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Abstract

We determine the smallest minimal blocking sets of Qt(2n + 1,3),
n > 4.

1 Introduction

Let Q1(2n + 1, ¢) denote the non-singular hyperbolic quadric of the finite pro-
jective space PG(2n + 1,¢). This quadric is an example of a classical polar
space. The subspaces of PG(2n + 1, ¢) of maximal dimension completely con-
tained in QT (2n + 1, q) are called generators; they have dimension n. An ovoid
of QT (2n+41,¢) is a set O of points of QT (2n + 1, ¢) such that every generator
meets O in exactly one point; it contains ¢ 4+ 1 points. Any hyperplane of
PG(2n + 1,¢) which is not a tangent hyperplane intersects Q1 (2n + 1,¢) in a
non-singular parabolic quadric Q(2n,q). Also this quadric is an example of a
classical polar space, its generators have dimension n — 1, and an ovoid contains
q" + 1 points.

It is known that Q7 (7, ¢) has ovoids when ¢ is prime or ¢ = 0 or 2 mod 3,
we refer to [13] for a list of references. Furthermore, from [2], QT (2n + 1,¢),
with ¢ = p”, p > 2 prime, has no ovoids if
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By this formula, no ovoid of Q1 (7,¢) is excluded, while ovoids of QT (9, ¢), for
q = 3, are excluded. Furthermore, since any ovoid O of QT (2n+ 1, ¢) induces an
ovoid of Q1 (2n — 1, ¢) via the projection of O Np* onto the base Q7 (2n — 1,q)
of the cone pt N Q1 (2n + 1,¢) from any point p with p € QT (2n +1,q9) \ O,
Q" (2n 4 1,q), ¢ = 3, has no ovoids for n > 4. We define a blocking set of
QT (2n+1,q) as a set K of points of Q7 (2n + 1, q) such that every generator of
QT (2n+1,¢) meets K in at least one point. A blocking set K is called minimal
if £\ {p} is not a blocking set for any point p € K, or, equivalently, if for any
point p € K, there exists a generator of Q" (2n + 1, ¢) meeting K only in the
point p.

In this paper, we determine the smallest minimal blocking sets of Q™ (2n +
1,3). In order to state the result, we need the notation of a truncated cone.
Suppose that « is a subspace of PG(2n + 1,¢) and O an arbitrary geometric
object lying in some subspace 7 such that o N7m = (). The cone a© with vertex

*This author thanks the Fund for Scientific Research - Flanders (Belgium) for a research
grant.



a and base O is the union of the spaces («, p), p € O. The truncated cone a*O
is obtained by removing the points of the vertex « of the cone aO. When « is
the empty subspace, a*O is by definition the set . We will prove the following
theorem.

Theorem 1 Suppose that K is a set of points of QT (2n +1,3), n > 4, |[K| =
3"+ 147, 1 <7 <33, and such that every generator of QT (2n 4 1,3) meets
K in at least one point. Then |K| = 3"+3""% and K is a truncated cone 7};_,O,
Tn_y an (n — 4)-dimensional subspace, m,_4 C QT(2n + 1,3) and O an ovoid
of Q(6,3) € QT (7,3), QT (7,3) the base of the cone m-_, N QT (2n + 1,3).

In Section 3 we will prove this theorem for n = 4. In Section 4 we will
use inductive arguments to generalize the result for n > 4. Since Theorem 1
describes an example 7 _,O of a minimal blocking set of size 3" + 3773, we
may assume that the smallest minimal blocking sets of Q" (2n + 1, 3) have size
smaller than or equal to 3™ 4+ 3773, We will also use the following result.

Theorem 2 [9] If O is an ovoid of QT (7,3) then (O) is a hyperplane o of
PG(7,3) and O constitutes also an ovoid of a N Q1 (7,3) = Q(6,3).

Using the classification of ovoids of Q(4,p), p prime [1], similar results for
small minimal blocking sets of Q(2n,p), p > 3 prime, n > 3, were obtained in
[4], while results on small minimal blocking sets of Q(2n,3) were obtained in
[6, 7]. General results on small minimal blocking sets of Q(6, q), ¢ > 32, q even,
were obtained in [5]. More general results on small minimal blocking sets of
Q (2n+1,q9),n > 2, and W(2n + 1,¢),n > 2, were obtained in [10, 11].

In Section 2 we will recall basic geometrical properties of ovoids of Q(6, q)
that will be used in Section 3. Finally we define two notations. An i-dimensional

subspace of PG(2n + 1,¢q) will often be denoted by 7;, and we define 0,, :=
A

e i.e. the number of points in an n-dimensional projective space of order

q.

2  On ovoids of Q(6,q)

We mention that ovoids of Q(6,q) are rare. Presently, ovoids of Q(6,¢q) are
only known when ¢ = 0 mod 3. Furthermore, all ovoids of Q(4,p), p prime, are
elliptic quadrics Q™ (3, p) [1], which is a sufficient condition for the non-existence
of ovoids of Q(6,p), p > 3 prime [12]. Finally we mention that Q(6,3) has, up
to collineations, a unique ovoid [9].

For our purposes, the following theorem is an important result on ovoids. Let
Q(6, q) denote the non-singular parabolic quadric of PG(6,q), ¢ = p”, p prime.
Call a hyperplane « of PG(6,q) elliptic, hyperbolic or tangent respectively if

anQ6,q9) =Q (5,9), QT (5,q), or tangent to Q(6, q).

Theorem 3 [1] Suppose that O is an ovoid of Q(6,q), ¢ = p", p prime. Any
elliptic hyperplane o intersects O in 1 mod p points.

The property of Theorem 3 can easily be derived for hyperbolic and tangent
hyperplanes.
We also mention the following theorem.



Theorem 4 [7] Suppose that O is an ovoid of Q(6,q). Any hyperbolic hyper-
plane a has the property (a« N O) = a.

When g = 3, elliptic hyperplanes have the same property, which was checked
using the computer [7].

Theorem 5 Suppose that O is an ovoid of Q(6,3). Any elliptic hyperplane «
has the property (a N O) = a.

Consider now a singular quadric pQ(6, ¢) in PG(7, ¢), and suppose that O is
an ovoid of the base Q(6, ¢). Consider the cone pO. Any hyperplane of PG(7, q)
not on p intersects the cone pO in an ovoid of Q(6, q). We will use the following
lemma in Section 3.

Lemma 1 Any two ovoids O1 and Oz, which lie in the intersection of the
hyperplanes 1, mo respectively, (with my # 7o, and p & m;, © = 1,2) with the
cone pQO, have at least one point in common.

Proof. Consider O; = 7 N pO. The hyperplane 7, intersects 7 in a 5-
dimensional space not on p. Denote w1 N pQ(6,q) = Q;(6,q), then w1 N 7wy is
either a hyperbolic, elliptic, or tangent hyperplane of Q,(6,¢). In any case,
|m1 Nwa N O1] = 1 mod p, hence, w5 contains at least one point s € Oy, which
necessarily lies on the cone pO. Hence, s € m N pO and we conclude that
|01 N Oz = 1. a

Finally, we describe a property of ovoids of Q(6,3) that will be very useful
in the proof of Lemma 7.

Consider an ovoid O of Q(6,3). Consider all hyperplanes of PG(6, 3). Denote
the set of hyperbolic hyperplanes of Q(6,3) with H, |H| = 378. The following
property was checked with a computer, using the software packages GAP [§]
and pg [3].

Property 1

It is possible to find two elements By, P2 € H, 1 # P2, such that (81 N Bz N O)
is a 4-dimensional subspace of PG(6,3). Define B := (1 U f2) N O. Define
C = {0 € H\{1, B2} = (BNB)}; in other words, B is spanned by the points of
BNO in (41UB2)NO. We find, using the computer, that By := BU(Ugec(ﬂmO))
contains 25 elements of O. We fix 51, and choose any 35 € C. This gives rise
to a mew set C% := {B € H\ {B1,B5}8 = (AU B NBNO)} and a new set
B2 = Uﬁecﬁé (BNO). It is possible to find two elements 35, 8Y € C such that

O =B, UB U Bk,

3 The smallest minimal blocking sets of Q" (9, 3)

From this section on we suppose that K is a minimal blocking set of Q*(2n+1, q),
K| =¢"+1+7r,0<r < g3 Only Lemma 2 will be proved for general n,
afterwards we restrict to n = 4 for this section. For some lemmas, we will
suppose that ¢ = 3.

Lemma 2 For any point p € K, [p* NK| < 1+7.



Proof. Since K is minimal, we can find a generator 7,, of Q7 (2n+1, ¢) meeting
K only in the point p. There are ¢" (n — 1)-dimensional subspaces of 7, not on
p which lie in a second generator of Q+(2n + 1,¢) that must be blocked by at
least one point of K. Hence, |\ p| > ¢ s0 [p- NK| < 1+7. O

Lemma 3 Suppose that p is a point of QT(9,3)\ K, then [pt N K| > 33 + 1.
If equality holds, then there exists a T-dimensional space &, on p that meets
Q7(9,3) in a cone pQ(6,3). The set p-NK is projected onto an ovoid O, O an
ovoid of Q(6,3) C Q1 (7,3), the base of the cone p* N QT (9,3).

Proof. Letq=3. All 2(¢*>+1)(¢*>+1)(¢+1) generators of QT (9, ¢) on p meet
K in at least one point, but any point of p~ N K lies in exactly 2(¢> +1)(g + 1)
generators on p. Hence, at least ¢ + 1 points of K are needed to block all
generators on p. Since pNQ1(9,q) = pQ™(7,q), p projects the set p= N onto
a blocking set IC, of Q7 (7,¢q). When |p* N K| = ¢* + 1, then K, is necessarily
an ovoid of QT (7,¢). When ¢ = 3, any ovoid of Q7 (7,¢) lies in a hyperplane
7 of PG(7,q), and constitutes an ovoid of 7 N Q7 (7,q) = Q(6,¢) (Theorem 2).
The 7-dimensional space @, is now the space (p, ), and the lemma follows. O

Let ¢ = 3. For any point p € Q7 (9,q) \ K, we say that p is a small point if
and only if [pt N K| = ¢* + 1. We will always denote the 7-dimensional space
from the previous lemma by @,.

Lemma 4 Suppose that L is a line of Q*(9,3), LNK = 0 and |L*NK| = 32+1,
then L contains at least two small points.

Proof. Let ¢ = 3. From Lemma 3, we have [r- N K| > ¢ + 1 for every r € L.
Define n, := [r* N K| — (¢* +1). Then n, = 0 if and only if 7 is a small point.
We find

Stk => (@ +1+4n) <q* +q+ald®+ 1),

rel rel

angqfl
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which implies

Hence, at most ¢ — 1 points of L have n,. > 0, or, L contains at least two small
points. O

Lemma 5 Suppose that 74 is a generator of QT (9,q) meeting K in exactly one
point p. Then w4 contains at least 83 small points. Furthermore, every line of
w4 not on p, that contains a small point, contains a second small point.

Proof. Count the number of pairs (r,s), r € 74 \ {p}, s € K\ {p}, r € st.

We find
Yo 1)\ AR} < (K| - 1)s.
rema\{p}
The right hand side is at most (¢* + ¢ — 1)03 = ¢" + ¢ +¢° +2¢* — 1 <
(64 — 1)(¢® +1). Since p € r+ N K, it follows that [r N K| -1 < ¢ + 1 for at
least one point r € my \ {p}, hence my contains a small point r.



Consider now a solid « of my, not on p, containing a small point r. Since
|7°L N K| = ¢® + 1, every generator on o meets K in exactly one point, hence
|at N K| = 2. Count the number of pairs (¢,s), t € a, s € K, t € s*. Then the
two points of at N K occur in @3 pairs; every other point of K occurs in exactly
05 pairs. We find

D N K] < 205 + (K] — 2)02 < 05(¢° +1) +¢° — 1.
teEx

Since 63 is the number of points of «, at least 03 — (¢> — 1) = 63 + 1 points
of o are small. Consider a fixed small point 7 in m4. Counting the number of
incident pairs («, '), a a solid of 74 on 7 but not on p, and ' # r a small point
in w4, we find that 74 contains at least 63 small points.

When L is a line of 74 containing a small point 7 but not p, [r+NK| = ¢>+1
implies that |L+ N K| = ¢ + 1. Applying Lemma 4 proves the last statement of
this lemma. O

Lemma 6 Suppose that L is a line of Q1 (9,3) containing two small points r
and r'. Let L ¢ @,. Then |[L* NK|=32+1 and (L* NK) is a 5-dimensional
space.

Proof. Let ¢ = 3. Since |r+ N K| = ¢® + 1, all generators on L meet K in
exactly one point, hence |L+ N K| = ¢? + 1. Consider the 7-dimensional space
a,, @, NQ1(9,q) = rQ(6,q) and r projects the points of 7 N K onto an ovoid
O of Q(6,q). It is clear that r projects the points of L+ N K onto an ovoid O’

of Q5 = Q1 (5,9) € Q(6,q). By Theorem 4, (O') is a 5-dimensional space.
Consider the second small point 7' on L. Project r’* N K from r’ onto a
hyperplane of 7'+, containing rQs. Then '+ N K is again projected onto an
ovoid of a parabolic quadric Q(6,q). Again by Theorem 4, the projection of
L' N K from ' can only have dimension 5. Since this projection lies in 7Qs,
necessarily the points of L+ N C belong to a 5-dimensional hyperbolic quadric.
O

Lemma 7 Suppose that r € Q1(9,3)\ K is a small point, then r+ N K is an
ovoid of Q(6,3) and (rt NK) is a 6-dimensional space.

Proof. Let ¢ = 3. Consider the 7-dimensional space @, (Lemma 3). We can
choose the base of the cone @,.NQ™ (9, ¢) = rQ(6, q) such that Q(6,q) € Q™ (7, q),
the base of the cone 7+ N Q™ (9,q). The set - N K is projected from r onto an
ovoid O of Q(6, ¢q). Denote by § the 7-dimensional space containing Q1 (7, ¢) and
by «y the hyperplane of 4 containing Q(6, ¢). If 8; is a hyperplane of v intersecting
Q(6,q) in a QT (5,¢q), and such that ﬂfQﬂ”) NQ(7,¢) = QT (1,q) = {r',7"},
then there exists a line Lg, = (r,7’), Lg, N K = @, such that r projects the set
Lél N K exactly onto the set 57 N O. By Lemmas 4 and 6, the set Lél N IC spans
a 5-dimensional subspace 3] of @&,. Consider a hyperplane 32 of ~, as described
in Property 1, i.e. (81N B2 NO) is a 4-dimensional space. We now find that the
set Lé‘Q N K spans a 5-dimensional subspace (5 of @,.. Since (81 NP2 N O) is a
4-dimensional subspace of v, ¢ := (5], 83) is a 6-dimensional space of @,. This
means also that all points of (87 U 85) N K lie already in a 6-dimensional space.



The goal is now to prove that (37, 35) contains all points of r+ N K. Therefore
we will use Property 1.

Consider any 5-dimensional subspace 3 C v such that 3N Q(6,q) = Q™ (5, q)
and such that 8 = ((81UB2)NBNO), then B gives rise to a subspace 5" C (57, 53)
and all points of "N/ are projected from r on the points of GNO. This implies
that all points of 5" N K lie in the space (57, 55). Property 1 states actually
that all points of O can be covered by a subspace like 3, so considering all such
subspaces 3, we find that all points of 7+ N K lie in the 6-dimensional space
(B7,35), and are projected onto O. We conclude that r- N K constitutes an
ovoid of Q(6,¢q) and that (rt N K) is a 6-dimensional space. O

Lemma 8 There exists a 7-dimensional subspace o such that a N KC contains
at least ¢ + 1 ovoids O of Q(6,3), all containing a common point p € K and
sharing two by two ¢> + 1 points.

Proof. Let ¢ = 3. Consider a generator 74, of Q7 (9,¢) meeting K only
in the point p. Lemma 5 implies that 74 contains at least 03 small points r;.
Furthermore, ri- N K = O; is an ovoid of Q;(6,¢) C Q (7,q) C r N Q1 (9,¢).
Also, if (ry,r;), i # j, is a line of 74 not on p, then O; N O; contains ¢ + 1
points and constitutes an ovoid of Q;(6,q) N Q;(6,q) = Q" (5,¢). Consider a
small point r; € 74, and a plane 7 through r; lying in 74, but with p & 7. Every
line of 7 through 71 contains a second small point 7, (Lemma 5). So we find
three non-collinear small points 71,79 and r3 in 7.

The ovoids Oy, Oy and O3 share two by two an ovoid of some Q™ (5, ¢), but
do all not contain a common ovoid of some QT (5, ¢), since that ovoid would lie in
(r1,r9,73). Hence, O1, Oy and O3 span together a 7-dimensional subspace (3.
Lemma 5 implies that every line of 7 C m4 on 71 not containing ry, r3 contains
a second small point r’. The points r1, ro and r’ are three non-collinear points
spanning the plane m. Hence 01,0y and O, span a 7-dimensional subspace
which is necessarily (. Since there are ¢ + 1 choices for 1/, r and r3 included,
we find that § contains ¢+ 1 ovoids O;, all containing p and sharing two by two
¢%> + 1 points. O

Lemma 9 The set K is a truncated cone p*O, O an ovoid of Q(6,3) C Q1 (7,3),
the base of the cone p* N QT (9,3).

Proof. Consider the 7-dimensional subspace from Lemma 8 and call it 5. The
set BN K contains ¢+ 1 ovoids O;, sharing two by two g2+ 1 points. Since 3NK
contains ovoids of Q(6,q), 3N QT (9,¢) = QT (7,q), BN QT (9,¢) = Q (7,q) or
BNQT(9,9) = sQ(6,q).

Suppose that 3N QT (9,¢) = QT (7,¢). Consider two ovoids O; and O
contained in 3N K. Consider a point p € O \ Oa. All generators of QT (7,q)
on p intersect Oy in exactly one point, hence, [p* N K| > ¢ + 1, a contradiction
with Lemma 2.

Suppose that 3N Q7 (9,q) = Q(7,q). Consider again two ovoids O; and
O, contained in AN K, and consider a point p € O; \ 0. Since p* NQ ™ (7,q) =
PQ(5,q), p- intersects (O3) in Q~(5,9) and (Q~(5,9)) = (02N Q" (5,9)),
when ¢ = 3 (Theorem 5). We find that |[O;N Q™ (5,q9)| = 6 > ¢+ 1, when ¢ = 3,
a contradiction with Lemma 2.



Hence, we conclude that 3N Q7 (9,q) = sQ(6,q), necessarily s ¢ K by
Lemma 2. Consider now an arbitrary ovoid O; C g N K and denote it by
Og; put Qg(6,q) := (Op) N Q" (9,¢) and choose QE(?, q) the base of the cone
sNQ1(9,q) such that Qs(6,9) C Qg(?, q). Denote (O;) NsQ(6,q) by Q,;(6,q).
Put M := {t € sOg \ {s}||t € K}, and suppose that M # (. Consider a
point 7 € M. By Lemma 3, we know that [rX N K| > ¢* + 1, so consider
a point 7/ € 7 N K; and suppose that 7/ € st. The line (s,7’) intersects
Q;(?, ¢q) in the point r” (possibly ' = r”). Since Op is an ovoid of Qg(?,q),
("' ﬁQé(?, q))NOgs| = ¢*>+1, implying that |[r'+ NK| > ¢+ 1, a contradiction
with Lemma 2. Hence, r’ ¢ s+ and (sQE(Z q)\ sOg)NK = 0.

Define b := [s*Os N K| and K’ := K\ sOs. The previous arguments show
that |[r+ N K'| > ¢, for r € M. Furthermore, b + |[M| = ¢(¢> + 1) and
b+ |K'| = |K| € ¢* + ¢ = b+ |M|, hence, |K'| < |M].

Consider again the point » € M. Since no point 7 € r+ N K’ lies in s,
v = 7't intersects sOs in an ovoid O., of Q,(6,q). Furthermore, Lemma 1
implies that |O; NO,| > 1 for all ovoids O;. The 6-dimensional spaces (Q;(6,q))
intersect (Q,(6,¢)) in a 5-dimensional subspace . Suppose that O, has with
the union of all the ¢+ 1 ovoids O; in SN K only one point p in common. Then
(O,) N (0;) always must be the tangent hyperplane to Q. (6,q) in p. So, two
quadrics Q,(6, ¢) share a tangent hyperplane; this is a contradiction since they
share ¢ + 1 points of K. Hence, the ¢+ 1 ovoids O; contain in total at least two
different points of yNK, implying that [yNM| = ¢*+1—|yNKNsOg| < ¢* — 1.
Count the number of pairs (r,7') € M x K, with r € 7'+, to obtain

MIg® < D I nK =) M<K (¢ - 1),
rem r ek’

Since |K'| < | M|, we find that M = (. Hence, all points of sOg \ {s} belong to
K. This proves the lemma. ([

This result proves Theorem 1 for n = 4.

4 The smallest minimal blocking sets of Q" (2n+
1,3)

Throughout this section we assume that n > 5. As induction hypothesis we
suppose that the smallest minimal blocking sets of Q1 (2n¢ + 1,3), 4 < ng < n,
are truncated cones 7 _,O, O an ovoid of Q(6,3) C QT (7,3), the base of the
cone 71'#0_4 NQ"(2ng+1,3). In the previous section exactly this hypothesis was
proved for n = 5.

Lemma 10 Suppose that p is a point of QT (2n + 1,3) \ K, then [pt N K| >
3n=1 4+ 3774, If equality holds, then there exists an (n + 3)-dimensional space
@, on p that meets QT (2n + 1,3) in a cone m,-4Q(6,3). The set p- N K is
projected onto a truncated cone %_sO, O an ovoid of Q(6,3) C QT (7,3), the
base of the cone m-_, N Q1 (2n +1,3).

Proof. Letq=3. All2(¢" ' +1)...(¢>+1)(g+1) generators of Q" (2n+1,q)
on p meet K in at least one point, but any point of p~ N K lies in exactly



2(¢"2+1)...(g+1) generators on p. Hence, at least ¢"~! + 1 points of K are
needed to block all generators on p. Since p~NQ*(2n+1,¢) = pQ* (2n—1,4q), p
projects the set p~ N onto a blocking set K, of Q™ (2n—1,¢). By the induction
hypothesis, K, contains at least ¢"~! + ¢"~* points. If [pr NK| = ¢" " +¢" 74,
then KC,, is necessarily a truncated cone 7O, O an ovoid of Q(6,¢) C Q1 (7, q),
the base of the cone 7+ - N QT (2n — 1,q), lying in an (n + 2)-dimensional
subspace. The (n + 3)-dimensional subspace @, is now the space (p, m,—5,0),
and the lemma follows. O

Let ¢ = 3. For any point p € QT (2n + 1,q) \ K, we say that p is a small
point if and only if [p~ N K| = ¢"~! + ¢"~*. We will always denote the (n + 3)-
dimensional space from the previous lemma by .

Lemma 11 Suppose that L is a line of QT (2n+1,3), LNK =0 and |L*NK| =
372 43773, then L contains 4 small points.

Proof. Let ¢ =3. By Lemma 10, |r;: NK| > ¢"~! +¢"~* for all points r; € L.
The sets r;- N have exactly ¢"~2 + ¢"~° points in common, which implies that
Kl > @+ 1)@ +¢"=q" 2 =" )+ "2+ =¢"+ ¢ > K]
Hence, |1} N K| = ¢"~! + ¢"~* for all points r; € L and |K| = ¢" + ¢" 3. O

Lemma 12 Suppose that 7, is a generator of QT (2n+1, q) meeting K in exactly
one point p. Then mw, contains at least one small point.

Proof. Count the number of pairs (r,s), r € m, \ {p}, s € K\ {p}, r € s*.

We find
S0 A (o} < (K] — .
remn\{p}
The right hand side is at most (¢"+¢" 2 —1)0,—1 < (0, —1)(¢" "' +¢"~*) (using
q0n—1 = 0, —1). Since p € r- N K, it follows that [rtNK| -1 < ¢g"~ 1 +¢**
for at least one point r € 7, \ {p}, hence 7, contains a small point r. O

Lemma 13 Suppose that r € Q1 (2n + 1,3) \ K is a small point. If B is a
hyperplane of @, on r, not containing the vertex 7",_, of the cone @, N QT (2n+
1,3), then the points of BN K lie in an (n + 1)-dimensional subspace (8 of [3,
re& .
Proof. Let g = 3. Since 3 is a hyperplane of @, on 7 not containing the vertex
7", of the cone @, NQT(2n +1,¢9) =77 _,Q(6,q), 6N QT (2n + 1,¢) is a cone
with base Q’B(G, q) and vertex w5_5,
n =5, this subspace is the point r itself. It is clear that EJ_ NQT(2n+1,q) =
ﬂ§_5QB(2,q), and this cone meets the cone @, N Q7 (2n + 1,¢) in the space
7" _,. Thus there must exist a line L of Q™ (2n+1, ¢) contained in Bl such that
LNa, = {r} and such that L ¢ @;. Since L C El, we find § = L+ Na,. By
Lemma 10, L does not meet K. B

Since LY NK C rtNK C @,, it is clear that L* NK = BN K. Since L ¢ @,
Lemma 10 implies that |L+ N K| = ¢"~2 + ¢"~°. Suppose that p is a point of

an (n—>5)-dimensional subspace on r. When



L\ {r}. Lemma 11 implies that [p* N K| = ¢"~! + ¢"~*. By Lemma 10, there
exists an (n + 3)-dimensional subspace @, that meets Q*(2n + 1, ¢) in the cone
7 _4Q,(6,¢) and pt NK C @,. Furthermore, @, contains ¢"~! + ¢"~* points
of K, while L+ contains ¢"~2 + ¢"~° points of K, hence L intersects @, in a
hyperplane Bl of @,, with p € ﬁl. We conclude that LN K is a subset of 3 and
B/. The spaces 3 and B/ are different since B does not contain the line L, and
so p & 3. Hence, L+ N K lies in the (n + 1)-dimensional subspace 3 = 3N B/; it
cannot lie in a subspace of lower dimension by Lemma 10. It is impossible that
repf=pn B/; or else r projects the points of N K onto an n-dimensional
subspace, but the projected points form a truncated cone 7}_;O, O an ovoid

of Q(6,q), which lies in a space of dimension n + 1. The subspace 3 = 3N B/
intersects QT (2n + 1,¢) in a cone 775_6Q(6,q), since (8,7) = 8 C r+ and 3
intersects QT (2n +1,¢) in w5_5Qﬁ(6, q). O

Lemma 14 Suppose that r € Qt(2n 4 1,3) \ K is a small point. Then there
exists an (n+2)-dimensional subspace o, € o, such that o, NQT (2n+1,3) =
Tn-5Q"(6,3), and such that the truncated cone w)_-O, O an ovoid of Q" (6,3),
is equal to the set r+ N K.

Proof. Let ¢ = 3. Consider the (n+3)-dimensional space @, with @,.NQ™ (2n+
1,q) = m,_4Q(6, q). Suppose that (3, is a hyperplane of @,, not containing 7, _4
and containing the point 7. By Lemma 13, 3, contains an (n + 1)-dimensional
subspace (1, 7 € 31, such that 3;NQ*(2n+1,q) = WQLGQBI (6,¢) and B, NK =
GBiNK = Wfl_*ﬁ(’)ﬂl, 0P an ovoid of Q% (6,q). Define m; := (OP). Choose
a hyperbolic hyperplane a C m, o N Q™ (6,q9) = QY (5,q). We can find a
hyperplane B, of @y, By # By, 7 € By, B1 & Bay Tna & B, but m 4QL (5,q) ©
B5. Again, by Lemma 13, we find an (n + 1)-dimensional subspace (2, r & 32,
BN QT (2n+1,q) = 72 ;Q%(6,q), By NK = B2 NK = 772502 ©P2 an ovoid
of Q%2(6,q). Necessarily, 7r51_6 = 7752_6, and QF (5,q) C Q% (6,q) # Q% (6,q).
Define now 7y := (072).

Consider the (n + 2)-dimensional space v = <7T516,7r1,772>. The two 6-
dimensional spaces w1 and o are skew to m,_4, hence, m,_4 ¢ 7. Furthermore,
r & -, since then vy would be an (n+2)-dimensional subspace on r, not containing
Tn—a, spanned by points of 7N, a contradiction with Lemma 13. We conclude
that y N Q¥ (2n +1,9) = m)_;Q7(6,9).

Choose now an arbitrary hyperplane o/, o # «, of 71, such that (o/NO%) =
o’. Since ¢ = 3, both hyperbolic and elliptic hyperplanes have this property
(Theorems 4 and 5). Consider the ¢ + 1 (n + 1)-dimensional spaces §; C ~
through the n-dimensional space (o, 7' ). One of them, say d, is the space
(o/,m)_5). Consider now a space d;, i # 1. This space ¢; intersects m in a
5-dimensional space through the 4-dimensional space € := a N a’. At most two
5-dimensional spaces through ¢ are tangent hyperplanes to QBZ(G, q), hence, at
least ¢ — 2 elliptic and hyperbolic hyperplanes of Q%2 (6,¢) on e remain, hence,
at least ¢ — 2 > 1 spaces J; are spanned by points of I (Since ¢ = 3, we can
use both the elliptic and hyperbolic hyperplanes). Consider such a §;, spanned
by points of IC. The space (d;,r) is a hyperplane of @, not containing 7, _4; so
it contains an (n + 1)-dimensional space spanned by (d;,7) N K. This must be



d; since §; is spanned by its intersection with IC. We conclude that every point
p € m)* 0P lies in K, provided p lies in some subspace d; (which depends on
the choice of o), spanned by points of K.

We complete the proof by showing that every point p € 7" .0 lies in such
an (n+ 1)-dimensional space d; of v, not containing m,_5, spanned by points of
K.

Consider p € (7" ;0%)\ (81 U B2). The (n — 4)-dimensional subspace
(m)_5,p) C v intersects the (n+1)-dimensional space (32 in an (n—5)-dimensional
space (. If n =5, then this is a point u belonging to ma. If n > 5, then ¢ inter-
sects 7o in exactly one point w.

Choose a point © € (m2e NK) \ ¢, z &€ B1. This is possible since we excluded
at most one point of @%, namely the point v € ¢ N 7y. It is impossible that
0P = {u} U (0P N OP2) since (0P N OP2) intersects Q™ (6,¢) in a hyperbolic
quadric, and an ovoid of a hyperbolic quadric contains g2 4+ 1 points. Hence,
z € (mNK)\(, x ¢ [, exists.

The line (p,z) intersects [ in exactly one point y & WSLG, else (p,y) C (,
but z ¢ (.

The space <y77r51_6> intersects 7 in exactly one point z. If z € « and
z =y, then (z,y) = (x,2) C w2, so p € (2, which is false. If z € a and
z # y, then y € (B2 and hence, p € (3. We conclude that z € a. Choose one
5-dimensional space o/ C 71, a # o/, through z such that (o/ N O%1) = /.

Then <7T51_6,Z,O/,SC> = <7r§1_6,a’,x> is an (n 4 1)-dimensional subspace of v
not containing 77 . For, suppose that 7). C Q := (", o/, z), then since

z€d,zeQand 7751_6 C Q, also y € Q. Furthermore, z € Q and y € (,
which implies p € Q. Finally, m)_. C Q, p € Q, which implies u € Q. Hence,
selecting o’ in such a way that u & (z,a’) will imply that ©_ Z (x?" , o/, z).
This is possible. For, (m,m) is a 7-dimensional space, while (z,a’) is a 6-
dimensional space intersecting o in a hyperplane. All hyperbolic 5-spaces of 71
on z intersect only in z, hence, all spaces (z, ) only intersect in the line (z, 2).
So we can find an o' through z, such that (z,a’) does not contain the point w.

O

Lemma 15 The set K is a truncated cone m’_,O, 7,4 C QT (2n +1,3), O
an ovoid of Q(6,3) C QT (7,3), the base of the cone - , N QT (2n +1,3).

Proof. From Lemma 12, we find a point » € Q7 (2n + 1,¢) \ K satisfying
lrt N K| = ¢!+ ¢"~*. The (n + 2)-dimensional subspace a, from Lemma 14
meets QT (2n + 1,¢) in a cone ©"._-Q"(6,¢). Choose Q = QT (2n — 1,¢) as the
base of the cone r+ N QT (2n + 1,¢) in such a way that (Q) contains the cone
7 _=Q"(6,q). Let L be a line of QT (2n + 1,¢) on r such that L ¢ 77+ which
implies that L' does not contain the vertex m _s of a.. Thus L+ meets a, in
a hyperplane of a,., and this hyperplane of a, meets QT (2n + 1,¢) in a cone
wﬁfGQL(G,q). Note that n > 5. If n = 5, then this hyperplane of «, meets
Qt(2n +1,q) in a quadric QL(6, q).

As LTNK is contained in r-NK = a,NK, it follows that L-NK is a truncated
cone wk* 0L, OF an ovoid of Q¥(6,q). Hence, [L* NK| = ¢"2 4 ¢"°. By
Lemma 11, st N K| = ¢"~ ! + ¢"~* for all points s € L. Every point s gives
rise to a truncated cone st N K = 75* 0%, O% an ovoid of Q°(6,q), and all
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these truncated cones share the truncated cone L+ NK = 7£* O, Denote the
subspace spanned by L+ N K by 8.

Every point of K is collinear with a point of L, which implies that K is the
union of these g + 1 cones 75* Oy, s € L. It follows that |K| = ¢" + ¢"~3, and
that K is contained in the union of the ¢ + 1 (n + 2)-dimensional subspaces s,
s € L, that share the (n + 1)-dimensional subspace (.

Consider now a second line L’ of Q" (2n + 1,¢) on r such that L' 7+, N
QT (2n+1,q) and choose it in such a way that 37, € L'*. This is possible since
(Br,7)* has only dimension n—2. Then, as for L, the subspace 31+ := (L' NK)
has dimension n + 1 and is contained in ay for all s € L’. We have 81 # (.
Let p be a point of L’ with p # r. Then «, has dimension n+2 and meets «, in
Br,. Furthermore, 81, NQT(2n+1,q) = 775_*6 LI(G, q), B.NK = 71'5/_*6(’)”, oL
an ovoid of QLI (6,q) and |(’)L, N OF| > 1, since, by Theorem 3, OF intersects
every hyperplane of (O).

Varying the point p € L', the tangent hyperplanes pt vary over the hyper-
planes through L't hence, every point of the (n — 5)-dimensional spaces 75 _s,
s € L, lies in some p*, p € L. For every point x € 7_-, s € L, the line (z,y),
yeokn OL' | contains q points of . Hence, = belongs to one of the vertices
m_s,pelL.

Consider a fixed point s € L\ {r}, fixed points py € nl,_, ps € 7 _5,
p1,p2 & mh_s N ws_s = wk_g. Consider a fixed point u € 77* ;O", then it is
possible to select a line L”, satisfying the conditions of L', for which u € L"*.
Then the preceding arguments show that the set (u,ps) \ {p2} is contained in
K.

Consider an arbitrary line M of 7* ;O" passing through p; and containing
q points of K. The ¢? points of (M, ps) \ (p1,p2) all lie in K; this implies that
the truncated cone (7], _-, 75 _-)*O" lies in K. Since |K| = |(n],_5, 75 _5)*O7| =
q" + ¢" 3, this truncated cone must be equal to K. ]

This result proves Theorem 1 for n > 5.
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