Geometric authentication codes

J. Schillewaert

Department of Pure Mathematics and Computer Algebra Ghent University

September 21, 2007 / Contact forum

What is authentication?

- Alice and Bob share a secret private Key K.
- Alice sends to Bob: Source state S and $M=e(S, K)$.
- Bob receives S and M and checks if $M=e(S, K)$.
- Goal for an opponent: Produce a pair (S,e(S,K)).

Message authentication codes

A message authentication code (MAC) is a 4-tuple $(\mathcal{S}, \mathcal{A}, \mathcal{K}, \mathcal{E})$ with
(1) \mathcal{S} a finite set of source states.
(2) \mathcal{M} a finite set of messages.
(3) \mathcal{K} a finite set of keys.
(4) For each $K \in \mathcal{K}$, we have an authentication rule $e_{K} \in \mathcal{E}$ with $e_{K}: \mathcal{S} \rightarrow \mathcal{M}$.

Security of a MAC-Perfect MAC

- Let p_{i} denote the probability of an attacker to construct a pair $\left(s, e_{K}(s)\right)$ without knowledge of the key K, if he only knows i different pairs $\left(s_{j}, e_{K}\left(s_{j}\right)\right)$.
- If a MAC has attack probabilities $p_{i}=1 / n_{i}(0 \leq i \leq I)$ then $|\mathcal{K}| \geq n_{0} \cdots \cdot n_{1}$. If equality holds, the MAC is called perfect.
- For perfect MAC's: $|\mathcal{S}| \leq \frac{n_{l-1} n_{l}-1}{n_{l}-1}+I-1$.

Important issues of MAC's

- We assume a uniform distribution for the encoding rules.
- Cartesian: $\mathcal{M}\left(s_{1}\right) \cap \mathcal{M}\left(s_{2}\right)=\emptyset$.
- Perfect authentication schemes are in 1-1 correspondence with certain designs.
- Impersonation and substitution attack.
- Replay attack.

Gilbert-MacWilliams-Sloane

Fix an r-space Π in $P G(n, q)$.

- Source states: t-spaces in Π.
- Encoding rules: $(n-r-1)$-spaces skew from $П$.
- Messages: $(n-r+t)$-subspaces intersecting Π in a t-space.

Arbitration schemes

Constructions using GDA's
Examples and construction
Geometric characterisations of GDA's
Other schemes arising from finite geometries

Gilbert-MacWilliams-Sloane II

A problem with MAC's

- Stockbroker and customer.
- Disputes about orders.
- How to decide in case of such a dispute?

What are arbitration schemes?

- Alice and Bob don't trust each other.
- A trusted arbiter is needed.
- Bob gives a decoding rule to the arbiter.
- The arbiter gives an encoding rule to Alice.

Arbitration codes

A message authentication code with arbitration A^{2}-code consists of

- \mathcal{S} : a set of source states.
- \mathcal{M} : a set of encoded messages.
- $\mathcal{E}_{\mathcal{T}}$, a set of encoding rules: 1-1 mappings from \mathcal{S} to \mathcal{M}.
- $\mathcal{E}_{\mathcal{R}}$, a set of decoding rules: mappings from \mathcal{M} to \mathcal{S} or reject.

Security of a MAC with arbitration

- Probabilities for the opponent $P_{O_{i}}$.
- If dispute between Alice and Bob, then arbiter takes a decision.
- Probability for the sender P_{T}.
- Probabilities for the receiver $P_{R_{i}}$.

Combinatorial bounds

Theorem

We have the following lower bounds for the number of encoding and decoding rules.

$$
\begin{gathered}
\left|\mathcal{E}_{R}\right| \geq\left(P_{O_{0}} P_{O_{1}} \cdots P_{O_{t-1}} P_{T}\right)^{-1} \\
\left|\mathcal{E}_{T}\right| \geq\left(P_{O_{0}} P_{O_{1}} \cdots P_{O_{t-1}} P_{R_{0}} P_{R_{1}} \cdots P_{R_{t-1}}\right)^{-1}
\end{gathered}
$$

If equality holds in both inequalities above, then we call the arbitration scheme t-fold perfect.

A first scheme with arbitration I (T. Johansson)

Fix a line L_{0} in $P G(3, q)$.

- Source states: Points on L_{0}.
- Receiver's decoding rule: Point F not on L_{0}.
- Transmitter's encoding rule: A line e not intersecting L_{0}.
- Messages: planes spanned by a source state S and an encoding rule e.
- e valid under F if F on e.

Constructions using GDA's

Examples and construction
Geometric characterisations of GDA's
Other schemes arising from finite geometries

A first scheme with arbitration II

Generalized dual arcs

- A generalised dual arc \mathcal{D} of order / with dimensions $d_{1}>d_{2}>\cdots>d_{l+1}$ of $P G(n, q)$ is a set of subspaces of dimension d_{1} such that:
(1) each j of these subspaces intersect in a subspace of dimension $d_{j}, 1 \leq j \leq I+1$,
(2) each $I+2$ of these subspaces have no common intersection.

Definition

A generalised dual arc of order / with parameters $\left(n=d_{0}, \ldots, d_{l+1}\right)$ is regular if, in addition, it satisfies the property that if π is the intersection of j elements of $\mathcal{D}, j \leq I$, then π is spanned by the subspaces of dimension d_{j+1} which are the intersections of π with the remaining elements of \mathcal{D}.

Use of a GDA to construct a MAC

Theorem

(A. Klein, J.S., L. Storme) Let Π be a hyperplane of $P G(n+1, q)$ and let \mathcal{D} be a generalised dual arc of order I in Π with parameters ($n, d_{1}, \ldots, d_{1+1}$).
The elements of \mathcal{D} are the source states and the points of $P G(n+1, q)$ not in Π are the keys. The message that belongs to a source state and a key is the generated
($d_{1}+1$)-dimensional subspace.
This defines a perfect MAC with attack probabilities

$$
p_{i}=q^{d_{i+1}-d_{i}} .
$$

Use of a GDA to construct a MAC

Use of a GDA to construct a MAC with arbitration

Theorem

(A. Klein, J.S., L. Storme) Let Π be a codimension 2 space of $P G(n+2, q)$ and let \mathcal{D} be a generalised dual arc of order I in Π with parameters $\left(n, d_{1}, \ldots, d_{l+1}\right)$.
The elements of \mathcal{D} are the source states and the lines of $P G(n+2, q)$ skew to Π are the keys. The message that belongs to a source state and a key is the generated $\left(d_{1}+2\right)$-dimensional subspace.
This defines a perfect MAC with attack probabilities

$$
p_{O_{i}}=q^{d_{i+1}-d_{i}}, p_{T}=\frac{1}{q+1}, p_{R_{i}}=q^{d_{i+1}-d_{i}}
$$

Use of a GDA to construct a MAC with arbitration

Examples of a GDA I

- The mapping $\zeta: P G(2, q) \rightarrow P G(5, q)$ with

$$
\zeta\left(\left[x_{0}, x_{1}, x_{2}\right]\right)=\left[x_{0}^{2}, x_{1}^{2}, x_{2}^{2}, x_{0} x_{1}, x_{0} x_{2}, x_{1} x_{2}\right]
$$

defines the quadratic Veronesean V_{2}^{4}.

- This defines a configuration of $q^{2}+q+1$ planes in $P G(5, q)$ such that
- They generate $P G(5, q)$.
- Each two intersect in a point.
- Each three are skew.

Examples of a GDA II

- Consider the map $\zeta: P G(2, q) \rightarrow P G(9, q)$ with

$$
\zeta\left(\left[x_{0}, x_{1}, x_{2}\right]\right)=\left[x_{0}^{3}, x_{1}^{3}, x_{2}^{3}, x_{0}^{2} x_{1}, x_{0}^{2} x_{2}, \cdots, x_{2}^{2} x_{1}, x_{0} x_{1} x_{2}\right]
$$

- This defines a configuration of $q^{2}+q+15$-dimensional spaces in $P G(9, q)$ such that
- Each two intersect in a plane
- Each three in a point
- Each four are skew.

Construction of a GDA I

- $P G(V)$ resp. $P G(W)$ a d-dimensional resp. $\left(\binom{d+l+1}{l+1}-1\right)$-dimensional space.
- We define $\zeta: P G(V) \rightarrow P G(W)$ by

$$
\zeta:\left[\sum_{i=0}^{d} x_{i} e_{i}\right] \mapsto\left[\sum_{\left.0 \leq i_{0} \leq \cdots \leq i_{l} \leq d\right]} x_{i_{0}} \cdot \ldots \cdot x_{i_{l}} e_{i_{0}, \ldots, i_{l}}\right]
$$

- For each $x \in V$, we denote by x^{\perp} the subspace of V perpendicular to x with respect to b. So

$$
x^{\perp}=\{y \in V \mid b(x, y)=0\}
$$

Construction of a GDA II

- For each point $P=[x]$ of $P G(V)$, we define a subspace $D(P)$ of $P G(W)$ by

$$
\begin{equation*}
D(P)=\left\{[z] \in W \mid B(z, \zeta(y))=0 \text { for all } y \in x^{\perp}\right\} . \tag{1}
\end{equation*}
$$

Theorem

The set $\mathcal{D}=\{D(P) \mid P \in P G(V)\}$ is a regular generalised dual arc with dimensions $d_{i}=\binom{d+l+1-i}{1+1-i}-1$.

A characterization of Veronesean surfaces

Theorem

(J. A. Thas-H. Van Maldeghem) Let \mathcal{F} be a set of $\frac{q^{n+1}-1}{q-1}$ n-dimensional spaces generating $P G\left(N=\frac{n(n+3)}{2}, q\right)$, such that
(1) two distinct elements of \mathcal{F} intersect in a point,
(2) three distinct elements of \mathcal{F} have an empty intersection.
(3) Two technical conditions which can be dropped in some cases.

Then \mathcal{F} consists of V_{n-1} subspaces to a Veronesean surface $V_{n}^{2^{n}}$ if q is odd, if q is even there is also an exception with the nucleus subspace.

Extension result on Veronesean surfaces

Theorem

(A. Klein, J.S., L. Storme) \boldsymbol{A} set of $\frac{q^{n+1}-1}{q-1}-\delta n$-dimensional spaces in $P G\left(N=\frac{n(n+3)}{2}, q\right)$ satisfying the above properties can always be extended if $\delta \leq \frac{q}{2}-1$.

Algebraic characterisation of the GDA $(9,5,2,0)$

Theorem

Every regular generalised dual arc \mathcal{D} with parameters $(9,5,2,0)$ in $P G(9, q), q>3, q$ odd, which contains $q^{2}+q+1$ elements, is isomorphic to the one given in the construction.

Corollary

A regular generalised dual arc in $P G(9, q), q>3, q$ odd, with parameters $(9,5,2,0)$ contains at most $q^{2}+q+1$ elements.

More general algebraic characterisation

We work inductively.

- Basic step: Theorem of Thas-Van Maldeghem.
- We get generalised dual arcs with missing elements in the subspaces.
- Find the remaining elements in these subspaces using our result.

Generalized quadrangles

A GQ of order (s, t) is an incidence structure $S=(P, B, I)$ for which I is a symmetric point-line incidence relation satisfying the following axioms.
(GQ1) Each point is incident with $t+1$ lines $(t \geq 1)$ and two distinct points are incident with at most one line.
(GQ2) Each line is incident with $s+1$ points $(s \geq 1)$ and two distinct lines are incident with at most one point.
(GQ3) If p is a point and L is a line not incident with p, then there is a unique point-line pair (q, M) such that pIMIqIL.

A scheme by Desoete using GQ's

Take a fixed point p in a GQ.

- Source states: Lines through p.
- Encoding rules: Points not collinear with p.
- Messages: The points of $p^{\perp} \backslash\{p\}$.

Arbitration schemes

Constructions using GDA's
Examples and construction
Geometric characterisations of GDA's
Other schemes arising from finite geometries

A scheme by Desoete

An A-scheme using ovoids in subGQ's (JS-K.Thas)

Consider a set $\left\{S_{1}, \cdots, S_{r}\right\}$ of $r>0$ distinct subGQs of order $\left(s, \frac{t}{s}\right)$ of the GQ S of order $(s>1, t>1)$

- Source states: subGQs S_{j}.
- Keys: Points in $S \backslash \cup_{i=1}^{r} S_{i}$.
- Messages: Ovoids in the GQs S_{j} subtended by a point outside their union.
- This yields 1 -fold perfect schemes with very good p_{0}.

Several schemes

All kinds of geometries and combinatorial structures can be used.

- Unitary and symplectic space.
- Latin squares.
- Rational normal curves.
-..

