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What is authentication?

Alice and Bob share a secret private Key K.

Alice sends to Bob: Source state S and M=e(S,K).

Bob receives S and M and checks if M=e(S,K).

Goal for an opponent: Produce a pair (S,e(S,K)).
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Message authentication codes

A message authentication code (MAC) is a 4-tuple (S;A;K; E)
with

1 S a finite set of source states.
2 M a finite set of messages.
3 K a finite set of keys.
4 For each K 2 K, we have an authentication rule eK 2 E

with eK : S !M.
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Security of a MAC-Perfect MAC

Let pi denote the probability of an attacker to construct a
pair (s;eK (s)) without knowledge of the key K , if he only
knows i different pairs (sj ;eK (sj)).
If a MAC has attack probabilities pi = 1=ni (0 � i � l) thenjKj � n0 � � � � � nl . If equality holds, the MAC is called
perfect.

For perfect MAC’s: jSj � nl�1nl�1
nl�1 + l � 1:
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Important issues of MAC’s

We assume a uniform distribution for the encoding rules.

Cartesian: M(s1) \M(s2) = ;.
Perfect authentication schemes are in 1-1 correspondence
with certain designs.

Impersonation and substitution attack.

Replay attack.
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Gilbert-MacWilliams-Sloane

Fix an r -space � in PG(n;q).
Source states: t-spaces in �.

Encoding rules: (n � r � 1)-spaces skew from �.

Messages: (n � r + t)-subspaces intersecting � in a
t-space.
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Gilbert-MacWilliams-Sloane II

PI

Tt

Nn-r-1PG(n,q)
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A problem with MAC’s

Stockbroker and customer.

Disputes about orders.

How to decide in case of such a dispute?
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What are arbitration schemes?

Alice and Bob don’t trust each other.

A trusted arbiter is needed.

Bob gives a decoding rule to the arbiter.

The arbiter gives an encoding rule to Alice.
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Arbitration codes

A message authentication code with arbitration A2-code
consists of

S: a set of source states.

M: a set of encoded messages.

ET , a set of encoding rules : 1-1 mappings from S to M.

ER, a set of decoding rules: mappings from M to S or
reject.
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Security of a MAC with arbitration

Probabilities for the opponent POi
.

If dispute between Alice and Bob, then arbiter takes a
decision.

Probability for the sender PT .

Probabilities for the receiver PRi .
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Combinatorial bounds

Theorem

We have the following lower bounds for the number of encoding
and decoding rules.

jERj � (PO0
PO1

� � �POt�1
PT )�1;

jET j � (PO0
PO1

� � �POt�1
PR0PR1 � � �PRt�1)�1:

If equality holds in both inequalities above, then we call the
arbitration scheme t-fold perfect.
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A first scheme with arbitration I (T. Johansson)

Fix a line L0 in PG(3;q).
Source states: Points on L0.

Receiver’s decoding rule: Point F not on L0.

Transmitter’s encoding rule: A line e not intersecting L0.

Messages: planes spanned by a source state S and an
encoding rule e.

e valid under F if F on e.
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A first scheme with arbitration II

S

Re

F
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Generalized dual arcs

A generalised dual arc D of order l with dimensions
d1 > d2 > � � � > dl+1 of PG(n;q) is a set of subspaces of
dimension d1 such that:

1 each j of these subspaces intersect in a subspace of
dimension dj , 1 � j � l + 1,

2 each l + 2 of these subspaces have no common
intersection.

Definition

A generalised dual arc of order l with parameters(n = d0; : : : ;dl+1) is regular if, in addition, it satisfies the
property that if � is the intersection of j elements of D, j � l ,
then � is spanned by the subspaces of dimension dj+1 which
are the intersections of � with the remaining elements of D.
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Use of a GDA to construct a MAC

Theorem

(A. Klein, J.S., L. Storme) Let � be a hyperplane of
PG(n + 1;q) and let D be a generalised dual arc of order l in �
with parameters (n;d1; : : : ;dl+1).
The elements of D are the source states and the points of
PG(n + 1;q) not in � are the keys. The message that belongs
to a source state and a key is the generated(d1 + 1)-dimensional subspace.
This defines a perfect MAC with attack probabilities

pi = qdi+1�di :
J. Schillewaert Geometric authentication codes
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Use of a GDA to construct a MAC

PI

RK
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Use of a GDA to construct a MAC with arbitration

Theorem

(A. Klein, J.S., L. Storme) Let � be a codimension 2 space of
PG(n + 2;q) and let D be a generalised dual arc of order l in �
with parameters (n;d1; : : : ;dl+1).
The elements of D are the source states and the lines of
PG(n + 2;q) skew to � are the keys. The message that
belongs to a source state and a key is the generated(d1 + 2)-dimensional subspace.
This defines a perfect MAC with attack probabilities

pOi
= qdi+1�di ; pT = 1

q + 1
; pRi = qdi+1�di :
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Use of a GDA to construct a MAC with arbitration

PI

RL
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Examples of a GDA I

The mapping � : PG(2;q)! PG(5;q) with

�([x0; x1; x2]) = [x2
0 ; x2

1 ; x2
2 ; x0x1; x0x2; x1x2]

defines the quadratic Veronesean V 4
2 .

This defines a configuration of q2 + q + 1 planes in
PG(5;q) such that

They generate PG(5; q).
Each two intersect in a point.
Each three are skew.
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Examples of a GDA II

Consider the map � : PG(2;q)! PG(9;q) with

�([x0; x1; x2]) = [x3
0 ; x3

1 ; x3
2 ; x2

0 x1; x2
0 x2; � � � ; x2

2 x1; x0x1x2]
This defines a configuration of q2 + q + 1 5-dimensional
spaces in PG(9;q) such that

Each two intersect in a plane
Each three in a point
Each four are skew.
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Construction of a GDA I

PG(V ) resp. PG(W ) a d-dimensional resp.��d+l+1
l+1

�� 1
�

-dimensional space.

We define � : PG(V )! PG(W ) by

� : [ dX
i=0

xiei ] 7! [ X
0�i0�����il�d ] xi0 � : : : � xil ei0;:::;il ]:

For each x 2 V , we denote by x? the subspace of V
perpendicular to x with respect to b. So

x? = fy 2 V j b(x ; y) = 0g:
J. Schillewaert Geometric authentication codes
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Construction of a GDA II

For each point P = [x ] of PG(V ), we define a subspace
D(P) of PG(W ) by

D(P) = f[z] 2 W j B(z; �(y)) = 0 for all y 2 x?g: (1)

Theorem

The set D = fD(P) j P 2 PG(V )g is a regular generalised dual
arc with dimensions di = �d+l+1�i

l+1�i

�� 1.
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A characterization of Veronesean surfaces

Theorem

(J. A. Thas-H. Van Maldeghem) Let F be a set of qn+1�1
q�1

n-dimensional spaces generating PG(N = n(n+3)
2 ;q), such that

1 two distinct elements of F intersect in a point,
2 three distinct elements of F have an empty intersection.
3 Two technical conditions which can be dropped in some

cases.

Then F consists of Vn�1 subspaces to a Veronesean surface
V 2n

n if q is odd, if q is even there is also an exception with the
nucleus subspace.
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Extension result on Veronesean surfaces

Theorem

(A. Klein, J.S., L. Storme) A set of qn+1�1
q�1 � � n-dimensional

spaces in PG(N = n(n+3)
2 ;q) satisfying the above properties

can always be extended if � � q
2 � 1.
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Algebraic characterisation of the GDA (9; 5; 2; 0)

Theorem
Every regular generalised dual arc D with parameters(9;5;2;0) in PG(9;q); q > 3, q odd, which contains q2 + q + 1
elements, is isomorphic to the one given in the construction.

Corollary

A regular generalised dual arc in PG(9;q), q > 3, q odd, with
parameters (9;5;2;0) contains at most q2 + q + 1 elements.
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More general algebraic characterisation

We work inductively.

Basic step: Theorem of Thas-Van Maldeghem.

We get generalised dual arcs with missing elements in the
subspaces.

Find the remaining elements in these subspaces using our
result.
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Generalized quadrangles

A GQ of order (s; t) is an incidence structure S = (P;B; I) for
which I is a symmetric point-line incidence relation satisfying
the following axioms.

(GQ1) Each point is incident with t + 1 lines (t � 1) and two
distinct points are incident with at most one line.

(GQ2) Each line is incident with s + 1 points (s � 1) and two
distinct lines are incident with at most one point.

(GQ3) If p is a point and L is a line not incident with p, then there
is a unique point-line pair (q;M) such that pIMIqIL.
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A scheme by Desoete using GQ’s

Take a fixed point p in a GQ.

Source states: Lines through p.

Encoding rules: Points not collinear with p.

Messages: The points of p?nfpg.
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A scheme by Desoete

P

R

R’
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An A-scheme using ovoids in subGQ’s (JS-K.Thas)

Consider a set fS1; � � � ;Srg of r > 0 distinct subGQs of order(s; t
s ) of the GQ S of order (s > 1; t > 1)
Source states: subGQs Sj .

Keys: Points in Sn [r
i=1 Si .

Messages: Ovoids in the GQs Sj subtended by a point
outside their union.

This yields 1-fold perfect schemes with very good p0.
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Several schemes

All kinds of geometries and combinatorial structures can be
used.

Unitary and symplectic space.

Latin squares.

Rational normal curves.

...
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