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Inleiding

These notes are based on a latesfile produced by Robbert Gurdeep Singh and Jonathan Peck during a
course proof theory in the first semester of the academic year 2016-2017, taught by Andreas Weiermann.

In this course we are going to study the limits of proof formalisms, in particular formalisms bases on the
sequent calculus. During this excursion we study ordinals, subrecursive hierarchies and formal systems.
It is important to note that the results are based on a well thought combination of systems which allow
for a straight forward verification of many simple steps. It will be a good exercise for the student to do
some proofs by himself or herself to get a feeling for the automatism. Some proofs are thus left out. To
start with let us consider the Russell set R

R = {x|x 6∈ x}
Is R a member of this set or not? This leads to a classical paradoxon which is at the heart of proof theory.
How can we safeguard that proof formalism are free of contradictions? Another question (going back
to Kreisel) is: what extra information besides truth do we got from the verification of a fact in a formal
system.

iii





CHAPTER 1

Gentzen’s Hauptsatz

We recall some basic concepts from predicate logic and will cover Gentzen’s classical cut elimination
theorem. At the end we give some applications to first order predicate logic.

To set the stage properly we have to recall some basic notions from logic. Our exposition follows worked
out lecture notes by Justus Diller by whom the lecturer started learning about logic.

1. First order languages

Definition 1.1. A first order language L is determined by:
• a countably infinite set of free variables FV(L) = {a1, a2, a3, . . . },
• a countably infinite set of bound variables BV(L) = {x1, x2, x3, . . . },
• a set of constants LC ,
• a set of function symbols LF together with an assignment of arities #f > 0 for all f ∈ LF ,
• a set of relation symbols LR together with an assignment of arities #R > 0 for all R ∈ LR,

among which in all cases the symbol = for identity with arity 2,
• logical symbols: ⊥,→ en ∀.

Note that we distinguish between free and bound variables. This is basically a matter of taste but this
choice helps avoiding certain pitfalls which could show up later otherwise.

Definition 1.2. The set of L-terms T (L) is inductively generated by the following clauses
(1) if a ∈ FV(L) then a ∈ T (L),
(2) if c ∈ LC then c ∈ T (L),
(3) if f ∈ LF with #f = n and if t1, . . . , tn ∈ T (L) then f(t1, . . . , tn) ∈ T (L). Note that this

case includes the case when R is the symbol for equality.

Definition 1.3. The set of prime formulas P (L) of L is given by:
(1) ⊥ ∈ P (L),
(2) if R ∈ LR with #R = n and t1, . . . , tn ∈ T (L) then R(t1, . . . , tn) ∈ P (L).

Definition 1.4. The set of formulas F (L) is inductively generated by the following clauses:
(1) If φ is a prime formula of L then φ ∈ F (L),
(2) if φ, ψ ∈ F (L) then φ→ ψ ∈ F (L),
(3) if φ(a) ∈ F (L) and if the bound variable x does not occur in φ then ∀xφ(x) ∈ F (L).

FV(φ) denotes the set of free variables which occur in φ and BV(φ) denotes the set of bound variables
which occur in φ. An L-formula φ is called an L-sentence if FV(φ) = ∅.

1



2 1. GENTZEN’S HAUPTSATZ

As usual we use the following abbreviations:

¬φ ≡ φ→ ⊥ > ≡ ¬⊥ φ ∨ ψ ≡ ¬φ→ ψ

φ ∧ ψ ≡ ¬(φ→ ¬ψ) φ↔ ψ ≡ (φ→ ψ) ∧ (ψ → φ) ∃xF (x) ≡ ¬(∀x¬F (x))

s 6= t ≡ ¬(s = t)

Definition 1.5. A sequent is an ordered pair Γ : ∆ of finite sets of L-formulas. We write Γ,∆ for Γ ∪∆
and Γ, φ for Γ ∪ {φ}. A sequent Γ : ∆ represents informally the statement “if all formulas in Γ are true
then there exists a formula from ∆ which is true”.

2. Theories

Definition 1.6. An L-theory T is an ordered pair (L(T ), Ax(T )) where L(T ) is a first order language
and Ax(T ) is a set of L-sentences (called the set of axioms of T ).

Definition 1.7. The semantics of a first order language L is given by an L-structure S =
(|S|, SC , SF , SR) which is given by

• a non empty set |S| called the domain of S,
• a set SC of interpretations of symbols for the constants in LF , i.e. for all c ∈ LC exists a
cS ∈ |S|,

• a set SF of interpretations of function symbols in LF , i.e. for all f ∈ LF with #f = n there
exists an fS ∈ SF such that fS : |S|n → |S|,

• a set SR of interpretations of relation symbols in LF , i.e. for all R ∈ LF with #f = n there
exists an RS ∈ SF such that RS ⊆ |S|n.

Given an L-structure S we define LS , the language of S, by adding to L a new constant cs for every
element s ∈ |S|. It is understood that in this context the interpretation of cs is equal to s.
For closed LS-terms t we define its interpretation S(t) recursively as follows.

(1) S(c) = cS ,
(2) S(cs) = s,
(3) S(f(t1, . . . , tn)) = fS(S(t1), . . . , S(tn)).

For closed LS-formulas φ we define its interpretation S(φ) ∈ {>,⊥} recursively as follows.
(1) S(s = t) = > ⇐⇒ S(s) = S(t),
(2) S(R(t1, . . . , tn)) = > ⇐⇒ (S(t1), . . . , S(tn)) ∈ RS ,
(3) S(⊥) = ⊥,
(4) S(φ→ ψ) = > ⇐⇒ S(φ) = ⊥ of S(ψ) = >,
(5) S(∀xφ(x)) ⇐⇒ S(φ(cs)) = > voor alle s ∈ |S|.

For closed sequents Γ : ∆ we define its interpretation S(Γ : ∆) as follows: S(Γ : ∆) =
> ⇐⇒ there exists a ψ ∈ ∆ such that S(ψ) = > as long as S(φ) = > for all φ ∈ Γ.

Definition 1.8. An S-assignment is a mapping σ : FV (L) → {cs : s ∈ |S}. Γσ denotes the result of
replacing all occurrences of free variables in Γ through hun images onder σ.

Definition 1.9. Let S be an L-structure.
(1) S � φ if S(φσ) = > for all assignments σ.
(2) S � Γ : ∆ if S(Γσ : ∆σ) = > for all assignments σ.
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3. The sequent calculus

Let us now define the axioms and rules of the Gentzen caluculus. It is a specific feature of such a calculus
that it derives sequents of formulas instead of single formulas. This calculus comes with a so called cut
rule which moldels the modus pones proof rule.

The insight that one can eliminate all applications of the cut rule in derivations is one of the major
achievements of Gerhard Gentzen. His cut elimination procedure and variations and refinements thereof
are cental tools used in proof theory even nowadays.

Definition 1.10. The sequent caluculus has as logical axioms: For every prime formule P :

Γ, P : P,∆

Γ,⊥ : ∆

The sequent calculus comes with the following derivation rules:
Γ, φ : ψ,∆

→ S
Γ : φ→ ψ,∆

Γ : φ,∆ Γ, ψ : ∆
→ A

Γ, φ→ ψ : ∆

Γ : φ(a),∆
∀S

Γ : ∀xφ(x),∆

where a /∈ FV(Γ : ∀xφ(x),∆)

Γ, φ(t) : ∆
∀A

Γ,∀xφ(x) : ∆

where t is an arbitrary term,
Γ, t = t : ∆

= I
Γ : ∆

Γ, f(t1, . . . , tn) = f(s1, . . . , sn) : ∆
= F

Γ, t1 = s1, . . . , tn = sn : ∆

Γ, R(t1, . . . , tn) : ∆
= P

Γ, R(s1, . . . , sn), t1 = s1, . . . , tn = sn : ∆

Γ : ψ,∆ Γ, ψ : ∆
CUT

Γ : ∆
The formula ψ in the cut rule is called CUT-formula. Note that the CUT-rule is the only rule where
premisses in a rule may show up which do not necessarily occur in the conclusion of the rule in some
traceable way.

Definition 1.11. Let T be an L-theory, then for all φ ∈ Ax(T ), we add the following proof rule
Γ, φ : ∆

T
Γ : ∆

This rule is called T -rule.
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Definition 1.12. A derivation in T is inductively defined as follows:
(1) every logical axiom Γ : ∆ is a T -derivation of Γ : ∆.
(2) If Hi are T -derivations of Γi : ∆i (i = 1, . . . , n) and if

Γ1 : ∆1 · · · Γn : ∆n

Γ : ∆
is a derivation rule or a T -rule, then

H1 · · · Hn

Γ : ∆
is a T -derivation.

We write T ` Γ : ∆ if there exists a T -derivation of Γ : ∆. We write ` Γ : ∆ for an ∅-derivation of
Γ : ∆. In such a situation the derivation does not contain an application of the T -rule.

THEOREM 1.13 (Correctness). Let T be an L-theory. If T ` Γ : ∆ then T � Γ : ∆.

PROOF. By induction on the length of the derivation of Γ : ∆. �

Definition 1.14. We define the notion of direct sub formula as follows:
(1) If P ∈ LR with #P = n then P (t1, . . . , tn) is a direct sub formula of P (s1, . . . , sn) for all

terms t1, . . . , tn, s1, . . . , sn,
(2) ⊥ has no direct sub formula,
(3) φ and ψ are direct sub formulas of φ→ ψ,
(4) φ(t) is a direct subformule of ∀xφ(x) for all terms t.

Using this notion we define the notion of sub formula as follows
(1) φ is a sub formule of φ
(2) if φ is a sub formule of ψ and if ψ is a direct sub formule of χ then φ is a sub formule of χ.

This definition is not completely intuitive since for example P (b) is a directe sub formule of P (a) even
if a and b are different.

Lemma 1.15 (Sub formule-property). In a ∅-derivation where the CUT rule has not been applied all
sequents consist of sub formules of formulas from the conclusion or of equations.

PROOF. By induction on the length of the derivation of Γ : ∆. �

Definition 1.16. We define the complexity |φ| of a formula φ as follows:
(1) |⊥| = 0 = |P (t1, . . . , tn)|,
(2) |φ→ ψ| = max{|φ|, |ψ|}+ 1,
(3) |∀xφ(x)| = |φ(x)|+ 1.

Definition 1.17. We write r
n

Γ : ∆ if there is a derivation of Γ : ∆ such that:
(1) The derivation Γ : ∆ has height not exceeding n
(2) Vor every cut formula φ which occurs in the derivation of Γ : ∆ we have |φ| < r.

Note that 0
n

Γ : ∆ implies that there is a cut free derivation of Γ : ∆.
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3.1. Cut-elimination. The cut rule is special in the sense that it is the only rule where a formula
possibly can disappear from the conclusion in a derivation. So application of this rule destroy the sub
formula property and so in presence of this rule it is usually very difficult to extract information from
proofs. It turns out that one can replace applications of the cut rule by alternative derivations. The price
to pay is that the derivations become much longer. In this section we learn how this can be achieved.

We assume that we will deal with derivations in pure predicate logic (where no additional axioms are
around). So we do not consider applications of the T -rule in this section. When we analyze Peano
arithmetic later we will learn how in special situations (partial) cut elimination can be achieved even in
the presence of applications of the T -rule.

THEOREM 1.18. Let φ be an L formula. Then 0

2|φ|
Γ, φ : φ,∆.

PROOF. By induction on the complexity of φ.

If |φ| = 0 then φ is a prime formula priem, and ` Γ, φ : φ,∆ is an axiom.

If |φ| > 0 then there are two possibilities:

• φ ≡ ψ → χ. The induction hypothesis yields

0

2|ψ|
Γ, ψ : ψ,∆ and

0

2|χ|
Γ, χ : χ,∆.

By applying the derivation rules→ A and→ S we find

0

2|ψ→χ|
Γ, φ : φ,∆.

• φ ≡ ∀xψ(x). The induction hypothesis yields

0

2|ψ(a)|
Γ, ψ(a) : ψ(a),∆.

By applying ∀A and ∀S we find

0

2|φ|
Γ, φ : φ,∆.

�

THEOREM 1.19 (Substitution theorem). Assume that r
n

Γ(b) : ∆(b) where b /∈ {a} ∪FV(Γ(a) : ∆(a)).
Then we have r

n
Γ(s) : ∆(s) for all terms s.

PROOF. By induction on n.

If n = 0 then P (b) ∈ Γ(b) ∩ ∆(b) or ⊥ ∈ Γ(b). Then P (s) ∈ Γ(s) ∩ ∆(s) or ⊥ ∈ Γ(s), hence
Γ(s) : ∆(s) is an axiom.

If n > 0 then we consider the situation when Γ(b) : ∆(b) is the result of an application of a derivation
rule and we distinguish cases accordingly:
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• Suppose the last applied derivation rule was (→ A). Then φ(b)→ ψ(b) ∈ Γ(b) and

r
n1

Γ(b) : ψ(b),∆(b),

r
n2

Γ(b), χ(b) : ∆(b).

The induction hypothesis yields

r
n1

Γ(s) : ψ(s),∆(s) and

r
n2

Γ(s), χ(s) : ∆(s).

The assertion follows by applying (→ A).

• Suppose the last applied derivation rule was (∀S). Then ∀xψ(x, b) ∈ ∆(b) and

r
n1

Γ(b) : ψ(a, b),∆(b)

where a /∈ FV(Γ(b) : ∆(b)). The induction hypothesis yields

r
n1

Γ(s) : ψ(c, s),∆(s)

for c /∈ FV(s). The assertion follows by applying (∀S).

The other cases are similar. �

Lemma 1.20 (Weakening lemma). If k

n
Γ : ∆ then k

n′
Γ′ : ∆′ where Γ ⊆ Γ′,∆ ⊆ ∆′ ∪ {⊥} and

n ≤ n′.

PROOF. By induction on n. Note that the treatment of ∀S needs some extra care due to the variable
condition. �

In the sequel applications of the weakening lemma will not be mentioned explicit. So cases where the
principal formula of a derivation rule is present in the assumption or not can be treated simultaneously by
assuming w.l.o.g. that the principal formula of a derivation rule is present in the assumption.

Lemma 1.21 (Inversielemma).
(1) If k

n
Γ : φ→ ψ,∆ then k

n
Γ, φ : ψ,∆.

(2) If k

n
Γ : ∆,∀xφ(x) then k

n
Γ : ∆, φ(t) where t is an arbitrary term.

PROOF. Both assertions are proved by induction on n.

(1) Assume first that n = 0, then k

n
Γ : φ → ψ,∆ is an axiom. This yields that Γ, φ : ψ,∆

is an axiom, too. If n > 0 we consider the situation when the conclusion is the result of an
application of a derivation rule and we distinguish cases accordingly:

• (→ S). Then χ→ ξ ∈ ∆, φ→ ψ and

k

n1
Γ, χ : ξ, φ→ ψ,∆

for some n1 < n. The induction hypothesis yields

k

n1
Γ, χ, φ : ξ, ψ,∆
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If φ → ψ is the principal formule of the last rule (hence φ → ψ ≡ χ → ξ) then the
assertion is clear. Otherwise we find

k

n
Γ, φ : ψ,∆

by applying the inference rule (→ S).

• (∀S). Then ∀xχ(x) ∈ ∆, φ→ ψ and

k

n1
Γ : ∆,∀xχ(x), χ(a), φ→ ψ

where n1 < n. The induction hypothesis yields

k

n1
Γ, φ : ψ, χ(a),∀xχ(x),∆.

Another application of (∀S) yields the assertion.

The other cases can be dealt with similarly.

(2) If n = 0, then Γ : ∆,∀xφ(x) is an axiom and hence Γ : ∆, φ(t) is an axiom, too. If n > 0
we consider the situation when the conclusion is the result of an application of a derivation rule
and we distinguish cases accordingly:

• (∀S). Then

k

n1
Γ : ψ(a),∀xψ(x),∀xφ(x),∆

with n1 < n. If ∀xφ(x) was the principal formula (hence ∀xφ(x) ≡ ∀xψ(x)), then we
obtain

k

n1
Γ : φ(a),∀xφ(x),∆

The substitution lemma yields

k

n1
Γ : φ(t),∀xφ(x),∆

The induction hypothesis yields

k

n1
Γ : φ(t),∆

If ∀xφ(x) was not the principal formule, then the induction hypothesis yields

k

n1
Γ : ψ(a),∀xψ(x), φ(t),∆

An application of the rule (∀S) yields

k

n1
Γ : ∀xψ(x), φ(t),∆

• The remaining cases are similar.

�

Lemma 1.22 (Reductielemma). Let φ be a formula with |φ| ≤ r. Assume r
n

Γ, φ : ∆ and r
m

Γ : φ,∆.
Then

r
2n+m

Γ : ∆

PROOF. We distinguish two cases:

• φ is a prime formule. Then we perform induction on m. If m = 0 then Γ : φ,∆ is an axiom en
we have to deal with three cases:
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– There is a prime formula ψ 6≡ φ with ψ ∈ Γ and ψ ∈ ∆. Then Γ : ∆ is an axiom.

– ⊥ ∈ Γ. Then Γ : ∆ is an axiom.

– φ ∈ Γ. Then k

n
Γ : ∆ follows from the assumptions since .Γ, φ is equal to Γ.

If m > 0 then Γ : φ,∆ is the conclusion of a derivation rule. Let us assume the premisses

r
mi

Γi : φ,∆i

where mi < m for all i. The induction hypothesis yields

r
2n+mi

Γi : ∆i.

An application of the same rule yields

r
2n+m

Γ : ∆.

• φ is not a prime formula. If φ ∈ Γ then the assertion follows from the assumptions. Assume
therefore that φ /∈ Γ. Now we perform induction on n. Assume first that n = 0. Then Γ, φ : ∆
is an axiom where φ not a principal formula. Then Γ : ∆ is an axiom, too and the assertion
follows. Assume n > 0. We consider the situation when Γ : ∆ is the result of an application of
a derivation rule and we distinguish three cases:

– φ is not the principal formula of the last rule. Then we have the premisses

r
ni

Γi, φ : ∆i

with ni < n. The induction hypothesis yields

r
2ni+m

Γ,Γi : ∆i,∆

Applying the same rule yields

r
2n+m

Γ : ∆

– φ ≡ ψ → χ is the principal formula of the last rule. Then this rule is (→ A). We have the
following premisses

r
n1

Γ, φ : ψ,∆ r
n2

Γ, φ, χ : ∆

with n1, n2 < n. The induction hypothesis yields

r
2n1+m

Γ, φ : ψ,∆ r
2n2+m

Γ, φ, χ : ∆

Inversion applied to r
m

Γ : φ,∆ yields r
m

Γ, ψ : χ,∆. We have |ψ|, |χ| < |φ| ≤ r. An
application of the cut rule yields

r
m

Γ, ψ : χ,∆ r
2n1+m

Γ : ψ, χ,∆
CUT

r
k

Γ : χ,∆

with k = 2n1 +m+ 1. We hence obtain

r
k

Γ : χ,∆ r
n2

Γ, χ : ∆
CUT

r
l

Γ : ∆

for l = k + 1. The assertion follows because 2n+m ≥ l.
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– Assume that φ ≡ ∀xψ(x) and that φ is the principal formula of the last rule. Then this rule
is (∀A). We have then a premise

r
n1

Γ, ψ(t),∀xψ(x) : ∆

with n1 < n. The induction hypothesis yields

r
2n1+m

Γ, ψ(t) : ∆.

Inversion applied to r
m

Γ : φ,∆ yields r
m

Γ : ψ(t),∆. Because of |ψ(t)| < |φ| ≤ r we
obtain the conclusion as follows by a cut

r
2n1+m

Γ, ψ(t) : ∆ r
m

Γ : ψ(t),∆
CUT

r
2n+m

Γ : ∆

�

This proof can be fine tuned in several ways.

Exercise 1.23. Consider the following variant of the rank function.
(1) |φ| := 0 if φ is atomic.
(2) |φ| := max{|ψ|+ 1, |χ|} if φ = ψ → χ.
(3) |φ| := |ψ|+ 1 if φ = ∀xψ.

Prove the following refinement of the reduction lemma: Let φ be a formula with |φ| ≤ r. Assume

r
n

Γ, φ : ∆ and r
m

Γ : φ,∆. Then

r
n+m

Γ : ∆

Exercise 1.24. Consider the following variant of the rank function.
(1) |φ| := 0 if φ is atomic.
(2) |φ| := max{|ψ|} if φ = ψ → ⊥.
(3) |φ| := max{|ψ|+ 1, |χ|} if φ = ψ → χ and χ 6= ⊥.
(4) |φ| := |ψ|+ 1 if φ = ∀xψ.

Prove the following refinement of the reduction lemma: Let φ be a formula with |φ| ≤ r. Assume

r
n

Γ, φ : ∆ and r
m

Γ : φ,∆. Then

r
n+m

Γ : ∆

THEOREM 1.25 (Cut-elimination). If r+1
n

Γ : ∆ then r
3n

Γ : ∆.

PROOF. By induction on n. If n = 0 then Γ : ∆ is an axiom en the assertion follows immediately.
If n > 0 then there are two cases:

• Γ : ∆ was not derived by an application of the cut rule. The we have the premises

r+1

ni
Γi : ∆i

where ni < n. The induction hypothesis yields

r
3ni

Γi : ∆i

Applying the same rule yields

r
3n

Γ : ∆
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• Γ : ∆ was the conclusion of a cut rule. Then we have the premises.

r+1

n1
Γ, φ : ∆ r+1

n2
Γ : φ,∆

with n1, n2 < n en |φ| ≤ r. The induction hypothesis yields

r
3n1

Γ, φ : ∆ r
3n2

Γ : φ,∆

The reduction lemma then implies

r
2·3n1+3n2

Γ : ∆

so that we arrive at

r
3n

Γ : ∆

�

Iterated applications of the cut elimination theorem yields the following classical result.

THEOREM 1.26 (Gentzen’s Hauptsatz). If r
n

Γ : ∆ then there exists an m such that 0
m

Γ : ∆ (more
specifically we can choose m = 3r(n) where 30(n) = n and 3r+1(n) = 33r(n).

Exercise 1.27. Consider the propositional fragment of the Genten calculus where all formulas are quan-
tifier free. Prove the following refined version of the Cut elimination theorem for propositional logic.

THEOREM 1.28 (Cut-elimination). If r+1
n

Γ : ∆ then r
3·n

Γ : ∆.

4. Applications of Gentzen’s theorem

Definition 1.29. A formula φ is called universal if φ has the form ∀x1, . . . , xnψ(x1, . . . , xn) where n ≥ 0
and ψ(a1, . . . , an) is quantifier free.

Definition 1.30. A theory T is called open if all T -axiom’s are universal.

Definition 1.31. A sequent Γ : ∆ is called existential if Γ consists of universal formulas only and ∆
consists only of quantifier free formulas. If Γ consists of universal formulas the we call a set formulas ΓH

a Herbrand instantiation of Γ if for all universal formulas ∀xφ(x) in Γ the set ΓH contains finitely many
instances φ(t1), . . . , φ(tk) and moreover we demand that ΓH must not contain other formulas. Here x
denotes a tupel x = x1, . . . , xn of variables and the ti denote n-tuples of terms.

Notice that ΓH is quantifier free. Moreover note that Γ = ΓH if Γ is quantifier free. If ΓH1 and ΓH2 are
Herbrand instantiations of Γ then ΓH1 ∪ ΓH2 is a Herbrand instantiation of Γ, too.

Lemma 1.32. Let Γ : ∆ be an existential sequent. If 0
n

Γ : ∆ then there exists a Herbrand instantiation
ΓH of Γ such that 0

n
ΓH : ∆.
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PROOF. By induction on n. If n = 0 then Γ : ∆ is an axiom. Define

ΓH = {φ ∈ Γ | φ kwantorvrij}

Then ΓH is an Herbrand instantiation of Γ and moreover ΓH : ∆ is an axiom.

If n > 0, then we have to consider the following cases depending on the last applied derivation rule:

• (∀A). Then we have the premises

0
m

Γ,∀x1φ, φ(t1) : ∆

where ∀x1φ ∈ ∆ and m < n. the sequent Γ, φ(t1) : ∆ is an existential sequent en the
induction hypothesis can be applied. So we find a Herbrand instantiation (Γ, φ(t1) : ∆)H

′ ⊆
ΓH
′
, φ(t1)H

′
such that:

0
m

(Γ,∀x1φ)H
′
, φ(t1)H

′
: ∆

The set ΓH
′
, φ(t1)H

′
is a Herbrand instantiation of Γ and the assertion follows.

• (→ S). Then we have the premises

0
m

Γ, φ : ψ,∆

where φ → ψ ∈ ∆ and m < n. Since ∆ is quantifier free the sequent Γ, φ : ψ,∆ is an exis-
tential sequent en the induction hypothesis can be applied. So we find a Herbrand instantiation
(Γ, φ)H ⊆ ΓH , φ such that:

0
m

ΓH , φ : ψ,∆

An application of (→ S) yields

0

m+1
ΓH : φ→ ψ,∆

• The other cases can be treated similarly.

�

Lemma 1.33. Let φ be a universal formula and φH be a Herbrand instantiation of φ. If

T ` Γ, φH : ∆

then

T ` Γ, φ : ∆

PROOF. Because φ is universal, we conclude that φ ≡ ∀xψ(x) where ψ is quantifier free. A Her-
brand instantiation of φ consists of a set

φH = {ψ(t1), . . . , ψ(tk)}

where every ti is a term tupel (t1i, . . . , tni) is. We thence have a premis

T ` Γ, ψ(t1), . . . , ψ(tk) : ∆

After appying the rule (∀A) several times we finally arrive at

T ` Γ,∀xψ(x) : ∆.

�
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THEOREM 1.34 (Herbrand’ theorem). Let T be open and T ` ∃xφ(x) where φ is quantifier free. Then
there exist finitely many term tupels t1, . . . , tk of the same length as x such that T ` φ(t1), . . . , φ(tk).

PROOF. Let T be open and assume T ` ∃xφ(x). The formula ∃xφ(x) is the same as ¬∀x¬φ(x)
From T ` ¬∀x¬φ(x) we conclude T ` ∀x¬φ(x) : ⊥ There exist finitely many axioms ψ1, . . . , ψn van
T such that

` ψ1, . . . , ψn,∀x¬φ(x) : ⊥

Gentzen’s Hauptsatz implies that there exists a cut free derivation of this sequent:

0 ψ1, . . . , ψn,∀x¬φ(x) : ⊥

lemma 1.321.32 yields

0 ψ
H
1 , . . . , ψ

H
n , (∀x¬φ(x))H : ⊥

From lemma 1.331.33 we obtain

0 ψ1, . . . , ψn, (∀x¬φ(x))H : ⊥

This yields

T (∀x¬φ(x))H : ⊥

Assume that (∀x¬φ(x))H = {¬φ(t1), . . . ,¬φ(tk)}. Then we see

T ¬φ(t1), . . . ,¬φ(tk) : ⊥

We finally arrive at

T φ(t1), . . . , φ(tk)

�

Please not that this proof heavily depends on Gentzen’s Hauptsatz. If the derivation would contain appli-
cations of the cut rule we would not be able to apply the induction hypothesis to cut formulas of possibly
large complexity.
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Exercise 1.35. Suppose that L is a first order language and let Γ : ∆ be an L-sequent. Let 〈Γ : ∆〉 be
the set of variables occuring in Γ : ∆ and the predicate symbols occuring in Γ : ∆ (with the exception of
=). We put 〈B〉 := 〈∅ : B〉. An L-formulaB is called interpolant for the sequents Γ1 : ∆1 and Γ2 : ∆2,
if

(1) ` Γ1, B : ∆1 and ` Γ2 : B,∆2 and
(2) 〈B〉 ⊆ 〈Γ1 : ∆1〉 ∩ 〈Γ2 : ∆2〉

Let us define positive and negative occurrence of predicate symbols in formulas and sequent as follows:
We say that P occurs positively in P (t1, . . . , tn). If P occurs positivel (negatively) in a formulaB, then P
occurs positievel (resp. negatively) in A → B and Γ : B,∆ and negatively (resp. positively) in B → A
and Γ, B : ∆. If P occurs positively (negatively) in B, then P occurs positively (resp. negatively) in
∀xB.
Suppose that Γ : ∆ is an L-sequent. Let 〈Γ : ∆〉+ (〈Γ : ∆〉−) be the set of free variables occurring in
Γ : ∆ plus the in in Γ : ∆ positively (resp. negatively) occurring predicate symbols (with exception of
=). Moreover, let 〈B〉s := 〈∅ : B〉s for s ∈ {+,−}.
An L-formula B is called a signed interpolant for the sequents Γ1 : ∆1 and Γ2 : ∆2, if

(1) ` Γ1, B : ∆1 and ` Γ2 : B,∆2 and
(2) 〈B〉+ ⊆ 〈Γ1 : ∆1〉+ ∩ 〈Γ2 : ∆2〉− and
(3) 〈B〉− ⊆ 〈Γ1 : ∆1〉− ∩ 〈Γ2 : ∆2〉+.

Prove the following assertions:
(1) If B is a signed interpolant for the sequents Γ1 : ∆1 and Γ2 : ∆2 then ¬B is a signed inter-

polant for the sequents Γ2 : ∆2 and Γ1 : ∆1.
(2) If ` Γ1,Γ2 : ∆1,∆2 then there exists a signed interpolant for the sequents Γ1 : ∆1 and

Γ2 : ∆2. (Hint: Assume that the derivation is cut free.)





CHAPTER 2

Ordinals

1. Postulates

We will work informally in naive set theory while taking care that our argumentation is justifiable as usual
in axiomatic set theory ZFC.

Definition 2.1. The class of ordinals is denoted by On and it satisfies the following postulates (which can
be proved in ZFC):

(1) (On, <) is linearly ordered (= totally ordered).
(2) if ∅ * C ⊆ On then C has a minimal element, denoted by minC.
(3) The class {ξ ∈ On | ξ < α} is a set for all α ∈ On.
(4) for every set A ⊆ On there exists a γ ∈ On such that α < γ for all α ∈ A.

We use the following abbreviations:

0 = min On, α′ = min{ξ ∈ On | α < ξ}.

Note that α′ plays the role of a successor function.

2. Properties

THEOREM 2.2 (Transfinite induction). If ∀α ∈ On : (∀ξ < α : φ(ξ))→ φ(α) then ∀α ∈ On : φ(α).

PROOF. Assume that ∀α ∈ On : (∀ξ < α : φ(ξ)) → φ(α) and assume that there exists a β ∈ On
such that ¬φ(β). Define

C = {ξ ∈ On | ¬φ(ξ)}
This set is non empty since β ∈ C. Put α0 = minC. Then ¬φ(α0). By assumption there exists an
α1 < α0 such that ¬φ(α1) since otherwise φ(α0). Contradicton with the minimality of α0. �

Definition 2.3. The class of limit ordinals (denoted by Lim) is defined by

α ∈ Lim ⇐⇒ α 6= 0 ∧ ∀ξ < α : ξ′ < α

The least limit ordinal is ω = min Lim.

Definition 2.4. For A ⊆ On define

supA = min{ξ ∈ On | ∀α ∈ A : α ≤ ξ}
In particular we have sup ∅ = 0.

Lemma 2.5. Assume that A 6= ∅ and that A ⊆ On is a set. If supA /∈ A then supA ∈ Lim.

15
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PROOF. Let α = supA. There exists a β < α in A since A 6= ∅. We have to show that β′ < α.
Because of β < α and α = supA there exists a ξ ∈ A such that β < ξ ≤ α. The assumption supA /∈ A
now yields β′ ≤ ξ < α. �

Definition 2.6. A binary relation R is called well founded if every non empty set contains an R-minimal
element.

Lemma 2.7.
(1) If < is well founded then there does not exist an infinite descending chain of elements in On.
(2) If <⊆ A × A and ∃F : A → On such that ∀x, y : x < y → F (x) < F (y) then < is well

founded.

PROOF. The first assertion is obvious. Indeed the elements of the collection of elements of an infinite
descending chain forms a non empty set without a minimal element.

For a proof of the second assertion assume that X 6= ∅. If X ∩ A = ∅ then every x ∈ X is a <-minimal
element and the assertion follows.

Assume now that X ∩ A 6= ∅ and define β = min{F (x) | x ∈ X ∩ A}. Let x0 ∈ X ∩ A such that
F (x0) = β. Then x0 is minimal. Inddeed, if there would exist an x1 ∈ X such that x1 < x0 x1 ∈ A,
then F (x1) < F (x0) in contradiction with the assumption that x0 is chosen minimally. �

3. Functions on ordinalen

Definition 2.8. A function F : On→ On is called order preserving if α < β yields F (α) < F (β).

Lemma 2.9. If F : On→ On is order preserving, then F (α) ≥ α holds for all α ∈ On.

PROOF. Assume that there exists an α ∈ On such that F (α) < α. Define

C = {ξ ∈ On | F (ξ) < ξ}
Then C 6= ∅ and C ⊆ On, hence there exists α0 = minC. Since F is order preserving we see F (α0) <
α0 so that F (F (α0)) < F (α0) and thus F (α0) ∈ C. But we have F (α0) < α0 in contradiction with the
minimality of α0. �

Definition 2.10. A function F : On→ A is called ordering function for A ⊆ On if F is order preserving
and surjective on A.

Definition 2.11. A ⊆ On is unbounded if for all α ∈ On there exists a β ∈ A such that α < β.

Definition 2.12. A ⊆ On is called closed if supX ∈ A for all non empty sets X ⊆ A.

Definition 2.13. If A ⊆ On is closed and unbounded then A is called club.
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Lemma 2.14. Let A be unbounded. Then there exists a uniquely determined ordering function EnumA

on A such that
EnumA(α) = min{β ∈ A | ∀ξ < α : EnumA(ξ) < β}.

PROOF. We first prove the existence of an ordering function F for A using transfinite recursion.
Assume inductively that F (ξ) has been defined for all ξ < α. Then {F (ξ) | ξ < α} is a set and hence
there exists a minimal γ ∈ On such that F (ξ) < γ for all ξ < α. Because A is unbounded there exists
a minimal β ∈ A such that γ ≤ β. Hence F (α) = β and so F is totally defined. We still have to
show that F is order preserving and onto with rng(F ) = A. That F is order preserving is easy to see.
To prove surjectivity let γ ∈ A. Then there exists α = min{ξ | γ ≤ F (ξ)}. We have γ ≤ F (α) and
∀ξ < α : F (ξ) < γ so that F (α) = γ.

We now prove uniqueness. Let F and G both be ordering functions for A, thus F,G : On→ A and F,G
are surjective and order preserving. Assume by induction on α that ∀ξ < α : F (ξ) = G(ξ). Assume for
a contradiction that F (α) 6= G(α). We have then two cases:

• F (α) < G(α). The surjectivity of G yields that there exists a β such that F (α) = G(β). Then
β > α since β = α is impossible by assumption and if β < α the induction hypothesis yields
that F (β) = G(β) = F (α). But F is order preserving hence β < α yields F (β) < F (α),
contradiction. Thus β > α and the order preservation of G yields G(β) > G(α) > F (α).

• F (α) > G(α). Similarly.

We conclude ∀α ∈ On : F (α) = G(α) hence F = G. �

3.1. Normal functions.

Definition 2.15. A function F is called continuous if ∀λ ∈ Lim : F (λ) = sup{F (ξ) | ξ < λ}.

Definition 2.16. A function F is called normal if F is continuous and order preserving.

Lemma 2.17. If F : On→ On is continuous and if ∀α : F (α) < F (α′). Then F is normal.

PROOF. By induction on α we show that F is order preserving, i.e. ∀β ∈ On : β < α =⇒ F (β) <
F (α). The α = 0 is trivial. Assume that α = γ′. Then the two cases follow from β < α = γ′ in the
following way:

• β = γ. Then F (β) < F (α) follows from the assumption F (β) < F (β′).

• β < γ. Then the induction hypothesis yields that F (β) < F (γ) and hence F (β) < F (α) since
F (γ) < F (γ′) is valid by assumption.

Assume now that α ∈ Lim. Since α is a limit we obtain from β < α also β′ < α. The continuity of F
implies F (α) = sup{F (ξ) | ξ < α}. The induction hypothesis yields F (β′) ≤ F (α). By assumption
we have F (β) < F (β′) hence F (β) < F (α). �
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Lemma 2.18. Let F : On→ On be normal.
(1) F (α) = sup{F (ξ′) | ξ < α} if α > 0.
(2) If λ ∈ Lim then F (λ) ∈ Lim.
(3) For γ ≥ F (0) there exists a uniquely determined α such that F (α) ≤ γ ≤ F (α′).
(4) Let G be normal. Then F ◦G is normal, too.
(5) For a non empty set A we have F (supA) = supF (A) where F (A) = {F (α) | α ∈ A}.

PROOF. (1) Assume inductively that F (β) = sup{F (ξ′) | ξ < β} for all β < α.

Suppose first that α is a successor. We have F (α) ∈ {F (ξ′) | ξ < α} thence F (α) ≤
sup{F (ξ′) | ξ < α}. F is order preserving, hence ξ′ ≤ α =⇒ F (ξ′) ≤ F (α), hence
sup{F (ξ′) | ξ < α} ≤ F (α). Therefore F (α) = sup{F (ξ′) | ξ < α}.

Let α ∈ Lim. Then F (α) = sup{F (ξ) | ξ < α} = sup{F (ξ′) | ξ < α}.

(2) Let λ ∈ Lim. Then F (λ) = sup{F (ξ) | ξ < λ} because F is continuous. Suppose γ < F (λ).
Then γ < F (ξ) for some ξ < λ. Then γ′ ≤ F (ξ) < F (ξ′) < F (λ) because F is order
preserving.

(3) Suppose that γ ≥ F (0). Then γ ≤ F (γ) < F (γ′). Suppose α = min{ξ | γ < F (ξ′)}.
Then F (α) ≤ γ < F (α′). Indeed, if α = 0 then γ ≥ F (0) by assumption and the assertion
follows. If α > 0 then F (α) = sup{F (ξ′) | ξ < α}. If ξ < α then the minimality of α yields
F (ξ′) ≤ γ so that F (α) = sup{F (ξ′) | ξ < α} ≤ γ.

(4) Is easy.

(5) Suppose that A ⊆ On is a non empty set with α = supA. If α ∈ A then F (α) = F (supA) =
supF (A) since F is order preserving. If α /∈ A then α ∈ Lim and F (α) = sup{F (ξ) | ξ <
α} = supF (A).

�

Lemma 2.19 (Fixed point lemma for normal functions). If F is normal, then there exists a least α such
that F (α) = α.

PROOF. Let us define a sequence αn as follows.

α0 = α αn+1 = F (αn)

Let β := sup{αn | n < ω}. Then α ≤ β. Moreover,

F (β) = F (sup{αn | n < ω})
= supF ({αn | n < ω})
= sup{F (αn) | n < ω}
= sup{αn+1 | n < ω}
= β

hence β is a fixed point of F . Since there is one fixed point there is also a least one.

�
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4. Ordinal arithmetic

4.1. The ordinal sum.
Definition 2.20. The sum of two ordinals is defined as follows by transfinite recursion:

α+ 0 = α,

α+ β′ = (α+ β)′,

α+ λ = sup{α+ ξ | ξ < λ} if λ is a limit.

Lemma 2.21.
(1) The function β 7→ α+ β is normal.
(2) β0 < β1 =⇒ α+ β0 < α+ β1.
(3) α, β ≤ α+ β.
(4) For all γ ≥ α existst a unique β such that γ = α+ β.
(5) α0 ≤ α1 =⇒ α0 + β ≤ α1 + β.
(6) (α+ β) + γ = α+ (β + γ).
(7) α, β < ω =⇒ α+ β = β + α.
(8) 0 < k < ω =⇒ k + ω = ω < ω + k.

PROOF. For a given α define F (β) = α+ β.

(1) F continuous by definition. Note that α+ β < (α+ β)′ = α+ β′ so that ∀β : F (β) < F (β′).
This yields that F is normal.

(2) This assertion ollows from the normality of F .

(3) This assertion follows by Induction on β.

(4) Suppose γ ≥ α and choose with Lemma 2.182.18 a β such that α + β ≤ γ < α + β′. Then
γ = α+ β.

(5) By induction on β.

(6) By induction on γ.

If γ = 0, then (α+ β) + γ = (α+ β) + 0 = α+ β = α+ (β + 0) = α+ (β + γ).

If γ = ξ′ then (α+β)+ ξ′ = ((α+β)+ ξ)′. The induction hypothesis yields ((α+β)+ ξ)′ =
(α+ (β + ξ))′ = α+ (β + ξ)′ = α+ (β + γ).

If γ ∈ Lim then (α+β)+γ = sup{(α+β)+ξ | ξ < γ} = α+sup{β+ξ | ξ < γ} = α+(β+γ).

(7) By induction on α.

(8) If 0 < k < ω, then k + ω = sup{k + n | n < ω} = sup{m | m < ω} = ω < ω′ ≤ ω + k.

�

Note that by now we may write α+ 1 for α′.

4.2. The product of ordinals.
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Definition 2.22. The product of two ordinals is defined by transfinite recursion:

α · 0 = 0,

α · β′ = α · β + α,

α · λ = sup{α · ξ | ξ < λ} if λ is a limit.

Lemma 2.23.
(1) If α > 0 then the function β 7→ α · β is normal.
(2) α0 ≤ α1 =⇒ α0 · β ≤ α1 · β.
(3) α · (β · γ) = (α · β) · γ.
(4) α · (β + γ) = α · β + α · γ.
(5) α · 0 = 0 = 0 · α.
(6) α, β < ω =⇒ α · β = β · α.
(7) 1 < k < ω =⇒ k · ω = ω < ω · k.

PROOF. All proofs are similar to the proofs we have seen before for the sum of ordinals. Let us
check the distributivity property which is proved by induction on γ:

• γ = 0. Then α · (β + 0) = α · β = α · β + α · 0.

• γ = ξ′. Then α · (β+ ξ′) = α · (β+ ξ)′ = α · (β+ ξ) +α. By induction hypthesis this is equal
to (α · β + α · ξ) + α = α · β + (α · ξ + α) = α · β + α · ξ′ = α · β + α · γ.

• γ ∈ Lim. Then α ·(β+γ) = α ·sup{β+ξ | ξ < γ} = sup{α ·(β+ξ) | ξ < γ}. The induction
hypothesis yields sup{α · (β+ ξ) | ξ < γ} = sup{α ·β+α · ξ) | ξ < γ} = α ·β+ sup{α · ξ |
ξ < γ} = α · β + α · γ.

�

4.3. Ordinal exponentiation.

Definition 2.24. The exponentiation of two ordinals is defined by the following transfinite recursion:

α0 = 1

αβ
′

= αβ · α

αλ = sup{αξ | 0 < ξ < λ} if λ is a limit.

Lemma 2.25.
(1) The function β 7→ αβ is normal for α ≥ 2.
(2) α ≤ γ =⇒ αβ ≤ γβ .
(3) αβ · αγ = αβ+γ .
(4) (αβ)γ = αβ·γ .
(5) If β > β0 > · · · > βn and α > δ1, . . . , δn then αβ > αβ0 · δ0 + · · ·+ αβn · δn.

PROOF. All proofs are routine. Assertion 4 is proved by induction on γ en assertion 5 is proved by
induction on n. �

5. The Cantor normal form theorem
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THEOREM 2.26 (Cantor’s normal form theorem).
(1) For all α ≥ 2 and γ ≥ 1 there exist uniquely determined β, δ, γ0 so that 0 < δ < α and

γ0 < αβ and
γ = αβ · δ + γ0.

(2) For all α ≥ 2 and γ ≥ 1 exists uniquely determined n, β0 > · · · > βn, 0 < δ0, . . . , δn < α
such that

γ = αβ0 · δ0 + · · ·+ αβn · δn.

PROOF.

(1) First we prove the existence of the decomposition as claimed. Since β 7→ αβ is normal there
exist a β so that αβ ≤ γ < αβ+1. Therefore there exists a δ with 0 < δ < α so that αβ ·δ ≤ γ <
αβ · (δ+1). Moreover there exists a γ0 with γ0 < αβ so that αβ · δ+γ0 ≤ γ < αβ · δ+γ0 +1.

Let us now prove uniqueness. Suppose that γ = αβ · δ+γ0 = αβ1 · δ1 +γ1 with 0 < δ, δ1 < α
and γ0 < αβ , γ1 < αβ1 . Because 0 < δ < α and γ0 < αβ we see αβ ≤ γ < αβ+1. Moreover,

αβ+1 = αβ · α ≥ αβ(δ + 1) = αβ · δ + αβ > αβ + γ0

Similarly we find αβ1 ≤ γ < αβ1+1 and αβ1+1 > αβ1 + γ1. Since exponentiation is normal
we find β = β1. We thus have γ = αβ · δ + γ0 = αβ · δ1 + γ1. Since the ordinal product is
normal, we see

αβ · δ ≤ γ < αβ · (δ + 1)

αβ · δ1 ≤ γ < αβ · (δ1 + 1)

hence δ = δ1. Now we have γ = αβ · δ+γ0 = αβ · δ+γ1. The ordinal sum is right monotone,
thence γ0 = γ1.

(2) By induction on γ. The previous assertion yields γ = αβ · δ + γ0 with 0 < δ < α. Because
γ0 < γ the induction hypothesis yields that γ0 = αβ1 · δ1 + · · · + αβn · δn and therefore
γ = αβ · δ + αβ1 · δ1 + · · ·+ αβn · δn. We conclude β > β1 because γ > γ0.

�

Definition 2.27. We write α =CNF ωα0k0 + · · · + ωαnkn if α = ωα0k0 + · · · + ωαnkn where α0 >
· · · > αn and k0, . . . , kn < ω. We call this representation the Cantor normal form of α.

Note that the CNF is uniquely defined by Cantor’s theorem.

5.1. Additive principal ordinal numbers.

Definition 2.28. The set AP of additive principal numbers is defined by

α ∈ AP ⇐⇒ α > 0 ∧ ∀ξ, η < α : ξ + η < α.

It is easy to see that 1 is the first additive principal number. It is also easy to see that the other additive
principal numbers are limit ordinals.

Lemma 2.29.
(1) α 7→ ωα is the ordering function of AP.
(2) α ∈ AP ⇐⇒ ∀ξ < α : ξ + α = α.

PROOF.
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(1) By induction on α. Suppose F (α) = ωα. The we have to show that F is a surjective and order
preserving function from On into AP is. We know already that F is order preserving. We still
have to show that rngF = AP.

Suppose α = 0. Then ωα = ω0 = 1 ∈ AP.

Suppose α = β+ 1 and let ξ, η < ωβ+1 = ωβω. Then there exist m,n < ω such that ξ < ωβn
and η < ωβm. Then ξ + η < ωβn + ωβm = ωβ(n + m). Because n + m < ω we have
ωβ(n+m) < ωβω = ωβ+1 = ωα. This yields ωα ∈ AP.

Assume now that α ∈ Lim and let ξ, η < ωα. Then there exist α1, α2 < α with ξ < ωα1 and
η < ωα2 . Then ξ + η < ωα1 + ωα2 < ωmax(α0,α1)+1 < ωα. Hence ωα ∈ AP.

Now suppose that α ∈ AP. Then we find a unique β such that ωβ ≤ α < ωβ+1. We claim that
ωβ = α. Otherwise α = ωβ · n+ δ for some n, δ with ωβ · n, δ < α which is a contradiction.

(2) Suppose α ∈ AP. Then there are two cases:

• α = 1. This case is trivial because the only ξ < α is the ordinal 0 and in this case we have
α+ 0 = α.

• α ∈ Lim. Suppose ξ < α. Then ξ + α = sup{ξ + η | η < α} ≤ α. We have ξ + α ≥ α
and so ξ + α = α.

For the other direction, suppose ξ+α = α for all ξ < α. Suppose ξ, η < α. Then ξ+α, η+α <
α and thence ξ + η < ξ + α = α so that α ∈ AP.

�

Definition 2.30. We write α =NF α0 + · · · + αn if α = α0 + · · · + αn and α0 ≥ · · · ≥ αn and
α0, . . . , αn ∈ AP.

By reformulating Cantor’s theorem we see easily that the following theorem holds.

Lemma 2.31. For every α > 0 there exist uniquely determined ordinals α0, . . . , αn such that α =NF

α0 + · · ·+ αn.

5.2. The natural sum of ordinals.
Definition 2.32. The natural sum α⊕ β is defined as follows.

(1) α⊕ 0 = α = 0⊕ α
(2) If α =NF α1 + · · ·+αn and β =NF αn+1 + · · ·+αn+m then α⊕ β = αp(0) + · · ·+αp(n+m)

where p : {1, . . . ,m+ n} → {1, . . . ,m+ n} is a function with αp(1) ≥ · · · ≥ αp(n+m).

Exercise 2.33.
(1) α⊕ β = β ⊕ α.
(2) α⊕ (β ⊕ γ) = (α⊕ β)⊕ γ.
(3) If α0, . . . , αn ∈ AP met α0 ≥ · · · ≥ αn then α0 + · · ·+ αn = α0 ⊕ · · · ⊕ αn.
(4) β < γ =⇒ α⊕ β < α⊕ γ.
(5) α, β < ωγ =⇒ α⊕ β < ωγ .
(6) α+ β ≤ α⊕ β.

Exercise 2.34. For a set of ordinals let otype(M) be the unique ordinal which is order isomorphic to
M . Let M and N be to sets of ordinals. Then otype(M ∪N) ≤ otype(M)⊕ otype(N).
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Note: If one is familiar with the multiset ordering from term rewriting theory then one can interprete the
natural sum of ordinals α en β as union of the multisets of their exponents.





CHAPTER 3

Proof-theoretic analysis of Z

In this chapter we treat the proof theoretic analysis of the formal system Z which is a conservative
extension of first order Peano arithmetic PA.

1. The system Z

We deal with a formal system which for convenience a priori includes enough machinery to deal with
primitive recursive functions.

Definition 3.1. The set of primitive recursive functions PRF is defined as the least set of number the-
oretic functions which is closed under the following formation rules. en is gedefinieerd als de kleinste
verzameling die gesloten is onder volgende operaties:

(1) S : N→ N : m 7→ m+ 1 ∈ PRF
(2) 0n : Nn → N : m 7→ 0 ∈ PRF
(3) Pni : Nn → N : m 7→ mi ∈ PRF voor alle 1 ≤ i ≤ n
(4) als h : Nm → N ∈ PRF en g1, . . . , gm : Nn → N ∈ PRF dan h ◦ (g1, . . . , gm) : Nn → N :

m 7→ h(g1(m), . . . , gm(m)) ∈ PRF
(5) als g : Nn → N ∈ PRF en h : Nn+2 → N ∈ PRF dan Rec(g, h) : Nn+1 → N ∈ PRF met

Rec(g, h)(0,m) = g(m)

Rec(g, h)(n+ 1,m) = h(n,m,Rec(g, h)(n,m))

We will work with these functions in a formal system and use a canonical signature for them.

Definition 3.2. The set of PRn of n-are primitive recursieve function symbols is defined by
(1) S ∈ PR1

(2) 0n, Pni ∈ PRn for all 1 ≤ i ≤ n
(3) if h ∈ PRm and g1, . . . , gm ∈ PRn then h ◦ (g1, . . . , gm) ∈ PRn

(4) if g ∈ PRn and h ∈ PRn+2 then Rec(g, h) ∈ PRn+1.
Finally put PR =

⋃
n PRn. If f ∈ PRn then the arity #f of f is n.

Definition 3.3. Let PR be the set of primitive recursive function symbols and letX be a countable infinite
set of variables. The set of primitive recursive terms T (PR,X) is the least set of terms such that

(1) X ⊆ T (PR,X),
(2) if f ∈ PR and #f = n and t1, . . . , tn ∈ T (PR,X) then f(t1, . . . , tn) ∈ T (PR,X).

25
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In this context we define the numerals as follows:

0 = 0

m+ 1 = S(m)

(m1, . . . ,mn) = (m1, . . . ,mn)

The we have, for example: 5 = S(4) = S(S(3)) = . . . = S(S(S(S(S(0))))). In the sequel we
sometimes drop parentheses to shorten notation. Thus we write (2, 0, 3) = (SS0, 0, SSS0) instead of
(S(S(0)), 0, S(S(S(0)))).

Definition 3.4. Let us now define the formal system Z as follows.
• The terms of Z are the primitive recursive terms T (PR,X).

• The formulas of Z are the formulas for the language with the function symbols PR and without
additional constants or relation symbolds. So formulas are
(1) s = t if s and t are terms of Z;
(2) ⊥,
(3) φ→ ψ if φ and ψ are formulas of Z;
(4) ∀x : φ(x) if φ(a) is a formula of Z with x is not a bound variable in φ(a).

• The axioms of Z are all axioms of the sequent calculus together with the universal closures of
the following mathematical axioms:

¬(Sx = 0) Sx = Sy → x = y

0n(x) = 0 Pni (x) = xi

h ◦ (g1, . . . , gm)(x) = h(g1(x), . . . , gm(x))

Rec(g, h)(0,x) = g(x)

Rec(g, h)(Sy,x) = h(y,x,Rec(g, h)(y,x))

F (0) ∧ (∀x : F (x)→ F (Sx))→ ∀x : F (x)

2. Provable instances of transfinite induction for Z

Definition 3.5. Let R be a formula with at most two free variables such that

<= {(n,m) ∈ N2 | N � R(n,m)}
is well founded. We then define the following formulas

Prog<(F ) ≡ ∀x : ((∀y < x : F (y))→ F (x))

TI<(F, t) ≡ Prog<(F )→ ∀x < t : F (x)

TI<(F ) ≡ Prog<(F )→ ∀x : F (x)

The abbreviaten TI stands for “Transfinite induction” and Prog stands for “Progressive”.

In the sequal we assume that we can code as usual sequences of natural numbers by primitive recursive
operations. By (a0, . . . , an) we denote the natural number which denotes a sequence of length n + 1
having ai at its i-th entry. We assume that the empty sequence is coded by 0. Coding is a primitive
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recursive operation and as usual we assume that we have a corresponding machinery available in Z. For
this machinery within Z we use the same notation.

Definition 3.6. Leta = (a0, . . . , an) and b = (b0, . . . , bm). We define a <′ b if one of the following
properties holds:

• a = (b0, . . . , bk) en k < m;
• a = (b0, . . . , bk−1, ak, . . . , an) where k ≤ min(n,m) and ak <′ bk.

This is the lexicographic ordering also known in real life from a dictionary.

Lemma 3.7. <′ is transistive, i.e.: Z ` x <′ y ∧ y <′ z → x <′ z.

Proof as usual by a simple formal induction within the formal system.

Definition 3.8. Definition of the set OT:
(1) 0 ∈ OT;
(2) if a0, . . . , an ∈ OT and an ≤′ · · · ≤′ a0 the (a0, . . . , an) ∈ OT.

We write a < b als a <′ b en a, b ∈ OT.

Definition 3.9. For a = (a0, . . . , an) and b = (b0, . . . , bm) is the concatenation of a and b defined by

a ◦ b = (a0, . . . , an, b0, . . . , bm)

This is a primitive recursive operation and as usual we assume that we have a corresponding machinery
available in Z. For this machinery within Z we use the same notation.

Definition 3.10. For a formula F (y) we define

F̄ (y) ≡ ∀x : ((∀z < x : F (z))→ (∀z < x ◦ y : F (z)))

F̄ (y) models in a certain sense the jump operation from recursion theory. In our context we use the
notation just as a convenient abbreviation

Lemma 3.11. Z ` Prog<(F )→ Prog<(F̄ ).

PROOF. (Informal in Z.)

• Assume (1) Prog<(F ). Then we have to show Prog<(F̄ ).

• Assume (2) ∀y < b : F̄ (y). Then we have to show F̄ (b).

• Assume (3) ∀z < a : F (z). Then we have to show ∀z < a ◦ b : F (z).

We first prove the follwing assertion (4):

∀n : ∀y1, . . . , yn < b : ∀z < a ◦ (y1, . . . , yn) : F (z)

Proof by induction on n. Assume ∀z < a ◦ (y1, . . . , yn) : F (z) for y1, . . . , yn < b. Assume yn+1 < b.
Assumption (2) yields F̄ ((y1, . . . , yn+1)) hence with (3) we obtain ∀z < a◦ (y1, . . . , yn+1) : F (z). This
proves Assertion (4).

Assume now c < a ◦ b. Then we have c < a or c ≤ a ◦ (b1, . . . , bn) with bn ≤ · · · ≤ b1 < b. If c < a
then F (c) follows from (3). If c < a ◦ (b1, . . . , bn) then ∀z < c : F (z) follows from (4). With (1) we
obtain F (c). �
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Lemma 3.12. Z ` TI<(F̄ , y)→ TI<(F, (y)).

PROOF. (Informal in Z.) Assume (1) TI<(F̄ , y). We claim TI<(F, y). To prove this, assume (2)
Prog<(F ). lemma 1.111.11 yields (3) Prog<(F̄ ). From (1) we obtain ∀z < y : F̄ (z). With (3) we obtain
F̄ (y) and thus ∀z < (y) : F (z) since ∀z < 0 : F (z). �

THEOREM 3.13. Let a ∈ OT. Then Z ` TI<(F, a) for all F .

PROOF. Define

c0 = 0 cm+1 = (cm)

Let a ∈ OT. Then there exists an m such that a < cm. By induction on m we prove Z ` TI<(F, cm):

• m = 0. In this case the assertion holds for trivial reasons.

• m+1. The induction hypothesis yieldsZ ` TI<(F̄ , cm). lemma 1.121.12 yieldsZ ` TI<(F, cm+1).

We conclude Z ` TI<(F, a). �

Definition 3.14. The ordinal o(a) for a ∈ OT is defined by

o(0) = 0

o((a0, . . . , an)) = ωo(a0) + · · ·+ ωo(an)

Recall that ε0 is defined as the least fixed point of the function α 7→ ωα.

Informally speaking ε0 is gotten by:

ε0 = ωω
ωω
ωω
ωω
ω
..
.

Lemma 3.15. The function o is bijective, order preserving and it fulfills o(a) < ε0 for all a ∈ OT.

PROOF. By inductie on a ∈ OT on proves first that <′ is a linear ordering.

By induction on a we prove ∀a ∈ OT : o(a) < ε0:

• a = 0. Then of course o(a) = 0 < ε0.

• a = (a0, . . . , an). The induction hypothesis yields o(ai) < ε0 for all i and hence ωo(ai) <
ωε0 = ε0. Dus o(a) = ωo(a0) + · · ·+ ωo(an) < ε0.

By induction on a we thus proved a < b =⇒ o(a) < o(b).

This yields that o is one to one. By induction on α < ε0 one shows that o is surjective and hence is a
bijection. �

lemma 1.151.15 yields that Z the scheme of transfinite induction is provable for all ordinals below ε0.



CHAPTER 4

Upper bounds for the transfinite induction in Z

1. Definition of Z∞

Definition 4.1. We define the infinitary system Z∞ as follows.
The system has the following symbols:

• bound number variables x1, x2, x3, . . .
• alle primitief recursieve function symbols
• free predicate variables X1, X2, X3, . . .
• logical symbols $→, ⊥, ∀,

The formulas of Z∞ are the closed formulas with respect to this languages. The atomic formulas are
equations between closed primitive recursive terms and formulas of the formX(t) whereX is a predicate
variable and t is a closed term. Every closed primitive recursive term t has a standard interpretation
provided by its value val(t). Using this interpretation we can determine the truth or falsity of closed
equations. When we speak about truth value of an atomic formula we assume that the formula is an
equation and not a prime formula of the form X(t).
The axioms of Z∞ are

(1) Γ : ∆, φ if φ is a atomic formule,
(2) Γ, φ : ∆ if φ is a false atomic formule,
(3) Γ, X(s) : ∆, X(t) if val(s) = val(t).

The inference rules are as follows:
• (→ S). If r

α0
Γ, φ : ψ,∆ and α0 < α < ε0 and

φ→ ψ ∈ ∆ then r
α

Γ : ∆.
• (→ A). If r

α0
Γ : φ,∆ and r

α1
Γ, ψ : ∆ and φ→ ψ ∈ Γ and α0, α1 < α < ε0 then r

α
Γ : ∆.

• (∀A). If r
α0

Γ, φ(k) : ∆ and α0 < α < ε0 and ∀xφ(x) ∈ Γ then r
α

Γ : ∆.
• (∀S). If r

αi
Γ : φ(i),∆ for all i ∈ N with αi < α < ε0 and if ∀xφ(x) ∈ ∆ then r

α
Γ : ∆.

• (CUT). If r
α0

Γ, φ : ∆ and r
α1

Γ : ∆, φ and α0, α1 < α < ε0 and |φ| < r then r
α

Γ : ∆.
Note that Z∞ has similar inference rules as Z. The new rule is the rule (often also called ω-rule in the
literature) (∀S) with infinitely many premises. Moreover the derivation lengths in Z∞ can be transfinite
ordinals. Z∞ is an infinitary systeem: proofs in Z∞ can have transfinite depths and breadth in contrary
to finitary systems like Z.

The rationale behind Z∞ is that it is possible to derive all instances of complete induction by use of
the ω-rule. Since induction does no longer belong to the axioms one can carry out a Gentzen style cut
elimination for Z∞ and therefore Z∞ is amenable for tracing back information from (cut free) proofs.

The free predicate variables allow to speak about second order universal quantification over sets of natural
numbers. This allows a smooth modelling of well-foundedness which is basically of such a form. The
moral is that cut free proofs in Z∞ of the well-orderedness of a definable well order of order type α
necessarily needs α many steps.

29
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2. Properties of Z∞

Lemma 4.2 (Structural lemma). If r
α

Γ : ∆ and α < α′, r ≤ r′, Γ ⊆ Γ′ and ∆ ⊆ ∆′ then r
α′

Γ′ : ∆′.

Lemma 4.3 (Properties).
(1) If r

α
Γ, φ : ∆ and φ is a true atomic formula then r

α
Γ : ∆.

(2) If r
α

Γ : φ,∆ and φ is a false atomic formula then r
α

Γ : ∆.
(3) If r

α
Γ : ∆, X(s) and val(s) = val(t) then r

α
Γ : ∆, X(t).

(4) If r
α

Γ, X(s) : ∆ and val(s) = val(t) then r
α

Γ, X(t) : ∆.

PROOF.

(1) By induction on α. If Γ, φ : ∆ is an axiom, then Γ : ∆ is an axiom, too and the assertion
follows. If Γ, φ : ∆ is not an axiom then we distinguish cases according to the last applied
inference rule. Suppose, for example, that this rule was (→ A). Then ψ → χ ∈ Γ, φ and
α0, α1 < α where r

α0
Γ, φ : ∆, ψ and r

α1
Γ, φ, χ : ∆. Since φ is atomic, we seeψ → χ ∈ Γ.

The induction hypothesis yields r
α0

Γ : ∆, ψ and r
α1

Γ, χ : ∆. Another application of (→ A)

yields r
α

Γ : ∆. The other cases are similar.

(2) Similarly to the proof of assertion 1.

(3) By induction on α. SupposeΓ : ∆, X(s) is an axiom. Then we distinguish the following cases:

• There exists a true atomic formula ψ ∈ ∆. Then Γ : ∆ is an axiom.

• There exists a false atomic formula ψ ∈ Γ. Then Γ : ∆ is an axiom.

• There exist terms s′ and t′ with Y (s′) ∈ Γ and Y (t′) ∈ ∆, X(s) and val(s′) = val(t′).
If Y (t′) ∈ ∆ then Γ : ∆ is an axiom. Otherwise Y (t′) = X(s). In this case val(t) =
val(s) = val(t′) = val(s′) and thus Γ : ∆, X(t) is an axiom.

Now suppose that Γ : ∆, X(s) is the conclusion of (→ A). Then φ → ψ ∈ Γ and we have
the premises r

α0
Γ : ∆, φ,X(s) and r

α1
Γ, ψ : ∆, X(s). The induction hypothesis yields

r
α0

Γ : ∆, φ,X(t) and r
α1

Γ, ψ : ∆, X(t). An application of (→ A) yields r
α

Γ : ∆, X(t).
The other cases are similar.

(4) Similarly to the proof of assertion 3.

�

Lemma 4.4 (Inversion lemma).
(1) If r

α
Γ : φ→ ψ,∆ then r

α
Γ, φ : ψ,∆.

(2) If r
α

Γ : ∆,∀xφ(x) then r
α

Γ : ∆, φ(k) for all k ∈ N.
(3) If r

α
Γ, φ→ ψ : ∆ then r

α
Γ : ∆, φ and r

α
Γ, ψ : ∆.

PROOF. By routine inductions on α. One can mimic the proofs for the Gentzen calcululs without
any problem. �
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3. Cut-elimination in Z∞

We cannot prove cut eliminaton for Z since the induction scheme causes a serious obstacle but for Z∞

we can prove cut elimination.

Lemma 4.5 (Reduction lemma). If r
α

Γ : ∆, φ and r
β

Γ, φ : ∆ and |φ| ≤ r then r
α+β2

Γ : ∆.

PROOF. By induction on β. Suppose β = 0. Then Γ, φ : ∆ is an axiom. We distinguish the
following cases:

• ∆ contains a true atomic formula. Then Γ : ∆ is an axiom.

• Γ contains a false atomic formula. Then Γ : ∆ is an axiom.

• φ is false atomic formula. An application of lemma 1.31.3 to r
α

Γ : ∆, φ yields r
α

Γ : ∆ and thus
the assertion.

• There exist terms s and t with val(s) = val(t) and X(s) ∈ Γ, φ and X(t) ∈ ∆. If X(s) ∈ Γ

then Γ : ∆ is an axiom. If X(s) = φ then lemma 1.31.3 yields r
α

Γ : ∆, X(t) which by implicit
contraction is the same as r

α
Γ : ∆.

Assume now that the last applied rule was (→ A). Then ψ → χ ∈ Γ, φ and r
β0

Γ, φ : ∆, ψ and

r
β1

Γ, φ, χ : ∆ where β0, β1 < β. The induction hypothesis yields r
α+β02

Γ : ∆, ψ and r
α+β12

Γ, χ : ∆.
There are two cases to consider:

• ψ → χ ∈ Γ. Then we again apply (→ A) and obtain the assertion.

• ψ → χ ≡ φ. The inversion lemma yields r
α

Γ, ψ : ∆, χ. Because of |ψ|, |χ| < |φ| ≤ r we can

apply now a cut. This yields r
α+β02+1

Γ : χ,∆. Another cut yields r
α+β2

Γ : ∆.

The other rules are treated analogously. �

THEOREM 4.6 (Cut elimination for Z∞). If r+1
α

Γ : ∆ then r
3α

Γ : ∆.

PROOF. By induction on α. If α = 0 the the assertion is trivially true. We assume that α > 0. We
distinguish two cases:

• The last applied rule was not the cut rule. Then there are premises r+1

αi
Γi : ∆i with αi < α

for all i. The induction hypothesis yields r
3αi

Γi : ∆i for all i. Applying the same rule yields

r
3α

Γ : ∆.

• The last applied rule was a cut. Then there are premises of the form r+1

α0
Γ, φ : ∆ and r+1

α1
Γ :

∆, φ met |φ| < r + 1. The induction hypothesis yields r
3α0

Γ, φ : ∆ and r
3α1

Γ : ∆, φ with
|φ| ≤ r. The reduction lemma yields r

3α
Γ : ∆.

�
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THEOREM 4.7. If r
α

Γ : ∆ then there exists a β such that 0

β
Γ : ∆. The β is an iterated tower of

exponentials with base 3 of hight r with an α on top, thus of the form 3r(α).

4. Embedding of Z into Z∞

In this section we make the relation between the formal proof system Z and the informal proof system
Z∞ more explicit. We will prove in particular that Z∞ can prove every closed which is provable in Z.
The proof yields an explicit construction how a Z-proof can be translated into a Z∞ proof. In doing so,
we will show that Z∞ is able to prove the induction scheme Z which is not an axiom of Z∞. The latter
is precisely the point where infinite derivation lengths will enter the scene.

Lemma 4.8.
(1) If val(s) = val(t) and if φ(x) is a formula, then 0

2|φ|
φ(s) : φ(t).

(2) 0
ω
φ(0),∀x(φ(x)→ φ(Sx)) : ∀xφ(x).

PROOF.

(1) By inducion on the rank of φ.
If |φ| = 0 then φ is atomic and an easy case distinction yields that φ(s) : φ(t) is an axiom, too.
If |φ| > 0 then we have to consider two cases:

• φ ≡ ψ → χ. The induction hypothesis yields 0

2|ψ|
ψ(t) : ψ(s) and 0

2|χ|
χ(s) : χ(t).

Then we continue as follows:

0

2max(|ψ|,|χ|)+1
ψ(s)→ χ(s), ψ(t) : χ(t),

0

2max(|ψ|,|χ|)+2
φ(s) : φ(t).

• φ(a) ≡ ∀yψ(a, y). The induction hypothesis yields 0

2|ψ|
ψ(s,m) : ψ(t,m) for allm ∈ N.

This yields 0

2|ψ|+1
∀yψ(s, y) : ψ(t,m) for allm and hence 0

2|ψ|+2
∀yψ(s, y) : ∀yψ(t, y).

(2) Suppose that k = 2|φ| and ξ ≡ ∀x(φ(x)→ φ(Sx)). By induction on n we prove

0

k+2n
φ(0), ξ : φ(n).

If n = 0 the the assertion follows from the first assertion. If n > 0 the induction hypothesis
yields 0

k+2n
φ(0), ξ : φ(n). The first assertion yields 0

k
φ(Sn) : φ(Sn) and therefore by (→

A) we obtain 0

k+2n+1
φ(0), ξ, φ(n) → φ(Sn) : φ(Sn). This yields 0

k+2n+2
φ(0), ξ : φ(Sn)

via (∀A) using the implicit contraction which is built into the calculus.

Finally, we apply (∀S) and obtain 0
ω
φ(0), ξ : ∀xφ(x).

�

THEOREM 4.9 (Embedding). If Z r
k

Γ : ∆ and FV(Γ : ∆) ⊆ {a1, . . . , an} then there exist k′, r′ such

that for all m ∈ Nn we have
r′

ω+k′

Γ(m) : ∆(m).
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PROOF. By induction on k. If k = 0 then Γ : ∆ is an axiom of the sequent calculus. Then there is
an atomic formula φ with φ ∈ Γ ∩∆ or we have ⊥ ∈ Γ, so that Γ(m) : ∆(m) is an axioma of Z∞.

If k > 0, the we have to deal with the last applied derivation rule in the proof of Γ : ∆:

• (→ A). We then have

Γ : φ,∆ Γ, ψ : ∆
→ A

Γ, φ→ ψ : ∆

The induction hypothesis yields

r1

ω+k1
Γ(m) : φ(m),∆(m)

r2

ω+k2
Γ(m), ψ(m) : ∆(m)

By applying (→ A) 11 we obtain

max(r1,r2)

ω+max(k1,k2)+1
Γ(m), φ(m)→ ψ(m) : ∆(m)

• (→ S). Similarly.

• (∀S). We have

Γ : φ(a),∆
∀S

Γ : ∀xφ(x),∆

with a /∈ FV(Γ : ∀xφ(x),∆). The induction hypothesis yields

r1

ω+k1
Γ(m) : φ(k,m),∆(m)

for all k,m Applying (∀S) yields:

r1

ω+k1+1
Γ(m) : ∀xφ(x,m),∆(m).

• (∀A). We have

Γ, φ(t) : ∆
∀A

Γ,∀xφ(x) : ∆

It is possible that there are free variables ai which occur in t. For those extra variables we
substitute simply zeros. The induction hypothesis yields

r1

ω+k1
Γ(m), φ(t)(m,0) : ∆(m)

Note that φ(t)(m,0) = (φ(t(m,0)))(m) and from lemma 1.81.8 we obtain

0

2|φ|
φ(val(t(m,0)),m) : φ(t(m,0),m)

We can apply a cut:

Γ(m), φ(t(m,0),m), φ(val(t(m,0)),m) : ∆(m) Γ(m), φ(val(t(m,0)),m) : φ(t(m,0),m),∆(m)
CUT

Γ(m), φ(val(t(m,0)),m) : ∆(m)
∀A

Γ(m),∀xφ(x,m) : ∆(m)

1This is here the rule (→ A) of Z∞
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The assertion follows.

• (= I). We have

Γ, t = t : ∆
= I

Γ : ∆

The induction hypothesis yields

r1

ω+k1
Γ(m), t(m,0) = t(m,0) : ∆(m)

Since t(m,0) = t(m,0) is a true atomic formula, we can conclude that

r1

ω+k1
Γ(m) : ∆(m).

• (= F ). We have

Γ, t = s, f(t) = f(s) : ∆
= F

Γ, t = s : ∆

The induction hypothesis yields

r1

ω+k1
Γ(m), t(m) = s(m), f(t)(m) = f(s)(m) : ∆(m)

If there exists an i so that N 6|= si(m) = ti(m) then Γ(m), s(m) = t(m) : ∆(m) is an
axiom and the assertion follows. Suppose that N |= si(m) = ti(m) for all i.

From lemma 1.31.3 we conclude

r1

ω+k1
Γ(m), t(m) = s(m) : ∆(m).

• (= P ). We have

Γ, R(t), R(s), s = t : ∆
= P

Γ, R(s), s = t : ∆

The induction hypothesis yields

r1

ω+k1
Γ(m), R(t)(m), R(s)(m), s(m) = t(m) : ∆(m)

If there exists an i such that N 6|= si(m) = ti(m) then Γ(m), R(s)(m), s(m) = t(m) :
∆(m) is an axiom. So suppose N |= si(m) = ti(m) for all i. From lemma 1.31.3 we conclude

r1

ω+k1
Γ(m), R(s)(m), s(m) = t(m) : ∆(m).

• T -regel. Here we have

Γ, φ : ∆
T

Γ : ∆

where φ is an axiom of Z. The induction hypothesis yields 22

r1

ω+k1
Γ(m), φ : ∆(m)

It is sufficient to prove

r2

ω+k2
φ

because we then could apply a cut:

2There are no free variables in the axioms of Z, thus φ(m) ≡ φ.
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Γ(m), φ : ∆(m) Γ(m) : φ,∆(m)
CUT

Γ(m) : ∆(m)

and the assertion would follow. We distinguish two cases:

– φ ≡ ∀x(Sx = 0→ ⊥). We prove this as follows:

Sm = 0 : ⊥ → S
Sm = 0→ ⊥ ∀S∀x(Sx = 0→ ⊥)

– φ ≡ ∀x∀y(Sx = Sy → x = y). We prove this as follows:

Sm = Sn : m = n → S
Sm = Sn→ m = n ∀S∀y(Sm = Sy → m = y)

∀S∀x∀y(Sx = Sy → x = y)

– φ ≡ F (0) ∧ ∀x(F (x)→ F (Sx))→ ∀xF (x). From lemma 1.81.8 we conclude m for all m
and then,

F (0,m),∀x(F (x,m)→ F (Sx,m)) : ∀xF (x,m)
→ S

F (0,m) : ∀x(F (x,m)→ F (Sx,m))→ ∀xF (x,m)
→ S

F (0,m)→ ∀x(F (x,m)→ F (Sx,m))→ ∀xF (x,m)
∀S∀y(F (0,y)→ ∀x(F (x,y)→ F (Sx,y))→ ∀xF (x,y))

In fact we have to prove a slightly different formula but this does not cause any problem
and the details are left to the reader.

– The other cases are similar

�

THEOREM 4.10. If Z ` Γ : ∆ where Γ : ∆ is a closed sequent then there is an α < ε0 so that 0
α

Γ : ∆.

PROOF. The embedding theorem yields Z∞ r
ω+k

Γ : ∆. Cut elimination yields Z∞ 0
α

Γ : ∆ with
α < ε0. �

5. Transfiniete inductie in Z∞

Definition 4.11. Zij ≺ een gefundeerde binaire relatie op N. We definiëren:

|m|≺ = sup{|n|≺ + 1 | n ≺ m}
‖≺‖ = sup{|m|≺ + 1 | m ∈ N}

‖Z‖sup = sup{‖≺‖ | Z ` TI≺(X) met ≺ L0-definieerbaar}
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The prominent goal of this section is to prove ‖Z‖sup = ε0.

Definition 4.12. We define the notion of X-positive and X-negative formulas as followst:
(1) If Xdoes not occur in φ, then φ is X-positive and X-negative,
(2) the formula X(t) is X-positive,
(3) if φ is X-positive then ψ → φ is X-positive and φ→ ψ is X-negative,
(4) if φ is X-negative then ψ → φ is X-negative and φ→ ψ is X-positive,
(5) if φ is X-positive then ∀xφ is X-positive;
(6) if φ is X-negative then ∀xφ is X-negative.

Definition 4.13. Zij U ⊆ N en φ een formule die alleen X als vrije predikaatvariabele mag bevatten. We
define the validity of φ(X) in the structure (N, U) as follows.

(N, U) |= φ(X)

by stipulating the interpretation of X via N |= X(t) iff val(t) ∈ U .

Lemma 4.14 (Monotonicity). (1) Suppose that φ(X) is anX-positive formula whereX is the only
predicate variable in φ. If U ⊆ V ⊆ N and (N, U) |= φ(X) the (N, V ) |= φ(X).

(2) Suppose that φ(X) is an X-negative formula where X is the only predicate variable in φ. If
U ⊆ V ⊆ N en (N, V ) |= φ(X) dan (N, U) |= φ(X).

PROOF. By induction on |φ|.

Suppose that |φ| = 0. Then there are two cases to consider:

• X does not occur in φ. In this case we haveφ ≡ P (t) and the assertion is trivially true.

• X does occurφ. Then φ ≡ X(t) for some t. We have by assumption (N, U) |= X(t) and so
val(t) ∈ U . Then by assumption val(t) ∈ V and (N, V ) |= X(t).

If |φ| > 0 then there are two cases:

• φ(X) ≡ ψ(X) → χ(X). The χ(X) and ψ(X) are X-positive and X-negative respectively.
By assumption we have (N, U) |= ψ(X)→ χ(X) hence (N, U) 6|= ψ(X) or (N, U) |= χ(X).

– Suppose that (N, U) |= χ(X). The induction hypothesis yields (N, V ) |= χ(X) and thus
(N, V ) |= ψ(X)→ χ(X).

– Suppose that (N, U) 6|= χ(X). Then (N, U) 6|= ψ(X). If (N, V ) |= ψ(X), then by induc-
tion hypothesis for the second assertion (N, U) |= ψ(X) contradiction. Thus (N, V ) 6|=
ψ(X) and (N, V ) |= ψ(X)→ χ(X).

• φ(X) ≡ ∀yψ(y,X). The assumption yields (N, U) |= ∀yψ(y,X) and therefore (N, U) |=
ψ(n,X) for all n ∈ N. The induction hypothesis yields (N, V ) |= ψ(n,X) for all n hence
(N, V ) |= ∀yψ(y,X).

The second assertion is shown similarly. �



5. TRANSFINIETE INDUCTIE IN Z∞ 37

Lemma 4.15. Suppose 0
α
X(t1), . . . , X(tn),Prog≺(X),Γ : ∆ and that ≺ is well founded. Define

δ = max{|t1|≺, . . . , |tn|≺}
Mα = {m ∈ N | |m|≺ < δ + 2α}

Suppose that X occurs only negatively in Γ and only positively in ∆. Then

(N,Mα) |=
∧

Γ→
∨

∆

PROOF. By induction on α.

Suppose α = 0. Then X(t1), . . . , X(tn),Prog≺(X),Γ : ∆ is an axiom and there are two cases:

• Γ : ∆ is an axiom. The the assertion follows.

• We have X(t) ∈ ∆ with val(t) = val(ti) for some i. Because |ti|≺ < δ + 1 we see val(ti) =
val(t) ∈M0 and the assertion follows.

Now suppose α > 0. We have to deal with different cases according the the last applied inference rule:

• (→ A). In this case we have

0

α0
X(t1), . . . , X(tn),Prog≺(X),Γ : ∆, φ

0

α1
X(t1), . . . , X(tn),Prog≺(X),Γ, ψ : ∆

where φ→ ψ ∈ Γ. The induction hypothesis yields

(N,Mα0) |=
∧

Γ→
∨

∆ ∨ φ

(N,Mα1
) |=

∧
Γ ∧ ψ →

∨
∆

We have Mα0 ,Mα1 ⊆Mα and with monotony we conclude

(N,Mα) |=
∧

Γ→
∨

∆ ∨ φ(1)

(N,Mα) |=
∧

Γ ∧ ψ →
∨

∆(2)

We have to prove that

(N,Mα) |=
∧

Γ→
∨

∆

Assume that (N,Mα) |=
∧

Γ. If (N,Mα) |=
∨

∆ then the assertion follows. Thus suppose
(N,Mα) 6|=

∨
∆. From (11) we find (N,Mα) |= φ and since φ → ψ ∈ Γ we conclude

(N,Mα) |= ψ. Then (N,Mα) |=
∧

Γ ∧ ψ and from (22) we see (N,Mα) |=
∨

∆. This is a
contradiction.

• (∀A). This rule can be applied to Prog≺(X) or to Γ. If it has been applied to Γ then the proof
is as before. So assume that this rule has been applied to Prog≺(X). Then we had the premises

0

α0
X(t1), . . . , X(tn),Prog≺(X), (∀y ≺ k : X(y))→ X(k),Γ : ∆

with α0 < α and k ∈ N. We can not yet apply the induction hypothesis to this sequent because
the is antecedent X-positive. By inversion applied to (→ A) we nevertheless find

0

α0
X(t1), . . . , X(tn),Prog≺(X),Γ : ∆, (∀y ≺ k : X(y))(3)

0

α0
X(t1), . . . , X(tn),Prog≺(X),Γ, X(k) : ∆(4)
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The induction hypothesis applied to (33) yields:

(N,Mα0
) |=

∧
Γ→

∨
∆ ∨ (∀y ≺ k : X(y))(5)

We have to show that

(N,Mα) |=
∧

Γ→
∨

∆

If (N,Mα0
) |=

∧
Γ→

∨
∆ then the assertion follows by monotony. Thus suppose (N,Mα0

) 6|=∧
Γ→

∨
∆. Then (N,Mα0

) |=
∧

Γ and (N,Mα0
) 6|=

∨
∆. From (55) we conclude (N,Mα0

) |=
∀y ≺ k : X(y) and thus |k|≺ ≤ δ + 2α0 . Define

δ′ = max{δ, |k|≺}
The induction hypothesis yields

(N, {m ∈ N | |m|≺ < δ′ + 2α0}) |=
∧

Γ→
∨

∆

We have {m ∈ N | |m|≺ < δ′ + 2α0} ⊂Mα. The assertion follows by monotonicity.

• The other rules can be treated similarly.

�

Lemma 4.16. Suppose that 0
α

Prog≺(X)→ ∀x.Xx and that ≺ is well founded. Then ‖≺‖ ≤ 2α.

PROOF. The inversion lemma yields 0
α

Prog≺(X) : ∀x.X(x). The previous lemma yields

(N,Mα) |= ∀x.Xx
Since ∀x.Xx, we see ∀k ∈ N.k ∈Mα en dus N ⊆Mα so that:

‖≺‖ = sup{|m|≺ + 1 | m ∈ N} ≤ sup{|m|≺ + 1 | m ∈Mα}
We have in this context Mα = {m ∈ N | |m|≺ < 2α} and thus sup{|m|≺ + 1 | m ∈Mα} ≤ 2α. �

THEOREM 4.17. Suppose Z TI≺(X) and that ≺ is well founded. Then ‖≺‖ < ε0.

PROOF. The embedding theorem (theorem 1.91.9) yields the existence of k′ and r′ so that
r′

ω+k′

TI≺(X). Using the cut elimination theorem (theorem 1.71.7) we obtain: 0

3r′ (ω+k
′)

TI≺(X) where 30(α) :=

α and 3r+1(α) := 33r(α).

The boundedness lemma lemma 1.161.16 yields:

‖≺‖ ≤ 2(3r′ (ω+k
′) < ε0.

�

A binary relation ≺ over N is well founded if there does not exist an infinite ≺-descending chain of
elements in N. The rank of a wellfounded relation ≺⊆ N × N is the least α such that there exists a
function f : N → α such that m ≺ n implies f(m) < f(n). The rank rk(m) of m is the rank of the
restriction of ≺ to {n ∈ Nat : n ≺ m}.
Exercise 4.18. Let ≺ be an arithmetical well founded order (of rank less than ε0).

Show Z 0

3·(rk(n)+1)
Prog≺(X), n ∈ X for all n.



CHAPTER 5

Provably recursive funtions of Z

The goal of this section is to investigate provable and and unprovable (with regard to the formal system
Z) instances of sentences of the form ∀x∃yφ(x, y) with φ quantifier free. In fact our method will work
with some minor modifications also for sentences of the form ∀x∃yφ(x, y) with φ being an existantial
sentence.

Note that ∀x∃yφ(x, y) describes the totality of an algorithm: “for every input x there is an output y
fulfilling a certain specification”.

Definition 5.1. Let α = ωα1m1 + · · ·+ ωαnmn be in Cantor normal form. Then

max(α) = max{max(α1), . . . ,max(αn),m1, . . . ,mn}
and

N(α) = n+N(α1) + · · ·+N(αn)

1. The Hardy-hierarchy

Definition 5.2. The Hardy hierarchy (Hα)α≤ε0 is defined as follows:

H0(n) = n,

Hα+1(n) = Hα(n+ 1),

Hλ(n) = Hλ[n](n) whereλ ∈ Lim.

Here α[n] is the n-th element of the fundamental sequence for α < ε0:

α[n] =

{
0 als α = 0

α0 + · · ·+ αm−1 + αm[n] als α =NF α0 + · · ·+ αm

ωα+1[n] = ωα(n+ 1)

ωλ[n] = ωλ[n]

Moreover for α = ε0 we put α[n] := ωn where ω0 := 1 and ωl+1 := ωωl for l < ω.

We use this hierarchy for scaling the provably total functions of Z. The idea is that the computational
complexity of Hα grows when α becomes larger and larger. We will see shortly that the functions Hα

grow rather quickly even for rather small ordinals like ωω .

39
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Definition 5.3. We say NF(α, β) if one the following conditions hold:
(1) α = 0;
(2) β = 0;
(3) α = ωα1 + · · ·+ ωαn and β = ωβ1 + · · ·+ ωβn and α1 ≥ β1.

The idea behind this definition is that NF(α, β) implies α⊕ β = α+ β which means that no subterms of
α disappear after performing the sum with β.

Lemma 5.4.
(1) α ∈ Lim =⇒ α[n] < α[n+ 1] and supn<ω α[n] = α if n→ ω
(2) α > 0 =⇒ N(α[0]) + 1 = N(α).

PROOF. Both assertions can be proved by easy inductions on α. �

Lemma 5.5 (The Bachmann property). α[n] < β < α =⇒ α[n] ≤ β[0].

PROOF. Assume that β =NF β0 + · · ·+ βk with k ≥ 0. There are the following three cases

(1) α =NF α0 + · · ·+ αm with m > 0. Then

α[n] = α0 + · · ·+ αm[n] < β0 + · · ·+ βk < α0 + · · ·+ αm

This yields k ≥ m en αi = βi for all i < m so that

αm[n] < βm + · · ·+ βk < αm.

This yields αm[n] ≤ βm < αm. If k = m then αm[n] < βm < αm. Then the induction
hypothesis yields αm[n] ≤ βm[0] ≤ αm. If k > m then β[0] =≥ β0 + · · ·+ βm ≥ α[n].

(2) Suppose now α = ωγ+1. Then

α[n] = ωγ(n+ 1) < β < ωγ+1

This yields β0 = · · · = βn = ωγ and ωγ < βn+1 + . . . + βk < ωγ+1. The case k = n + 1 is
impossible. Hence k > n+ 1 and

ωγ(n+ 1) ≤ β0 + · · ·+ βn + · · ·+ βk[0]

(3) Suppose α = ωλ. Then

α[n] = ωλ[n] = ωλ[n] < β < ωλ

If k > 0 then β[0] ≥ β0 ≥ ωλ[n]. If k = 0 and β0 = ωγ then λ[n] < γ < λ. The induction
hypothesis yields λ[n] ≤ γ[0]. Thence

ωλ[n] ≤ ωγ[0] = β[0].

�

Lemma 5.6. α[n] < β < α =⇒ N(α[n]) < N(β).

PROOF. This follows from assertion 2 of Lemma lemma 1.41.4 and from Lemma lemma 1.51.5. �
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Lemma 5.7. α < β =⇒ α ≤ β[N(α)].

PROOF. From lemma 1.61.6 we obtain for β ∈ Lim that

N(β[n]) < N(β[n+ 1])

hence

=⇒ N(α) ≤ N(β[N(α)]).

Suppose β[N(α)] < α < β. Then lemma 1.61.6 yields a contradiction. �

Lemma 5.8. (1) Hα(n) < Hα(n+ 1),
(2) β[m] < α < β =⇒ Hβ[m](n+ 1) ≤ Hα(n),
(3) β < α ∧N(β) ≤ n =⇒ Hβ(n) < Hα(n),
(4) α > 0 =⇒ Hα(n) = min{k ≥ n | α[n] . . . [k−1] = 0} = n+min{k | α[n] . . . α[n+k−1] >

0}.

PROOF. Let k ≥ n be minimal such that α[n] . . . [k − 1] = 0. Then

Hα(n) = Hα[n](n+ 1) = Hα[n][n+1](n+ 2) = Hα[n]...[k−1](k) = k

The first two assertions are proved simultaneously by induction on α. The third assertion follows by
induction on α noting that β < α and Nβ ≤ n yields β ≤ α[n] by Lemma lemma 1.51.5. �

Lemma 5.9.
(1) NF(α, β) yields Hα+β(n) = Hα(Hβ(n)).
(2) Hωα+1(n) = Hn+1

ωα (n+ 1) en Hωλ(n) = Hωλ[n](n+ 1).
(3) For all primitive recursive functions f : Nd → N there exists a k such that for all x ∈ Nd we

have f(x) < Hωk(maxx).

PROOF.

(1) By induction on β.

(2) Hωα+1(n) = Hωα+1[n](n+ 1) = Hωα(n+1)(n+ 1) = Hn+1
ωα (n+ 1).

(3) This assertion follows as usual from the second assertion by an induction along the generation
history of f .

�

2. Operator-controlled derivations

In the sequel we consider formal and semiformal systems without set variables. These set variables have
been used to model well foundedness properties but are not relevant in the context of provably recursive
functions. Nevertheless all statements and proofs will go through for the versions with set variables. To
obtain a better control about the computational content of existential statements we introduce a modified
infinitary system in which derivations are controlled by a operator F : N→ N which satisfies

∀m,n ∈ N : (m ≤ n =⇒ F (m) ≤ F (n))



42 5. PROVABLY RECURSIVE FUNTIONS OF Z

and

∀m ∈ N : F (m) ≥ m

We call such operators nice. Those operators are nice in the sense that they preserve information which
is coded in arguments or function values for smaller arguments.

For such operators we write F ≤ G if for all x ∈ N we have F (x) ≤ G(x).

Definition 5.10. Let F be a nice operator and i < ω. Then we define the operator F [i] as follows.

F [i](x) = F (max{i, x}).

Then F [i] is of course a nice operator, too.

Definition 5.11. Let F be a nice operator. F r
α

Γ : ∆ holds if N(α) ≤ F (0) and one of the following
cases holds:

• Axiom: Γ contains a false atomic formula or ∆ contains a true atomaic formula;
• (→ A): F r

α0
Γ : ∆, φ and F r

α1
Γ, ψ : ∆ and α0, α1 < α and φ→ ψ ∈ Γ.

• (→ S): F r
α0

Γ, φ : ψ,∆ and α0 < α and φ→ ψ ∈ ∆.
• (∀A): F r

α0
Γ, φ(k) : ∆ and k ≤ F (0) and α0 < α and ∀xφ ∈ Γ.

• (∀S): F [i] r
αi

Γ : ∆, φ(i) and αi < α for all i ∈ N and ∀xφ ∈ ∆.
• (CUT): F r

α0
Γ, φ : ∆ and F r

α1
Γ : φ,∆ and α0, α1 < α and |φ| < r.

Note that this system is very similar to Z∞. The major difference is due to the rules for the quantifiers
where the operators play a role. The idea is that existantial witnesses are saved into the controlling oper-
ator in case of an application of (∀A). The role of the extra condition Nα ≤ F (0) becomes transparent
in the proof of the cut reduction theorem.

Lemma 5.12 (Structural lemma). Suppose F r
α

Γ : ∆ and Γ ⊆ Γ′ and ∆ ⊆ ∆′ and r ≤ r′ and α ≤ α′

and ∀l : F (l) ≤ G(l). Then G
r′
α′

Γ′ : ∆′.

PROOF. Proof by induction on α. �

Lemma 5.13 (Inversie).
(1) If F r

α
Γ : ∆, φ and φ is a false atomic formula then F r

α
Γ : ∆.

(2) If F r
α

Γ, φ : ∆ and φ is a true atomic formula then F r
α

Γ : ∆.
(3) If F r

α
Γ : ∆, φ→ ψ then F r

α
Γ, φ : ψ,∆.

(4) If F r
α

Γ, φ→ ψ : ∆ then F r
α

Γ : φ,∆ and F r
α

Γ, ψ : ∆.
(5) If F r

α
Γ : ∆,∀xφ then F [i] r

α
Γ : ∆, φ(i) for all i.

PROOF. All proofs can be carried out by routine inductions on α. Only the proof of the last assertion
needs some extra care. The proof is still by induction on α. Suppose α = 0. Then Γ : ∆,∀xφ is an
axiom. Since ∀xφ is not an atomic formule, we see that Γ : ∆ is an axiom and the assertion follows. Now
suppose α > 0. We may assume that a last inference rule has been applied:
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• (∀A). Then F r
α0

Γ, ψ(k) : ∆,∀xφ and k ≤ F (0) and α0 < α and ∀yψ ∈ Γ. The induction
hypothesis yields F [i] r

α0
Γ, ψ(k) : ∆, φ(i) for all i. An application of (∀A) yields the

assertion since k ≤ F (0) ≤ F [i](0).

• (∀S). Then F [i] r
αi

Γ : ∆, ψ(i),∀xφ and αi < α for all i ∈ N and ∀yψ ∈ ∆,∀xφ. The
induction hypothesis yields F [i][j] r

αi
Γ : ∆, ψ(i), φ(j) for all j. There are two cases to

consider:

– ∀yψ 6≡ ∀xφ. Then we apply (∀S) and the assertion follows.

– ∀yψ ≡ ∀xφ. By implicit contraction we obtain:

F [i][i] r
αi

Γ : ∆, φ(i)

Since F [i][i] = F [i] we thus obtain:

F [i] r
αi

Γ : ∆, φ(i)

The assertion follows.

• The other cases are easy.

�

3. Cut-elimination

Now we are going to prove the cut elimination. This will have a subtle effect on the underlying operators.

Definition 5.14. Suppose that F and G are nice operators. Define

C(F,G) = F ◦G+ F +G

The idea is that C(F,G) models the composition of F and G. The extra two summands are built in for
conve nience and have to do with technical constraints regarding controlling the norms of ordinals in later
applications and are in fact superfluous.

Lemma 5.15 (Reduction lemma). Suppose that G r
β

Γ, φ : ∆ and F r
α

Γ : ∆, φ and |φ| ≤ r. Then

C(F,G) r
α+β2

Γ : ∆

PROOF. The proof is by induction on β. Note first that N(α + β · 2) ≤ F (0) + G(0) + G(0) ≤
C(F,G)(0). There are two cases to consider:

• φ was not the principal formula of the last inference. If Γ, φ : ∆ is an axiom then the assertion
follows immediately. Otherwise we distinguish cases according the last applied inference rule.
Assume, for example, that the rule (∀S) has been applied. Then we see for all i,

G[i] r
βi

Γ, φ : ∆, ψ(i)

with ∀xψ ∈ ∆. The induction hypothesis yields

C(F,G[i]) r
α+βi2

Γ : ∆, ψ(i)

We have C(F,G[i]) ≤ C(F,G)[i]. Indeed, we have for all l < ω

C(F,G[i])(l) = F (G[i](l)) + F (l) +G[i](l) ≤ F (G(max{i, l})) + F (max{i, l}) +G(max{i, l}) = C(F,G)[i](l)
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and thus we can apply (∀S) and the assertion follows.

• φ was the principal formula of the last inference.

– If Γ, φ : ∆ is an axiom then φ is a false atomic formula and the assertion follows by
assertion two of Lemma lemma 1.131.13 applied to F r

α
Γ : ∆, φ.

– If φ ≡ ψ → χ then inversion yields

G r
β0

Γ, φ : ψ,∆

G r
β1

Γ, φ, χ : ∆

The induction hypothesis yields

C(F,G) r
α+β02

Γ : ψ,∆

C(F,G) r
α+β12

Γ, χ : ∆

Applying inversion (Lemma 5.15) on F r
α

Γ : ∆, φ yields

F r
α

Γ, ψ : χ,∆

By applying cut we obtain:

Γ : ψ, χ,∆ Γ, ψ : χ,∆
CUT

Γ : χ,∆ Γ, χ : ∆
CUT

C(F,G) r
α+β2

Γ : ∆

Applying cut is allowed since |ψ|, |χ| < |φ| ≤ r. Note that α+max{β0, β1}+2 ≤ α+β·2.

– φ ≡ ∀xψ. We have the premises

G r
β0

Γ, φ, ψ(k) : ∆

with k ≤ G(0). The induction hypothesis yields

C(F,G) r
α+β02

Γ, ψ(k) : ∆

Inversion applied to F r
α

Γ : ∆, φ yields

F [k] r
α

Γ : ∆, ψ(k)

Now we have k ≤ G(0) so that F [k] ≤ F [G(0)] ≤ C(F,G) and we can again apply a cut
to obtain:

C(F,G) r
α+β2

Γ : ∆

�

Definition 5.16. For a nice operator F we define

Fα(x) = max
(
{F (x) + 1} ∪ {C(F γ , F δ)(x) | γ, δ < α ∧N(γ), N(δ) ≤ F (x)}

)



3. CUT-ELIMINATION 45

Lemma 5.17. Let F be a nice operator. Then we have for all i,m ∈ N and α ∈ On that

(F [i])α(m) ≤ Fα[i](m).

PROOF. By indcution on α. If α = 0 then the assertion is clear. So suppose α > 0. For some
γ, δ < α and N(γ), N(δ) ≤ F [i](m) we obtain

F [i]α(m) = C(F [i]γ , F [i]δ)(m)

= F [i]γ(F [i]δ(m)) + F [i]γ(m) + F [i]δ(m)

≤ F [i]γ(F δ[i](m)) + F γ [i](m) + F δ[i](m)

≤ F γ [i](F δ[i](m)) + F γ [i](m) + F δ[i](m)

= F γ(F δ(max{i,m})) + F γ(max{i,m}) + F δ(max{i,m})
≤ Fα(max{i,m}) = Fα[i](m).

�

THEOREM 5.18 (Cut-elimination). If F r+1
α

Γ : ∆ then Fα r
ωα

Γ : ∆.

PROOF. By induction on α. If α = 0 then the assertion is obvious since no cut is involved. Suppose
that α > 0. Note that Nα ≤ F (0) yields Nωα) ≤ Fα(0). We have to consider two cases:

• The last inference rule was a cut. Then we have the premises:

F r+1

α0
Γ, φ : ∆

F r+1

α1
Γ : ∆, φ

with α0, α1 < α, N(α0), N(α1) ≤ F (0) and |φ| < r + 1. The induction hypothesis yields

Fα0
r
ωα0

Γ, φ : ∆

Fα1
r
ωα1

Γ : ∆, φ

with |φ| ≤ r. The reduction lemma yields

C(Fα0 , Fα1) r
ωα0+ωα12

Γ : ∆

We have C(Fα0 , Fα1) ≤ Fα since N(α0), N(α1) ≤ F (0).

Moreover, we have ωα0 + ωα12 ≤ ωα and the assertion follows.

• The last inference rule was not a cut. We distinguish cases according to the last applied deriva-
tion rule. Consider, for example, the case of (∀S). (The other cases can be treated similarly.)
We have the premises

F [i] r+1

αi
Γ : ∆, φ(i)

and

N(αi) ≤ F [i](0)
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for all i with ∀xφ ∈ ∆. The induction hypothesis yields

F [i]αi r
ωαi

Γ : ∆, φ(i)

From lemma 1.171.17 and N(αi) ≤ F [i](0) we obtain F [i]αi ≤ Fαi [i] ≤ Fα[i] and hence

Fα[i] r
ωαi

Γ : ∆, φ(i)

An application of (∀S) yields

Fα r
ωα

Γ : ∆

�

4. Witness bounds for existential sentences

Lemma 5.19. Suppose that F 0
α ∃xφ(x) with φ atomic. Then there exists a k ≤ F (0) so that N |= φ(k).

PROOF. Suppose F 0
α ∃xφ(x). This yields

F 0
α ∀x(φ(x)→ ⊥) : ⊥

Now we perform an induction on α.

Since the proof is cut free the last applied rule is (∀A). We thus had premises

F 0

α0 ∀x(φ(x)→ ⊥), φ(k)→ ⊥ : ⊥

where k ≤ F (0). If N |= φ(k) the the assertion follows. So assume N 6|= φ(k) for all k ≤ F (0). By
inversion (Lemma lemma 1.131.13 we obtain

F 0

α0 ∀x(φ(x)→ ⊥) : φ(k),⊥

where φ(k) is a false atomic formula. Another application of Inversion yields

F 0

α0 ∀x(φ(x)→ ⊥) : ⊥

for some α0 < α. By induction hypothesis we obtain a k ≤ F (0) so that N |= φ(k). Contradiction.

�

THEOREM 5.20. If F 0
α ∀x∃yφ(x, y) with φ atomic, then we have for all m ∈ N that there exists an

n ≤ F (m) with N |= φ(m,n).

PROOF. Suppose F 0
α ∀x∃yφ(x, y) with φ atomic. Inversion yields

F [m] 0
α ∃yφ(i, y)

for a given m. From lemma 1.191.19 we obtain that N |= φ(m,n) for some n ≤ F [m](0) = F (m). �
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5. Embedding of Z

We can prove the embedding of Z into Z∞ also in the context of operator-controlled derivations.

Lemma 5.21.
(1) If val(s) = val(t) then 2|φ|+ id 0

2|φ|
φ(s) : φ(t).

(2) 2|φ|+ 2 id +2 0
ω
φ(0),∀x(φ(x)→ φ(Sx)) : ∀xφ(x).

PROOF.

(1) By induction on |φ|. Most cases are routine. The interesting case is φ ≡ ∀yψ(y). The induction
hypothesis yields

2|ψ|+ id 0

2|ψ|
ψ(s,m) : ψ(t,m)

for all m. We find

(2|ψ|+ id +1)[m] 0

2|ψ|+1
∀yψ(s, y) : ψ(t,m)

since m ≤ (22|ψ|+ id+ 1[m](0). Using (∀S) we obtain

(2|ψ|+ id +2) 0

2|ψ|+1
∀yψ(s, y) : ∀yψ(t, y).

(2) Note that (2|φ|+ 2 id)[n](0) ≥ N(2|φ|+ 2n). By induction on n we prove that

(2|φ|+ 2 id)[n] 0

2|φ|+2n
φ(0), ξ : φ(n)

where ξ ≡ ∀x(φ(x)→ φ(Sx)). If n = 0, then the first assertion yields

(2|φ|+ 2 id)[0] 0

2|φ|
φ(0), ξ : φ(0)

Assume now n > 0. The induction hypothesis yields

(2|φ|+ 2 id)[n] 0

2|φ|+2n
φ(0), ξ : φ(n)

The first assertion yields

(2|φ|+ id)[n] 0

2|φ|
φ(Sn) : φ(Sn)

So we find

(2|φ|+ 2 id +1)[n] 0

2|φ|+2n+1
φ(0), ξ, φ(n)→ φ(Sn) : φ(Sn).

This yields

(2|φ|+ 2 id +2)[n] 0

2|φ|+2n+1
φ(0), ξ : φ(Sn)

and thus

(2|φ|+ 2 id)[n+ 1] 0

2|φ|+2n+2
φ(0), ξ : φ(Sn)

The assertion follows.

�
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THEOREM 5.22 (Embedding). Suppose that FV(Γ : ∆) ⊆ {a1, . . . , an} and Z ` Γ : ∆. Then there
exist k, r < ω and a primitive recursive nice operator F so that for all m = (m1, . . . ,mn) we have
F [m] r

ω+k
Γ(m) : ∆(m).

PROOF. By induction of the length of the derivation of Γ : ∆ in Z. If Γ : ∆ is an axioma of Z, then
Γ(m) : ∆(m) is an axiom, too. Suppose that a last inference rule has been applied:

• The rules (→ A) and (→ S) can be treated as for Z∞.

• (∀A). Then we have ∀xφ(x) ∈ Γ and we have a premis ` Γ, φ(t) : ∆. The induction hypothesis
yields

G[m] r0

ω+k0
Γ(m), φ(t(m)) : ∆(m)

with r0, k0 < ω. From lemma 1.211.21 we obtain

2|φ|+ id 0

2|φ|
φ(val(t(m))) : φ(t(m))

We may assume that G[m] ≥ 2|φ|+ id and G[m](0) ≥ N(ω + k0 + 1) and can apply a cut:

G[m]
max(r0,|φ|+1)

ω+k0+1
Γ(m), φ(val(t(m))) : ∆(m)

An application of (∀A) is not yet immediately allowed since we have to guarantee that val(t(m)) ≤
G(0). This is not necessarily true. But we can majorize m 7→ val(t(m)) by a sufficiently large
branch Ad of the Ackermann-function and we can obtain:

(G+Ad)[m]
max(r0,|φ|+1)

ω+k0+2
Γ(m) : ∆(m)

Here d has to fulfill Ad(max(m)) ≥ val(t(m)) + 1.

• (∀S). Then ∀yψ(y) ∈ ∆ and we have a premis ` Γ : ψ(a),∆ with a /∈ FV(Γ : ∆). The
induction hypothesis yields for all l ∈ N

G[m, l] r0

ω+k0
Γ(m) : ψ(l,m),∆(m)

We may assume G[m](0) ≥ N(ω + k0 + 1) Applying (∀S) yields:

G[m] r0

ω+k0+1
Γ(m) : ∆(m)

This works because G[m, l] = G[m][l].

• We can deal with CUT en the equality rules as Z∞.

• T -rule. Suppose we have a premis ` Γ, φ : ∆ where φ is an axiom Z. The induction hypothesis
yields

G[m] r0

ω+k0
Γ(m), φ : ∆(m)

It is enough to show

H r1

ω+k1
φ

The we can write down the following proof:

G[m] r0

ω+k0
Γ(m), φ : ∆(m) H r1

ω+k1
Γ(m) : φ,∆(m)

CUT
F [m]

max(r0,r1,|φ|+1)

ω+max(k0,k1)+1
Γ(m) : ∆(m)
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for some suitable F majorizing G and H . That is precisely what we want to show. For this we
distinguish cases according to the shape of φ. We consider the case φ ≡ ∀x(Sx = 0 → ⊥),
since the other cases are similarly:

id 0
0
Sm = 0 : ⊥

id +1 0
1
Sm = 0→ ⊥

id +2 0
2 ∀x(Sx = 0→ ⊥)

• The induction rule can be treated by the induction lemma.

�

6. Gödel incompleteness

Definition 5.23. Let α < ε0. A function F is called α-recursive if it can be generated from the zero
function and the projection functions by substitution, primitive recursion and the closure under formations
rule: If F is α recursive and β ≤ α then Fα is α recursive.

THEOREM 5.24. Suppose Z ` ∀x∃yφ(x, y) with φ atomic. Then there exists an α < ε0 and an α-
recursive function F so that for all m there exists an n ≤ F (m) such that N |= φ(m,n).

PROOF. Suppose Z ` ∀x∃yφ(x, y). The embedding theorem yields the existence of a primitive
recursive function F and of numbers k, r < ω so that

F r
ω+k ∀x∃yφ(x, y)

Iterated applications of cut elimination yields:

F r
ω+k ∀x∃yφ(x, y)

Fω+k r−1
ωω+k

∀x∃yφ(x, y)(
Fω+k

)ωω+k

r−2
ωω

ω+k

∀x∃yφ(x, y)

...

G 0
α ∀x∃yφ(x, y)

for some suitable α < ε0. The function G will be α-recursive. By applying lemma 1.191.19 the assertion
follows. �

We are now going to compare α recursive functions with functions from the Hardy hierarchy. The crucial
ingredient for the proof is the property β < α∧N(β) ≤ n =⇒ Hβ(n) < Hα(n) which we have shown
in Lemma lemma 1.81.8.

Some natural majorization properties of the Hardy hierarchy are collected in the following lemma.

Lemma 5.25.
(1) Hα(n) ≤ Hωα(n)
(2) Hα(n) ≤ Hα⊕β(n)
(3) N(α) ≤ Hα(n)
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PROOF.

(1) By induction on α. If α = 0 then H0(n) = n < H1(n). For α = β + 1 we find

Hωα(n) = Hωβ(n+1)(n) = Hn+1
ωβ

(n+ 1)
IH
≥ Hβ(n+ 1) = Hα(n).

If α is a limit, then:

Hα(n) = Hα[n](n+ 1) ≤ Hωα[n](n+ 1) = Hωα(n)

(2) Suppose α = ωα1 + · · ·+ ωαm and β = ωαm+1 + · · ·+ ωαm+n . Then

Hα(n) = Hωα1 (. . . Hωαm (n) . . . )

Hα⊕β = Hω
απ(1) (. . . Hω

απ(n+m) (n) . . . )

whereπ is an permutation so that απ(1) ≥ · · · ≥ απ(n+m). The assertion follows from the
composition lemma 5.11 for Hardy hierarchies.

(3) If α = 0 then the assertion is clear. For α+ 1 geldt

N(α+ 1) = 1 +N((α+ 1)[0]) ≤ H(α+1)[0](0) ≤ H(α+1)[0](1) ≤ Hα+1(0)

If α is a limit:

N(α) = 1 +N(α[0]) ≤ 1 +Hα[0](0) ≤ Hα[0](1) = Hα(0) ≤ Hα(n)

�

Recall that for a nice operator we defined

Fα(x) = max
(
{F (x) + 1} ∪ {C(F γ , F δ)(x) | γ, δ < α ∧N(γ), N(δ) ≤ F (x)}

)

Lemma 5.26. Suppose that F is a nice operator.
(1) α < β =⇒ Fα(x) ≤ F β(x).
(2) 4k ≤ Hω2(k) and 8k ≤ Hω3(k) or more generally 2ik ≤ Hωi(k)
(3) Hω2(k) ≤ Hωα⊕β+1(k) if α > 0 and x > 0.
(4) F ≤ Hα =⇒ F β(x) ≤ Hωα⊕β+1+8(x).

PROOF.

(1) By indcution on α. For α = 0 we obtain

Fα(x) = F (x) + 1 ≤ F β(x).

For α > 0 we find

Fα(x) = F (x) + 1

or

Fα(x) = F γ(F δ(x)) + F γ(x) + F δ(x)

for γ, δ < α with N(γ), N(δ) ≤ F (x). Then the definition of F β(x) yields F γ(F δ(x)) +
F γ(x) + F δ(x) ≤ F β(x) since γ, δ < β with N(γ), N(δ) ≤ F (x).
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(2) We compute:

Hω(k) = Hω[k](k + 1) = Hk+1(k + 1) = Hk(k + 2) = Hk−1(k + 3) = 2k + 2

Hω2(k) = H(ω2)[k](k + 1) = Hω+k+1(k + 1) = Hω(2k + 2) = Hω[2k+2](2k + 3)

= H2k+3(2k + 3) = 4k + 6

Hω3(k) = Hω2+k+1(k + 1) = Hω2(2k + 2) ≥ 4(2k + 2) ≥ 8k

(3) This is easy.

(4) By induction on β we prove for all x ≥ 8,

F β(x) ≤ Hωα⊕β+1(x)

and this yields the assertion since Hωα⊕β+1(x+ 8) ≤ Hωα⊕β+1+8(x).

For β = 0 we obtain:

F 0(x) = F (x) + 1 ≤ Hα(x) + 1 ≤ Hα+1(x) ≤ Hα⊕β+1(x)

≤ Hωα⊕β+1(x)

For β > 0 we have

F β(x) = F γ(F δ(x)) + F γ(x) + F δ(x)

for γ, δ < β with N(γ), N(δ) ≤ F (x). Let ξ = max(γ, δ). Then we obtain

F β(x) ≤ F ξ(F ξ(x)) · 3 ≤ F ξ(F ξ(x)) · 4
The induction hypothesis and (2) yield

F ξ(F ξ(x)) · 4 ≤ Hω2(Hωα⊕ξ+1(Hωα⊕ξ+1(x)))

≤ Hωα⊕ξ+1(Hωα⊕ξ+1(Hωα⊕ξ+1(Hωα⊕ξ+1(x))))

Because of the composition law Hα(Hβ(x)) = Hα+β(x) for NF (α, β) we see

F ξ(F ξ(x)) · 4 ≤ Hωα⊕ξ+14

Thus F β(x) ≤ Hωα⊕ξ+14(Hωα⊕β5(x)). Moreover we find

N(ωα⊕ξ+1 · 4) ≤ 4(1 +N(α)⊕N(ξ) + 1) ≤ 8(2Hα(x)) = 16Hα(x)

≤ Hω4(Hα(x)) ≤ Hωα⊕β5(x)

Now we can show that F β(x) ≤ Hωα⊕β4(Hωα⊕β5(x)).

For ξ < β we have ξ + 1 ≤ β and there are two options:

• If ξ + 1 = β then Hωα⊕ξ+14(Hωα⊕β5(x)) = Hωα⊕β4(Hωα⊕β5(x)).

• If ξ + 1 < β then we apply assertion 3 of Lemma lemma 1.81.8 (our crucial majorization
property) and obtain

F β(x) ≤ Hωα⊕ξ+14(Hωα⊕β5(x)) ≤ Hωα⊕β4(Hωα⊕β5(x)) ≤ Hωα⊕β9(x) ≤ Hωα⊕β+1(x)

Now we can conclude

Hωα⊕β+1(x)

≤ Hωα⊕β+1(x+ 8)

≤ Hωα⊕β+1+1(x+ 7) ≤ · · · ≤ Hωα⊕β+1+8(x)

The assertion follows.
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�

Lemma 5.27. Let F be a nice operator.
(1) Suppose that 3F (m)+1 · 2 + 1 ≤ Hωk(m) for all m < ω. Then Fω·l+p(m) ≤ H3p+1

ωl⊕k+1(m) for
all m < ω.

(2) Suppose that Fω·l+p(m) ≤ H3p+1

ωl⊕k+1(m) for all m < ω. Then F 3ω·l+p(m) ≤
H
ωωl·3

p⊕ωl⊕+k+1·3p+1 (m) for all m < ω.

PROOF. The first assertion is proved by induction on ω ·l+p. The second assertion follows
from 3ω·l+p = ωl · 3p and Lemma lemma 1.261.26 �

THEOREM 5.28. If Z ` ∀x∃yφ(x, y) with φ atomic then there exists an α < ε0 so that for all m there
exists an n ≤ Hα(m) such that N |= φ(m,n).

PROOF. From theorem 1.241.24 we conclude that there exists an α-recursive function F such that N |=
φ(m,n) for some n < F (m). For this α-recursive function we have a primitive recursive function G
with:

F :=
(
. . .
(

(Gω+k)ω
ω+k
)
. . .
)ω···ωω+k

Without loss of generality we may assume that G is nice: Otherwise we replace G by a nice majorant.
Since this function is primitive recursive we find an l such that ∀m : G(m) < Hωl(m). By an iterated
application of the third assertion of the last lemma the assertion follows. �

THEOREM 5.29. Assume that Z ` ∀x∃yφ(x, y) with φ an existential formula. Then there exists an
α < ε0 so that for all m there exists an n ≤ Hα(m) such that N |= φ(m,n).

PROOF. Let φ(x, y) ≡ ∃zψ(x, y, z) with ψ atomic. If Z ` ∀x∃yφ(x, y) then Z ` ∀x∃u∃y ≤
u∃z ≤ uψ(x, y). Since primitive recursive predicates are closed under bounded quantification we find
an atomic formula χ(x, u) ≡ ∃y ≤ u∃z ≤ uψ(x, y). Morever this equivalence is provable in Z. and we
find Z ` ∀x∃uχ(x, u).

From theorem 1.241.24 we conclude that there exists an α-recursive function F such that N |= χ(m,n) for
some n < F (m). Then also N |= φ(m,n). For the α-recursive function F we find in fact a primitive
recursive nice function G with:

F :=
(
. . .
(

(Gω+k)ω
ω+k
)
. . .
)ω···ωω+k

Since G is primitive recursive we find an l such that ∀m : G(m) < Hωl(m). By an iterated application
of the third assertion of the last lemma the assertion follows. �

THEOREM 5.30. Let α < ε0. Then Z ` ∀x∃yHα(x) = y.

PROOF. Let a be the natural number which codes an element in OT of order type β. Let us define a
formule H(a, x, y, z) which formalizes that there exists a compuation tree z for Hβ(x) with result y.
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We assume that there is a primitive recursive function f such that f(a, x) is a[x] if a ∈ OT . Let
H(a, x, y, z) be the formula

a ∈ OT ∧ z ∈ Seq ∧ ∀i < lh(y)[lh((y)i) = 3] ∧ [i = 0→ ∃v ≤ y(y)i = 〈0, v, v〉](6)

∧[i = lh(y)− 1→ (y)i = 〈a, x, y〉](7)

∧[i+ 1 < lh(y)− 1→ ∀u, v, w((y)i+1 = 〈u, v, w〉 → (y)i = 〈u[v], v + 1, w, x, y〉)](8)
(9)

Then Z ` a ∈ OT → (H(a[x], x+ 1, z, y)↔ H(a, x+ 1, z ? 〈a, x, y〉, y)

Let α be represented by k. By transfinite induction up to k within Z we can prove Z ` b � k →
∀x∃z∃yH(b, x, z, y). This yields the assertion.

�

Therefore Z 6` ∀x∃yHε0(x) = y. Assume otherwise that Z ` ∀x∃yHε0(x) = y. Assume that the graph
of Hε0 is formalized in Z by some canonical existantial formula. Then by the preceding theorem there
exists an α < ε0 such that for all m there exists an n ≤ Hα(m) with Hε0(m) = n ≤ Hα(m). This is a
contradiction. So there exist formulas which are true over the structure N but which are unprovable in Z
and we obtain among other things a version of the first Gödel incompleteness theorem.

Exercise 5.31. In this exercise we extend our methods to larger segments of ordinals so that the provably
recursive functions of stronger theories than Z can be treated once those systems have been reduced
to Z + TI�≺ where ≺ is an arithmetical well ordering of order type τ and where TI�≺ formailizes
the transfinite induction along all strict initial segments of ≺. We assume that we can extend the norm
function N as follows to the larger domain τ . Assume that for every k the set {α < τ : Nα} has
finite cardinality. N0 := 0., N(α ⊕ β) = Nα + Nβ, N(ωα) = Nα + 1. Here ωα := ωα+1 if there
exists an α0 and an n such that α0 + n = α and ωα0 = α0. Otherwise ωα := ωα. Assume that ≺
is a primitive recursive well order and o : N → τ is a function such that for all m,n ∈ N we have
m ≺ n ⇒ o(m) < o(n). Moreover assume that there exists a primitive recursive function G such that
N(o(n)) ≤ G(n) and N(o(n)) ≤ G(n).

(1) Show that there exist a primitive recursive operator F such that for all n we have

F 0

2rk(A)⊕3·(rk(n)+1)
Prog≺(A) : ∀ <≺ nA(y).

(2) If Z + TI�≺∀x∃yφ(x, y) then there exists a β < τ and a β recursive function H such that
forall m there exists an n ≤ H(m) such that N |= φ(m,n). (Here the definition of β recursive
function has to be adapted to τ in a straight forward way.) (Hint: Adapt the machinery from
this section.)

Exercise 5.32. Assume that d is the Gödel number of a proof for Z ` ∃yHε0(Hε0(100)) = y Show that
d ≥ Hε0(50). (Hint: Assume that d < Hε0(50) and exploit the constructive content of the embeddind
procedure together with the bounding lemma. Analyze the resulting term using the theory about the Hardy
functions.)





CHAPTER 6

Provably recursive functions of IΣn

1. The formal system IΣn

In this section we refine our previous results to obtain a classification of the provably recursive functions
of systems with n-quantifier induction. In these systems the number of allowed quantifiers in induction
formulas does not exceed n. This enterprise requires a good bookkeeping regarding the involved com-
plexities. In a first step we redefine the notion of rank of a formula so that the rank of a formula φ equals
the rank of the formula ¬φ. This has the desired effect that the rank of a formula ∀xφ coincides with the
rank of the formula ∃xφ. This has the effect that a formula with at most n unbounded quantifiers can
equivalently be written by a formula of rank not exceeding n.

Definition 6.1. From the rest of this section we change the definition of complexity |φ| of a formula φ so
that

|φ→ ψ| =
{

max(|φ|, |ψ|) + 1 if ψ 6≡ ⊥
|φ| otherwise

Definition 6.2. We define the system IΣn for n ∈ N as follows. IΣn r
a

Γ : ∆ if one of the following cases
holds

(1) Axiom: there exists a prime formula φ ∈ Γ ∩∆.
(2) (→ A): IΣn r

a1
Γ : φ,∆ and IΣn r

a2
Γ, ψ : ∆ and φ→ ψ ∈ Γ and a1, a2 < a.

(3) (→ S): IΣn r
a1

Γ, φ : ψ,∆ and a1 < a and φ→ ψ ∈ ∆.
(4) (∀S): IΣn r

a1
Γ : ∆, φ(b) and ∀xφ ∈ ∆ and b /∈ FV(Γ : ∆)

(5) (∀A): IΣn r
a1

Γ, φ(t) : ∆ and a1 < r and ∀xφ ∈ Γ.
(6) (= I), (= F ) en (= P ) as defined for Z.
(7) CUT: IΣn r

a1
Γ, φ : ∆ en IΣn r

a2
Γ : φ,∆ and |φ| < r.

(8) If φ is an axiom for a primitive recursive function then (as for Z, see chapter 11) φ ∈ ∆.
To be explicit such an axiom is an element of the set {¬Sa = 0, Sa = Sb → a =
b, 0n(a) = 0, Pni (a) = ai, h ◦ (g1, . . . , gm)(a) = h(g1(a), . . . , gm(a)),Rec(g, h)(0,a) =
g(a) Rec(g, h)(Sy,a) = h(y,a,Rec(g, h)(y,a))} where g and h range over PRF .

(9) IND: IΣn r
a1

Γ : φ(0),∆ and IΣn r
a2

Γ, φ(b) : ∆, φ(Sb)
and a1, a2 < a and φ(s) ∈ ∆ and |φ| ≤ n and b /∈ FV(Γ,∆,∀xφ).

The intention to define IΣn is to analyse the induction scheme more profoundly: the parameter n controls
the complexity of the formulas over which we perform induction. IΣ0 allows only induction over atomic
formulas, IΣ1 allows only induction on formules of complexity at most 1, etc.

The crucial feature of the calculus for IΣn is that the formula in the induction rule IND is of lowest
possible complexity. This allows for a Gentzen style cut elimination of cuts of ranks bigger than n.
Moreover the induction rule IND implies the scheme of inductions for all formulas of rank not exceeding
n.

55
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Lemma 6.3.
(1) If a ≤ a′, r ≤ r′, Γ ⊆ Γ′, ∆ ⊆ ∆′ and r

a
Γ : ∆ then

r′
a′

Γ′ : ∆′.

(2) For a free variable b we have that IΣn r
a

Γ(b) : ∆(b) implies IΣn r
a

Γ(t) : ∆(t)

(3) IΣn 0

2|φ|
φ : φ

(4) If IΣn r
a

Γ : ∀xφ,∆ then IΣn r
a

Γ : ∆, φ(t)

(5) If IΣn r
a

Γ : ∆, φ→ ψ then IΣn r
a

Γ, φ : ψ,∆

(6) If IΣn r
a

Γ, φ→ ψ : ∆ then IΣn r
a

Γ : ∆, φ and IΣn r
a

Γ, ψ : ∆

(7) If |φ| ≤ n then IΣn 0
a
φ(0)→ (∀x(φ(x)→ φ(Sx))→ ∀xφ(x)) for some a.

PROOF. All assertions can be proved routinely. Only the last assertion requires some extra care:

(7) We know that 0

2|φ|
φ(0) : φ(0). Assume k = 2|φ| and k′ ≥ k, then

IΣn 0
k′ ∀x(φ(x)→ φ(Sx))︸ ︷︷ ︸

G

: ∀x(φ(x)→ φ(Sx))

Inversion yields

IΣn 0
k′
G : φ(b)→ φ(Sb)

IΣn 0
k′
G,φ(b) : φ(Sb)

Now suppose l = max(k, k′) + 1 and that c is a new free variable. Then noting that |φ| ≤ n
we are allowed to apply IND and obtain the following derivation:

IΣn
l

G,φ(0) : φ(c),

IΣn
l+1

G,φ(0) : ∀xφ(x),

IΣn
l+2

φ(0) : G→ (∀xφ(x)),

IΣn
l+3

φ(0)→ (G→ (∀xφ(x)).

�

2. Cut-elimination for IΣn

For IΣn we can in contrast to Z prove a special sort of cut-elimination, the so called partial cut-
elimination. We can eliminate all cuts of rank strictly greater than n. This is due to the fact that the
complexity of the formulas which are allowed for the induction scheme is bounded by n. For formulas of
larger complexity we basically can perform the original Gentzen style argument.

Lemma 6.4 (Reduction lemma). Suppose that IΣn r
a

Γ : ∆, φ and IΣn r
b

Γ, φ : ∆ and r > n and

|φ| ≤ r. Then IΣn r
a+2b

Γ : ∆.

PROOF. By induction on b with a subsiduary proof on the length of φ. The whole proof is by routine.
Note that if φ has been introduced by an induction rule then we can apply a cut to φ since n < r. The
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other cases are similar to Gentzen style cut elimination for predicate calculus. Since the definition of rank
has been modified let us consider the case that φ ≡ ψ → ⊥. Inversion yields

IΣn r
b

Γ : ψ,∆

By inversion we find moreover, IΣn r
a

Γ, ψ : ⊥,∆. But this yields IΣn r
a

Γ, ψ : ∆. Now we can apply
the induction hypothesis on the length of φ to obtain the assertion.

IΣn r
a+2b

Γ : ∆.

�

THEOREM 6.5 (Partial cut-elimination). If IΣn r+1
a

Γ : ∆ and r > n then IΣn r
3a

Γ : ∆.

Lemma 6.6. If IΣn ` φ then there exists a k so that IΣn n+1
k

φ.

3. Embedding with operator-controlled derivations

In this section we show that we can embed the systeem IΣn into the infinitary systeem for operator-
controlled derivations. Special care is needed to keep the derivation heights small so that we can extract
relative tight bounds on provable instances of existential formulas.

Lemma 6.7. If F r
α

Γ(t) : ∆(t) and val(t) = k then F r
α

Γ(k) : ∆(k).

THEOREM 6.8 (Embedding). Suppose IΣn n+1
a

Γ : ∆ where FV(Γ : ∆) ⊆ {a1, . . . , am}.
Then there exists a primitive recursive operator F with F [m] n+1

ωd+a
Γ(m) : ∆(m) where d denotes the

number of iteration of the scheme IND.

PROOF. We only deal with the cases which are not routine:

• (∀S). In this case we have ∀xφ ∈ ∆ and IΣn n+1
a′

Γ : ∆, φ(a) with a a variable which is new
for the context. The induction hypothesis yields the existence of a primitive recursive F such
that

F [m, p] n+1

ωd+a′

Γ(m) : ∆(m), φ(p,m)

for all m, p. This yields

(1 + F )[m] n+1

ωd+1+a′

Γ(m) : ∆(m)

• (∀A). In this case we have IΣn n+1
a′

Γ, φ(t) : ∆ met ∀xφ ∈ Γ. The induction hypothesis
yields

F [m,p] n+1

ωd+a′

Γ(m), φ(m, t(m,p)) : ∆(m)
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From lemma 6.76.7 we obtain

F [m,p] n+1

ωd+a′

Γ(m), φ(m, val t(m,p)) : ∆(m)

This holds for all p, in particular for p = 0

F [m, 0] n+1

ωd+a′

Γ(m), φ(m, val t(m, 0)) : ∆(m)

For some k we have val t(m, 0) ≤ Ak(maxm) since t is primitive recursive, hence

(F +Ak)[m] n+1

ωd+1+a′

Γ(m) : ∆(m)

• IND. Suppose IΣn n+1

a1
Γ : ∆, φ(0) and IΣn n+1

a2
Γ, φ(b) : φ(Sb),∆ where IΣn n+1

a
Γ :

∆, φ(s). The induction hypothesis yields

F1[m] n+1

ωd+a1
Γ(m) : ∆(m), φ(0,m)(10)

F2[m, p] n+1

ωd+a2
Γ(m), φ(p,m) : φ(Sp,m),∆(m)(11)

Choose k such that Ak(max(m, p)) ≥ max(F1(m), F2(m, p)) + p. By induction on p we
prove that

Ak[m, p] n+1

ωd+p+a2
Γ(m) : ∆(m), φ(p,m)

For p = 0 this is immediate from Lemma lemma 6.36.3. For p+ 1 the induction hypothesis yields

Ak[m, p] n+1

ωd+p+a2
Γ(m) : ∆(m), φ(p,m)

In connection with (1111) we can apply a cut:

Ak[m, p+ 1] n+1

ωd+p+1+a2
Γ(m) : ∆(m), φ(Sp,m).

So we arrive at

Ak[m, p] n+1

ω(d+1)
Γ(m) : ∆(m), φ(p,m)

and this yields the assertion. For p := val s(m,n) we obtain form lemma 6.76.7 that

Ak[m, val s(m,n)] n+1

ω(d+1)
Γ(m) : ∆(m), φ(val s(m,n),m)

Now we have Al(maxm) ≥ Ak(max(m, val s(m,n))) for some l, hence

Al[m] n+1

ω(d+1)
Γ(m) : ∆(m), φ(s(m,n),m)

�

4. Bounds on the lengths of proofs of existantial statements

In the last section we come to a highlight of all the investigations done before.

Definition 6.9. Let us recall the definition of the arithmetical hierarchy: Σ0
n, Π0

n by recursion on n. The
sets Σ0

0 en Π0
0 consist of the quantifier free formulas. A formula φ belongs to Σ0

n+1 if φ ≡ ∃xψ where
ψ ∈ Π0

n. A formula φ belongs to Π0
n+1 if φ ≡ ∀xψ where ψ ∈ Σ0

n.
Note that if φ ∈ Σ0

n (resp. Π0
n) then also φ ∈ Σ0

m (resp. Π0
m) for all m > n. So the set Π0

1 consists of all
uit all quantifier free formulas and formulas of the form ∀xφ where φ is quantifier free.
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Definition 6.10. If ∆ = ∀x1.φ1, . . . ,∀xn.φn,∆′ met voor alle i, where φi (for all i) and ∆′ are quantifier
free.
Then N |= ∆(a1,...,an) iff N |= ∀x1 < a1.φ1, . . . ,∀xn < an.φn,∆

′.

THEOREM 6.11. Suppose F 2
α

Γ : ∆ with Γ,∆ ⊆ Π0
1 where ∆ = {∀x1φ1, . . . ,∀xnφn} ∪∆′ with ∆′

quantifier. The for all m ∈ Nn we have N |=
∧

ΓF
α(maxm) →

∨
∆m.

PROOF. By induction on α. If α = 0 then the assertion holds trivially since axioms do not involve
quantifiers.

So assume α > 0. We distinguish cases according to the last applied inference rule.

• Axiom case. This case is fine.

• (→ S). We necessariliy have quantifier free formulas A → B ∈ ∆. The premis is: F 2

α0

Γ.A : B,∆. Together with the induction hypothesis we obtain:

N |=
∧

ΓF
α0 (maxm) ∧A→

∨
∆m ∨B

Suppose that N |=
∧

ΓF
α(maxm). Assume N 6|=

∨
∆m. Then we have N 6|= A → B. Thus

N |= A and N 6|= B. Because of Fα > Fα0 we find N |=
∧

ΓF
α(maxm) ∧ A →

∨
∆m ∨ B.

Thence N |=
∨

∆m ∨B. Moreover since B is false we obtain: N |=
∨

∆m contradiction.

• (→ A). This case is similar to the case (→ S)

• (∀S). Without loss of generality we may assume that ∀x1.A(x1) ∈ ∆ is principal formula. The
premises yield for all n:

F [n] 2

αn
Γ : ∆.A1(n)

Using the induction hypothesis we find for all n < m1:

N |=
∧

ΓF [n]αn (m) →
∨

∆m ∨A1(n)

By diagonalization we obtain:

F [n]αn(m) ≤ Fαn(max(n,m)) ≤ Fαn(m) ≤ Fα(m)

Suppose that N |=
∧

ΓF
α(m). The we also find N |=

∧
ΓF

αn (m), hence:

N |=
∨

∆m ∨A1(n) for all n ≤ m1

If N |= ∆m then the assertion is clear. Otherwise we see N 6|= ∆m and therefore N |= A1(n)
holds for all n ≤ m1. By definition 6.106.10 we obtain: N |= (∀x1.A1(x1))

m1 and therefore
N |= ∆m which is a contradiction.

• (∀A). In this case we have ∀xA ∈ Γ and F 2

α0
Γ, A(k) : ∆ where k ≤ F [0]. The indction

hypothesis yields:
N |=

∧
ΓF

α0 (m) ∧A(k)→
∨

∆m

Suppose that N |=
∧

ΓF
α(m). If in addition N |=

∨
∆m then the assertion is clear. Suppose

that N 6|=
∨

∆m.

Because of N |=
∧

ΓF
α(m) we see that N 6|= A(k). But we have ∀xA ∈ Γ and therefore

N |= A(k′) for all k′ which yields a contradiction.
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• CUT. Suppose that we have the following premises:

F 2

α0
Γ, D : ∆ F 2

α1
Γ : ∆, D

We have |D| < 2, and therefore D contains at most one quantifier or D ≡ ¬D′ for D′ ∈ Π0
1.

We may assume without loss of generality that D ∈ Π0
1. So assume D ≡ ∀xn+1A. We apply

the induction hypothesis to the right side of the sequent and obtain:

N |=
∧

ΓF
α1 (m,m′) →

∨
∆m ∨ (∀xn+1Am+1)

m′

for an arbitrary m′. This thus holds for m′ := Fα0(m). Jointly with Fα1 (m, Fα0(m)) ≤
Fα(m) we see:

N |=
∧

ΓF
α(m) →

∨
∆m ∨ (∀xn+1Am+1)

Fα0 (m)

Suppose that N |=
∧

ΓF
α(m). If in addition N |=

∨
∆m then the assertion follows. So assume

N 6|=
∨

∆m. Then we see that N |= (∀xn+1Am+1)
Fα0 (m). Together with the already obtained

results we see: N |=
∧

ΓF
α(m)∧ (∀xn+1Am+1)

Fα0 (m). By applying the induction hypothesis
to the left side of the sequent we obtain N |=

∨
∆m.

�

Lemma 6.12. Suppose that F n+1
α

Γ : ∆ and F (x) ≥ 3x. Then F n
3α

Γ : ∆.

Recall that

αk(x) = αα
. .
.
αx

where the tower of exponents has hight k.

THEOREM 6.13. Suppose IΣn ` ∀x∃yφ(x, y) where φ is prime. Then there exists an l < ω such that for
all p there exists a q ≤ Hωn(l)(p) so that N |= φ(p, q).

PROOF. Suppose that IΣn ` ∀x∃yφ(x, y). Then there exist l, r with

r
l ∀x∃yφ(x, y).

We apply now cut elimination to obtain:

n+1
l′ ∀x∃yφ(x, y).

The embedding theorem yields a primitive recursive F so that

F n+1

ωd+l′ ∀x∃yφ(x, y).

If n = 1 then we are done since Fωd+l is primitive recursive. Assume n > 1. Cut elimination in the
system with operator control yields

2
ωα ∀x∃yφ(x, y)

Cut elimination in the system with operator control yields

Fωd+l 2
3ωd+l

∀x∃yφ(x, y).
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This yields the assertion if n = 2. If n > 2 we perform further cut elimination to obtain

Gωn2
(ωd·3l

2
3ωd+l ∀x∃yφ(x, y).

for some function G of the right complexity. Inversion yields

Gωn2 (ω
d·3l [p] 2

ωα ∃yφ(p, y)

Gωn2
(ωd·3l [p] 2

ωα ∀y(φ(p, y)→ ⊥)→ ⊥

G[ωn2 (ω
d·3lp] 2

ωα ∀y(φ(p, y)→ ⊥) : ⊥

Lemma theorem 6.116.11 yields the existence of some q ≤ Gωn−1(ω
d·3l(p) with N |= φ(p, q). The assertion

follows by bounding G in terms of the Hardy hierarchy:

Gωn−1(ω
d·3l(p) ≤ Hωn(l)(p).

�

THEOREM 6.14. Suppose that IΣ1 ` ∃yHωd100(100) = y for a proof D in which the number of symbols
in D is bounded by Hωd50 . Then pDq > Hωd50(50).

PROOF. Suppose D r
l ∃yHωd100(100) = y. Let d = pDq. Then D′ 2

3r−2(l) ∃yHωd100(100) = y
with a modified proof D′ stil in the finitary system. The term lengths of terms in D′ are bounded by the
Gödel number d of D. This yields

Hωd 2

ωd+3r−2(l) ∃yHωd100(100) = y.

So there exists a y ≤ (Hωd)ωd+3d−2(l) such that Hωd100(100) = y. Suppose that d ≤ Hωd50(50). Then

Hωd100(100) ≤ (Hωd50)ωd+3d−2(l) < Hωd100(100).

This is a contradiction and therefore we arrive at d > Hωd50(50). �
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