Asymptotic Analysis of Coded Slotted ALOHA

Čedomir Stefanović
(cs@es.aau.dk)
System model

• Bipartite graph, consisting of:
 – “AND” nodes
 – “OR” nodes

• Messages are exchanged along the edges of the graph:
 – Two values - \{0, 1\}
Message update rules

OR nodes
- Outgoing message is 1 if any of the incoming messages is 1

AND nodes
- Outgoing message is 1 if all incoming messages are 1
Message update probabilities

OR nodes
- \(p \) – probability that the value of the incoming message is zero
- \(q \) – probability that the value of the outgoing message is zero

\[
q = p^{k-1}
\]

AND nodes
- \(p \) – probability that the value of the outgoing message is zero
- \(q \) – probability that the value of the incoming message is zero

\[
p = 1 - (1 - q)^{j-1}
\]
Message update probabilities (cont’d)

OR nodes

• The expected (i.e., average) probability that the outgoing message is 0 is:

\[q = \sum_k \lambda_k p^{k-1} = \lambda(p) \]

• where:
 – \(\lambda_k \) - probability that message is egressing a node of degree \(k \), \(\Sigma_k \lambda_k = 1 \)
 – \(\lambda(x) = \sum_k \lambda_k x^{k-1} \)

AND nodes

• The expected (i.e., average) probability that the outgoing message is 0 is:

\[p = \sum_j \omega_j (1 - (1 - q)^{j-1}) \]

\[= 1 - \omega (1 - q) \]

• where:
 – \(\omega_j \) - probability that message is egressing a node of degree \(j \), \(\Sigma_j \omega_j = 1 \)
 – \(\omega(x) = \sum_j \omega_j x^{j-1} \)

edge-oriented degree distributions
And-or tree evaluation

\[q(i) = \lambda \left(1 - \omega (1 - q(i - 1)) \right) \]

\[p(i - 1) = 1 - \omega (1 - q(i - 1)) \]

\[q(i - 1) = \lambda (p(i - 2)) \]

\[p(i - 2) = 1 - \omega (1 - q(i - 2)) \]

\[q(i - 2) \]
And-or tree evaluation (cont’d)

• Our graphs are not trees!
 – There are loops
 • i.e., interdependencies among messages
 – The results obtained by the and-or tree evaluation pose upper limits on the performance

• Probability of recovering a message:
 \[P_R = 1 - \lim_{i \to \infty} q(i) \]
 – where \(q(0) = 1 \)

• And-or tree evaluation shows the expected asymptotic performance based on the statistical graph description expressed through \(\lambda(x), \omega(x) \)

• And-or tree evaluation is standardly used to assess the asymptotic performance of the erasure-correcting codes
Coded slotted ALOHA

- N users
 - Equal length packets that “fit” into the slots

- M slots

- Users contend for the access to the base station
 - Users repeat their transmission in several randomly chosen slots of the frame
 - Successive interference cancellation is used to remove already resolved transmissions
Generalized model

• Users and slots are divided into classes
 – We assume that the division of the users into classes is performed on the basis of the expected packet loss probability

• L user classes
 – Fraction of a_l users belongs to class U_l

• J slot classes
 – Fraction of b_j slots belongs to class S_j

• e_l - expected packet-loss (erasure) probability of (the users belonging to) U_l
Generalized model (cont’d)

- p_{lj} - expected fraction of edges egressing U_l that ingress in S_j:

 $$p_{lj} = \frac{\alpha_{lj}}{a_l N}$$

- $\lambda_{lj}(x)$ – edge-oriented degree distribution of users from U_l with respect to S_j

- $\omega_{jl}(x)$ – edge-oriented distribution of slots from S_j with respect to U_l

- β_{jl} – expected degree of a slot from S_j with respect to U_l

 $$\beta_{jl} = \frac{1}{\int_0^1 \omega_{jl}(x)}$$

- β_j - expected degree of a slot from S_j

 $$\beta_j = \sum_n \beta_{jn}$$
Theorem

- Probability of not recovering a message of a user belonging to class U_l is after i-the iteration, $i \geq 1$, is:

$$q_l(i) = \prod_j \lambda_{lj} \left(1 - \sum_m \frac{\beta_{jm}}{\beta_j} (1 - e_m) \prod_k \omega_{jk} (1 - q_k(i - 1)) \right)$$

$$q(i) = \lambda \left(1 - \omega (1 - q(i - 1)) \right)$$

Performance parameters

• Asymptotic probability of recovering a message belonging to a user from U_l:
 \[P_{R,l} = 1 - \lim_{i \to \infty} q_l(i) \]

• Average asymptotic probability of recovering a message:
 \[P_R = \sum_l a_l P_{R,l} \]

• Expected throughput:
 \[T = \frac{N \cdot P_R}{M} = \frac{P_R}{1 + \epsilon} \]

 where $1 + \epsilon = \frac{M}{N}$
Example

- Frameless ALOHA
 - Number of slots M is not a priori fixed
 - Users perform access on a slot basis, using predefined slot access probability:
 \[p_{U_l \rightarrow S_j} = p_l = \frac{\alpha_{lj}}{a_l N} \]

- It can be shown that:
 \[\lambda_{lj}(x) = e^{-(1+\epsilon) \frac{b_j \alpha_{lj}}{a_l} (1-x)} \]
 \[\omega_{jl}(x) = e^{-\alpha_{lj} (1-x)} \]
Example (cont’d)

- Assume three scenarios:
 1. single user class with packet-loss probability $e^{(1)} = 0$, single slot class
 - Slot access probability $p = \frac{\beta}{N}$
 2. single user class with packet loss probability $e^{(2)} = 0.375$, single slot class
 - Slot access probability $p = \frac{\beta}{N}$
 3. two user classes, equal fractions of user belonging to each class, $a_1^{(3)} = 0.5$ and $a_2^{(3)} = 0.5$, respective packet-loss probabilities are $e_1^{(3)} = 0.25$ and $e_2^{(3)} = 0.5$, single slot class
 - Slot access probabilities $p_1 = \frac{\alpha_1}{0.5N}$ and $p_2 = \frac{\alpha_2}{0.5N}$

- Goal: For given M/N, choose slot access probabilities (i.e., β, α_1, α_2) such that the throughput is maximized
Results:
Maximum throughput
Results:

Optimal slot access probabilities
Results:
Probability of recovering a message
Conclusions

• Generalization of the and-tree evaluation with the channel impairments (i.e., packet loss probability) are taken into account
 – Extendible further, by taking into account other criteria, e.g., message importance

• If the overall goal is to maximize the throughput, users with worse channels should not contend (i.e., access the channel)
 – If overall probability of user resolution is of interest as well, then all users should contend, but users with worse channels should access channel less frequently