Geometric authentication codes

J. Schillewaert

Department of Pure Mathematics and Computer Algebra Ghent University

September 21, 2007 / Contact forum

ヘロア 人間 アメヨア 人口 ア

What is authentication?

- Alice and Bob share a secret private Key K.
- Alice sends to Bob: Source state S and M=e(S,K).
- Bob receives S and M and checks if M=e(S,K).
- Goal for an opponent: Produce a pair (S,e(S,K)).

イロト イポト イヨト イヨトー

Message authentication codes

A message authentication code (MAC) is a 4-tuple $(\mathcal{S},\mathcal{A},\mathcal{K},\mathcal{E})$ with

- \bigcirc S a finite set of source states.
- 2 \mathcal{M} a finite set of messages.
- K a finite set of keys.
- **③** For each *K* ∈ \mathcal{K} , we have an authentication rule $e_{\mathcal{K}} \in \mathcal{E}$ with $e_{\mathcal{K}} : \mathcal{S} \to \mathcal{M}$.

<ロ> <同> <同> <同> <同> <同> <同> <

Security of a MAC-Perfect MAC

- Let p_i denote the probability of an attacker to construct a pair $(s, e_K(s))$ without knowledge of the key K, if he only knows *i* different pairs $(s_j, e_K(s_j))$.
- If a MAC has attack probabilities $p_i = 1/n_i$ ($0 \le i \le I$) then $|\mathcal{K}| \ge n_0 \cdots n_l$. If equality holds, the MAC is called perfect.
- For perfect MAC's: $|\mathcal{S}| \leq \frac{n_{l-1}n_l-1}{n_l-1} + l 1$.

イロン 不良 とくほう 不良 とうほう

Important issues of MAC's

- We assume a uniform distribution for the encoding rules.
- Cartesian: $\mathcal{M}(s_1) \cap \mathcal{M}(s_2) = \emptyset$.
- Perfect authentication schemes are in 1-1 correspondence with certain designs.
- Impersonation and substitution attack.
- Replay attack.

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

Gilbert-MacWilliams-Sloane

Fix an *r*-space Π in PG(n, q).

- Source states: t-spaces in Π.
- Encoding rules: (n r 1)-spaces skew from Π .
- Messages: (n r + t)-subspaces intersecting Π in a t-space.

<ロ> <同> <同> <同> <同> <同> <同> <

MAC without arbitration

Arbitration schemes Constructions using GDA's Examples and construction Geometric characterisations of GDA's Other schemes arising from finite geometrice

Gilbert-MacWilliams-Sloane II

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

A problem with MAC's

- Stockbroker and customer.
- Disputes about orders.
- How to decide in case of such a dispute?

イロト イポト イヨト イヨト 一座

What are arbitration schemes?

- Alice and Bob don't trust each other.
- A trusted arbiter is needed.
- Bob gives a decoding rule to the arbiter.
- The arbiter gives an encoding rule to Alice.

ヘロト ヘアト ヘビト ヘビト

2

Arbitration codes

A message authentication code with arbitration A^2 -code consists of

- S: a set of source states.
- \mathcal{M} : a set of encoded messages.
- $\mathcal{E}_{\mathcal{T}}$, a set of encoding rules : 1-1 mappings from \mathcal{S} to \mathcal{M} .
- $\mathcal{E}_{\mathcal{R}}$, a set of decoding rules: mappings from \mathcal{M} to \mathcal{S} or reject.

ヘロン 人間 とくほ とくほ とう

Security of a MAC with arbitration

- Probabilities for the opponent P_{O_i} .
- If dispute between Alice and Bob, then arbiter takes a decision.
- Probability for the sender P_T .
- Probabilities for the receiver P_{R_i} .

イロト 不得 トイヨト イヨト 三連

Combinatorial bounds

Theorem

We have the following lower bounds for the number of encoding and decoding rules.

$$|\mathcal{E}_{R}| \geq (P_{O_{0}}P_{O_{1}}\cdots P_{O_{t-1}}P_{T})^{-1},$$

$$|\mathcal{E}_{T}| \geq (P_{O_{0}}P_{O_{1}}\cdots P_{O_{t-1}}P_{R_{0}}P_{R_{1}}\cdots P_{R_{t-1}})^{-1}.$$

If equality holds in both inequalities above, then we call the arbitration scheme *t*-fold perfect.

A first scheme with arbitration I (T. Johansson)

Fix a line L_0 in PG(3, q).

- Source states: Points on *L*₀.
- Receiver's decoding rule: Point *F* not on *L*₀.
- Transmitter's encoding rule: A line *e* not intersecting *L*₀.
- Messages: planes spanned by a source state *S* and an encoding rule *e*.
- e valid under F if F on e.

・ 同 ト ・ ヨ ト ・ ヨ ト …

A first scheme with arbitration II

Generalized dual arcs

- A generalised dual arc D of order *l* with dimensions
 d₁ > d₂ > ··· > d_{l+1} of PG(n, q) is a set of subspaces of dimension d₁ such that:
 - each *j* of these subspaces intersect in a subspace of dimension d_j , $1 \le j \le l + 1$,
 - each *I* + 2 of these subspaces have no common intersection.

Definition

A generalised dual arc of order *I* with parameters $(n = d_0, ..., d_{I+1})$ is *regular* if, in addition, it satisfies the property that if π is the intersection of *j* elements of \mathcal{D} , $j \leq I$, then π is spanned by the subspaces of dimension d_{j+1} which are the intersections of π with the remaining elements of \mathcal{D} .

Use of a GDA to construct a MAC

Theorem

(A. Klein, J.S., L. Storme) Let Π be a hyperplane of PG(n + 1, q) and let \mathcal{D} be a generalised dual arc of order I in Π with parameters $(n, d_1, \ldots, d_{l+1})$. The elements of \mathcal{D} are the source states and the points of PG(n + 1, q) not in Π are the keys. The message that belongs to a source state and a key is the generated $(d_1 + 1)$ -dimensional subspace. This defines a perfect MAC with attack probabilities

$$p_i = q^{d_{i+1}-d_i}$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Use of a GDA to construct a MAC

イロン 不得 とくほ とくほう 一座

Use of a GDA to construct a MAC with arbitration

Theorem

(A. Klein, J.S., L. Storme) Let Π be a codimension 2 space of PG(n+2, q) and let \mathcal{D} be a generalised dual arc of order I in Π with parameters $(n, d_1, \ldots, d_{l+1})$.

The elements of \mathcal{D} are the source states and the lines of PG(n+2,q) skew to Π are the keys. The message that belongs to a source state and a key is the generated $(d_1 + 2)$ -dimensional subspace.

This defines a perfect MAC with attack probabilities

$$p_{O_i} = q^{d_{i+1}-d_i}, \ p_T = \frac{1}{q+1}, \ p_{R_i} = q^{d_{i+1}-d_i}.$$

ヘロト ヘアト ヘヨト ヘヨト

Use of a GDA to construct a MAC with arbitration

(★ 団) ★ 団) □ Ξ

Examples of a GDA I

• The mapping $\zeta : PG(2, q) \rightarrow PG(5, q)$ with

$$\zeta([\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2]) = [\mathbf{x}_0^2, \mathbf{x}_1^2, \mathbf{x}_2^2, \mathbf{x}_0 \mathbf{x}_1, \mathbf{x}_0 \mathbf{x}_2, \mathbf{x}_1 \mathbf{x}_2]$$

defines the quadratic Veronesean V_2^4 .

- This defines a configuration of $q^2 + q + 1$ planes in PG(5, q) such that
 - They generate PG(5, q).
 - Each two intersect in a point.
 - Each three are skew.

<ロ> <同> <同> <同> <同> <同> <同> <

Examples of a GDA II

• Consider the map $\zeta : PG(2, q) \rightarrow PG(9, q)$ with

$$\zeta([\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2]) = [\mathbf{x}_0^3, \mathbf{x}_1^3, \mathbf{x}_2^3, \mathbf{x}_0^2 \mathbf{x}_1, \mathbf{x}_0^2 \mathbf{x}_2, \cdots, \mathbf{x}_2^2 \mathbf{x}_1, \mathbf{x}_0 \mathbf{x}_1 \mathbf{x}_2]$$

- This defines a configuration of q² + q + 1 5-dimensional spaces in PG(9, q) such that
 - Each two intersect in a plane
 - Each three in a point
 - Each four are skew.

<ロ> <同> <同> <同> <同> <同> <同> <

Construction of a GDA I

- PG(V) resp. PG(W) a *d*-dimensional resp. $\left(\binom{d+l+1}{l+1} 1\right)$ -dimensional space.
- We define $\zeta : PG(V) \rightarrow PG(W)$ by

$$\zeta: [\sum_{i=0}^d x_i e_i] \mapsto [\sum_{0 \le i_0 \le \cdots \le i_l \le d]} x_{i_0} \cdot \ldots \cdot x_{i_l} e_{i_0, \ldots, i_l}].$$

For each x ∈ V, we denote by x[⊥] the subspace of V perpendicular to x with respect to b. So

$$x^{\perp} = \{y \in V \mid b(x, y) = 0\}.$$

・ロト ・同ト ・ヨト ・ヨトー

Construction of a GDA II

For each point P = [x] of PG(V), we define a subspace D(P) of PG(W) by

$$D(P) = \{ [z] \in W \mid B(z,\zeta(y)) = 0 \text{ for all } y \in x^{\perp} \}.$$
 (1)

Theorem

The set $\mathcal{D} = \{D(P) \mid P \in PG(V)\}$ is a regular generalised dual arc with dimensions $d_i = \binom{d+l+1-i}{l+1-i} - 1$.

<ロ> (四) (四) (三) (三) (三)

A characterization of Veronesean surfaces

Theorem

(J. A. Thas-H. Van Maldeghem) Let \mathcal{F} be a set of $\frac{q^{n+1}-1}{q-1}$

n-dimensional spaces generating $PG(N = \frac{n(n+3)}{2}, q)$, such that

two distinct elements of F intersect in a point,

- 2 three distinct elements of \mathcal{F} have an empty intersection.
- Two technical conditions which can be dropped in some cases.

Then \mathcal{F} consists of V_{n-1} subspaces to a Veronesean surface $V_n^{2^n}$ if q is odd, if q is even there is also an exception with the nucleus subspace.

ヘロト ヘ回ト ヘヨト ヘヨト

3

Extension result on Veronesean surfaces

Theorem

(A. Klein, J.S., L. Storme) A set of $\frac{q^{n+1}-1}{q-1} - \delta$ n-dimensional spaces in PG($N = \frac{n(n+3)}{2}$, q) satisfying the above properties can always be extended if $\delta \leq \frac{q}{2} - 1$.

イロン 不良 とくほう 不良 とうほ

Algebraic characterisation of the GDA (9, 5, 2, 0)

Theorem

Every regular generalised dual arc D with parameters (9, 5, 2, 0) in PG(9, q), q > 3, q odd, which contains $q^2 + q + 1$ elements, is isomorphic to the one given in the construction.

Corollary

A regular generalised dual arc in PG(9, q), q > 3, q odd, with parameters (9, 5, 2, 0) contains at most $q^2 + q + 1$ elements.

<ロト <回 > < 注 > < 注 > 、

More general algebraic characterisation

We work inductively.

- Basic step: Theorem of Thas-Van Maldeghem.
- We get generalised dual arcs with missing elements in the subspaces.
- Find the remaining elements in these subspaces using our result.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Generalized quadrangles

A GQ of order (s, t) is an incidence structure S = (P, B, I) for which *I* is a symmetric point-line incidence relation satisfying the following axioms.

- (GQ1) Each point is incident with t + 1 lines ($t \ge 1$) and two distinct points are incident with at most one line.
- (GQ2) Each line is incident with s + 1 points ($s \ge 1$) and two distinct lines are incident with at most one point.
- (GQ3) If p is a point and L is a line not incident with p, then there is a unique point-line pair (q, M) such that pIMIqIL.

・ロト ・同ト ・ヨト ・ヨトー

A scheme by Desoete using GQ's

Take a fixed point p in a GQ.

- Source states: Lines through *p*.
- Encoding rules: Points not collinear with *p*.
- Messages: The points of $p^{\perp} \setminus \{p\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

A scheme by Desoete

æ

An A-scheme using ovoids in subGQ's (JS-K.Thas)

Consider a set $\{S_1, \dots, S_r\}$ of r > 0 distinct subGQs of order $(s, \frac{t}{s})$ of the GQ S of order (s > 1, t > 1)

- Source states: subGQs S_j.
- Keys: Points in $S \setminus \bigcup_{i=1}^r S_i$.
- Messages: Ovoids in the GQs S_j subtended by a point outside their union.
- This yields 1-fold perfect schemes with very good p_0 .

<ロン <回と < 注と < 注と = 注

Several schemes

All kinds of geometries and combinatorial structures can be used.

- Unitary and symplectic space.
- Latin squares.
- Rational normal curves.
- ...

イロト イポト イヨト イヨト 一座