the output of a fortuitous state, we know the
corresponding S-Box entries with probability 1

n .

Ô Predictive states and non-fortuitous states are generalisation
of that concept.

Ô No practical attack using fortuitous states is known.



Weaknesses in the key scheduling phase

Ô There are 256256 possible keys of full length, but only 256!
different S-Box states. Since 256! does not divide 256256, we
know that the distribution of the initial S-Box permutation
must differ from the uniform distribution.

Ô Mironov 2002: The identity is the most likely initial
permutation and the cycle (1, 2, . . . , n − 1, 0) is the most
unlikely initial permutation.

Ô Suggestion: Do not use the first 12 · 256 bytes of the RC4
pseudo random sequence to avoid a possible exploitation of
this weakness.



Weaknesses in the key scheduling phase

Ô There are 256256 possible keys of full length, but only 256!
different S-Box states. Since 256! does not divide 256256, we
know that the distribution of the initial S-Box permutation
must differ from the uniform distribution.

Ô Mironov 2002: The identity is the most likely initial
permutation and the cycle (1, 2, . . . , n − 1, 0) is the most
unlikely initial permutation.

Ô Suggestion: Do not use the first 12 · 256 bytes of the RC4
pseudo random sequence to avoid a possible exploitation of
this weakness.



Weaknesses in the key scheduling phase

Ô There are 256256 possible keys of full length, but only 256!
different S-Box states. Since 256! does not divide 256256, we
know that the distribution of the initial S-Box permutation
must differ from the uniform distribution.

Ô Mironov 2002: The identity is the most likely initial
permutation and the cycle (1, 2, . . . , n − 1, 0) is the most
unlikely initial permutation.

Ô Suggestion: Do not use the first 12 · 256 bytes of the RC4
pseudo random sequence to avoid a possible exploitation of
this weakness.



Weaknesses in the key scheduling phase

Ô There are 256256 possible keys of full length, but only 256!
different S-Box states. Since 256! does not divide 256256, we
know that the distribution of the initial S-Box permutation
must differ from the uniform distribution.

Ô Mironov 2002: The identity is the most likely initial
permutation and the cycle (1, 2, . . . , n − 1, 0) is the most
unlikely initial permutation.

Ô Suggestion: Do not use the first 12 · 256 bytes of the RC4
pseudo random sequence to avoid a possible exploitation of
this weakness.



The FMS-attack

Ô The basic version of the FMS-attack assumes session keys of
the form initialisation vector|main key. The initialisation
vector should be 3 bytes long.

Ô We consider only initialisation vectors of the form (3, 255,X ).

Ô In the first step of the key scheduling, j is set to 3 and S-Box
has the value 4, 1, 2, 0, 4, 5, . . . , 255.

Ô In the next step, i is increased to 1 and j is increased by
S [1] + K [1] = 1 + 255 ≡ 0 mod 256. The S-box has the
value 4, 0, 2, 1, 4, 5, . . . , 255.

Ô The value X is known so we can compute the third step of
the key scheduling.



The FMS-attack

Ô The basic version of the FMS-attack assumes session keys of
the form initialisation vector|main key. The initialisation
vector should be 3 bytes long.

Ô We consider only initialisation vectors of the form (3, 255,X ).

Ô In the first step of the key scheduling, j is set to 3 and S-Box
has the value 4, 1, 2, 0, 4, 5, . . . , 255.

Ô In the next step, i is increased to 1 and j is increased by
S [1] + K [1] = 1 + 255 ≡ 0 mod 256. The S-box has the
value 4, 0, 2, 1, 4, 5, . . . , 255.

Ô The value X is known so we can compute the third step of
the key scheduling.



The FMS-attack

Ô The basic version of the FMS-attack assumes session keys of
the form initialisation vector|main key. The initialisation
vector should be 3 bytes long.

Ô We consider only initialisation vectors of the form (3, 255,X ).

Ô In the first step of the key scheduling, j is set to 3 and S-Box
has the value 4, 1, 2, 0, 4, 5, . . . , 255.

Ô In the next step, i is increased to 1 and j is increased by
S [1] + K [1] = 1 + 255 ≡ 0 mod 256. The S-box has the
value 4, 0, 2, 1, 4, 5, . . . , 255.

Ô The value X is known so we can compute the third step of
the key scheduling.



The FMS-attack

Ô The basic version of the FMS-attack assumes session keys of
the form initialisation vector|main key. The initialisation
vector should be 3 bytes long.

Ô We consider only initialisation vectors of the form (3, 255,X ).

Ô In the first step of the key scheduling, j is set to 3 and S-Box
has the value 4, 1, 2, 0, 4, 5, . . . , 255.

Ô In the next step, i is increased to 1 and j is increased by
S [1] + K [1] = 1 + 255 ≡ 0 mod 256. The S-box has the
value 4, 0, 2, 1, 4, 5, . . . , 255.

Ô The value X is known so we can compute the third step of
the key scheduling.



The FMS-attack

Ô The basic version of the FMS-attack assumes session keys of
the form initialisation vector|main key. The initialisation
vector should be 3 bytes long.

Ô We consider only initialisation vectors of the form (3, 255,X ).

Ô In the first step of the key scheduling, j is set to 3 and S-Box
has the value 4, 1, 2, 0, 4, 5, . . . , 255.

Ô In the next step, i is increased to 1 and j is increased by
S [1] + K [1] = 1 + 255 ≡ 0 mod 256. The S-box has the
value 4, 0, 2, 1, 4, 5, . . . , 255.

Ô The value X is known so we can compute the third step of
the key scheduling.



The FMS-attack

Ô The basic version of the FMS-attack assumes session keys of
the form initialisation vector|main key. The initialisation
vector should be 3 bytes long.

Ô We consider only initialisation vectors of the form (3, 255,X ).

Ô In the first step of the key scheduling, j is set to 3 and S-Box
has the value 4, 1, 2, 0, 4, 5, . . . , 255.

Ô In the next step, i is increased to 1 and j is increased by
S [1] + K [1] = 1 + 255 ≡ 0 mod 256. The S-box has the
value 4, 0, 2, 1, 4, 5, . . . , 255.

Ô The value X is known so we can compute the third step of
the key scheduling.



The FMS-attack

Ô We can express the value t of S [3] after the fourth step of the
key scheduling as a function in X and the unknown key byte
K .

Ô The probability that S [0], S [1] and S [3] are not changed in
the remaining 252 steps of the key scheduling is approximately
(1− 3

256)252 ≈ 1
e3 ≈ 0.05.

Ô With probability > 0.05 we observe t as first byte of the RC4
pseudo-random sequence.

Ô About 60 sessions of the (3, 255,X ) are sufficient to
reconstruct the first key byte K .

Ô Once K is known, we can treat it as part of the initialisation
vector and reconstruct the other key bytes.

Ô The FMS attack needs between 1000000 and 4000000
sessions to reconstruct the main key.



The FMS-attack

Ô We can express the value t of S [3] after the fourth step of the
key scheduling as a function in X and the unknown key byte
K .

Ô The probability that S [0], S [1] and S [3] are not changed in
the remaining 252 steps of the key scheduling is approximately
(1− 3

256)252 ≈ 1
e3 ≈ 0.05.

Ô With probability > 0.05 we observe t as first byte of the RC4
pseudo-random sequence.

Ô About 60 sessions of the (3, 255,X ) are sufficient to
reconstruct the first key byte K .

Ô Once K is known, we can treat it as part of the initialisation
vector and reconstruct the other key bytes.

Ô The FMS attack needs between 1000000 and 4000000
sessions to reconstruct the main key.



The FMS-attack

Ô We can express the value t of S [3] after the fourth step of the
key scheduling as a function in X and the unknown key byte
K .

Ô The probability that S [0], S [1] and S [3] are not changed in
the remaining 252 steps of the key scheduling is approximately
(1− 3

256)252 ≈ 1
e3 ≈ 0.05.

Ô With probability > 0.05 we observe t as first byte of the RC4
pseudo-random sequence.

Ô About 60 sessions of the (3, 255,X ) are sufficient to
reconstruct the first key byte K .

Ô Once K is known, we can treat it as part of the initialisation
vector and reconstruct the other key bytes.

Ô The FMS attack needs between 1000000 and 4000000
sessions to reconstruct the main key.



The FMS-attack

Ô We can express the value t of S [3] after the fourth step of the
key scheduling as a function in X and the unknown key byte
K .

Ô The probability that S [0], S [1] and S [3] are not changed in
the remaining 252 steps of the key scheduling is approximately
(1− 3

256)252 ≈ 1
e3 ≈ 0.05.

Ô With probability > 0.05 we observe t as first byte of the RC4
pseudo-random sequence.

Ô About 60 sessions of the (3, 255,X ) are sufficient to
reconstruct the first key byte K .

Ô Once K is known, we can treat it as part of the initialisation
vector and reconstruct the other key bytes.

Ô The FMS attack needs between 1000000 and 4000000
sessions to reconstruct the main key.



The FMS-attack

Ô We can express the value t of S [3] after the fourth step of the
key scheduling as a function in X and the unknown key byte
K .

Ô The probability that S [0], S [1] and S [3] are not changed in
the remaining 252 steps of the key scheduling is approximately
(1− 3

256)252 ≈ 1
e3 ≈ 0.05.

Ô With probability > 0.05 we observe t as first byte of the RC4
pseudo-random sequence.

Ô About 60 sessions of the (3, 255,X ) are sufficient to
reconstruct the first key byte K .

Ô Once K is known, we can treat it as part of the initialisation
vector and reconstruct the other key bytes.

Ô The FMS attack needs between 1000000 and 4000000
sessions to reconstruct the main key.



The FMS-attack

Ô We can express the value t of S [3] after the fourth step of the
key scheduling as a function in X and the unknown key byte
K .

Ô The probability that S [0], S [1] and S [3] are not changed in
the remaining 252 steps of the key scheduling is approximately
(1− 3

256)252 ≈ 1
e3 ≈ 0.05.

Ô With probability > 0.05 we observe t as first byte of the RC4
pseudo-random sequence.

Ô About 60 sessions of the (3, 255,X ) are sufficient to
reconstruct the first key byte K .

Ô Once K is known, we can treat it as part of the initialisation
vector and reconstruct the other key bytes.

Ô The FMS attack needs between 1000000 and 4000000
sessions to reconstruct the main key.



The FMS-attack (Conclusions)

Advice

Do not use the first bytes of the RC4 pseudo random sequence.

Advice

Do not rely on the RC4 key scheduling to protect your main-key.
Use session keys of the form

hash-function(session-id|main-key).



A correlation in the RC4 pseudo random generator

Theorem

Assume that the internal states are uniformly distributed. Then for
a fixed public pointer i , we have:

P(S [j ] + S [k] ≡ i mod n) =
2

n
(1)

For c 6≡ i mod n we have:

P(S [j ] + S [k] ≡ c mod n) =
n − 2

n(n − 1)
(2)

Proof (sketch):

Ô Use k ≡ S [j ] + S [i ] mod n to write S [j ] + S [k] ≡ i mod n as
k + S [k] ≡ i + S [i ] mod n.

Ô Count the corresponding states.



A correlation in the RC4 pseudo random generator

Theorem

Assume that the internal states are uniformly distributed. Then for
a fixed public pointer i , we have:

P(S [j ] + S [k] ≡ i mod n) =
2

n
(1)

For c 6≡ i mod n we have:

P(S [j ] + S [k] ≡ c mod n) =
n − 2

n(n − 1)
(2)

Proof (sketch):

Ô Use k ≡ S [j ] + S [i ] mod n to write S [j ] + S [k] ≡ i mod n as
k + S [k] ≡ i + S [i ] mod n.

Ô Count the corresponding states.



The basic version of the attack

Ô Assume that the session key has the form
main key|initialisation vector.

Ô Guess the first key byte K [0].

Ô Compute the first step of the key scheduling phase.

Ô Express the value t of S [1] after the second step of the key
scheduling phase as function in K [0] and K [1].

Ô The probability that S [1] is not changed in the remaining step
of the key scheduling is ≈ (1− 1

256)254 ≈ 1
e .

Ô The first step of the pseudo random generator sets j to S [1].

Ô Apply the theorem to conclude:

P(t ≡ 1− S [k] mod n) ≈ 1

e
· 2

n
+ (1− 1

e
) · n − 2

n(n − 1)
≈ 1.36

n
.

Ô We must observe about 25, 000 sessions to recover K [1].



The basic version of the attack

Ô Assume that the session key has the form
main key|initialisation vector.

Ô Guess the first key byte K [0].

Ô Compute the first step of the key scheduling phase.

Ô Express the value t of S [1] after the second step of the key
scheduling phase as function in K [0] and K [1].

Ô The probability that S [1] is not changed in the remaining step
of the key scheduling is ≈ (1− 1

256)254 ≈ 1
e .

Ô The first step of the pseudo random generator sets j to S [1].

Ô Apply the theorem to conclude:

P(t ≡ 1− S [k] mod n) ≈ 1

e
· 2

n
+ (1− 1

e
) · n − 2

n(n − 1)
≈ 1.36

n
.

Ô We must observe about 25, 000 sessions to recover K [1].



The basic version of the attack

Ô Assume that the session key has the form
main key|initialisation vector.

Ô Guess the first key byte K [0].

Ô Compute the first step of the key scheduling phase.

Ô Express the value t of S [1] after the second step of the key
scheduling phase as function in K [0] and K [1].

Ô The probability that S [1] is not changed in the remaining step
of the key scheduling is ≈ (1− 1

256)254 ≈ 1
e .

Ô The first step of the pseudo random generator sets j to S [1].

Ô Apply the theorem to conclude:

P(t ≡ 1− S [k] mod n) ≈ 1

e
· 2

n
+ (1− 1

e
) · n − 2

n(n − 1)
≈ 1.36

n
.

Ô We must observe about 25, 000 sessions to recover K [1].



The basic version of the attack

Ô Assume that the session key has the form
main key|initialisation vector.

Ô Guess the first key byte K [0].

Ô Compute the first step of the key scheduling phase.

Ô Express the value t of S [1] after the second step of the key
scheduling phase as function in K [0] and K [1].

Ô The probability that S [1] is not changed in the remaining step
of the key scheduling is ≈ (1− 1

256)254 ≈ 1
e .

Ô The first step of the pseudo random generator sets j to S [1].

Ô Apply the theorem to conclude:

P(t ≡ 1− S [k] mod n) ≈ 1

e
· 2

n
+ (1− 1

e
) · n − 2

n(n − 1)
≈ 1.36

n
.

Ô We must observe about 25, 000 sessions to recover K [1].



The basic version of the attack

Ô Assume that the session key has the form
main key|initialisation vector.

Ô Guess the first key byte K [0].

Ô Compute the first step of the key scheduling phase.

Ô Express the value t of S [1] after the second step of the key
scheduling phase as function in K [0] and K [1].

Ô The probability that S [1] is not changed in the remaining step
of the key scheduling is ≈ (1− 1

256)254 ≈ 1
e .

Ô The first step of the pseudo random generator sets j to S [1].

Ô Apply the theorem to conclude:

P(t ≡ 1− S [k] mod n) ≈ 1

e
· 2

n
+ (1− 1

e
) · n − 2

n(n − 1)
≈ 1.36

n
.

Ô We must observe about 25, 000 sessions to recover K [1].



The basic version of the attack

Ô Assume that the session key has the form
main key|initialisation vector.

Ô Guess the first key byte K [0].

Ô Compute the first step of the key scheduling phase.

Ô Express the value t of S [1] after the second step of the key
scheduling phase as function in K [0] and K [1].

Ô The probability that S [1] is not changed in the remaining step
of the key scheduling is ≈ (1− 1

256)254 ≈ 1
e .

Ô The first step of the pseudo random generator sets j to S [1].

Ô Apply the theorem to conclude:

P(t ≡ 1− S [k] mod n) ≈ 1

e
· 2

n
+ (1− 1

e
) · n − 2

n(n − 1)
≈ 1.36

n
.

Ô We must observe about 25, 000 sessions to recover K [1].



The basic version of the attack

Ô Assume that the session key has the form
main key|initialisation vector.

Ô Guess the first key byte K [0].

Ô Compute the first step of the key scheduling phase.

Ô Express the value t of S [1] after the second step of the key
scheduling phase as function in K [0] and K [1].

Ô The probability that S [1] is not changed in the remaining step
of the key scheduling is ≈ (1− 1

256)254 ≈ 1
e .

Ô The first step of the pseudo random generator sets j to S [1].

Ô Apply the theorem to conclude:

P(t ≡ 1− S [k] mod n) ≈ 1

e
· 2

n
+ (1− 1

e
) · n − 2

n(n − 1)
≈ 1.36

n
.

Ô We must observe about 25, 000 sessions to recover K [1].



The basic version of the attack

Ô Assume that the session key has the form
main key|initialisation vector.

Ô Guess the first key byte K [0].

Ô Compute the first step of the key scheduling phase.

Ô Express the value t of S [1] after the second step of the key
scheduling phase as function in K [0] and K [1].

Ô The probability that S [1] is not changed in the remaining step
of the key scheduling is ≈ (1− 1

256)254 ≈ 1
e .

Ô The first step of the pseudo random generator sets j to S [1].

Ô Apply the theorem to conclude:

P(t ≡ 1− S [k] mod n) ≈ 1

e
· 2

n
+ (1− 1

e
) · n − 2

n(n − 1)
≈ 1.36

n
.

Ô We must observe about 25, 000 sessions to recover K [1].



The basic version of the attack

Ô Assume that the session key has the form
main key|initialisation vector.

Ô Guess the first key byte K [0].

Ô Compute the first step of the key scheduling phase.

Ô Express the value t of S [1] after the second step of the key
scheduling phase as function in K [0] and K [1].

Ô The probability that S [1] is not changed in the remaining step
of the key scheduling is ≈ (1− 1

256)254 ≈ 1
e .

Ô The first step of the pseudo random generator sets j to S [1].

Ô Apply the theorem to conclude:

P(t ≡ 1− S [k] mod n) ≈ 1

e
· 2

n
+ (1− 1

e
) · n − 2

n(n − 1)
≈ 1.36

n
.

Ô We must observe about 25, 000 sessions to recover K [1].



Variants

Ô Once the byte K [1] is known, we can attack the bytes K [2]
and so on.

Ô The session keys are not really independent from each other.
For a main key of length b bytes, it is possible that j is set to
1 at a time step between 1 and b. If this happens, the basic
attack will fail to recover the key byte K [1].

Ô It is possible to cope with such ugly keys.

Ô One can use the attack also against session keys of the form
initialisation vector|main key.

Ô Combining the idea of this attack with the idea of weak
initialisation vectors, we get an attack which does not use the
first 256 bytes of the RC4 pseudo random sequence.



Variants

Ô Once the byte K [1] is known, we can attack the bytes K [2]
and so on.

Ô The session keys are not really independent from each other.
For a main key of length b bytes, it is possible that j is set to
1 at a time step between 1 and b. If this happens, the basic
attack will fail to recover the key byte K [1].

Ô It is possible to cope with such ugly keys.

Ô One can use the attack also against session keys of the form
initialisation vector|main key.

Ô Combining the idea of this attack with the idea of weak
initialisation vectors, we get an attack which does not use the
first 256 bytes of the RC4 pseudo random sequence.



Variants

Ô Once the byte K [1] is known, we can attack the bytes K [2]
and so on.

Ô The session keys are not really independent from each other.
For a main key of length b bytes, it is possible that j is set to
1 at a time step between 1 and b. If this happens, the basic
attack will fail to recover the key byte K [1].

Ô It is possible to cope with such ugly keys.

Ô One can use the attack also against session keys of the form
initialisation vector|main key.

Ô Combining the idea of this attack with the idea of weak
initialisation vectors, we get an attack which does not use the
first 256 bytes of the RC4 pseudo random sequence.



Variants

Ô Once the byte K [1] is known, we can attack the bytes K [2]
and so on.

Ô The session keys are not really independent from each other.
For a main key of length b bytes, it is possible that j is set to
1 at a time step between 1 and b. If this happens, the basic
attack will fail to recover the key byte K [1].

Ô It is possible to cope with such ugly keys.

Ô One can use the attack also against session keys of the form
initialisation vector|main key.

Ô Combining the idea of this attack with the idea of weak
initialisation vectors, we get an attack which does not use the
first 256 bytes of the RC4 pseudo random sequence.



Reducing the number of sessions

Problem

We are not able to observe enough (25000) session.

Ô Consider the following case:
I Key length : 128 bits (16 bytes).
I Number of sessions: ≈ 12000.

Ô Use the observe sessions to calculate the a posteriori
probability for t = f (K [0],K [1]). The a posteriori probability
is given by

Pi = P(t = i | the absolute frequencies are fi ) =

∏n
j=1 p

fj
i ,j∑n

k=1

∏n
j=1 p

fj
k,j

,

with pi ,j = p = 1.36
n for i = j and pi ,j = q = 1−p

n−1 for i 6= j .



Reducing the number of sessions

Problem

We are not able to observe enough (25000) session.

Ô Consider the following case:
I Key length : 128 bits (16 bytes).
I Number of sessions: ≈ 12000.

Ô Use the observe sessions to calculate the a posteriori
probability for t = f (K [0],K [1]). The a posteriori probability
is given by

Pi = P(t = i | the absolute frequencies are fi ) =

∏n
j=1 p

fj
i ,j∑n

k=1

∏n
j=1 p

fj
k,j

,

with pi ,j = p = 1.36
n for i = j and pi ,j = q = 1−p

n−1 for i 6= j .



Reducing the number of sessions

Problem

We are not able to observe enough (25000) session.

Ô Consider the following case:
I Key length : 128 bits (16 bytes).
I Number of sessions: ≈ 12000.

Ô Use the observe sessions to calculate the a posteriori
probability for t = f (K [0],K [1]). The a posteriori probability
is given by

Pi = P(t = i | the absolute frequencies are fi ) =

∏n
j=1 p

fj
i ,j∑n

k=1

∏n
j=1 p

fj
k,j

,

with pi ,j = p = 1.36
n for i = j and pi ,j = q = 1−p

n−1 for i 6= j .



Reducing the number of sessions (continued)

Ô Compute the a posteriori probabilities for the other key bytes.

Ô The a posteriori entropy is about 64.

Ô Start a complete key search, but test the keys with the
highest a posteriori probability first.

Ô You can expect to find the right key after 264 steps. For
comparison a full key search needs 2128 steps.



Reducing the number of sessions (continued)

Ô Compute the a posteriori probabilities for the other key bytes.

Ô The a posteriori entropy is about 64.

Ô Start a complete key search, but test the keys with the
highest a posteriori probability first.

Ô You can expect to find the right key after 264 steps. For
comparison a full key search needs 2128 steps.



Reducing the number of sessions (continued)

Ô Compute the a posteriori probabilities for the other key bytes.

Ô The a posteriori entropy is about 64.

Ô Start a complete key search, but test the keys with the
highest a posteriori probability first.

Ô You can expect to find the right key after 264 steps. For
comparison a full key search needs 2128 steps.



Optimisation for WEP

Problem

It easy to observe extra Wireless LAN Packages (use
ARP-spoofing). But is time consuming to store observed sessions.

Ô E. Tews, R. Weinmann and A. Pyshkin (Darmstadt) found a
way to attack the different key bytes in parallel.

Ô They use

t = S−1
3 ((3 + i)− X (i + 2))− j3 −

i+3∑
j=3

S3(j)

for an estimation of K [i ]. (S3 and j3 denote the S-box and j
after the third step of the key scheduling phase.)

Ô The approximation is wrong for a small fraction of the key
space. For strong keys, we must still recover the key bytes
sequentially.



Optimisation for WEP

Problem

It easy to observe extra Wireless LAN Packages (use
ARP-spoofing). But is time consuming to store observed sessions.

Ô E. Tews, R. Weinmann and A. Pyshkin (Darmstadt) found a
way to attack the different key bytes in parallel.

Ô They use

t = S−1
3 ((3 + i)− X (i + 2))− j3 −

i+3∑
j=3

S3(j)

for an estimation of K [i ]. (S3 and j3 denote the S-box and j
after the third step of the key scheduling phase.)

Ô The approximation is wrong for a small fraction of the key
space. For strong keys, we must still recover the key bytes
sequentially.



Definition of RC4A

RC4A pseudo random generator

1: {initialization}
2: i := 0
3: j1 := 0 j2 := 0
4: {generate pseudo random sequence}
5: loop
6: i := (i + 1) mod n
7: j1 := (j1 + S1[i ]) mod n
8: Swap S1[i ] and S1[j ]
9: k2 := (S1[i ] + S1[j ]) mod n

10: print S2[k2]
11: j2 := (j2 + S2[i ]) mod n
12: Swap S2[i ] and S2[j ]
13: k1 := (S2[i ] + S2[j ]) mod n
14: print S1[k1]
15: end loop



Attacking RC4A

Theorem

Assume that all permutations have the same probability, and that
S1 and S2 are independent. Then:

P(S1[j1] + S1[k1] + S2[j2] + S2[k2] ≡ 2i mod n) =
1

n − 1
. (3)

Ô The correlation is weaker than the corresponding correlation
of RC4.

Ô But we can still mount an attack on this correlation.



Attacking RC4A

Theorem

Assume that all permutations have the same probability, and that
S1 and S2 are independent. Then:

P(S1[j1] + S1[k1] + S2[j2] + S2[k2] ≡ 2i mod n) =
1

n − 1
. (3)

Ô The correlation is weaker than the corresponding correlation
of RC4.

Ô But we can still mount an attack on this correlation.



Attacking RC4A

Theorem

Assume that all permutations have the same probability, and that
S1 and S2 are independent. Then:

P(S1[j1] + S1[k1] + S2[j2] + S2[k2] ≡ 2i mod n) =
1

n − 1
. (3)

Ô The correlation is weaker than the corresponding correlation
of RC4.

Ô But we can still mount an attack on this correlation.


	Overview
	The RC4 algorithm
	Wireless LAN
	Distinguishing Attacks
	Fortuitous states
	Weaknesses in the key scheduling phase
	The FMS-attack

	A new attack
	A correlation in the RC4 pseudo random generator
	The basic version of the attack
	Using only few sessions
	Optimisation for WEP

	RC4A

