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Abstract

We consider the existence of Moufang sets related to certain groups of mixed
type. This way, we obtain new examples of Moufang sets and new constructions of
known classes. The most interesting class of new examples is related to the Moufang
quadrangles of type F4 and to the Ree-Tits octagon over a nonperfect field, and the
root groups of each member have nilpotency class three.
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1 Introduction and definition

Moufang sets are the rank 1 buildings satisfying the so-called Moufang condition. Strictly
speaking, every set of cardinality at least 3 can be viewed as a building of rank 1 (by
considering the elements as chambers and the pairs as apartments). In order to obtain
more restrictive structures to include these objects in some general theory of buildings,
one can hypothesize a certain group action which should be the analogue of the higher
rank case. The construction of buildings from BN-pairs is one possibility. This yields
precisely the 2-transitive groups. A more restrictive option is to axiomatize the action
of the stabilizer of a panel in a Moufang building of higher rank. This is essentially the
approach taken by several people in the past resulting in notions as split BN-pair of rank
one, rank one groups, groups of rank one generated by abstract root subgroups, Moufang
sets and Moufang buildings of rank one (see [3], [11], [15] and [16] for instance). Here
we follow the approach in [15]. Hence for us, a Moufang set M = (G, X; {Ux |x ∈ X}),
|X| > 2, is a permutation representation of a group G on a set X, together with a family
U = {Ux |x ∈ X} of subgroups, called the root groups, with the following properties.
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(Mo1) Each Ux is a normal subgroup of the stabilizer Gx in G of x acting regularly on
X \ {x}.

(Mo2) The family U is a conjugacy class of subgroups of G.

(Mo3) The group G is generated by all members of U .

Of course the motivation to develop a theory of rank one buildings using Moufang sets is
not only because there are similarities with the higher rank case; in fact the motivation to
study the rank one case is multiply. One can use the theory of Moufang sets in the higher
rank case (because every panel of a Moufang building defines a Moufang set), it provides
a local approach to Moufang buildings, it contributes to the unification of theories and
ideas, giving us more insight in many matters. For instance, the main result of [1] and
the classification program for 2-spherical Moufang buildings rely on this principle (see [7],
[8], [9] and [15]). There is however an interest in Moufang sets beyond building theory.
It is for instance an open question whether the classification of the finite Moufang sets,
given in [3] can be generalized to the infinite case. This is in fact a more general version of
the problem of classifying the infinite, sharply 2-transitive groups which is a quite famous
open problem in group theory. Moreover, there is a connection between Moufang sets and
Jordan division algebras via the Tits-Kantor-Koecher construction (see Section 3).

As a general rule, interesting mathematical things happen more often in small parameter
cases (think of sporadic isomorphisms of finite simple groups, or the existence of excep-
tional groups of Lie type in some small ranks, or the large variety of Moufang buildings of
rank two, or the existence of exotic Moufang buildings in characteristics two and three).
In this paper we present a phenomenon that owes its existence to the concurrence of three
low parameter features: low characteristic, low relative rank and low absolute rank. This
gives rise to the special circumstances required to give birth to a Moufang set with rather
unusual properties, for instance a rather high nilpotency class. Indeed, below we will
construct examples with the remarkable property that their root groups are 2-groups of
nilpotency class 3. Up to now, the only known class of proper Moufang sets with root
groups of nilpotency class > 2 were the Ree groups, the root groups of which are 3-groups
of nilpotency class 3. This property will immediately imply that every member of the
class is new. Of course, the new examples will be infinite because all finite Moufang sets
are classified; see [3] and [10].

The arguments and results of the present paper illustrate the following main idea. The
groups related to Moufang spherical buildings of rank at least two are algebraic in nature,
i.e. they are algebraic groups, or close relatives such as classical groups, groups of mixed
type, Chevalley groups (including the twisted Chevalley groups of mixed type such as
the Ree groups). For algebraic groups, there is a neat relative theory, and all Moufang
spherical buildings of rank at least one arising from a pure algebraic group can be enu-
merated from Tits’ classification of simple algebraic groups [12]. It is well known that also
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certain Chevalley twists give rise to Moufang sets (Suzuki groups, Ree groups). But the
conditions under which groups of mixed type produce Moufang buildings are much more
relaxed than in the cases of algebraic groups and Chevalley groups. It was this special
feature of mixed groups that caused Jacques Tits to overlook one class of Moufang quad-
rangles in his conjecture of the 70’s [13]. In this paper, we show that for the very same
reason, the list of all known Moufang sets given in [16] by Jacques Tits can be extended
with some new families. Indeed, in his last course at the Collège de France, Jacques Tits
in 2000 gave an exhaustive list of all known Moufang sets, dividing these examples into
classes according to how they are constructed. More precisely, all known Moufang sets
either are sharply 2-transitive permutation groups (the uninteresting case from our point
of view; a Moufang set which is not sharply 2-transitive will be called proper or nontrivial)
or are of algebraic origin. The latter includes the following subclasses:

(Cl) the examples arising from classical groups of rank one;

(Ag) the examples arising from algebraic groups of relative rank one;

(Tw) the examples arising from rank two diagram twists in characteristics two and three
(the Suzuki groups in characteristic two and the Ree groups in characteristic three).

In the present paper we extend Tits’ list by some new examples of Moufang sets which
are of ‘algebraic origin’. In order to construct them we apply a similar method as it was
done for the F4-quadrangles in [9]. This construction is in fact a down to earth approach
of the Galois descent for groups of mixed type. Since the Galois groups in the situations
considered here are all of order 2 the whole procedure boils down to the consideration of
semi-linear involutions or ‘Ree type’ polarities.

The Moufang sets of nilpotency class 3 in characteristic 2 already mentioned will be
obtained in Section 5 as the set of absolute points of polarities of certain F4-quadrangles.
There is strong evidence that each of these Moufang sets can be obtained as fixed point
set of a semi-linear involution of a Moufang octagon and we provide some information
about this in Section 6. It is of course natural to look at semi-linear involutions of the
indifferent quadrangles and the mixed hexagons. This will be done in Sections 3 and 4
respectively. In the case of the indifferent quadrangles we obtain Moufang sets which
already exist in the literature in the disguise of certain Jordan division algebras. But not
much is known about them and we give a very explicit and elementary description. In
Section 4 we show that there are no semi-linear involutions of mixed hexagons that fix
only points; this means that our construction does not yield new Moufang sets in this case.
In the last section of this paper we make some remarks on these an other constructions
of Moufang sets related to mixed groups.
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2 Definitions and notation

Sub Moufang sets

Below we will need the notion of a sub Moufang set. The Moufang setM′ = (G′, X ′; {U ′
x |x ∈

X ′}) is a sub Moufang set of the Moufang set M = (G, X; {Ux |x ∈ X}) if X ′ ⊆ X, and
if for every x ∈ X ′, the group U ′

x acts on X ′ as the restriction of Ux to X ′ (which hence
implies that for every x ∈ X ′, the group U ′

x can be considered as a subgroup of Ux acting
sharply transitively on X ′ \ {x}).

Moufang polygons

We will usually define specific Moufang polygons by their commutation relations. For
a Moufang n-gon there is a group U = U1U2 . . . Un, where the U1 are the root groups
(pairwise intersecting trivially). This group defines uniquely the generalized n-gon in
question (see [17]) (the points and lines are defined as certain elements and cosets in the
group; there is a unique flag which is fixed by every element of U and we call it the flag
at infinity), and hence, to describe U , one only needs to give the structure of each Ui,
i ∈ {1, 2, . . . , n}, and the commutators [ui, uj], ui ∈ Ui, uj ∈ Uj, 1 ≤ i < j ≤ n. When we
do so, we omit the trivial commutators.

In general all Ui, with i even, are isomorphic, and all Uj, with j odd, are mutually
isomorphic. We always identify the Ui, i even, with a certain additive (but not necessarily
commutative) group A, +, and similarly for the Uj, j odd (using a group B, +). We call
this a parametrization. For a ∈ A, we denote ai the element in Ui, i even, corresponding
with a.

If K is a field in characteristic 2, then an endomorphism ϕ : K → K with the property
(xϕ)ϕ = x2 will be called a Tits endomorphism.

3 Moufang sets from mixed Moufang quadrangles

In this section, we are looking for Moufang buildings of relative rank one that arise from
Moufang buildings of absolute rank two related to mixed groups of type C2. In the termi-
nology of algebraic groups, this means we find forms of mixed type groups. Our approach
is geometric. We first describe the mixed quadrangles explicitly, then hypothesize a semi-
linear involution that acts isotropically on the point set, but anisotropically on the line
set of the Moufang quadrangle. The set of fixed points together with the centralizer of
the involution gives then a Moufang set.
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A mixed quadrangle is completely determined by the following data. Let K be a field of
characteristic 2, and let K′ be a subfield containing all squares of K. Let L and L′ be two
vector spaces over K′ and K2, respectively, containing 1, and being contained in K and
K′, respectively, where the scalar multiplication is just the ordinary multiplication in K.
Also, we assume that L and L′ generate K and K′, respectively, as a ring. Note that these
assumptions imply that L−1 = L and L′−1 = L′ (indeed, each `−1 can be written as `−2`,
so if ` ∈ L, then `−1 too; similarly for L′). Then there is a unique mixed quadrangle (of
indifferent type if none of L and L′ are fields) Q(K, K′; L, L′) with the following explicit
description, see [18], Chapter 3.

In the three dimensional projective space PG(3, K) we consider the symplectic form ρ
given with coordinates by

x0y1 + x1y0 + x2y3 + x3y2 = 0.

The points of Q(K, K′; L, L′) are of four types.

(∞) The point with coordinates (x0, 0, 0, 0), x0 ∈ K×;

(∞)∗ the points with coordinates (x0, 0, x2, 0), x0, x2 ∈ K, x2 6= 0, and with x0x
−1
2 ∈ L;

(∞)⊥ the points with coordinates (x0, 0, x2, x3), x0, x2, x3 ∈ K, x3 6= 0, and with x0x
−1
3 ∈ L

and x2x
−1
3 ∈ L′;

(∞)opp the points (x0, x1, x2, x3), x0, x1, x2.x3 ∈ K, x1 6= 0, and with x2x
−1
1 ∈ L, x3x

−1
1 ∈ L

and x0x
−1
1 + x2x3x

−2
1 ∈ L′.

The lines of Q(K, K′; L, L′) are the symplectic lines induced on the point set of Q(K, K′; L, L′).

We consider an involution σ which preserves the point set and the line set of Q(K, K′; L, L′),
and which acts on PG(3, K) as a semilinear nonlinear permutation. Moreover, we require
that σ fixes at least two points of Q(K, K′; L, L′), but it fixes no line of it.

By the transitivity of the automorphism group of a Moufang quadrangle, we may as-
sume that σ fixes the points (1, 0, 0, 0) and (0, 1, 0, 0), and that σ interchanges the points
(0, 0, 1, 0) and (0, 0, 0, 1). Hence we can represent σ as follows.

σ : PG(3, K) → PG(3, K) : (x0 x1 x2 x3) 7→ (x0 x1 x2 x3)


1 0 0 0
0 α 0 0
0 0 0 β
0 0 γ 0

 ,

where x 7→ x, x ∈ K, is an involutory field automorphism of K, and α, β, γ ∈ K.
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The matrix belonging to σ2 is clearly equal to
1 0 0 0
0 αα 0 0

0 0 βγ 0
0 0 0 γβ

 .

Hence αα = 1 and γ = β
−1

.

Now one calculates that the point (1, 0, 1, 0) is mapped onto the point (1, 0, 0, β), and

that the point (1, 1, 0, 1) is mapped onto the point ((1, α, β
−1

, 0). Since (1, 0, 1, 0) and
(1, 1, 0, 1) are collinear in Q(K, K′; L, L′) (because these points are conjugate with respect

to ρ), also the points (1, 0, 0, β) and (1, α, β
−1

, 0) must be conjugate under ρ. This implies

α = ββ
−1

. Under this condition, one easily checks that ρ is preserved, and hence we now
only have to see that σ stabilizes the point set of Q(K, K′; L, L′), and that it does not fix
any line of Q(K, K′; L, L′).

σ stabilizes the point set of Q(K, K′; L, L′). Since σ is an automorphism of the sym-

plectic quadrangle Q(K, K; K, K), and since Q(K, K′; L, L′) is a subquadrangle of it, it
suffices by [18], Corollary 1.8.5, to check that σ maps some ordinary quadrangle Q of
Q(K, K′; L, L′) to some ordinary quadrangle Qσ of Q(K, K′; L, L′), that it maps all points
of some line of Q onto all points of the corresponding line of Qσ, and that it maps all
lines through a certain line of Q onto all lines through the corresponding point of Qσ (all
points and lines considered lie in Q(K, K′; L, L′)).

For Q we take the quadrangle with points (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1),
which is stabilized by σ. The points on the line joining (1, 0, 0, 0) with (0, 0, 1, 0), different
from (1, 0, 0, 0), can be described having coordinates (a, 0, 1, 0), with a ∈ L. Applying σ,
we obtain the set {(a, 0, 0, β) | a ∈ L}, which is precisely the set of points of Q(K, K′; L, L′)
different from (1, 0, 0, 0) on the line joining (1, 0, 0, 0) with (0, 0, 0, 1) if and only if β·L = L.

Also, the line joining (1, 0, 0, 0) with (0, 0, k, 1), k ∈ L′, is mapped onto the line joining

(1, 0, 0, 0) with (0, 0, β, β
−1

k). We see that {(0, 0, k, 1) | k ∈ L} = {(0, 0, β, β
−1

k) | k ∈ L}
if and only if ββL′ = L′.

σ does not fix any line of Q(K, K′; L, L′). It is easy to see that this is true if and only

if σ does not fix any line through the point (1, 0, 0, 0). The computation in the previous
paragraph shows that the latter is true if and only of kk 6= ββ, for all k ∈ L. In particular
it follows that β /∈ L′.

The Moufang sets. Hence, under the conditions

βL = L, (1)

ββL′ = L′, (2)

ββ /∈ N(L′), (3)
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we obtain a Moufang set M(K, K′; L, L′; σ) consisting of the fixed point set of σ in
Q(K, K′; L, L′), and with group the centralizer of σ in Aut Q(K, K′; L, L′).

There are a few distinct cases to consider.

Case 1 If there is no element k′ ∈ K′ with k′k′ = ββ, then M(K, K′; L, L′; σ) is a sub
Moufang set of the Moufang set M(K, K′; L, K′; σ), which is a Moufang set of type
(Cl) arising from a Moufang quadrangle of involution type.

Case 2 If there is an element k′ ∈ K′ with k′k′ = ββ, then M(K, K′; L, L′; σ) is sandwiched
between the Moufang sets M(K, K′; K, L′; σ) and M(K′, K′; K′, L′; σ). In fact, if K′′

is any field with K2 ≤ K′′ ≤ L′, then M(K, K′; L, L′; σ) ∼= M(K2, K′2; L2, L′2; σ) is
contained in the Moufang set M(K′′, K′2; K′′, L′2; σ). Also, if K∗ is any field with
K′ ≤ K∗ ≤ L, thenM(K, K′; L, L′; σ) contains the sub Moufang setM(K∗, K′; K∗, L′; σ).
So we see thatM(K, K′; L, L′; σ) is amply sandwiched between Moufang sets of type
(Cl) arising from orthogonal forms.

We now give an explicit description of M(K, K′; L, L′; σ). The points of the Moufang set
are given by the element (1, 0, 0, 0) together with the elements of the form (l+aa′, 1, a, a′)
fixed under σ. This gives rise to the equalities a′ = aβ and βl = βl.

Putting l = βx, we obtain the points (1, 0, 0, 0) and (β(x + aa), 1, a, βa), which we may

identify with (∞) and (x, a), respectively, with a ∈ L, with x = x and with β
−1

x ∈ L′.
Remember that L, L′ and β still satisfy the relations βL = L, ββL′ = L′, and ββ is not
a norm of any element of L′.

After an elementary calculation, one obtains that the element ϕ(x,a) of U(∞) mapping (0, 0)
onto (x, a) maps (y, b) onto (x + y, a + b). Also, the element ϕ∗(x,a) of U(0,0) mapping (∞)

to (x, a) maps (y, b) onto(
(x(y + bb)2 + y(x + aa)2)(x + y + (a + b)(a + b))−2, (a(y + bb) + b(x + ax))(x + y + (a + b)(a + b))−1

)
.

The element m(x,a) = ϕ∗(x,a)ϕ(x,a)ϕ
∗(x, a) interchanges (∞) and (0, 0) and maps (y, b) onto

the element (
(x(ab + ba)2 + y(x + aa)2)(y + bb)−2, (a2b + xb)(y + bb)−1

)
.

Finally, the element µ(x,a) = m(0,1)m(x,a) fixes (∞) and maps (y, b) onto

(x(ab + ab)2 + y(x + aa)2, a2b + xb).
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Connections to Jordan Algebras

In [5] it is shown how to associate elementary groups with arbitrary Jordan pairs. The
construction given there is heavily based on a suitable choice of the Tits-Kantor-Koecher
algebra. It turns out that the elementary group associated with a Jordan division algebra
(which can be seen as a Jordan pair in a canonical way) carries the structure of a Moufang
set in a natural way. The groups Ux of this Moufang set are isomorphic to the additive
group the Jordan algebra in question. The elementary group of a division ring with its
Jordan multiplication is just the projective line over this division ring. The details of
the construction of the Moufang set associated to a Jordan division algebra as described
above has been carried out in detail by Knop in [4]. Recently, a more direct and elegant
construction of these Moufang sets have been given by De Medts and Weiss [2].

In [6] a classification of all Jordan division algebras is given (see 15.7 in loc.cit). Going
through the list one obtains all known Moufang sets with abelian root groups where
‘known’ has to be taken with a grain of salt. The Moufang sets obtained from the
Jordan division algebras which are in class (IIa) of the list are precisely the Moufang sets
considered in this section. However, this seems to be the first place where these structures
are given a geometric significance and where they are constructed explicitly.

Starting with the Jordan algebras in the other classes in the classification of McCrimmon
and Zelmanov, there are ‘no further surprises’. This observation motivates of course the
question whether there is a bijective correspondence between the proper Moufang sets with
abelian root groups and the Jordan division algebras. If this could be established, then one
would have a classification of the proper abelian Moufang sets and and a classification
of at least those having nilpotent root groups might then be possible. A start in this
direction has recently been made in [2].

4 Moufang sets from mixed Moufang hexagons

In this section we investigate the existence of a Moufang set defined as the fixed point
structure of a semilinear involution of a Moufang hexagon of mixed type. A mixed hexagon
may be described as follows.

Let K be a field of characteristic 3 and let K′ be a subfield containing all third powers of K.
In symbols: K3 ≤ K′ ≤ K. The mixed hexagon H(K, K′) is a Moufang hexagon defined via
its root groups as follows. We identify the root groups U1, U3, U5 with the additive group
K, +, and we identify U2, U4, U6 with K′, +. We have the following nontrivial commutation
relations.
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[x1, x
′
5] = (−xx′)3,

[y2, y
′
6] = (yy′)4,

[x1, y6] = (−x3y)2(x
2y)3(−x3y2)4(xy)5.

If K′ = K, then we obtain the split Cayley hexagon H(K) which can be defined as follows.

We consider the quadric Q in PG(6, K) given by the equation X0X4+X1X5+X2X6 = X2
3 .

The points of H(K) are the points of Q. The lines of H(K) are certain lines of Q, namely,
those lines of Q whose Grassmann coordinates satisfy the equations p01 = p36, p12 = p34,
p20 = p35, p03 = p56, p13 = p64 and p23 = p45. Now the lines of H(K) through a fixed
point of H(K) form a full pencil in a plane of Q. Clearly, H(K, K′) is a subhexagon of
H(K). The lines of H(K, K′) through a fixed point p of H(K, K′) form a subpencil of the
full pencil in some plane π of Q, and this subpencil corresponds to a subline over K′ of
the projective line associated with the full pencil.

Now let σ be a nonlinear semilinear involution of H(K, K′), i.e., σ is the restriction of an
involution in PG(6, K) preserving Q with a nontrivial accompanying field automorphism
θ (which is an involution). We may assume that σ fixes p (above notation). In the plane
π we may choose ternary coordinates such that p = (1, 0, 0), and such that the points
(0, 0, 1) and (0, 1, 0) belong to H(K, K′) and are interchanged by σ. Moreover, all other
lines of H(K, K′) in π are incident with p and intersect the line with equation X0 = 0 in a
point with coordinates (0, b, c), with b/c ∈ K′. The involution σ clearly preserves π, and
it must map the point (0, 1, 1) (which belongs to H(K, K ′) onto some point (0, y, z), with
y/z ∈ K′. Hence we may write the restriction of σ to π as

σ : π → π : (x0 x1 x2) 7→ (xθ
0 xθ

1 xθ
2)

 1 0 0
0 0 α
0 α−θ 0

 ,

with ααθ ∈ K′. Then the point (0, 1, α2α−θ) belongs to H(K, K′) (because α2α−θ =
α3/(ααθ)) and is fixed by σ. Hence σ fixes a line of H(K, K′), a contradiction. We
conclude that no nonlinear semilinear involution of H(K, K′) with fixed points acts fixed
point freely on the set of lines of H(K, K′).

5 Moufang sets from exceptional quadrangles of type

F4

We first give a description of the exceptional Moufang quadrangles of type F4 via their
commutation relations.
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5.1 Exceptional quadrangles of type F4

Let K be a field of characteristic 2 and let L be a separable quadratic extension of K.
Denote by x 7→ x̄ the non-trivial (involutory) field automorphism of L fixing K pointwise.
Let K′ be a subfield of K containing the field K2 of all squares of K and let L′ be the
subfield of L generated by L2 and K′. We then have L2 ⊆ L′ ⊆ L and L′ is a separable
quadratic extension of K′ (because the map x 7→ x̄ restricts to an automorphism of L′
and the fixed subfield is exactly K′). Now let there be given two elements α ∈ K′ and
β ∈ K such that, (1) for all u, v ∈ L, and all a ∈ K′,

uū + αvv̄ + βa = 0

implies that u = v = a = 0, and, (2) for all x, y ∈ L′, and all b ∈ K,

xx̄ + β2yȳ + αb2 = 0

implies that x = y = b = 0. We refer to these conditions (1) and (2) as the F4-conditions.
They are equivalent (see [9]).

With these data, the following construction of a Moufang quadrangle using the commu-
tation relations, due to Richard Weiss (see also [9], [18], [17]), is always possible. We use
the original formulae by Weiss, as printed in [18] and [9].

We identify U1 and U3 with the direct product L′ × L′ × K (additively), and U2 and U4

with L× L×K′. We define the quadrangle Q(K, L, K′, α, β) as the Moufang quadrangle
of type F4 with commutation relations

[U1, U2] = [U2, U3] = [U3, U4] = {0}

and
[(x, y, b)1, (x

′, y′, b′)3] = (0, 0, α(xx̄′ + x′x̄ + β2(yȳ′ + y′ȳ)))2,
[(u, v, a)2, (u

′, v′, a′)4] = (0, 0, β−1(uū′ + u′ū + α(vv̄′ + v′v̄)))3,
[(x, y, b)1, (u, v, a)4] = (bu + α(x̄v + βyv̄), bv + xu + βyū,

b2a + aα(xx̄ + β2yȳ)
+α(u2xȳ + ū2x̄y + α(v̄2xy + v2x̄ȳ)))2

(ax + ū2y + αv2ȳ, ay + β−2(u2x + αv2x̄),
ab + bβ−1(uū + αvv̄)
+α(β−1(xuv̄ + x̄ūv) + yūv̄ + ȳuv))3.

5.2 Polarities of exceptional Moufang quadrangles of type F4

There is a canonical subquadrangle W(K, K′) of mixed type of Q(K, L, K′, α, β) defined
by restricting the root groups to the subgroup {0}× {0}×K of L′×L′×K, respectively
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{0} × {0} × K′ of L × L × K′. A moment’s thought reveals that every polarity ρ fixing
two flags of that subquadrangle must stabilize it as a whole. Hence by Theorem 7.3.2 of
[18] there is a Tits endomorphism ϕ in K surjective on K′. A rather standard calculation
(see below) shows that this endomorphism must have an extension to L. Hence, if we
want to construct a polarity ρ of Q(K, L, K′, α, β), we must assume that there is a field
endomorphism ϕ : L → L with image L′ such that the restriction to K of ϕ is a Tits
endomorphism in K with image K′. In subsection 7.4 of [18] it was conjectured that ϕ
must also be a Tits endomorphism of L. We will show here that this conjecture is true.

We may choose the parametrization such that ρ maps U1 onto U4 coordinatewise, i.e., ρ
maps (x, y, b)1 ∈ L′ × L′ ×K to some element (u(x), v(y), a(b))4 ∈ L× L×K′. We claim
that this is also true for U2 and U3.

Indeed, the image under the polarity of the commutator [(x, 0, 0)1, (0, 0, 1)4] is on the one
hand equal to the commutator

[(u(x), 0, 0)4, (0, 0, 1)1] = [(0, 0, 1)1, [u(x), 0, 0)4] = (u(x), 0, 0)2(0, 0, β
−1u(x)u(x)),

and on the other hand equal to the image under the polarity of (0, 0, αxx̄)2(x, 0, 0)3.
Comparing factors, we deduce that (x, 0, 0)3 is mapped under ρ onto (u(x), 0, 0)2. Similar
arguments show that u(x) = v(x), and that ρ maps (x, y, b)3 onto (u(x), u(y), a(b))2.
Dually, ρ maps (u, v, a)4 onto (x(u), x(v), b(a)) and ((u, v, a)2 onto (x(u), x(v), b(a)). Now
note that a(b) = bϕ−1

. Also, considering the commutator [(x, 0, 0)1, (0, 0, a)4], a similar
calculation as above shows u(ax) = b(a)u(x), from which it follows that the map x 7→
u(1)−1u(x) is an extension of the endomorphism ϕ−1 : K′ → K (putting x = 1). Now
note that x(u) and u(x) are mutually inverse mappings. Considering the commutator
[(x, 0, 0)1, (u, 0, 0)4] we deduce that u(x)x(u) = u(β−2u2x), from which easily follows that,
first, x(1) = u(1)−1u(β−2) = (β−2)ϕ−1

, and secondly, the map x 7→ u(1)−1u(x) is an
injective endomorphism (with preimage L′ and image L). We denote it by θ and its
restriction to K′ is equal to ϕ−1. We also denote the inverse of θ by ϕ (by abuse of
notation). A dual argument implies u(1) = αϕ, hence 1 = x(αϕ) = (β−2)ϕ−1

α. We
deduce (β2)θ = α. Dually we have αθ = β. Rewriting an above equality we obtain
α−1xθuϕ = (β−2u2x)θ. Putting x = 1, we deduce uϕ = (u2)θ. Hence (uϕ)ϕ = u2 and
ϕ is a Tits endomorphism. Similar arguments imply that θ and ϕ commute with the
conjugation map ·̄.
Hence we can write ϕ as 2θ and we find that ρ looks as follows.

(x, y, b)1 7→ (βxθ, βyθ, b2θ)4,
(u, v, a)2 7→ (α−1u2θ, α−1v2θ, aθ)3,
(x, y, b)3 7→ (βxθ, βyθ, b2θ)2,
(u, v, a)4 7→ (α−1u2θ, α−1v2θ, aθ)1,

with αθ = β and hence β2θ = α, and with ϕ and ·̄ commuting.
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Conversely, if ϕ : L → L is a Tits endomorphism with image L′, commuting with ·̄,
then one can easily verify that the above formulae (with θ the inverse of ϕ) define a group
involution of U = U1U2U3U4 mapping Ui onto U5−i and hence preserving the commutation
relations. So we have a polarity and hence a Moufang set M(L, K, α, ϕ). Before turning
to explicit examples to show that this situation can be realized, we determine the root
group of this Moufang set fixing the flag at infinity.

5.3 The nilpotency class of a root group

An element u1u2u3u4 ∈ U belongs to the stabilizer G∞ of the flag at infinity of the
Moufang set M(L, K, α, ϕ) if and only if it is centralized by the polarity ρ. Hence an
arbitrary (generic) root element of G∞ is given by

(x, y, aθ)1(βx′
θ
, βy′

θ
, a′)2(x

′, y′, a′
θ
)3(βxθ, βyθ, a)4,

with (x, y, a), (x′, y′, a′) ∈ L′ × L′ ×K′.

Now from the commutation relations one sees that U has nilpotency class 3, hence G∞
also has nilpotency class at most 3. Consider the element ux := (x, 0, 0)1(βxθ, 0, 0)4. An
easy calculation shows that

[ux, uy] = (0, β(xyθ + yxθ), 0)2(0, y
2θx + x2θy, 0)3.

But another easy calculation yields that, if x 6= 0 6= y, this element does not commute
with the element (0, 1, 0)1(0, β, 0)4. This shows that G∞ has nilpotency class 3.

5.4 An explicit example

Consider the field L := F2(t1, t2, t3, t4), which can be viewed as a quadratic Galois ex-
tension of the field K := F2(t1 + t3, t1t3, t2 + t4, t2t4, t1t2 + t3t4, t1t4 + t2t3), with respect
to the quadratic form x2 + (t1 + t3)xy + t1t3y

2, defining the nontrivial element of the
Galois group ·̄ : L → L : u = f(t1, t2, t3, t4) 7→ ū = f(t3, t4, t1, t2). Then the map
ϕ : L → L : f(t1, t2, t3, t4) 7→ f(t22, t1, t

2
4, t3) is a Tits endomorphism of L with image

L′ := F2(t1, t
2
2, t3, t

2
4). Since ϕ and ·̄ commute, the restriction of ϕ to K is also a Tits

endomorphism. If we define α = t1 + t3 and β = t2 + t4, then one can check that we
obtain a Moufang quadrangle Q(K, L, K′, α, β) and a Moufang set M(L, K, α, ϕ).

5.5 Suzuki-Tits sub Moufang sets

If we put x = y = u = v = o in the commutation relations for the Moufang quadrangles
of type F4 above, then we obtain a mixed subquadrangle isomorphic to W(K, K′; K, K′).
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If we then restrict our Moufang set to this subquadrangle — which is now isomorphic to
W(K, Kϕ; K, Kϕ) because of the existence of a polarity — then we obtain the Moufang set
related to the Suzuki group over the field K. For further reference, we call this Moufang
set a Suzuki-Tits Moufang set and denote it by MST(K, ϕ). The subgroup of G∞ that
lives in the Suzuki-Tits sub Moufang set is obtained by setting a = b = a′ = b′ = 0 in the
above expression for the generic element of G∞.

6 Further examples and concluding remarks

6.1 About Moufang octagons

As is well known (see for instance [14]), each Moufang octagon Γ can be obtained from
a polarity ρ of a building ∆ of type F4. It can be shown that each automorphism of Γ
extends uniquely to a type-preserving automorphism ϕ of ∆, and ϕ centralizes ρ.

It follows now that, if an involution θ of Γ fixes at least one line L of Γ, then it also fixes
at least one point. Indeed, as θ also fixes Lρ, it induces an involution in the projective
plane consisting of all points and lines of ∆ incident with Lρ, and hence θ fixes some point
on L. That point automatically belongs to Γ, see [18], Chapter 2.

Now suppose the involution θ of Γ fixes at least two opposite points, but no lines of Γ.
Then θ extends uniquely to a type-preserving involution Θ of ∆

It can now be shown that the fixed point structure of Θ is a generalized quadrangle ΓΘ

where the points of the quadrangle are the points of ∆ fixed under Θ and the lines of
the quadrangle are the hyperlines of ∆ fixed under Θ. Assuming in addition that the
involution θ is semilinear, it follows first that its extension Θ is semilinear, and from [9]
that ΓΘ is an exceptional Moufang quadrangle of type F4. Now the polarity ρ induces a
polarity ρΘ on ΓΘ, and the fixed point set of θ in Γ and the set of absolute points of ρΘ

in ΓΘ are isomorphic as Moufang sets. This shows that each Moufang set obtained from
a semilinear involution of a Moufang octagon can already be produced as in Section 5.2.

More explicitly, one can argue as follows.

Suppose θ is an involution in the Ree-Tits generalized octagon Γ fixing at least two
opposite points x1, x2, and fixing no lines of Γ. Then θ induces an involution on the
set of lines through x1, which has the natural structure of a Suzuki-Tits ovoid. Using
elementary linear algebra, one shows that this involution extends to an involution of
the corresponding mixed quadrangle. Then one uses Proposition 6.1 of [9] to derive the
appropriate F4-conditions in an explicit way.

We conjecture and strongly believe that similar — but more involved — arguments yield
also the converse, i.e., every Moufang set obtained as in Section 5.2 arises from an appro-
priate semilinear involution of a Moufang octagon.
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6.2 Moufang sets of type F4 and Cn

A lot of Moufang sets can be obtained from simple algebraic groups of relative rank 1. The
Moufang sets obtained from the groups of type Cd

n,1 (notation from [12]) correspond to
the Moufang sets obtained from a unitary form on a finite dimensional vector space over
a division ring of finite degree d. There is the notion of a pseudo quadratic form which
generalizes the notion of a unitary form, which is only more general in characteristic 2.
The Moufang sets obtained from pseudo quadratic forms in characteristic 2 are precisely
the k-forms of the mixed groups of type Cn having the same ’relative’ diagrams. Thus,
all Moufang sets obtained in this way are ’known’ already.

The question whether there are forms of type F 22
4,1 of F4-groups which are ’properly mixed’

also arises in this context. There is strong evidence, that this question has an affirmative
answer. Contrary to the Cn-case, the Moufang sets associated to these groups haven’t
been described yet in the literature as far as we know. It would probably correspond to
a proper pseudo quadratic form on a non-Desarguesian Moufang plane in characteristic 2
(whatever that means!).

6.3 Moufang sets from polarities of indifferent quadrangles

Just like the panels of any mixed quadrangle Q(K, K′; L, L′) carry the structure of a sub
Moufang set of the Moufang sets arising from the projective line PG(1, K) of PG(1, K′),
there also exist sub Moufang sets of the Suzuki-Tits Moufang set MST(K, ϕ). Indeed, one
can take any subquadrangle of Q(K, Kϕ; K Kϕ) of the type Q(K, Kϕ; L, Lϕ), where L is not
a field. The Moufang set induced in this subquadrangle by the Suzuki-Tits Moufang set
arises from a polarity in Q(K, Kϕ; L, Lϕ), For instance, one could take K = F2(x, y, u, v),

ϕ : F2(x, y, u, v) → F2(x, y, u, v) : f(x, y, u, v) 7→ f(u2, v2, x, y),

and L = Kϕ + uKϕ + vKϕ.
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