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Abstract

We determine the smallest minimal blocking sets of Q+(2n + 1, 3),
n > 4.

1 Introduction

Let Q+(2n+ 1, q) denote the non-singular hyperbolic quadric of the finite pro-
jective space PG(2n + 1, q). This quadric is an example of a classical polar
space. The subspaces of PG(2n + 1, q) of maximal dimension completely con-
tained in Q+(2n+ 1, q) are called generators; they have dimension n. An ovoid
of Q+(2n+ 1, q) is a set O of points of Q+(2n+ 1, q) such that every generator
meets O in exactly one point; it contains qn + 1 points. Any hyperplane of
PG(2n + 1, q) which is not a tangent hyperplane intersects Q+(2n + 1, q) in a
non-singular parabolic quadric Q(2n, q). Also this quadric is an example of a
classical polar space, its generators have dimension n−1, and an ovoid contains
qn + 1 points.

It is known that Q+(7, q) has ovoids when q is prime or q ≡ 0 or 2 mod 3,
we refer to [13] for a list of references. Furthermore, from [2], Q+(2n + 1, q),
with q = ph, p > 2 prime, has no ovoids if

pn >

(
2n+ p

2n+ 1

)
−
(

2n+ p− 2
2n+ 1

)
.

By this formula, no ovoid of Q+(7, q) is excluded, while ovoids of Q+(9, q), for
q = 3, are excluded. Furthermore, since any ovoid O of Q+(2n+1, q) induces an
ovoid of Q+(2n− 1, q) via the projection of O∩ p⊥ onto the base Q+(2n− 1, q)
of the cone p⊥ ∩ Q+(2n + 1, q) from any point p with p ∈ Q+(2n + 1, q) \ O,
Q+(2n + 1, q), q = 3, has no ovoids for n > 4. We define a blocking set of
Q+(2n+ 1, q) as a set K of points of Q+(2n+ 1, q) such that every generator of
Q+(2n+ 1, q) meets K in at least one point. A blocking set K is called minimal
if K \ {p} is not a blocking set for any point p ∈ K, or, equivalently, if for any
point p ∈ K, there exists a generator of Q+(2n + 1, q) meeting K only in the
point p.

In this paper, we determine the smallest minimal blocking sets of Q+(2n+
1, 3). In order to state the result, we need the notation of a truncated cone.
Suppose that α is a subspace of PG(2n + 1, q) and O an arbitrary geometric
object lying in some subspace π such that α∩ π = ∅. The cone αO with vertex
∗This author thanks the Fund for Scientific Research - Flanders (Belgium) for a research

grant.
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α and base O is the union of the spaces 〈α, p〉, p ∈ O. The truncated cone α∗O
is obtained by removing the points of the vertex α of the cone αO. When α is
the empty subspace, α∗O is by definition the set O. We will prove the following
theorem.

Theorem 1 Suppose that K is a set of points of Q+(2n + 1, 3), n > 4, |K| =
3n + 1 + r, 1 6 r < 3n−3, and such that every generator of Q+(2n+ 1, 3) meets
K in at least one point. Then |K| = 3n+3n−3 and K is a truncated cone π∗n−4O,
πn−4 an (n − 4)-dimensional subspace, πn−4 ⊂ Q+(2n + 1, 3) and O an ovoid
of Q(6, 3) ⊂ Q+(7, 3), Q+(7, 3) the base of the cone π⊥n−4 ∩Q+(2n+ 1, 3).

In Section 3 we will prove this theorem for n = 4. In Section 4 we will
use inductive arguments to generalize the result for n > 4. Since Theorem 1
describes an example π∗n−4O of a minimal blocking set of size 3n + 3n−3, we
may assume that the smallest minimal blocking sets of Q+(2n+ 1, 3) have size
smaller than or equal to 3n + 3n−3. We will also use the following result.

Theorem 2 [9] If O is an ovoid of Q+(7, 3) then 〈O〉 is a hyperplane α of
PG(7, 3) and O constitutes also an ovoid of α ∩Q+(7, 3) = Q(6, 3).

Using the classification of ovoids of Q(4, p), p prime [1], similar results for
small minimal blocking sets of Q(2n, p), p > 3 prime, n ≥ 3, were obtained in
[4], while results on small minimal blocking sets of Q(2n, 3) were obtained in
[6, 7]. General results on small minimal blocking sets of Q(6, q), q > 32, q even,
were obtained in [5]. More general results on small minimal blocking sets of
Q−(2n+ 1, q), n > 2, and W(2n+ 1, q), n > 2, were obtained in [10, 11].

In Section 2 we will recall basic geometrical properties of ovoids of Q(6, q)
that will be used in Section 3. Finally we define two notations. An i-dimensional
subspace of PG(2n + 1, q) will often be denoted by πi, and we define θn :=
qn+1−1
q−1 , i.e. the number of points in an n-dimensional projective space of order

q.

2 On ovoids of Q(6, q)

We mention that ovoids of Q(6, q) are rare. Presently, ovoids of Q(6, q) are
only known when q ≡ 0 mod 3. Furthermore, all ovoids of Q(4, p), p prime, are
elliptic quadrics Q−(3, p) [1], which is a sufficient condition for the non-existence
of ovoids of Q(6, p), p > 3 prime [12]. Finally we mention that Q(6, 3) has, up
to collineations, a unique ovoid [9].

For our purposes, the following theorem is an important result on ovoids. Let
Q(6, q) denote the non-singular parabolic quadric of PG(6, q), q = ph, p prime.
Call a hyperplane α of PG(6, q) elliptic, hyperbolic or tangent respectively if
α ∩Q(6, q) = Q−(5, q), Q+(5, q), or tangent to Q(6, q).

Theorem 3 [1] Suppose that O is an ovoid of Q(6, q), q = ph, p prime. Any
elliptic hyperplane α intersects O in 1 mod p points.

The property of Theorem 3 can easily be derived for hyperbolic and tangent
hyperplanes.

We also mention the following theorem.
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Theorem 4 [7] Suppose that O is an ovoid of Q(6, q). Any hyperbolic hyper-
plane α has the property 〈α ∩ O〉 = α.

When q = 3, elliptic hyperplanes have the same property, which was checked
using the computer [7].

Theorem 5 Suppose that O is an ovoid of Q(6, 3). Any elliptic hyperplane α
has the property 〈α ∩ O〉 = α.

Consider now a singular quadric pQ(6, q) in PG(7, q), and suppose that O is
an ovoid of the base Q(6, q). Consider the cone pO. Any hyperplane of PG(7, q)
not on p intersects the cone pO in an ovoid of Q(6, q). We will use the following
lemma in Section 3.

Lemma 1 Any two ovoids O1 and O2, which lie in the intersection of the
hyperplanes π1, π2 respectively, (with π1 6= π2, and p 6∈ πi, i = 1, 2) with the
cone pO, have at least one point in common.

Proof. Consider O1 = π1 ∩ pO. The hyperplane π2 intersects π1 in a 5-
dimensional space not on p. Denote π1 ∩ pQ(6, q) = Q1(6, q), then π1 ∩ π2 is
either a hyperbolic, elliptic, or tangent hyperplane of Q1(6, q). In any case,
|π1 ∩ π2 ∩ O1| ≡ 1 mod p, hence, π2 contains at least one point s ∈ O1, which
necessarily lies on the cone pO. Hence, s ∈ π2 ∩ pO and we conclude that
|O1 ∩ O2| > 1. �

Finally, we describe a property of ovoids of Q(6, 3) that will be very useful
in the proof of Lemma 7.

Consider an ovoidO of Q(6, 3). Consider all hyperplanes of PG(6, 3). Denote
the set of hyperbolic hyperplanes of Q(6, 3) with H, |H| = 378. The following
property was checked with a computer, using the software packages GAP [8]
and pg [3].

Property 1

It is possible to find two elements β1, β2 ∈ H, β1 6= β2, such that 〈β1 ∩ β2 ∩ O〉
is a 4-dimensional subspace of PG(6, 3). Define B := (β1 ∪ β2) ∩ O. Define
C := {β ∈ H\{β1, β2}‖β = 〈B∩β〉}; in other words, β is spanned by the points of
β∩O in (β1∪β2)∩O. We find, using the computer, that B1 := B∪(

⋃
β∈C(β∩O))

contains 25 elements of O. We fix β1, and choose any β′2 ∈ C. This gives rise
to a new set Cβ′2 := {β ∈ H \ {β1, β

′
2}‖β = 〈(β1 ∪ β′2) ∩ β ∩ O〉} and a new set

Bβ′2 :=
⋃
β∈Cβ

′
2
(β ∩ O). It is possible to find two elements β′2, β

′′
2 ∈ C such that

O = B1 ∪ Bβ
′
2 ∪ Bβ′′2 .

3 The smallest minimal blocking sets of Q+(9, 3)

From this section on we suppose thatK is a minimal blocking set of Q+(2n+1, q),
|K| = qn + 1 + r, 0 < r < qn−3. Only Lemma 2 will be proved for general n,
afterwards we restrict to n = 4 for this section. For some lemmas, we will
suppose that q = 3.

Lemma 2 For any point p ∈ K, |p⊥ ∩ K| 6 1 + r.
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Proof. Since K is minimal, we can find a generator πn of Q+(2n+1, q) meeting
K only in the point p. There are qn (n− 1)-dimensional subspaces of πn not on
p which lie in a second generator of Q+(2n + 1, q) that must be blocked by at
least one point of K. Hence, |K \ p⊥| > qn; so |p⊥ ∩ K| 6 1 + r. �

Lemma 3 Suppose that p is a point of Q+(9, 3) \ K, then |p⊥ ∩ K| > 33 + 1.
If equality holds, then there exists a 7-dimensional space αp on p that meets
Q+(9, 3) in a cone pQ(6, 3). The set p⊥ ∩K is projected onto an ovoid O, O an
ovoid of Q(6, 3) ⊂ Q+(7, 3), the base of the cone p⊥ ∩Q+(9, 3).

Proof. Let q = 3. All 2(q3 +1)(q2 +1)(q+1) generators of Q+(9, q) on p meet
K in at least one point, but any point of p⊥ ∩K lies in exactly 2(q2 + 1)(q + 1)
generators on p. Hence, at least q3 + 1 points of K are needed to block all
generators on p. Since p⊥∩Q+(9, q) = pQ+(7, q), p projects the set p⊥∩K onto
a blocking set Kp of Q+(7, q). When |p⊥ ∩ K| = q3 + 1, then Kp is necessarily
an ovoid of Q+(7, q). When q = 3, any ovoid of Q+(7, q) lies in a hyperplane
π of PG(7, q), and constitutes an ovoid of π ∩Q+(7, q) = Q(6, q) (Theorem 2).
The 7-dimensional space αp is now the space 〈p, π〉, and the lemma follows. �

Let q = 3. For any point p ∈ Q+(9, q) \ K, we say that p is a small point if
and only if |p⊥ ∩ K| = q3 + 1. We will always denote the 7-dimensional space
from the previous lemma by αp.

Lemma 4 Suppose that L is a line of Q+(9, 3), L∩K = ∅ and |L⊥∩K| = 32+1,
then L contains at least two small points.

Proof. Let q = 3. From Lemma 3, we have |r⊥ ∩K| > q3 + 1 for every r ∈ L.
Define nr := |r⊥ ∩ K| − (q3 + 1). Then nr = 0 if and only if r is a small point.
We find ∑

r∈L
|r⊥ ∩ K| =

∑
r∈L

(q3 + 1 + nr) 6 q4 + q + q(q2 + 1),

which implies ∑
r∈L

nr 6 q − 1.

Hence, at most q − 1 points of L have nr > 0, or, L contains at least two small
points. �

Lemma 5 Suppose that π4 is a generator of Q+(9, q) meeting K in exactly one
point p. Then π4 contains at least θ3 small points. Furthermore, every line of
π4 not on p, that contains a small point, contains a second small point.

Proof. Count the number of pairs (r, s), r ∈ π4 \ {p}, s ∈ K \ {p}, r ∈ s⊥.
We find ∑

r∈π4\{p}

|(r⊥ ∩ K) \ {p}| 6 (|K| − 1)θ3.

The right hand side is at most (q4 + q − 1)θ3 = q7 + q6 + q5 + 2q4 − 1 <
(θ4 − 1)(q3 + 1). Since p ∈ r⊥ ∩ K, it follows that |r⊥ ∩ K| − 1 < q3 + 1 for at
least one point r ∈ π4 \ {p}, hence π4 contains a small point r.
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Consider now a solid α of π4, not on p, containing a small point r. Since
|r⊥ ∩ K| = q3 + 1, every generator on α meets K in exactly one point, hence
|α⊥ ∩ K| = 2. Count the number of pairs (t, s), t ∈ α, s ∈ K, t ∈ s⊥. Then the
two points of α⊥ ∩K occur in θ3 pairs; every other point of K occurs in exactly
θ2 pairs. We find∑

t∈α
|t⊥ ∩ K| 6 2θ3 + (|K| − 2)θ2 6 θ3(q3 + 1) + q3 − 1.

Since θ3 is the number of points of α, at least θ3 − (q3 − 1) = θ2 + 1 points
of α are small. Consider a fixed small point r in π4. Counting the number of
incident pairs (α, r′), α a solid of π4 on r but not on p, and r′ 6= r a small point
in π4, we find that π4 contains at least θ3 small points.

When L is a line of π4 containing a small point r but not p, |r⊥∩K| = q3 +1
implies that |L⊥ ∩K| = q2 + 1. Applying Lemma 4 proves the last statement of
this lemma. �

Lemma 6 Suppose that L is a line of Q+(9, 3) containing two small points r
and r′. Let L 6⊂ αr. Then |L⊥ ∩ K| = 32 + 1 and 〈L⊥ ∩ K〉 is a 5-dimensional
space.

Proof. Let q = 3. Since |r⊥ ∩ K| = q3 + 1, all generators on L meet K in
exactly one point, hence |L⊥ ∩ K| = q2 + 1. Consider the 7-dimensional space
αr, αr ∩Q+(9, q) = rQ(6, q) and r projects the points of r⊥ ∩ K onto an ovoid
O of Q(6, q). It is clear that r projects the points of L⊥ ∩ K onto an ovoid O′
of Q5 = Q+(5, q) ⊆ Q(6, q). By Theorem 4, 〈O′〉 is a 5-dimensional space.

Consider the second small point r′ on L. Project r′⊥ ∩ K from r′ onto a
hyperplane of r′⊥, containing rQ5. Then r′⊥ ∩ K is again projected onto an
ovoid of a parabolic quadric Q(6, q). Again by Theorem 4, the projection of
L⊥ ∩ K from r′ can only have dimension 5. Since this projection lies in rQ5,
necessarily the points of L⊥ ∩ K belong to a 5-dimensional hyperbolic quadric.

�

Lemma 7 Suppose that r ∈ Q+(9, 3) \ K is a small point, then r⊥ ∩ K is an
ovoid of Q(6, 3) and 〈r⊥ ∩ K〉 is a 6-dimensional space.

Proof. Let q = 3. Consider the 7-dimensional space αr (Lemma 3). We can
choose the base of the cone αr∩Q+(9, q) = rQ(6, q) such that Q(6, q) ⊆ Q+(7, q),
the base of the cone r⊥ ∩Q+(9, q). The set r⊥ ∩K is projected from r onto an
ovoid O of Q(6, q). Denote by δ the 7-dimensional space containing Q+(7, q) and
by γ the hyperplane of δ containing Q(6, q). If β1 is a hyperplane of γ intersecting

Q(6, q) in a Q+(5, q), and such that β
⊥Q+(7,q)
1 ∩Q+(7, q) = Q+(1, q) = {r′, r′′},

then there exists a line Lβ1 = 〈r, r′〉, Lβ1 ∩ K = ∅, such that r projects the set
L⊥β1
∩K exactly onto the set β1 ∩O. By Lemmas 4 and 6, the set L⊥β1

∩K spans
a 5-dimensional subspace βr1 of αr. Consider a hyperplane β2 of γ, as described
in Property 1, i.e. 〈β1 ∩ β2 ∩O〉 is a 4-dimensional space. We now find that the
set L⊥β2

∩ K spans a 5-dimensional subspace βr2 of αr. Since 〈β1 ∩ β2 ∩ O〉 is a
4-dimensional subspace of γ, ζ := 〈βr1 , βr2〉 is a 6-dimensional space of αr. This
means also that all points of (βr1 ∪ βr2)∩K lie already in a 6-dimensional space.
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The goal is now to prove that 〈βr1 , βr2〉 contains all points of r⊥ ∩ K. Therefore
we will use Property 1.

Consider any 5-dimensional subspace β ⊂ γ such that β∩Q(6, q) = Q+(5, q)
and such that β = 〈(β1∪β2)∩β∩O〉, then β gives rise to a subspace βr ⊆ 〈βr1 , βr2〉
and all points of βr∩K are projected from r on the points of β∩O. This implies
that all points of βr ∩ K lie in the space 〈βr1 , βr2〉. Property 1 states actually
that all points of O can be covered by a subspace like β, so considering all such
subspaces β, we find that all points of r⊥ ∩ K lie in the 6-dimensional space
〈βr1 , βr2〉, and are projected onto O. We conclude that r⊥ ∩ K constitutes an
ovoid of Q(6, q) and that 〈r⊥ ∩ K〉 is a 6-dimensional space. �

Lemma 8 There exists a 7-dimensional subspace α such that α ∩ K contains
at least q + 1 ovoids O of Q(6, 3), all containing a common point p ∈ K and
sharing two by two q2 + 1 points.

Proof. Let q = 3. Consider a generator π4 of Q+(9, q) meeting K only
in the point p. Lemma 5 implies that π4 contains at least θ3 small points ri.
Furthermore, r⊥i ∩ K = Oi is an ovoid of Qi(6, q) ⊂ Q+

i (7, q) ⊂ r⊥i ∩ Q+(9, q).
Also, if 〈ri, rj〉, i 6= j, is a line of π4 not on p, then Oi ∩ Oj contains q2 + 1
points and constitutes an ovoid of Qi(6, q) ∩ Qj(6, q) = Q+(5, q). Consider a
small point r1 ∈ π4, and a plane π through r1 lying in π4, but with p 6∈ π. Every
line of π through r1 contains a second small point r2 (Lemma 5). So we find
three non-collinear small points r1, r2 and r3 in π.

The ovoids O1, O2 and O3 share two by two an ovoid of some Q+(5, q), but
do all not contain a common ovoid of some Q+(5, q), since that ovoid would lie in
〈r1, r2, r3〉⊥. Hence, O1,O2 and O3 span together a 7-dimensional subspace β.
Lemma 5 implies that every line of π ⊂ π4 on r1 not containing r2, r3 contains
a second small point r′. The points r1, r2 and r′ are three non-collinear points
spanning the plane π. Hence O1,O2 and Or′ span a 7-dimensional subspace
which is necessarily β. Since there are q + 1 choices for r′, r2 and r3 included,
we find that β contains q+ 1 ovoids Oi, all containing p and sharing two by two
q2 + 1 points. �

Lemma 9 The set K is a truncated cone p∗O, O an ovoid of Q(6, 3) ⊆ Q+(7, 3),
the base of the cone p⊥ ∩Q+(9, 3).

Proof. Consider the 7-dimensional subspace from Lemma 8 and call it β. The
set β∩K contains q+1 ovoids Oi, sharing two by two q2 +1 points. Since β∩K
contains ovoids of Q(6, q), β ∩Q+(9, q) = Q+(7, q), β ∩Q+(9, q) = Q−(7, q) or
β ∩Q+(9, q) = sQ(6, q).

Suppose that β ∩ Q+(9, q) = Q+(7, q). Consider two ovoids O1 and O2

contained in β ∩ K. Consider a point p ∈ O1 \ O2. All generators of Q+(7, q)
on p intersect O2 in exactly one point, hence, |p⊥ ∩K| > q + 1, a contradiction
with Lemma 2.

Suppose that β ∩ Q+(9, q) = Q−(7, q). Consider again two ovoids O1 and
O2 contained in β ∩K, and consider a point p ∈ O1 \O2. Since p⊥ ∩Q−(7, q) =
pQ−(5, q), p⊥ intersects 〈O2〉 in Q−(5, q) and 〈Q−(5, q)〉 = 〈O2 ∩ Q−(5, q)〉,
when q = 3 (Theorem 5). We find that |O2∩Q−(5, q)| > 6 > q+ 1, when q = 3,
a contradiction with Lemma 2.
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Hence, we conclude that β ∩ Q+(9, q) = sQ(6, q), necessarily s 6∈ K by
Lemma 2. Consider now an arbitrary ovoid Oi ⊂ β ∩ K and denote it by
Oβ ; put Qβ(6, q) := 〈Oβ〉 ∩ Q+(9, q) and choose Q+

β (7, q) the base of the cone
s⊥∩Q+(9, q) such that Qβ(6, q) ⊂ Q+

β (7, q). Denote 〈Oi〉∩sQ(6, q) by Qi(6, q).
Put M := {t ∈ sOβ \ {s}‖t 6∈ K}, and suppose that M 6= ∅. Consider a
point r ∈ M. By Lemma 3, we know that |r⊥ ∩ K| > q3 + 1, so consider
a point r′ ∈ r⊥ ∩ K; and suppose that r′ ∈ s⊥. The line 〈s, r′〉 intersects
Q+
β (7, q) in the point r′′ (possibly r′ = r′′). Since Oβ is an ovoid of Q+

β (7, q),
|(r′′⊥∩Q+

β (7, q))∩Oβ | = q2 +1, implying that |r′⊥∩K| > q+1, a contradiction
with Lemma 2. Hence, r′ 6∈ s⊥ and (sQ+

β (7, q) \ sOβ) ∩ K = ∅.
Define b := |s∗Oβ ∩ K| and K′ := K \ sOβ . The previous arguments show

that |r⊥ ∩ K′| > q3, for r ∈ M. Furthermore, b + |M| = q(q3 + 1) and
b+ |K′| = |K| 6 q4 + q = b+ |M|, hence, |K′| 6 |M|.

Consider again the point r ∈ M. Since no point r′ ∈ r⊥ ∩ K′ lies in s⊥,
γ := r′⊥ intersects sOβ in an ovoid Oγ of Qγ(6, q). Furthermore, Lemma 1
implies that |Oi∩Oγ | > 1 for all ovoids Oi. The 6-dimensional spaces 〈Qi(6, q)〉
intersect 〈Qγ(6, q)〉 in a 5-dimensional subspace ζ. Suppose that Oγ has with
the union of all the q+ 1 ovoids Oi in β ∩K only one point p in common. Then
〈Oγ〉 ∩ 〈Oi〉 always must be the tangent hyperplane to Qγ(6, q) in p. So, two
quadrics Qi(6, q) share a tangent hyperplane; this is a contradiction since they
share q2 +1 points of K. Hence, the q+1 ovoids Oi contain in total at least two
different points of γ∩K, implying that |γ∩M| = q3 +1−|γ∩K∩sOβ | 6 q3−1.
Count the number of pairs (r, r′) ∈M×K′, with r ∈ r′⊥, to obtain

|M|q3 6
∑
r∈M

|r⊥ ∩ K′| =
∑
r′∈K′

|r′⊥ ∩M| 6 |K′|(q3 − 1).

Since |K′| 6 |M|, we find thatM = ∅. Hence, all points of sOβ \ {s} belong to
K. This proves the lemma. �

This result proves Theorem 1 for n = 4.

4 The smallest minimal blocking sets of Q+(2n+
1, 3)

Throughout this section we assume that n > 5. As induction hypothesis we
suppose that the smallest minimal blocking sets of Q+(2n0 + 1, 3), 4 6 n0 < n,
are truncated cones π∗n0−4O, O an ovoid of Q(6, 3) ⊂ Q+(7, 3), the base of the
cone π⊥n0−4∩Q+(2n0 +1, 3). In the previous section exactly this hypothesis was
proved for n = 5.

Lemma 10 Suppose that p is a point of Q+(2n + 1, 3) \ K, then |p⊥ ∩ K| >
3n−1 + 3n−4. If equality holds, then there exists an (n + 3)-dimensional space
αp on p that meets Q+(2n + 1, 3) in a cone πn−4Q(6, 3). The set p⊥ ∩ K is
projected onto a truncated cone π∗n−5O, O an ovoid of Q(6, 3) ⊂ Q+(7, 3), the
base of the cone π⊥n−4 ∩Q+(2n+ 1, 3).

Proof. Let q = 3. All 2(qn−1 +1) . . . (q2 +1)(q+1) generators of Q+(2n+1, q)
on p meet K in at least one point, but any point of p⊥ ∩ K lies in exactly
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2(qn−2 + 1) . . . (q+ 1) generators on p. Hence, at least qn−1 + 1 points of K are
needed to block all generators on p. Since p⊥∩Q+(2n+1, q) = pQ+(2n−1, q), p
projects the set p⊥∩K onto a blocking set Kp of Q+(2n−1, q). By the induction
hypothesis, Kp contains at least qn−1 + qn−4 points. If |p⊥ ∩K| = qn−1 + qn−4,
then Kp is necessarily a truncated cone π∗n−5O, O an ovoid of Q(6, q) ⊂ Q+(7, q),
the base of the cone π⊥n−5 ∩ Q+(2n − 1, q), lying in an (n + 2)-dimensional
subspace. The (n + 3)-dimensional subspace αp is now the space 〈p, πn−5,O〉,
and the lemma follows. �

Let q = 3. For any point p ∈ Q+(2n + 1, q) \ K, we say that p is a small
point if and only if |p⊥ ∩K| = qn−1 + qn−4. We will always denote the (n+ 3)-
dimensional space from the previous lemma by αp.

Lemma 11 Suppose that L is a line of Q+(2n+1, 3), L∩K = ∅ and |L⊥∩K| =
3n−2 + 3n−5, then L contains 4 small points.

Proof. Let q = 3. By Lemma 10, |r⊥i ∩K| > qn−1 + qn−4 for all points ri ∈ L.
The sets r⊥i ∩K have exactly qn−2 +qn−5 points in common, which implies that
|K| > (q + 1)(qn−1 + qn−4 − qn−2 − qn−5) + qn−2 + qn−5 = qn + qn−3 > |K|.
Hence, |r⊥i ∩ K| = qn−1 + qn−4 for all points ri ∈ L and |K| = qn + qn−3. �

Lemma 12 Suppose that πn is a generator of Q+(2n+1, q) meeting K in exactly
one point p. Then πn contains at least one small point.

Proof. Count the number of pairs (r, s), r ∈ πn \ {p}, s ∈ K \ {p}, r ∈ s⊥.
We find ∑

r∈πn\{p}

|(r⊥ ∩ K) \ {p}| 6 (|K| − 1)θn−1.

The right hand side is at most (qn+qn−3−1)θn−1 < (θn−1)(qn−1+qn−4) (using
qθn−1 = θn − 1). Since p ∈ r⊥ ∩ K, it follows that |r⊥ ∩ K| − 1 < qn−1 + qn−4

for at least one point r ∈ πn \ {p}, hence πn contains a small point r. �

Lemma 13 Suppose that r ∈ Q+(2n + 1, 3) \ K is a small point. If β is a
hyperplane of αr on r, not containing the vertex πrn−4 of the cone αr ∩Q+(2n+
1, 3), then the points of β ∩ K lie in an (n + 1)-dimensional subspace β of β,
r 6∈ β.

Proof. Let q = 3. Since β is a hyperplane of αr on r not containing the vertex
πrn−4 of the cone αr ∩Q+(2n+ 1, q) = πrn−4Q(6, q), β ∩Q+(2n+ 1, q) is a cone

with base Qβ(6, q) and vertex πβn−5, an (n−5)-dimensional subspace on r. When

n = 5, this subspace is the point r itself. It is clear that β
⊥ ∩Q+(2n+ 1, q) =

πβn−5Qβ(2, q), and this cone meets the cone αr ∩ Q+(2n + 1, q) in the space

πrn−4. Thus there must exist a line L of Q+(2n+1, q) contained in β
⊥

such that

L ∩ αr = {r} and such that L 6⊂ α⊥r . Since L ⊂ β
⊥

, we find β = L⊥ ∩ αr. By
Lemma 10, L does not meet K.

Since L⊥∩K ⊆ r⊥∩K ⊆ αr, it is clear that L⊥∩K = β ∩K. Since L 6⊂ α⊥r ,
Lemma 10 implies that |L⊥ ∩ K| = qn−2 + qn−5. Suppose that p is a point of
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L \ {r}. Lemma 11 implies that |p⊥ ∩ K| = qn−1 + qn−4. By Lemma 10, there
exists an (n+ 3)-dimensional subspace αp that meets Q+(2n+ 1, q) in the cone
πpn−4Qp(6, q) and p⊥ ∩ K ⊂ αp. Furthermore, αp contains qn−1 + qn−4 points
of K, while L⊥ contains qn−2 + qn−5 points of K, hence L⊥ intersects αp in a
hyperplane β

′
of αp, with p ∈ β′. We conclude that L⊥ ∩K is a subset of β and

β
′
. The spaces β and β

′
are different since β does not contain the line L, and

so p 6∈ β. Hence, L⊥ ∩K lies in the (n+ 1)-dimensional subspace β = β ∩ β′; it
cannot lie in a subspace of lower dimension by Lemma 10. It is impossible that
r ∈ β = β ∩ β′; or else r projects the points of β ∩ K onto an n-dimensional
subspace, but the projected points form a truncated cone π∗n−6O, O an ovoid
of Q(6, q), which lies in a space of dimension n + 1. The subspace β = β ∩ β′

intersects Q+(2n + 1, q) in a cone πβn−6Q(6, q), since 〈β, r〉 = β ⊆ r⊥ and β

intersects Q+(2n+ 1, q) in πβn−5Qβ(6, q). �

Lemma 14 Suppose that r ∈ Q+(2n + 1, 3) \ K is a small point. Then there
exists an (n+2)-dimensional subspace αr, r 6∈ αr, such that αr∩Q+(2n+1, 3) =
πn−5Qr(6, 3), and such that the truncated cone π∗n−5O, O an ovoid of Qr(6, 3),
is equal to the set r⊥ ∩ K.

Proof. Let q = 3. Consider the (n+3)-dimensional space αr with αr∩Q+(2n+
1, q) = πn−4Q(6, q). Suppose that β1 is a hyperplane of αr, not containing πn−4

and containing the point r. By Lemma 13, β1 contains an (n+ 1)-dimensional
subspace β1, r 6∈ β1, such that β1∩Q+(2n+1, q) = πβ1

n−6Qβ1(6, q) and β1∩K =
β1 ∩ K = πβ1∗

n−6Oβ1 , Oβ1 an ovoid of Qβ1(6, q). Define π1 := 〈Oβ1〉. Choose
a hyperbolic hyperplane α ⊆ π1, α ∩ Qβ1(6, q) = Q+

α (5, q). We can find a
hyperplane β2 of αr, β2 6= β1, r ∈ β2, β1 6⊆ β2, πn−4 6⊆ β2, but πβ1

n−6Q+
α (5, q) ⊆

β2. Again, by Lemma 13, we find an (n + 1)-dimensional subspace β2, r 6∈ β2,
β2 ∩Q+(2n+ 1, q) = πβ2

n−6Qβ2(6, q), β2 ∩K = β2 ∩K = πβ2∗
n−6Oβ2 , Oβ2 an ovoid

of Qβ2(6, q). Necessarily, πβ1
n−6 = πβ2

n−6, and Q+
α (5, q) ⊂ Qβ2(6, q) 6= Qβ1(6, q).

Define now π2 := 〈Oβ2〉.
Consider the (n + 2)-dimensional space γ = 〈πβ1

n−6, π1, π2〉. The two 6-
dimensional spaces π1 and π2 are skew to πn−4, hence, πn−4 6⊆ γ. Furthermore,
r 6∈ γ, since then γ would be an (n+2)-dimensional subspace on r, not containing
πn−4, spanned by points of r⊥∩K, a contradiction with Lemma 13. We conclude
that γ ∩Q+(2n+ 1, q) = πγn−5Qγ(6, q).

Choose now an arbitrary hyperplane α′, α′ 6= α, of π1, such that 〈α′∩Oβ1〉 =
α′. Since q = 3, both hyperbolic and elliptic hyperplanes have this property
(Theorems 4 and 5). Consider the q + 1 (n + 1)-dimensional spaces δi ⊂ γ

through the n-dimensional space 〈α′, πβ1
n−6〉. One of them, say δ1, is the space

〈α′, πγn−5〉. Consider now a space δi, i 6= 1. This space δi intersects π2 in a
5-dimensional space through the 4-dimensional space ε := α ∩ α′. At most two
5-dimensional spaces through ε are tangent hyperplanes to Qβ2(6, q), hence, at
least q − 2 elliptic and hyperbolic hyperplanes of Qβ2(6, q) on ε remain, hence,
at least q − 2 ≥ 1 spaces δi are spanned by points of K (Since q = 3, we can
use both the elliptic and hyperbolic hyperplanes). Consider such a δi, spanned
by points of K. The space 〈δi, r〉 is a hyperplane of αr not containing πn−4; so
it contains an (n + 1)-dimensional space spanned by 〈δi, r〉 ∩ K. This must be
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δi since δi is spanned by its intersection with K. We conclude that every point
p ∈ πγ∗n−5Oβ1 lies in K, provided p lies in some subspace δi (which depends on
the choice of α′), spanned by points of K.

We complete the proof by showing that every point p ∈ πγ∗n−5Oβ1 lies in such
an (n+ 1)-dimensional space δi of γ, not containing πn−5, spanned by points of
K.

Consider p ∈ (πγ∗n−5Oβ1) \ (β1 ∪ β2). The (n − 4)-dimensional subspace
〈πγn−5, p〉 ⊆ γ intersects the (n+1)-dimensional space β2 in an (n−5)-dimensional
space ζ. If n = 5, then this is a point u belonging to π2. If n > 5, then ζ inter-
sects π2 in exactly one point u.

Choose a point x ∈ (π2 ∩ K) \ ζ, x 6∈ β1. This is possible since we excluded
at most one point of Oβ2 , namely the point u ∈ ζ ∩ π2. It is impossible that
Oβ2 = {u} ∪ (Oβ1 ∩Oβ2) since 〈Oβ1 ∩Oβ2〉 intersects Qβ1(6, q) in a hyperbolic
quadric, and an ovoid of a hyperbolic quadric contains q2 + 1 points. Hence,
x ∈ (π2 ∩ K) \ ζ, x 6∈ β1, exists.

The line 〈p, x〉 intersects β1 in exactly one point y 6∈ πβ1
n−6, else 〈p, y〉 ⊆ ζ,

but x 6∈ ζ.
The space 〈y, πβ1

n−6〉 intersects π1 in exactly one point z. If z ∈ α and
z = y, then 〈x, y〉 = 〈x, z〉 ⊆ π2, so p ∈ β2, which is false. If z ∈ α and
z 6= y, then y ∈ β2 and hence, p ∈ β2. We conclude that z 6∈ α. Choose one
5-dimensional space α′ ⊆ π1, α 6= α′, through z such that 〈α′ ∩ Oβ1〉 = α′.
Then 〈πβ1

n−6, z, α
′, x〉 = 〈πβ1

n−6, α
′, x〉 is an (n + 1)-dimensional subspace of γ

not containing πγn−5. For, suppose that πγn−5 ⊆ Ω := 〈πβ1
n−6, α

′, x〉, then since
z ∈ α′, z ∈ Ω and πβ1

n−6 ⊆ Ω, also y ∈ Ω. Furthermore, x ∈ Ω and y ∈ Ω,
which implies p ∈ Ω. Finally, πγn−5 ⊆ Ω, p ∈ Ω, which implies u ∈ Ω. Hence,
selecting α′ in such a way that u 6∈ 〈x, α′〉 will imply that πγn−5 6⊆ 〈π

β1
n−6, α

′, x〉.
This is possible. For, 〈π1, π2〉 is a 7-dimensional space, while 〈x, α′〉 is a 6-
dimensional space intersecting π2 in a hyperplane. All hyperbolic 5-spaces of π1

on z intersect only in z, hence, all spaces 〈x, α′〉 only intersect in the line 〈x, z〉.
So we can find an α′ through z, such that 〈x, α′〉 does not contain the point u.

�

Lemma 15 The set K is a truncated cone π∗n−4O, πn−4 ⊂ Q+(2n + 1, 3), O
an ovoid of Q(6, 3) ⊂ Q+(7, 3), the base of the cone π⊥n−4 ∩Q+(2n+ 1, 3).

Proof. From Lemma 12, we find a point r ∈ Q+(2n + 1, q) \ K satisfying
|r⊥ ∩ K| = qn−1 + qn−4. The (n+ 2)-dimensional subspace αr from Lemma 14
meets Q+(2n + 1, q) in a cone πrn−5Qr(6, q). Choose Q = Q+(2n− 1, q) as the
base of the cone r⊥ ∩ Q+(2n + 1, q) in such a way that 〈Q〉 contains the cone
πrn−5Qr(6, q). Let L be a line of Q+(2n+ 1, q) on r such that L 6⊆ πr⊥n−5, which
implies that L⊥ does not contain the vertex πrn−5 of αr. Thus L⊥ meets αr in
a hyperplane of αr, and this hyperplane of αr meets Q+(2n + 1, q) in a cone
πLn−6QL(6, q). Note that n > 5. If n = 5, then this hyperplane of αr meets
Q+(2n+ 1, q) in a quadric QL(6, q).

As L⊥∩K is contained in r⊥∩K = αr∩K, it follows that L⊥∩K is a truncated
cone πL∗n−6OL, OL an ovoid of QL(6, q). Hence, |L⊥ ∩ K| = qn−2 + qn−5. By
Lemma 11, |s⊥ ∩ K| = qn−1 + qn−4 for all points s ∈ L. Every point s gives
rise to a truncated cone s⊥ ∩ K = πs∗n−5Os, Os an ovoid of Qs(6, q), and all
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these truncated cones share the truncated cone L⊥ ∩K = πL∗n−6OL. Denote the
subspace spanned by L⊥ ∩ K by βL.

Every point of K is collinear with a point of L, which implies that K is the
union of these q + 1 cones πs∗n−5Os, s ∈ L. It follows that |K| = qn + qn−3, and
that K is contained in the union of the q + 1 (n+ 2)-dimensional subspaces αs,
s ∈ L, that share the (n+ 1)-dimensional subspace βL.

Consider now a second line L′ of Q+(2n+ 1, q) on r such that L′ 6⊆ πr⊥n−5 ∩
Q+(2n+ 1, q) and choose it in such a way that βL 6⊆ L′⊥. This is possible since
〈βL, r〉⊥ has only dimension n−2. Then, as for L, the subspace βL′ := 〈L′⊥∩K〉
has dimension n + 1 and is contained in αs for all s ∈ L′. We have βL 6= βL′ .
Let p be a point of L′ with p 6= r. Then αp has dimension n+2 and meets αr in
βL′ . Furthermore, βL′∩Q+(2n+1, q) = πL

′∗
n−6QL′(6, q), βL′∩K = πL

′∗
n−6OL

′
, OL′

an ovoid of QL′(6, q) and |OL′ ∩ OL| > 1, since, by Theorem 3, OL intersects
every hyperplane of 〈OL〉.

Varying the point p ∈ L′, the tangent hyperplanes p⊥ vary over the hyper-
planes through L′⊥, hence, every point of the (n− 5)-dimensional spaces πsn−5,
s ∈ L, lies in some p⊥, p ∈ L′. For every point x ∈ πsn−5, s ∈ L, the line 〈x, y〉,
y ∈ OL ∩ OL′ , contains q points of K. Hence, x belongs to one of the vertices
πpn−5, p ∈ L′.

Consider a fixed point s ∈ L \ {r}, fixed points p1 ∈ πrn−5, p2 ∈ πsn−5,
p1, p2 6∈ πrn−5 ∩ πsn−5 = πLn−6. Consider a fixed point u ∈ πr∗n−5Or, then it is
possible to select a line L′′, satisfying the conditions of L′, for which u ∈ L′′⊥.
Then the preceding arguments show that the set 〈u, p2〉 \ {p2} is contained in
K.

Consider an arbitrary line M of πr∗n−5Or passing through p1 and containing
q points of K. The q2 points of 〈M,p2〉 \ 〈p1, p2〉 all lie in K; this implies that
the truncated cone 〈πrn−5, π

s
n−5〉∗Or lies in K. Since |K| = |〈πrn−5, π

s
n−5〉∗Or| =

qn + qn−3, this truncated cone must be equal to K. �

This result proves Theorem 1 for n > 5.
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