Bounds on List Decoding of Rank-Metric Codes

Antonia Wachter-Zeh

Institute of Communications Engineering, Ulm University &
Institut de Recherche Mathématique de Rennes, Université de Rennes 1

September 18, 2013
Non-Coherent Random Linear Network Coding

- internal structure unknown
- packets: vectors over finite field
- nodes: random linear combinations

→ higher throughput than routing!

BUT: high error propagation

Silva, Kschischang & Kötter (2008): Error control using lifted Gabidulin codes
Non-Coherent Random Linear Network Coding

- internal structure unknown
- packets: vectors over finite field
- nodes: random linear combinations

⇒ higher throughput than routing!
BUT: high error propagation

Silva, Kschischang & Kötter (2008):
Error control using lifted Gabidulin codes
Outline

1. Rank-Metric Codes & Decoding Principles
2. Problem Statement
3. A Bound on the List Size of Gabidulin Codes
 - Lower Bound
 - Asymptotic Behavior of Bounds
4. Bounds for General Rank-Metric Codes
 - Interpretation as Constant-Rank Code
 - Upper Bound
 - Lower Bound
 - Asymptotic Behavior of Bounds
5. Conclusion & Outlook
Outline

1. Rank-Metric Codes & Decoding Principles
2. Problem Statement
3. A Bound on the List Size of Gabidulin Codes
 - Lower Bound
 - Asymptotic Behavior of Bounds
4. Bounds for General Rank-Metric Codes
 - Interpretation as Constant-Rank Code
 - Upper Bound
 - Lower Bound
 - Asymptotic Behavior of Bounds
5. Conclusion & Outlook
Rank-Metric Codes

Rank Metric

- Bijective map \(x \in \mathbb{F}_{q^m}^n \mapsto X \in \mathbb{F}_q^{m \times n} \)
- Rank norm: \(\text{rk}(x) \overset{\text{def}}{=} \text{rank of } X \text{ over } \mathbb{F}_q \)

minimum rank distance of an \((n, M, d)_R\) code \(C\) over \(\mathbb{F}_{q^m}\):

- \(d \overset{\text{def}}{=} \min \{ \text{rk}(a - b) : a, b \in C, a \neq b \} \)
- \(M \leq q^{\min\{n(m-d+1), m(n-d+1)\}}\)
- equality: MRD code

Linearized Polynomial over \(\mathbb{F}_{q^m}\)

- \(f(x) \overset{\text{def}}{=} \sum_{i=0}^{d_f} f_i x^{[i]} = \sum_{i=0}^{d_f} f_i x^{q^i} \) \(\) with \(f_i \in \mathbb{F}_{q^m}\)
- \(q\)-degree: \(\text{deg}_q f(x) = d_f\)
Rank-Metric Codes

Rank Metric

- **Bijective map** \(x \in \mathbb{F}_{q^m}^n \mapsto X \in \mathbb{F}_q^{m \times n} \)
- **Rank norm**: \(\text{rk}(x) \overset{\text{def}}{=} \text{rank of } X \text{ over } \mathbb{F}_q \)

Minimum Rank Distance

Minimum rank distance of an \((n, M, d)_R \) code \(C \) over \(\mathbb{F}_{q^m} \):

- \(d \overset{\text{def}}{=} \min \{ \text{rk}(a - b) : a, b \in C, a \neq b \} \)
- \(M \leq q^{\min\{n(m-d+1), m(n-d+1)\}} \)
- Equality: MRD code

Linearized Polynomial over \(\mathbb{F}_{q^m} \)

- \(f(x) \overset{\text{def}}{=} \sum_{i=0}^{d_f} f_i x[i] = \sum_{i=0}^{d_f} f_i x^{q_i} \) with \(f_i \in \mathbb{F}_{q^m} \)
- **q-degree**: \(\deg_q f(x) = d_f \)
Gabidulin Codes

Definition (Gabidulin Code)

A linear Gabidulin code over \mathbb{F}_{q^m} of length $n \leq m$ and dimension $k \leq n$ is defined by

$$
\text{Gab}[n, k] \overset{\text{def}}{=} \{ (f(g_0), f(g_1), \ldots, f(g_{n-1})) : \deg_q f(x) < k \},
$$

where $g_0, g_1, \ldots, g_{n-1} \in \mathbb{F}_{q^m}$ are linearly independent over \mathbb{F}_q.

$d = n - k + 1 \implies$ Gabidulin codes are MRD codes.
BMD decoding: \[\tau = \left\lfloor \frac{d-1}{2} \right\rfloor \]

\(\rightarrow \) decoding result: unique or failure

Many parallels between RS and Gabidulin codes!
Reed–Solomon vs. Gabidulin Codes — BMD Decoding

BMD decoding: \(\tau = \left\lfloor \frac{d-1}{2} \right\rfloor \)

\(\rightarrow \) decoding result: unique or failure

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>RS Codes</th>
<th>Gabidulin Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>system of equations</td>
<td>Peterson, Gorenstein–Zierler</td>
<td>Roth, Gabidulin</td>
</tr>
<tr>
<td>Euclidean algorithm</td>
<td>Sugiyama et al., Gao</td>
<td>Gabidulin</td>
</tr>
<tr>
<td>interpolation</td>
<td>Welch–Berlekamp</td>
<td>Loidreau</td>
</tr>
</tbody>
</table>

Many parallels between RS and Gabidulin codes!
Reed–Solomon vs. Gabidulin Codes — List Decoding

List decoding: $\tau \geq \left\lfloor \frac{d-1}{2} \right\rfloor$

→ decoding result: list or failure

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>RS Codes</th>
<th>Gabidulin Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpolation-based</td>
<td>Sudan, Guruswami–Sudan</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>(and many variants/accelerations)</td>
<td></td>
</tr>
</tbody>
</table>

- Is polynomial-time list decoding possible for rank-metric codes?
- In particular for Gabidulin codes?
List decoding: \(\tau \geq \left\lfloor \frac{d-1}{2} \right\rfloor \)

\(\rightarrow \) decoding result: list or failure

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>RS Codes</th>
<th>Gabidulin Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpolation-based</td>
<td>Sudan, Guruswami–Sudan (and many variants/accelerations)</td>
<td>?</td>
</tr>
</tbody>
</table>

- Is polynomial-time list decoding possible for rank-metric codes?
- In particular for Gabidulin codes?
List decoding: \[\tau \geq \left\lfloor \frac{d-1}{2} \right\rfloor \]
\[\rightarrow \text{decoding result: list or failure} \]

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>RS Codes</th>
<th>Gabidulin Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpolation-based</td>
<td>Sudan, Guruswami–Sudan</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>(and many variants/accelerations)</td>
<td></td>
</tr>
</tbody>
</table>

- Is polynomial-time list decoding possible for rank-metric codes?
- In particular for Gabidulin codes?
Outline

1. Rank-Metric Codes & Decoding Principles
2. Problem Statement
3. A Bound on the List Size of Gabidulin Codes
 - Lower Bound
 - Asymptotic Behavior of Bounds
4. Bounds for General Rank-Metric Codes
 - Interpretation as Constant-Rank Code
 - Upper Bound
 - Lower Bound
 - Asymptotic Behavior of Bounds
5. Conclusion & Outlook
Motivation: Is polynomial-time list decoding possible?

Problem (Maximum List Size)

\((n, M, d)\) code \(C\) over \(\mathbb{F}_{qm}\), length \(n \leq m\), cardinality \(M\), minimum rank distance \(d\)

\(\tau < d\)

Find lower and upper bound on

\[
\ell \overset{\text{def}}{=} \ell(m, n, d, \tau) \overset{\text{def}}{=} \max_{\mathbf{r} \in \mathbb{F}_q^{nm}} \{|C \cap B_{\tau}(\mathbf{r})|\}
\]

- Lower exponential bound: no polynomial-time list decoding
- Upper polynomial bound: possibly polynomial-time list decoding
1 Rank-Metric Codes & Decoding Principles

2 Problem Statement

3 A Bound on the List Size of Gabidulin Codes
 - Lower Bound
 - Asymptotic Behavior of Bounds

4 Bounds for General Rank-Metric Codes
 - Interpretation as Constant-Rank Code
 - Upper Bound
 - Lower Bound
 - Asymptotic Behavior of Bounds

5 Conclusion & Outlook
Theorem (Bound I: Lower Bound for Gabidulin Codes)

- \(\text{Gab}[n, k] \) over \(\mathbb{F}_{q^m} \) with \(n \leq m \) and \(d = n - k + 1 \)
- \(\tau < d \)

Then, there exists a word \(r \in \mathbb{F}_{q^m}^n \) such that

\[
\ell \geq |\text{Gab}[n, k] \cap B_\tau(r)| \geq \frac{\left\lceil \frac{n}{n-\tau} \right\rceil}{(q^m)^{n-\tau-k}} \geq q^m q^{\tau(m+n)-\tau^2-md}
\]

- For \(n = m \): \(\ell \geq q^n(1-\epsilon) \cdot q^{2n\tau-\tau^2-nd+n\epsilon} \)
- Exponential in \(n \) if \(\tau \geq n - \sqrt{n(n - d + \epsilon)} \) and \(0 \leq \epsilon < 1 \)
 (\(= \) Johnson radius)
Lower Bound for Gabidulin Codes

Theorem (Bound I: Lower Bound for Gabidulin Codes)

- \(\text{Gab}[n, k] \) over \(\mathbb{F}_{q^m} \) with \(n \leq m \) and \(d = n - k + 1 \)
- \(\tau < d \)

Then, there exists a word \(r \in \mathbb{F}_{q^m}^n \) such that

\[
\ell \geq |\text{Gab}[n, k] \cap B_{\tau}(r)| \geq \frac{\left[\frac{n}{n-\tau} \right]}{(q^m)^{n-\tau-k}} \geq q^m q^{\tau(m+n)-\tau^2-md}
\]

- For \(n = m \): \(\ell \geq q^{n(1-\epsilon)} \cdot q^{2n\tau-\tau^2-md+n\epsilon} \)
- Exponential in \(n \) if \(\tau \geq n - \sqrt{n(n - d + \epsilon)} \) and \(0 \leq \epsilon < 1 \)
 (\(= \) Johnson radius)
Lower Bound for Gabidulin Codes – Sketch of Proof

Sketch of proof: (Similar to Justesen & Høholdt and Ben-Sasson, Kopparty & Radhakrishnan for RS codes)

- $\mathcal{P}^* \overset{\text{def}}{=} \text{set of all monic linearized polynomials of } \deg_q = n - \tau \text{ and a root space over } \mathbb{F}_{q^n} \text{ of dimension } n - \tau > k - 1$
 $\implies |\mathcal{P}^*| = \begin{pmatrix} n \\ n-\tau \end{pmatrix}$

- $\mathcal{P} \subset \mathcal{P}^*$, s.t. all q-monomials of $\deg_q \geq k$ have same coefficients

- pigeonhole principle: There exist coefficients s.t. $|\mathcal{P}| \geq \begin{pmatrix} n \\ n-\tau \end{pmatrix} \frac{1}{(q^m)^{n-\tau-k}}$
 \implies For all $f(x), g(x) \in \mathcal{P} \implies \deg_q(f(x) - g(x)) < k$

- let r be the evaluation of $f(x)$ at a basis of \mathbb{F}_{q^n} over \mathbb{F}_q

- let c be the evaluation of $f(x) - g(x)$ at this basis
 $\implies r - c$ is the evaluation of $f(x) - f(x) + g(x) = g(x) \in \mathcal{P}$
 $\implies \dim \ker(r - c) = n - \tau \iff \rk(r - c) = \tau$

Therefore, for any $g(x) \in \mathcal{P}$, the evaluation of $f(x) - g(x)$ is a codeword from $\text{Gab}[n, k]$, which has rank distance τ from r.

$\implies \ell \geq |\mathcal{P}|$
Sketch of proof: (Similar to Justesen & Høholdt and Ben-Sasson, Kopparty & Radhakrishnan for RS codes)

- $\mathcal{P}^\ast \overset{\text{def}}{=} \text{set of all monic linearized polynomials of } \deg_q = n - \tau \text{ and a root space over } \mathbb{F}_{q^n} \text{ of dimension } n - \tau > k - 1$
 $\implies |\mathcal{P}^\ast| = \left[\frac{n}{n - \tau} \right]$

- $\mathcal{P} \subseteq \mathcal{P}^\ast$, s.t. all q-monomials of $\deg_q \geq k$ have same coefficients

- pigeonhole principle: There exist coefficients s.t. $|\mathcal{P}| \geq \frac{n}{(q^m)^{n - \tau - k}}$
 \implies For all $f(x), g(x) \in \mathcal{P} \implies \deg_q(f(x) - g(x)) < k$

- let r be the evaluation of $f(x)$ at a basis of \mathbb{F}_{q^n} over \mathbb{F}_q

- let c be the evaluation of $f(x) - g(x)$ at this basis
 $\implies r - c$ is the evaluation of $f(x) - f(x) + g(x) = g(x) \in \mathcal{P}$
 $\implies \dim \ker(r - c) = n - \tau \iff \text{rk}(r - c) = \tau$

Therefore, for any $g(x) \in \mathcal{P}$, the evaluation of $f(x) - g(x)$ is a codeword from Gab$[n, k]$, which has rank distance τ from r.

$\implies \ell \geq |\mathcal{P}|$ \square
Sketch of proof: (Similar to Justesen & Høholdt and Ben-Sasson, Kopparty & Radhakrishnan for RS codes)

- $\mathcal{P}^* \overset{\text{def}}{=} \text{set of all monic linearized polynomials of } \deg_q = n - \tau \text{ and a root space over } \mathbb{F}_{q^n} \text{ of dimension } n - \tau > k - 1$
 $\implies |\mathcal{P}^*| = \binom{n}{n-\tau}$
- $\mathcal{P} \subset \mathcal{P}^*$, s.t. all q-monomials of $\deg_q \geq k$ have same coefficients
- pigeonhole principle: There exist coefficients s.t. $|\mathcal{P}| \geq \frac{n}{(q^m)^{n-\tau-k}}$
 \implies For all $f(x), g(x) \in \mathcal{P} \implies \deg_q(f(x) - g(x)) < k$
- let r be the evaluation of $f(x)$ at a basis of \mathbb{F}_{q^n} over \mathbb{F}_q
- let c be the evaluation of $f(x) - g(x)$ at this basis
 $\implies r - c$ is the evaluation of $f(x) - f(x) + g(x) = g(x) \in \mathcal{P}$
 $\implies \dim \ker(r - c) = n - \tau \iff \rk(r - c) = \tau$

Therefore, for any $g(x) \in \mathcal{P}$, the evaluation of $f(x) - g(x)$ is a codeword from Gab$[n, k]$, which has rank distance τ from r.

$\implies \ell \geq |\mathcal{P}|$ \hspace{1cm} \square
Sketch of proof: (Similar to Justesen & Høholdt and Ben-Sasson, Kopparty & Radhakrishnan for RS codes)

- \(\mathcal{P}^* \) def set of all monic linearized polynomials of \(\deg_q = n - \tau \) and a root space over \(\mathbb{F}_{q^n} \) of dimension \(n - \tau > k - 1 \)

\[\Rightarrow |\mathcal{P}^*| = \begin{bmatrix} n \\ n - \tau \end{bmatrix} \]

- \(\mathcal{P} \subset \mathcal{P}^* \), s.t. all \(q \)-monomials of \(\deg_q \geq k \) have same coefficients

- pigeonhole principle: There exist coefficients s.t. \(|\mathcal{P}| \geq \frac{n}{(q^m)^{n - \tau - k}} \)

\[\Rightarrow \text{For all } f(x), g(x) \in \mathcal{P} \Rightarrow \deg_q (f(x) - g(x)) < k \]

- let \(r \) be the evaluation of \(f(x) \) at a basis of \(\mathbb{F}_{q^n} \) over \(\mathbb{F}_q \)

- let \(c \) be the evaluation of \(f(x) - g(x) \) at this basis

\[\Rightarrow r - c \text{ is the evaluation of } f(x) - f(x) + g(x) = g(x) \in \mathcal{P} \]
\[\Rightarrow \text{dim ker}(r - c) = n - \tau \iff \text{rk}(r - c) = \tau \]

Therefore, for any \(g(x) \in \mathcal{P} \), the evaluation of \(f(x) - g(x) \) is a codeword from \(\text{Gab}[n, k] \), which has rank distance \(\tau \) from \(r \).

\[\Rightarrow \ell \geq |\mathcal{P}| \]

\[\square \]
Asymptotic Behavior of Bounds on the List Size

Reed–Solomon Codes

Gabidulin Codes

- Different behavior?
- Are the unknown regions somehow connected?
Outline

1. Rank-Metric Codes & Decoding Principles
2. Problem Statement
3. A Bound on the List Size of Gabidulin Codes
 - Lower Bound
 - Asymptotic Behavior of Bounds
4. Bounds for General Rank-Metric Codes
 - Interpretation as Constant-Rank Code
 - Upper Bound
 - Lower Bound
 - Asymptotic Behavior of Bounds
5. Conclusion & Outlook
Interpretation as Constant-Rank Code

decoding list:
\[\mathcal{L} = \{c_0, c_1, \ldots, c_{\ell-1}\} = C \cap B_\tau(r) = \sum_{i=0}^\tau (C \cap S_i(r)) \]

- Consider codewords \(c_0, c_1, \ldots, c_{\ell-1} \) in distance exactly \(\tau \)
- Define \(\overline{\mathcal{L}} = \{r - c_0, \ldots, r - c_{\ell-1}\} \)
- \(\text{rk}(r - c_i - (r - c_j)) = \text{rk}(c_j - c_i) \geq d \implies \overline{\mathcal{L}} \) is a constant-rank code of rank \(\tau \) and min. distance \(\geq d \)
- \(|C \cap S_\tau(r)| \leq A_{qm}^R (n, d_R \geq d, \tau) \)

\[\implies \text{Bounds on the cardinality of constant-rank codes can be used for bounding the list size!} \]
Interpretation as Constant-Rank Code

decoding list:
\[\mathcal{L} = \{c_0, c_1, \ldots, c_{\ell-1}\} = C \cap B_\tau(r) = \sum_{i=0}^\tau (C \cap S_i(r)) \]

- Consider codewords \(c_0, c_1, \ldots, c_{\ell-1} \) in distance exactly \(\tau \)
- Define \(\overline{\mathcal{L}} = \{r - c_0, \ldots, r - c_{\ell-1}\} \)
- \(\operatorname{rk}(r - c_i - (r - c_j)) = \operatorname{rk}(c_j - c_i) \geq d \)

\[\implies \overline{\mathcal{L}} \text{ is a constant-rank code of rank } \tau \text{ and min. distance } \geq d \]

- \(|C \cap S_\tau(r)| \leq A_{qm}^R(n, d_R \geq d, \tau) \)

\[\implies \text{Bounds on the cardinality of constant-rank codes can be used for bounding the list size!} \]
Interpretation as Constant-Rank Code

Consider codewords $c_0, c_1, \ldots, c_{\ell-1}$ in distance exactly τ

Define $\overline{L} = \{r - c_0, \ldots, r - c_{\ell-1}\}$

$\text{rk}(r - c_i - (r - c_j)) = \text{rk}(c_j - c_i) \geq d$
$\implies \overline{L}$ is a constant-rank code of rank τ and min. distance $\geq d$

$|C \cap S_{\tau}(r)| \leq A_{q^m}^{R} (n, d_R \geq d, \tau)$

\implies Bounds on the cardinality of constant-rank codes can be used for bounding the list size!

decoding list:
$L = \{c_0, c_1, \ldots, c_{\ell-1}\} = C \cap B_{\tau}(r) = \sum_{i=0}^{\tau} (C \cap S_i(r))$
Theorem (Bound II: Upper Bound for any Rank-Metric Code)

Let $\lfloor \frac{d-1}{2} \rfloor \leq \tau < d \leq n \leq m$. Then, for any $(n, M, d)_R$ code C:

$$\ell = \max_{r \in \mathbb{F}_q^m} \left\{ |C \cap B_\tau(r)| \right\} \leq 1 + \sum_{t=\lfloor \frac{d-1}{2} \rfloor + 1}^{\tau} \frac{\left\lfloor \frac{n}{2t+1-d} \right\rfloor}{\left\lfloor \frac{t}{2t+1-d} \right\rfloor}$$

$$\leq 1 + 4 \cdot (\tau - \left\lfloor \frac{d-1}{2} \right\rfloor) \cdot q^{(2\tau-d+1)(n-\lfloor (d-1)/2 \rfloor-1)}$$

- Exponential in $n \leq m$ for any $\tau > \lfloor (d-1)/2 \rfloor$
- Does not provide any conclusion if polynomial-time list decoding is possible or not...
Theorem (Bound II: Upper Bound for any Rank-Metric Code)

Let \(\lceil (d-1)/2 \rceil \leq \tau < d \leq n \leq m \). Then, for any \((n, M, d)_R \) code \(C \):

\[
\ell = \max_{r \in \mathbb{F}_q^n} \left\{ |C \cap B_\tau(r)| \right\} \leq 1 + \sum_{t=\lceil \frac{d-1}{2} \rceil + 1}^{\tau} \frac{n}{\lceil \frac{2t+1-d}{2t+1-d} \rceil} \\
\leq 1 + 4 \cdot (\tau - \lceil \frac{d-1}{2} \rceil) \cdot q^{(2\tau-d+1)(n-\lceil (d-1)/2 \rceil-1)}
\]

- Exponential in \(n \leq m \) for any \(\tau > \lceil (d-1)/2 \rceil \)
- Does not provide any conclusion if polynomial-time list decoding is possible or not...
Theorem (Bound III: Lower Bound for some Rank-Metric Code)

Let \(\lfloor (d-1)/2 \rfloor \leq \tau < d \leq n \leq m \) and \(\tau \leq n - \tau \).

Then, there exists an \((n, M, d_R \geq d)_R\) code \(C \) over \(\mathbb{F}_{q^m} \) and a word \(r \in \mathbb{F}_{q^m}^n \) such that

\[
\ell = \ell(m, n, d, \tau) \geq |C \cap B_\tau(r)| \geq q^{(n-\tau)(\tau-\lfloor (d-1)/2 \rfloor)}.
\]

- There exists a rank-metric code such that max. list size is exponential in \(n \) for \(\tau > \lfloor (d-1)/2 \rfloor \).
 \(\implies \) No polynomial-time list decoding for these codes!
- C might be non-linear and non-MRD
- \(\tau \leq n - \tau \) is always fulfilled for \(\tau = \lfloor (d-1)/2 \rfloor + 1 \) and \(k > 1 \)
A Lower Bound on the List Size

Theorem (Bound III: Lower Bound for some Rank-Metric Code)

Let \(\lfloor \frac{(d-1)}{2} \rfloor \leq \tau < d \leq n \leq m \) and \(\tau \leq n - \tau \).

Then, there exists an \((n, M, d_R \geq d)\) code \(C \) over \(\mathbb{F}_{q^m} \) and a word \(r \in \mathbb{F}_{q^m}^n \) such that

\[
\ell = \ell(m, n, d, \tau) \geq |C \cap B_\tau(r)| \geq q^{(n-\tau)(\tau - \lfloor \frac{(d-1)}{2} \rfloor)}.
\]

- There exists a rank-metric code such that max. list size is **exponential** in \(n \) for \(\tau > \lfloor \frac{(d-1)}{2} \rfloor \).
 \(\Longrightarrow \) No polynomial-time list decoding for these codes!

- \(C \) might be non-linear and non-MRD

- \(\tau \leq n - \tau \) is always fulfilled for \(\tau = \lfloor \frac{(d-1)}{2} \rfloor + 1 \) and \(k > 1 \)
Theorem (Bound III: Lower Bound for some Rank-Metric Code)

Let \(\lceil (d-1)/2 \rceil \leq \tau < d \leq n \leq m \) and \(\tau \leq n - \tau \). Then, there exists an \((n, M, d_R \geq d)\) code \(C \) over \(\mathbb{F}_{q^m} \) and a word \(r \in \mathbb{F}_{q^m} \) such that

\[
\ell = \ell(m, n, d, \tau) \geq |C \cap B_\tau(r)| \geq q^{(n-\tau)(\tau - \lceil (d-1)/2 \rceil)}.
\]

- There exists a rank-metric code such that max. list size is **exponential** in \(n \) for \(\tau > \lceil (d-1)/2 \rceil \).
 \(\implies \) No polynomial-time list decoding for these codes!
- \(C \) might be non-linear and non-MRD
- \(\tau \leq n - \tau \) is always fulfilled for \(\tau = \lceil (d-1)/2 \rceil + 1 \) and \(k > 1 \)
Sketch of Proof:

- Use two constant-dimension codes (lifted MRD codes) to construct
 - A CR\(_{q^m}(n, M, d_R \geq d, \tau)\) constant-rank code
 - With cardinality \(q^{(n-\tau)(\tau-[\frac{(d-1)}{2}])}\)

Denote the codewords of this constant-rank code by \(\{a_0, a_1, \ldots\}\).

- Choose \(r = 0\):
 - \(rk(r - a_i) = rk(a_i) = \tau\) for all \(i\) (constant-rank code)
 - \(d_R(a_i, a_j) = rk(a_i - a_j) \geq d\)

\(\Rightarrow a_0, a_1, \ldots\) are codewords of a code with rank distance at least \(d\)
\(\Rightarrow\) and lie all on a sphere of radius \(\tau\) around \(r\).

There exists a \((n, M, d_R \geq d)_R\) code \(C\) of min. rank distance at least \(d\)
s.t. \(\ell \geq |C \cap S_\tau(r)| = |CR| = q^{(n-\tau)(\tau-[\frac{(d-1)}{2}])}\).
\(\square\)
Lower Bound for Rank Metric Codes — Sketch of Proof

Sketch of Proof:

- Use two constant-dimension codes (lifted MRD codes) to construct
 - a CR\(q^m(n, M, d_R \geq d, \tau)\) constant-rank code
 - with cardinality \(q^{(n-\tau)(\tau-\lfloor(d-1)/2\rfloor)}\)

Denote the codewords of this constant-rank code by \(\{a_0, a_1, \ldots\}\).

- Choose \(r = 0\):
 - \(rk(r - a_i) = rk(a_i) = \tau\) for all \(i\) (constant-rank code)
 - \(d_R(a_i, a_j) = rk(a_i - a_j) \geq d\)

\[\Rightarrow a_0, a_1, \ldots\text{ are codewords of a code with rank distance at least } d\]
\[\Rightarrow\text{ and lie all on a sphere of radius } \tau\text{ around } r\]

There exists a \((n, M, d_R \geq d)_R\) code \(C\) of min. rank distance at least \(d\)
s.t. \(\ell \geq |C \cap S_\tau(r)| = |CR| = q^{(n-\tau)(\tau-\lfloor(d-1)/2\rfloor)}\).
Sketch of Proof:

- Use two constant-dimension codes (lifted MRD codes) to construct a $\text{CR}_{q^m}(n, M, d_R \geq d, \tau)$ constant-rank code with cardinality $q^{(n-\tau)(\tau-\lceil(d-1)/2\rceil)}$.

Denote the codewords of this constant-rank code by $\{a_0, a_1, \ldots\}$.

- Choose $r = 0$:

 - $\text{rk}(r - a_i) = \text{rk}(a_i) = \tau$ for all i (constant-rank code)
 - $d_R(a_i, a_j) = \text{rk}(a_i - a_j) \geq d$

 $\Rightarrow a_0, a_1, \ldots$ are codewords of a code with rank distance at least d and lie all on a sphere of radius τ around r.

There exists a $(n, M, d_R \geq d)_R$ code C of min. rank distance at least d s.t. $\ell \geq |C \cap S_\tau(r)| = |\text{CR}| = q^{(n-\tau)(\tau-\lceil(d-1)/2\rceil)}$.

Sketch of Proof:

- Use two constant-dimension codes (lifted MRD codes) to construct
 - a CR$^{m}(n, M, d_R \geq d, \tau)$ constant-rank code
 - with cardinality $q^{(n-\tau)(\tau-[\frac{(d-1)}{2}])}$

Denote the codewords of this constant-rank code by $\{a_0, a_1, \ldots\}$.

- Choose $r = 0$:
 - $rk(r - a_i) = rk(a_i) = \tau$ for all i (constant-rank code)
 - $d_R(a_i, a_j) = rk(a_i - a_j) \geq d$

 $\Rightarrow a_0, a_1, \ldots$ are codewords of a code with rank distance at least d
 \Rightarrow and lie all on a sphere of radius τ around r

There exists a $(n, M, d_R \geq d)_R$ code C of min. rank distance at least d

s.t. $\ell \geq |C \cap S_{\tau}(r)| = |CR| = q^{(n-\tau)(\tau-[\frac{(d-1)}{2}])}$.

\[\square\]
Asymptotic Behavior of Bounds on the List Size

Codes in Hamming Metric

- There is a code with **exponential** list size
- There is a code with polynomial list size
- There is a code with **unique** list size

Codes in Rank Metric

- There is a code with exponential list size
- There is a code with polynomial list size
- There is a code with unique list size

- Behavior is different
- There exists **no polynomial upper bound** in rank metric, depending only on n and d, as the Johnson bound in Hamming metric!
Outline

1. Rank-Metric Codes & Decoding Principles
2. Problem Statement
3. A Bound on the List Size of Gabidulin Codes
 - Lower Bound
 - Asymptotic Behavior of Bounds
4. Bounds for General Rank-Metric Codes
 - Interpretation as Constant-Rank Code
 - Upper Bound
 - Lower Bound
 - Asymptotic Behavior of Bounds
5. Conclusion & Outlook
Conclusion & Outlook

Lower bound for **Gabidulin codes**:
- no polynomial-time list decoding for \(\tau \geq n - \sqrt{n(n - d + \epsilon)} \)
- open problem: find bound up to Johnson radius!

Upper bound for any rank-metric code:
- exponential in \(n \) for \(\tau > \lfloor (d-1)/2 \rfloor \)

Lower bound for rank-metric codes:
- there exists a rank-metric code with exponential list size for any \(\tau > \lfloor (d-1)/2 \rfloor \)
- there is no polynomial-time Johnson-like upper bound
- open problem: prove sth. similar for linear rank-metric codes!
Conclusion & Outlook

Lower bound for **Gabidulin codes:**
- no polynomial-time list decoding for \(\tau \geq n - \sqrt{n(n - d + \epsilon)} \)
- **open problem:** find bound up to Johnson radius!

Upper bound for **any** rank-metric code:
- exponential in \(n \) for \(\tau > \lfloor (d-1)/2 \rfloor \)

Lower bound for rank-metric codes:
- there exists a rank-metric code with exponential list size for any \(\tau > \lfloor (d-1)/2 \rfloor \)
- there is no polynomial-time Johnson-like upper bound
- **open problem:** prove sth. similar for **linear** rank-metric codes!
Conclusion & Outlook

Lower bound for **Gabidulin codes:**
- no polynomial-time list decoding for $\tau \geq n - \sqrt{n(n - d + \epsilon)}$
- **open problem:** find bound up to Johnson radius!

Upper bound for **any** rank-metric code:
- exponential in n for $\tau > \lceil (d-1)/2 \rceil$

Lower bound for rank-metric codes:
- there exists a rank-metric code with exponential list size for **any** $\tau > \lceil (d-1)/2 \rceil$
- there is no polynomial-time Johnson-like upper bound
- **open problem:** prove sth. similar for **linear** rank-metric codes!
Thank you...

...for your attention!
Sketch of Proof:

- $\overline{L}_t = C \cap S_t(r) = \{r - c_1, \ldots, r - c_\ell\}$
 $\implies \overline{L}_t$ is a $\text{CR}_{q^m}(n, M, d_R \geq d, t)$ constant-rank code

- Use maximum cardinality of such a CRC as upper bound:
 $|C \cap S_t(r)| \leq A_{q^m}^R(n, d_R \geq d, t) \leq A_{q^m}^R(n, d, t)$

- Use connection between CRCs and constant-dimension codes (CDCs), see [Gadouleau, Yan, 2010]:
 $A_{q^m}^R(n, d, t) \leq A_q^S(n, d_S = 2(d - t), t)$

- Use upper bound on cardinality of CDCs by [Wang, Xing, Safavi-Naini, 2003]:
 $A_q^S(n, d_S = 2(d - t), t) \leq \left\lceil \frac{n}{t - (d - t) + 1} \right\rceil$.

Summing up for $t = \left\lfloor \frac{(d-1)}{2} \right\rfloor + 1, \ldots, \tau$ gives the statement. \square
Sketch of Proof:

- $\overline{L}_t = C \cap S_t(r) = \{r - c_1, \ldots, r - c_\ell\}$
 $\implies \overline{L}_t$ is a $\text{CR}_{q^m}(n, M, d_R \geq d, t)$ constant-rank code

- Use maximum cardinality of such a CRC as upper bound:
 $|C \cap S_t(r)| \leq A_{q^m}^R (n, d_R \geq d, t) \leq A_{q^m}^R (n, d, t)$

- Use connection between CRCs and constant-dimension codes (CDCs), see [Gadouleau, Yan, 2010]:
 $A_{q^m}^R (n, d, t) \leq A_{q^S}^S (n, d_S = 2(d - t), t)$

- Use upper bound on cardinality of CDCs by [Wang, Xing, Safavi-Naini, 2003]:
 $A_{q^S}^S (n, d_S = 2(d - t), t) \leq \left[\frac{n}{t-(d-t)+1}\right]_{\left[\frac{t-(d-t)+1}{t-(d-t)+1}\right]}$.

Summing up for $t = \lfloor (d-1)/2 \rfloor + 1, \ldots, \tau$ gives the statement.
Sketch of Proof:

- \(\overline{L}_t = C \cap S_t(r) = \{r - c_1, \ldots, r - c_\ell\} \)
 \(\implies \overline{L}_t \) is a \(CR_{q^m} (n, M, d_R \geq d, t) \) constant-rank code

- Use maximum cardinality of such a CRC as upper bound:
 \(|C \cap S_t(r)| \leq A_{q^m}^R (n, d_R \geq d, t) \leq A_{q^m}^R (n, d, t) \)

- Use connection between CRCs and constant-dimension codes (CDCs), see [Gadouleau, Yan, 2010]:
 \(A_{q^m}^R (n, d, t) \leq A_{q^S}^S (n, d_S = 2(d - t), t) \)

- Use upper bound on cardinality of CDCs by [Wang, Xing, Safavi-Naini, 2003]:
 \(A_{q^S}^S (n, d_S = 2(d - t), t) \leq \begin{bmatrix} t & n \\ \frac{(d-t)+1}{t} \\ \frac{(d-t)+1}{t} \end{bmatrix} \).

Summing up for \(t = \lfloor (d-1)/2 \rfloor + 1, \ldots, \tau \) gives the statement.
Sketch of Proof:

- \(\mathcal{L}_t = \mathcal{C} \cap \mathcal{S}_t(r) = \{r - c_1, \ldots, r - c_\ell\} \)
 \(\implies \mathcal{L}_t \) is a CR\(_q^m\) \((n, M, d_R \geq d, t)\) constant-rank code

- Use maximum cardinality of such a CRC as upper bound:
 \(|\mathcal{C} \cap \mathcal{S}_t(r)| \leq \mathcal{A}_{q^m}^R(n, d_R \geq d, t) \leq \mathcal{A}_{q^m}^R(n, d, t)\)

- Use connection between CRCs and constant-dimension codes (CDCs), see [Gadouleau, Yan, 2010]:
 \(\mathcal{A}_{q^m}^R(n, d, t) \leq \mathcal{A}_q^S(n, d_S = 2(d - t), t)\)

- Use upper bound on cardinality of CDCs by [Wang, Xing, Safavi-Naini, 2003]:
 \(\mathcal{A}_q^S(n, d_S = 2(d - t), t) \leq \left\lfloor \frac{n}{t} \right\rfloor \left\lfloor \frac{n}{t} - \frac{d - t}{d} + 1 \right\rfloor. \)

Summing up for \(t = \left\lfloor (d - 1)/2 \right\rfloor + 1, \ldots, \tau \) gives the statement.