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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 68, Number 1, March 2003 

AN APPLICATION OF GRAPHICAL ENUMERATION TO PA* 

ANDREAS WEIERMANNt 

Abstract. For a less than o0 let Na be the number of occurrences of w in the Cantor normal form 
of a. Further let Inl denote the binary length of a natural number n, let Inlh denote the h-times iterated 

binary length of n and let inv(n) be the least h such that Inlh < 2. We show that for any natural number h 

first order Peano arithmetic, PA, does not prove the following sentence: For all K there exists an M which 
bounds the lengths n of all strictly descending sequences (ao, .. . a, ) of ordinals less than Eo which satisfy 
the condition that the Norm Nao of the i-th term a, is bounded by K + IIl I (il.h 

As a supplement to this (refined Friedman style) independence result we further show that e.g., primitive 
recursive arithmetic, PRA, proves that for all K there is an M which bounds the length n of any strictly 
descending sequence (ao, . . . , a,) of ordinals less than Eo which satisfies the condition that the Norm Na, 
of the i-th term ai is bounded by K + JiI . inv(i). The proofs are based on results from proof theory and 

techniques from asymptotic analysis of Polya-style enumerations. 

Using results from Otter and from Matouiek and Loebl we obtain similar characterizations for finite 
bad sequences of finite trees in terms of Otter's tree constant 2.9557652856 .... 

?1. Introduction and motivation. A fascinating result of ordinal analysis is the 
classification of the provably recursive functions of first order Peano arithmetic PA 
in terms of the Hardy-Wainer hierarchy (Ha)a<eo. If PA proves Vx3yT(e, x, y) for 
some natural number e, then there exists some a < co such that {e} is elementary 
recursive in Ha. Moreover, if {eo} He then PA does not prove Vx yT(eo, x, y). 
These classical results can be reformulated neatly in terms of purely combinatorial 
independence results as follows. For a binary number-theoretic function f let A (f ) 
be the assertion VK 

MVnVao,....a. 
< E0[ao > ... > a,, & Vi < n[Nai < 

f (K, i)] => n < M] where Na denotes the number of occurrences of co in the 
Cantor normal form of a. Then, by the preceding, PA Y A (f ) where f (k, i) := k -i!. 
From the mathematical point of view it seems quite natural to investigate whether 
this result can be sharpened by using functions f which grow slower than k, i -+ k-i!. 
According to Simpson [13] (or Smith [14]) Friedman already showed PA Y A(f) 
where f (k, i) := k - (i + 1) (or even f (k, i) :- k + i). In this paper we characterize 
the class of functions f with PA YV A(f) in a nearly optimal way. The proof 
combines methods from proof theory with methods from pure mathematics1. To 
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For carrying out the calculations we have profited from the asymptotic analysis of integer partitions 

and the hints on asymptotic properties of trees of height less than or equal to 3 given in [7]. 
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6 ANDREAS WEIERMANN 

the author it has been a surprise that analytical methods from infinitesimal calculus 
can be applied to metamathematical issues like unprovability assertions. 

Our investigation is inspired by [6] where a related problem in the context of finite 
trees has been solved. The main result of [6] is strengthened in Section 4. 

?2. A proof of the unprovability result. Conventions. Throughout this paper small 
Greek letters range over ordinals less than Eo and small Latin letters range over non 
negative integers. By log (In, log3) we denote the logarithm with respect to base 2 
(e, 3), where e denotes the Euler number 2.71828... = En0o -. The least natural 
number greater than or equal to a given non negative real number x is denoted by 
[x]. The greatest natural number smaller than or equal to a given non negative 
real number x is denoted by [xJ. The binary length In] of a natural number n is 
defined by In :- [log(n + 1)]. The h-times iterated length function I-Kh is defined 
recursively as follows Ix0o := x and Xh+1 "-- .Ixlh1. Further let inv(n) be the least 
natural number h such that n h < 2. As usual we assume that the ordinals less than 
60 are available in PA via a standard coding. 

In this section we prove the following result. 

THEOREM 2.1. For all natural numbers h, PA Y 
VK]MVnVa•o .., a, < E0 [cao > 

... > , & Vi < n[Nori 
< K + lil 

- 
lilh] == n < M]. 

For this purpose it is convenient for us to recall an independence result from [15]. 

DEFINITION 1. For x < wc and a < E0 let 

A,(x) := 
maxl{Al(x) 

+ 1 : # < a & Nl < Na + x}. 

As usual put wo(a) := a and w,,lI(a) :-= oW()). Further let w,, := wo, (1). 
LEMMA 2.2. 1. Aa(x) = max{n : (]3o,... anc 

< Eo)[a = ao > ... > a, & 
[(Vi < n)Nai+l < Nai + x]]}. 

2. PA L VK]nAWK (1) = n. Moreover K -+ A~,~ (1) eventually dominates every 
provably recursive function of PA. 

PROOF. See, for example, [15]. 

DEFINITION 2. For natural numbers k and h define 

S {h 
"- 

a < h : Na = k} 

and let sh be the number of elements in Sh Moreover let k k 

Shk -= 
(• 

< 0h : Na < k} 

and let Sh be the number of elements in Sh 

Then k shkh and we have sh < Sh for k < 1 and h > 0 since if Na = k then 

N(a ? + - k) - 1 for 1 > k. The following lemma (which is provable in RCAo) 
yields a partial asymptotic analysis of sh 

LEMMA 2.3 (RCAo). For any h > 3 there exist a constant Ch > 0 and a natural 

number Kh such that sh > 2 Ikh2 r k > Kh. 

Using Lemma 2.2 and Lemma 2.3 we can show Theorem 2.1 as follows. 
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AN APPLICATION OF GRAPHICAL ENUMERATION TO PA 7 

PROOF OF THEOREM 2.1. The idea of the proof is to construct a slowed down long 
sequence (a,) from a given long sequence (a') which witnesses the definedness of 

A,,. 
(1) for an appropriate m. The details are as follows. 

Let h be given. Let h' := h + 3. Since h' > 3 we may pick Kh' and Chi according 
to Lemma 2.3. Let D be a constant such that 

1 
(la) lilh-2 > I h-2 h-2 

Ch, 

(lb) il - ilh' -2 > Kh' 

and 

(1c) lilh'-2 t I - 
ilh',-3 

hold for i > D. 
Let an arbitrary number K be given. Without loss of generality we may assume 

that m := rn(K) :-= LK - 1 > h'. 
Assume that aom- a'> ... >a' is a sequence with M = A,,, (1). Na m + 1 

and Na'+1 ? Na' + 1 for 0 < i < M. Consider 

M,! S, I 

_ for i > D. Assume that enumi is the enumeration function for Mi. i.e.. enumi(l) is 
the 1-th (with respect to <) member of Mi. Let ai := - m(a/i) + enumi(21il - i) 
for M > i > D and ai := 

w,,+, 
+ D - i for i < D. Then (ai)i<M is well-defined. 

Indeed, by (la). (Ib) and Lemma 2.3 there are at least 

2ch' I 
,'-,21,h'-2 

> 211' > i 

elements in Shil' hence in Mi for i > D. Moreover, we have Nalii < Na. + 1i 
m + 1 + JiJ for 1 < i < M. Now (Ic) and the definition of m yield Nai < 
K + i 

" (lilh'-2 + 1) ? K + 
lil. lilh'-3 - 

K +- li-lilh 
for D < i < M. The definition 

of m further yields Nai K + IiI. ilh for 1 < i < D. Thus Nai 
<_ 

K + 
i" 

- 
jilh for 

1 < i < M. Further we have at < aj for i > j. For if iI > Ijl then this holds due 
to a'.i > 

a.i' 
and if iil - jl then Mi - Mi and 21'il - i < 21'1 - j. Finally, since 

K + Ao,,,(K (1) eventually dominates every provably recursive function of PA, the 

lengths M of the sequences (ai)i<M as a function of K cannot be proved to exist in 
PA either. d 

We are left with proving Lemma 2.3. This will be done in a sequel of sublemmas. 

LEMMA 2.4 (RCAo). There is a naturalnumber K2 such that s 2 > e2 kor k > K2. 

PROOF. Let Pk be the number of integer partitions of k, i.e., the number of 
ordered tuples (il...., i,,) such that il > ... > im > I and Z'"I in= k. Then 

Pk - Sk . Indeed, each integer partition (il, im) of k corresponds to an element 

Coil-I + --. + w'm-1 E Sk and vice versa. Now use the partion theorem 

lim Pk 
- 40k 

e 3k 

(See, for example, [4] or Section 2 of [8] for a proof). -I 
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8 ANDREAS WEIERMANN 

For h > 3 and natural numbers p, q let Rh (p, q) be the set of ordinals a < 
(Oh 

which have a Cantor normal form a = -w" +-.- + oa,' of length p where Nai - q 
for 1 < i < p. Further let rh (p, q) be the number of elements in Rh (p, q). Then 
rh (p, q) < sh p.(q+]l) 

LEMMA 2.5 (RCAo). There exists a natural number K3 such that s3 > 

2_ 
2Ifor all 

k > K3. 
PROOF. 2 For any choice of p and q with p - (q + 1) < k we have r3(p, q) < s3. 

Thus it suffices to find a lower bound for r3(p, q) for appropriate p and q. 
Let p := p(k) := [ ]i and q := q(k) := Ik 2 - 1. Then, of course, p-(q+ 1) < k 

and s3 > s3 > r3(p, q). There exists a natural number K3 such that for k > K3 the- p.(qfollowing holds) 
the following holds 

1 k 
(3a) /-p 

_> 
I 

? loge Jkl 

since 

limk_ 
kP 

_ 
1k 

(3b) (log(e)- 
1)- 

- --p > |pl 
since limk,, p(k) - +oo 

(3c) - p 
_ 

p - p 
and 

(3d) s2 > e2lq 

by Lemma 2.4. 

We have r3(p, q) > 

_ 

since for fixed p there are at least (s2)P sequences of 

length p with entries in S2. Since we have to consider only ordered sequences we 
have to divide this number by p!. 

Since p! < (E)P . p . e we obtain by (3) that r3(p, q) > (e 

e>2,- 

V,' > 

22 V p-log(e) -(p+1)-log(p) > 21og e. I.p > 2 1 . - 

PROOF OF LEMMA 2.3. By induction on h > 3. The case h = 3 is done in 
Lemma 2.5. Assume now that the assertion holds for h - 1 > 3. For any choice 
of p and q with p - (q + 1) < k we have rh (p, q) < sh. Thus it suffices to find a 
lower bound for rh(p, q) for appropriate p and q. Let p := p(k) := [L and 

q := q(k) :- Ik-2 - 1. Then, of course, p - (q + 1) < k. Let r :- rh(p, q). There 
exists a natural number Kh such that for k > Kh the following holds 

q 3 k 
(4a) p. - --4 

kh 
lql(4b)h-3 

4 klh-2 

(4b) Ch--1 P>-P l 
8 lqlh-3 

'In this proof we follow a hint to exercise 10.7.6 (e) on p.397 in [7] where a bound on the number of 
trees of height less than or equal to three which have k leaves is obtained. 
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AN APPLICATION OF GRAPHICAL ENUMERATION TO PA 9 

1 q 
(4c) Ch -1 

? -q >PI 
8 lqlh-3 - 

since limk+oo 
lk12_l 

+0 and 

(4d) sh-' 2 q 

due to the induction hypothesis since limkO, q + - c. 
The proof has now a similar structure as the proof of the previous lemma. First we 

have r> by a similar reasoning as in the previous proof. Since p! < ()P - p-e 

(2c;' ci,-' C'm I -(p+ I) log p 
we obtain by (4) that r > (2' I -3 )P >2c ,.qI-3 -I 

e > 2 

h- 

-(+ ) > 

2ch- hi.. 3 > 
-,2c 

4*4 kh- >2 'kh-2 where Ch :- 2 
The proof shows that we may put Ch - ()h-3 

?3. Proof of the provability assertion. In this section we show the following the- 
orem. (Recall that inv(i) is the least h such that liIh < 2.) 

THEOREM 3.1. PRA - VK]MVnVa0o.... an < 6o[ao > ... > a,, & Vi < n 

[Nat < K + lil inv(i)] -= n < M]. 

COROLLARY 3.2. PRA F- VK3MVnVao..... ,, < 60o [ao > ... > a, & Vi < n 

[Nai < K + lil . K] = n < M]. 
Theorem 3.1 follows from the following Lemma. (Recall that sh!k is the number of 

elements in S . Moreover let (k) - (k) log(log(k))where logr(k) log3(k)) 
and similarly let In+l'(k) = In(ln"(k)) where In' (k) = In(k)). 

LEMMA 3.3. Let h > 3. There exists a constant Ch > 0 such that for all k with 

logh-2(k) > 1 we have shk < 2 
•og 

(k)' 

PROOF OF THEOREM 3.1. We argue informally in PRA while assuming that the 
proof of Lemma 3.3 can be formalized in RCAo so that the assertion of Lemma 3.3 
holds in PRA. Let 30(k) := k and 3,,,+,(k) := 33,,(k). Assume that K is given. 
Choose CK according to Lemma 3.3. Let N := 3K(K + CK). Assume that we 
have given a sequence ao > ... > a,, with Nai < K + il . inv(i) for i < n. We 
claim that n < N. Otherwise coK-1 > al > ... > aN+1 would be a sequence with 

Nai < K+ N + 1.inv(N + 1) for 1 i 
_ 

N + 1. ByLemma 3.3 N+ 1 is 
bounded by 

C K 
IogK 

N+1 Iminv(N+ )1) K (3K- I (K- CK ) 1)2(K+CK ) 

2 
-oK-2(K+INN+il'inv(N)) 

< 2CK 3K+CK < N. 

Contradiction. 

PROOF OF LEMMA 3.3. Let th (thk) be the number of finite rooted trees which have 

height bounded by h and which have k (at most k) nodes. It is easily seen that the 
number of elements in Sh k is bounded by thk + 1. Indeed, to any a in this set 
we define inductively a tree as follows. If a = 0 then T(a) consist of a singleton 
tree. Assume that a has the Cantor normal form ct" + + ... ?+ on. Assume that 
we assigned inductively trees 

T(al),...., 
T(an) to al,... an. Then we assign to a 

the rooted tree with immediate subtrees 
T(al),..... 

T(an). For different ordinals 
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10 ANDREAS WEIERMANN 

we obtain different non isomorphic trees. If a < 
WeK 

then the height of T(a) is 
bounded by K and if Na < k then T(a) has at most k + 1 nodes. 

Now we want to obtain non trivial bounds on thk. For this we first compute 
bounds on t.h 

3 Let Th be the generating function for the sequence 
(th),_0. 

Thus 

Th(X) 
0 th . k 

n th . xk since th = 0. Let pj denote the number of 
integer partitions of j, i.e., the number of sequences (il ..., ik) with i 

_> 
... 

_ 
ik > 1 and il + + ik j. Then, T2(x) Pi 

" 
xp + 

- since trees of 
height 2 correspond to integer partitions in a unique fashion and trees of height 1 
correspond uniquely to natural numbers. 

According to [11] we have 

OO 7O 

(5) T h+(X )t ._n = x - . 
ex 

-x1 n=1 .=1 (1 - xj) 

for all x E]0, 1[. 
Let eo(k) :- k and e,,+ I(k) ee,,(k). We prove by induction on h that for any 

h > 2 there is a constant Dh such that for every x C]0, 1[ 

Th (X) Dh 
(6) n(T ) < eh-2( ) x I 1-x 

and extract bounds on th from this afterwards. The assertion holds for h = 2 since 

as shown in [7] we have ln(E X-0 Px) ?< - < Hence In(Tx) ) < and we 

may put D2 - 3. 

By induction hypothesis assume that In(TI)) eh-2(Dh 
? _). 

Then Th(x) < 

x - eh- 1 (Dh 
_-), 

hence by taking logarithms and expanding - In(l - xj) into its 

power series we obtain by (5) for x E]0, 1[ 

In( (x)) tj (- In(1 - x')) 
x 

j= 

n=1 J=1 

O Th (xn) 
-=1 

00 Dh < -xeh I( 
- n 1 -x n=1 
0 xh Dh 

<D-xneh I( ) 
n 1 

n=1 

3In what follows we utilize formulas from [11] and some hints provided on p.328 and p.396 in [7]. 
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AN APPLICATION OF GRAPHICAL ENUMERATION TO PA 11 

1 Dh S heh-l( ) 
-1-x 1-x 

Dh+1 

_ 
eh-l( 

)" 
1-x 

By positivity of the summands involved all calculations are legitimate a posteriori. 
We then may put 

Dh+• 
:= Dh + 1 and the induction is finished. (Note that the 

radius of convergence of Th(x) is not less than 1.) 
Now let Ch > Dh+I. Let 

Ch x := x(n) := 1nh2(n) 
lnh-2(n) 

for large enough n such that x E]0, 1[. Since the coefficients of Tn,+' (x) are all non 
negative, we obtain by (6) 

1 1 Dh th < Th(x) < 
l e 

-xn -x 

Hence 

Dh 
ln(t,) < (-n + 1)- In(x) + eh2(Dh). I-x 

Since limo -In(I-x) = 1 we obtain x 

(-n + 1) Iln(x)= (-n + 1) - In(l - Ch 
lnh-2(n) 

n -1 -ln(1 C- () nCh n-I-nh-2(n) 

n c, Inh-2(n) In 2(n) 

nrCh 
(7) 

Inh-2(n) 
Moreover 

Dh Dh 
(8) eh-2( Dh D h 

h (Ch+1) 
h 

(r) 
for large n. Hence th < e h+In-2 for large n by (7) and (8) since l < 1. 

Let E be a natural number such that Inh-2k > 1 for k > E. From the calculation 
above we know that for a suitable constant C which does not depend on k. t, < 

C k h h k h h Ck C' k e nh2(k) for allk > E. Then th<k < t<h E =E < th <E+k Inh-2k < e 'nh-2 

for a suitable constant C' which does not depend on k. Since In(x) > log3 (x) we 
finally obtain the assertion. -d 

By refining the the previous calculations one obtains refined Friedman style 
independence results for the fragments In, of Peano arithmetic. Using multiplicative 
number theory it is also possible to obtain related results for PA and Iln in the style 
of Friedman and Sheard [3] where the ordinals are represented via a Schiitte style 
prime number coding [12]. For familiar theories like ATRo, ID1 HI - (CA)o one 
can obtain corresponding theorems. These results will be reported elsewhere. 
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12 ANDREAS WEIERMANN 

Notes added in proof. 1. Using deep methods from complex analysis the asymp- 
totic behaviour of th has been determined in more detail by Yamashita in [16]. 
2. After having seen this manuscript T. Arai proved in [1] the following refinement 
of Theorem 2.1 and 4.8. Let a,(K, i) :- K + lil 

" 
li-H,(i)H l where H,(i)-<' 

min{k : H,(k) > i}. Then, for a Eo, PA H 
VK3MVnVao,.... 

a , < Eo 

[ao > ... > a, & Vi < n[Nai < a.(K, i)] == n < M] if and only if a 
- Eo. 

?4. A related unprovability result concerning finite trees. In this section we show 
that the methods used in the proof of Theorem 2.1 together with results of Otter [9] 
and Loebl and Matou'ek [6] can easily be adapted to prove a related unprovability 
result concerning the embeddability relation on the set of finite trees. Recall that a 
finite rooted tree T (with outdegree bounded by a natural number 1) is a nonvoid 
set of nodes such that there is one distinguished node, root(T), called the root of 
T and the remaining nodes are partitioned into m > 0 (1 > m > 0) disjoint sets 
TI . . . , Tm, and each of these sets is a finite rooted tree (with outdegree bounded by 
1). The trees TI,... Tm are called the immediate subtrees of T. The cardinality of 
T is denoted by TI. We say that a finite rooted tree T1 is embeddable into a finite 
rooted tree T2, T1 < T2, if either T' is embeddable into an immediate subtree of 
T2 or if there exist listings (Ti' )i<,. 

(T2)J<n, 
of the (multiset of) immediate subtrees 

of T1 and T2 and natural numbers jI < ... < ji, < n such that T,! is embeddable 
into T2 for 1 < k < m. Then < is transitive and S < T yields ISI < TI1. 

Kruskal's famous tree theorem is as follows. 

THEOREM 4.1 (cf. [5]). For any w)-sequence (T' 
)•,<0 

offinite rooted trees there exist 
natural numbers i and j such that i < ] and T' < TP. 

Using K6nig's Lemma one easily proves the following Lemma. 
LEMMA 4.2. Let f be a binary number-theoretic function. For any K there is an 

N such that for all sequences (Ti)i<N of finite rooted trees with IT' I f (K, i)Jfor 
1 < i < N there exist naturalnumbers i andj such that 1 < i < j < N and T' K T<'. 

Assume that the set of finite rooted trees is coded as usual primitive recursively 
into the set of natural numbers. For a binary function f let B (f) be the following 
statement (formula) about finite rooted trees: 

VKENVT'1.... TN ((Vi < N)IT'i < f(K. i) == 3i, j[i < j & T'i T). 
Then Friedman's celebrated miniaturization result is as follows. 

THEOREM 4.3 (cf. [13, 14]). Let f (K, i) := K + i. Then PA Y B(f ). (In fact we 
even have ATRo Y B (f).) 

This result has later been sharpended considerably by Loebl and Matou'ek as 
follows. 

THEOREM 4.4 (cf. [6]). Let f (K, i) := K + 4 log(i). Then PA Y B(f). 
This result is rather sharp since Loebl and Matou'ek obtained the following lower 

bound. 

THEOREM 4.5 (cf. [6]). Let f (K, i) := K + 
. 
log(i). Then PRA H- B(f). 

For a real number r let fr(K, i) := K + r - log(i). Then the rational numbers 
r for which PA Y B(f,) form a Dedekind cut and one might be interested in 
the real number c which is represented by this cut. In this section we are going 
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AN APPLICATION OF GRAPHICAL ENUMERATION TO PA 13 

to show that c =l where a = 2.9557652856... is Otter's tree constant (cf. 
t- og(a) 

[9]). The real number a is defined as follows. Let t(0) :- 0, t(1) := 1 and 

t(i + 1) I } 
- (,~L1, 

d - t(d) - t (i - j + 1). Then t (i) is the number of finite 

trees with i nodes. Let p be the convergence radius of E•0 t(i) 
? 
zi. Then a -: 

Similarly let t, (i) be the number of finite trees with i nodes and with outdegree 
bounded by I and let pt be the convergence radius of 

E•io 
t (i) - 

zi 
and a, 

:/= Moreover let t (< n) (t, (< n)) be the number of finite trees (with outdegree bounded 
by 1) with at most n nodes. 

THEOREM 4.6 (cf. [9]). 1. There is a / > 0 such that 
lim,_ 

s = t . 

2. For any I > 2 there is a fl, > 0 such that lim, t(n t = 
i- • 

.n - 
. - 

In addition to Otter's result we need the following technical result. 

THEOREM 4.7. limNso PN - P- 
PROOF. Obviously we have pM ? PN for M < N. Thus p, := limN- o PN 

exists and p, > p. Assume for a contradiction that p, > p. Then we obtain 

/o 
t(i) - pi 

_ 
+o . hence 

N 

(9) t 
1(i) pi > 1 

i=0 

for some N. 
Otter's paper [9], more precisely equation (11) on page 592 in that paper. yields 

(10) tN 'P < 1 
i=0 

Thus 

(10 ) W Pi . 
i=O 

This yields by (9) 1 < :N t(i) pi ENt (i) 
? 
p <? 

•< 
Z 

0 tN(i) - P 1. 
Contradiction. 

THEOREM 4.8 (cf. [2]). Let U(z) - E 0 ui zl and V(z) ' • o vi-z' be two power 
series such that for some p > 0 lim =- p and the radius of convergence of U (z) is 

greater than p. Let U(z) - V(z) 
;0 

wiz'. Then limi, , - U(p). 

THEOREM 4.9 (RCAo). Let c := where a is Otter's tree constant. Let r be a 

primitive recursive real number and let fr be defined by f r (K, i) := K + r - log(i). 
1. If r > c then PA Y B(fr). 
2. If r < c then PRA - B(fr). 

Adapting ideas from the previous section we give a proof of Theorem 4.9 which 
is based on Otter's result, Theorem 4.6 and the result of Loebl and Matou'ek, 
Theorem 4.4. 

For a real number r let Fr (K) be the least N such that for all sequences 
(Ti)l<i<N of finite rooted trees with ITiP < K + r - log(i) for 1 < i < N there exist natural 

numbers i and j such that 1 < i < j < N and T' < T- and let FLM :- F4. Then 
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14 ANDREAS WEIERMANN 

the proof of Theorem 4.4 provided in [6] shows that FLM eventually dominates every 
function which is provably recursive in PA. 

We now prove Theorem 4.9. 
PROOF OF THEOREM 4.9. Ad 2: By Cauchy's formula for the product of two power 

series we have Z'o t(< n)zn = - •o t(i)zi. By employing Theorem 4.6 and 
Theorem 4.8 we find a natural number D so large that 

1 an 
(12) t(< n) < 

1pn 

1.1 _ 3 -f .1 1 

for n > D. Let K be given. Put 

M := 28K 
. 

D 

Assume that (Ti) 1 is a sequence of finite trees such that T'i < K + c - log(i) for 
1 < i < M and that the T' are pairwise distinct. Then IT' I K + c - log(M) - 
K + c . 8K+D. Thus by (12) we arrive at the contradiction 

1 aK+c.8K 
+D 

(13) M< 
aK+c-8KD3#-1.1 

< M. 
1 - a-' (K + c . 8K+D)2 

Ad 1: Since r > c and limm a, 
am 

= a we may pick an m such that r > 1 

Then we may choose a rational number r' such that r > r' > log(,, 

According to assertion 2 of Theorem 4.6 we find a natural number E so large that 
3 

(14) 
tin(n)> 

a-, 
. flm" 

n-? . 0.9 

for all n > E. Let D be so large that for i > D the following inequalities hold: 

(15a) Lr'- lil] > E, 

(15b) 2Lr'lij-log(a',) m " 
-0.9 - (Lr' .- Ii]) > 21il 

and 

(15c) 4 - log(l i) + r' - i < r - log(i). 

Now assume that K is given. We may assume that k :- [J > D and k + m + 
4 + D < K. Let S' ..., SNx- be a finite sequence of finite rooted trees where 
N - FLM(k) and IS' < k + 4 - log(i) for 1 < i < N - 1 such that there are 
no indices i,j with 1 < i < j N - 1 and S' < SJ. Let < be a primitive 
recursive extension of the partial ordering < on the set of finite rooted trees to 
a linear ordering. (E.g., one may employ the ordering which is induced by the 
correspondence between finite rooted trees and ordinals less than eo.) Let Md' be 
the set of finite trees T such that T has at most d nodes and the outdegree of T 
does not exceed m. Let enum" (1) be the I-th member of Md' with respect to the 
linear order < . Define a sequence of finite trees as follows. Let T' be the finite 
rooted tree consisting of a root and two immediate subtrees U' and V'. The tree 
Vi is defined as follows. If i < D let V' be the uniquely defined (linear) tree with 
D - i nodes sucht that the outdegree does not exceed 1. If i > D let V' be the tree 

enumm, lil (21il - i). The tree Ui consists by definition of a root and two immediate 

subtrees U' and U2. U' is S1 for i < D and SWil for i > D. The tree U2 consists 
of a root and m + 1 immediate subtrees consisting exactly of one root. Then T' is 
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well-defined. Indeed, by (14) and (15a) the number of elements in Mm ,li is for 
i > D at least 

ar' ([i" -(Lr' lil) -f,,-m 0.9 > 211. 
Moreover (15c) yields 

T' I < K + r - log(i) 

for 1 < i < N - 1. Indeed for i > D (15c) yields IT' = 1 + IV?' + IU' I 
1 + [r'- lil] + 1 + k + 4 log2(1i1) + m + 2 < K + r log2(i). For i < D we obtain 
T'- I= 1 I V' + U' l 1 + D + k + 1 + m + 2 < K. We claim that 

T' < Tj 

does not hold for 1 < i < j < N - 1. Assume for a contradiction that T' <1 T' 
for some i, j with 1 < i < j < N - 1. First we exclude the possibility that T' 
is embeddable into an immediate subtree of TV. Indeed T' < VJ is impossible 
since the outdegree of V' does not exceed m but the outdegree of T' does. Now 
assume that T' < UJ. Here we have to distinguish again some cases. The case 
Ti < 

U2 
is impossible since I T' > IU2I. If T 7 U- then U <1K U' < T' K U'. 

Hence U = Ui1 by the choice of the sequence (S') ''1. But then IT' >U 

contradicting T' Ui-. Therefore T' < Ui yields that U' is embedabble into an 
immediate subtree of UJ. U' < U2j is excluded for cardinality reasons. U' < U' 

yields U( <1 U' < Ul hence U' = U-1 but then IU'I > I U' in contradiction to 
U' <1 Ui. Thus the case T' K U.i does not occur and T' is not embeddable into 
an immediate subtree of TV. 

Therefore T' TJ yields that U' is embeddable into an immediate subtree of 

TJ. U' < V1 is impossible since the outdegree of V' does not exceed m but the 
outdegree of U' does. Therefore U' < U' and hence necessarily V' < V] also. 

U' < U1 is impossible since IU'I > Ui,'. If U' < U- then U/' <1 U' <1 Uf' 
hence U' = U' and I U'I UI in contradiction to U' < U11. Hence U' is 
embeddable into an immediate subtree of U'. We claim that U' K U-'. Otherwise 

U Ui' U < U'. Thus U' < U- hence U'= U' by the choice of (Si)N- 2 2 2 1 1 - i=l 

If U 
. 

S' then U/• S' and necessarily i < j < D. By construction in this 
case IV'1 > IV-I in contradiction to V' <1 Vi. If Ul 

4- 
S1 then necessarily 

D < i < j < N- 1. We have U = S-iS and U' = SIJI hence I i j I . Therefore 

21'i - i > 21'1 - j and V' = enumL,..iji(21;l 
- i) > enumLr/,.Iij(21il - j) = Vi in 

contradiction to V' < VJ. 
The argument shows that Fr(K) majorizes FLM([L ]) for large K. Thus Fr is not 

provably recursive in PA since FLM eventually dominates every provably recursive 
function of PA. Thus PA Y B (f,). -d 
In view of [10] we conjecture that the proof above can be adapted to show that for 
r > c even ACAo + (H1 - BI) Y B(fr) where fr(K, i) = K + r - log(i). 

Related independence results can be obtained for binary trees and Friedman's 
extension of Kruskal's theorem which is based on the gap condition Moreover we 
obtained related refined versions of the Paris Harrington theorem, the hydra battle 
and the Goodstein process. These results will be reported elsewhere. 
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16 ANDREAS WEIERMANN 

Questions: 1. Is it possible to use the methods of this paper in the context of 
bounded arithmetic? 
2. Is it possible to give a purely proof-theoretic treatment of the unprovability 
results obtained in this paper? 
3. Is it possible to characterize the slow growing hierarchy via a similar bounding 
function result? 
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