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Abstract

It is shown that every automorphism of classical unitals over certain (not necessarily
commutative) fields is induced by a semi-similitude of a corresponding hermitian
form. In particular, this is true if the form uses an involution of the second kind.

In [16], J. Tits has studied classical unitals, defined by suitable polarities. Using the
Borel–Tits Theorem [2], he determines the full group of automorphisms in the special case
where the ground field is commutative and infinite. The finite case has been treated by
M.E. O’Nan [12]. In [16], it is also claimed that the result is extendable (presumably,
within the limitations imposed by the machinery used in [2]: for instance, one would at
least require that the ground field has finite dimension over its center). However, no precise
statement has been published up to now.

In a recent investigation [13] into non-classical unitals in translation planes obtained
via modification of the projective plane over Hamilton’s quaternions, complete information
about automorphisms of unitals over the quaternions is required, in order to distinguish
the unitals in question from the classical one.

We generalize the results of [16], using “elementary methods” in the sense of Dieudonné’s
review [6]: we treat the groups in question as classical groups rather than as algebraic
groups. For many ground fields, we show that a distinguished subgroup of the automor-
phism group of the unital contains all unitary reflections, and that the set of reflections is
invariant in the group of all automorphisms of the unital. See Sections 3 and 5.

The reflections are then used (in Section 6) to reconstruct the ambient projective plane,
leading to a determination of the full group of automorphisms under some technical as-
sumptions. For instance, this is possible in the cases where an involution of the second
kind was used (in particular, if the ground field is commutative), where no interior points
exist, or where every interior line contains only exterior points. Prominent examples are
given by the unitals over Hamilton’s quaternions. The more restrictive assumptions are
due to the fact that one has to exclude the existence of reflections that may be confused
with Baer involutions, in the sense of 2.2.

Section 7 contains an extension of our results on planar unitals to higher dimensions.
Apart from the obvious geometric relevance of our results, we point out a group-

theoretic application: information about Aut (U,B) can be translated into information
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about automorphisms of a certain simple algebraic group of rank 1, see 4.6 and 4.7. In
fact, the classical unitals may be interpreted in terms of buildings of rank one, correspond-
ing to simple algebraic groups of rank one. However, the system of blocks is not encoded
in the building alone (because the rank is too small) but in the group (more precisely,
in a certain nilpotent normal subgroup of a Borel group). The present paper contributes
to J. Tits’ program (as outlined in [17]) to characterize algebraic and classical groups of
rank one with non-abelian unipotent subgroups, in terms of their action on geometries that
generalize the unitals that we discuss here. Even more generally, one considers so-called
Moufang sets, see [17].

1 Hermitian Forms, Unitals, and Unitary Groups.

Let K be a (not necessarily commutative) field with charK 6= 2, and let σ : x 7→ x be
an involutory anti-automorphism of K. Note that we exclude the case σ = id. The sets
of symmetric and of skew-symmetric elements (i.e., of fixed points of σ and −σ) will be
denoted by K+ and K−, respectively. For x = (x0, x1, x2) and y = (y0, y1, y2) ∈ K3, we
define 〈x|y〉 := x0 y2 + x1 y1 + x2 y0 , and obtain a hermitian form 〈·| ·〉 : K3 ×K3 → K.
This form describes a polarity π, with U :=

{
Kx | x ∈ K3 r {0}, 〈x|x〉 = 0

}
as the set of

absolute points. The traces of projective lines meeting U in more than one point will be
called blocks, and we write B for the set of these blocks. Background information about
projective spaces, their automorphisms and polarities may be found in [4] Ch. I or [8] Ch. II.

1.1 Remark. Let β be a non-degenerate σ-hermitian form on a 3-dimensional left vector
space over K. If there exists a nontrivial vector v with β(v, v) = 0 then it is easy to find
a basis b0 := v, b1, b2 such that the coordinate description for β is of the form 〈x|y〉d :=
x0 y2 + x1d y1 + x2 y0 , with d ∈ K+ r {0}.

We may replace the form β by a scalar multiple βs, with s ∈ K+ r {0}. This does not
change the unital, but replaces σ by σιs, where ιs : h 7→ s−1hs is the inner automorphism.
Note that σιs is an involution because s = s . The scalar d is then replaced by ds, and
d = d 6= 0 implies that we may restrict our attention to the case d = 1.

1.2 Remark. A large part of the literature deals with skew-hermitian forms rather than
with hermitian ones. Replacing β by βp, with p ∈ K− r {0}, we may pass from a σ-
hermitian form to a σ̃-skew-hermitian one, where σ̃ maps x to p−1 x p. Neither the unitary
group nor the unital are changed by this modification, but one has to be careful with
explicit assertions about the size or structure of K−.

Let us briefly recall the (semi-)linearly induced collineations that induce automorphisms
of the unital (U,B): one has the group (cf. [4] I §9)

ΓU (σ) :=
{
γ ∈ ΓL3K

∣∣ ∃ rγ ∈ K ∀x, y ∈ K3 : 〈xγ|yγ〉 = 〈x|y〉σγ rγ

}
of semi-similitudes, where σγ ∈ Aut (K) is the field automorphism associated with γ. The
conditions σγ = id and rγ = 1 single out the unitary group U (σ). The groups induced on
the projective plane over K will be called PΓU (σ) and PU (σ), respectively.

For a point X, there are three possibilities: there may be exactly one absolute line
through X (then X ∈ U), more than one absolute line through X (such a point is called
an exterior point), or no absolute lines through X (such a point is called an interior point).
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Dually, we have the notions of exterior and interior lines. Note that an interior line is a
passing line, having empty intersection with U . Exterior lines are also called secants. There
are many examples of polarities where no interior points exist.

We use affine coordinates for the complement of the image of ∞ := K(0, 0, 1) under
the polarity, writing (x, y) ∈ K2 for K(1, x, y), and [s, t] for the line

{
(x, xs+ t) | x ∈ K

}
.

The vertical line through (x, y) is [x] :=
{
(x, h) | h ∈ K

}
. The affine part of U is A :=

U r {0} =
{
(x, p− x x

2
)
∣∣ x ∈ K, p ∈ K−}

.

1.3 Lemma. a. The group PU (σ) acts two-transitively on U , and thus transitively on
the set of secants.

b. The set Ξ :=
{
ξx,p : (u, v) 7→ (u+ x, v + p− x x

2
− u x )

∣∣ x ∈ K, p ∈ K−}
forms a

subgroup of PU (σ) that acts sharply transitively on the affine part of the unital.

c. In affine coordinates, the stabilizer of (0, 0) and ∞ in PU (σ) consists of all maps
(x, y) 7→ ( a xc, a ya), with a, c ∈ K r {0} and c c = 1.

Proof: The first assertion follows from Witt’s theorem (cf. [4] I §11), the rest is verified
by easy computations. Note that assertion a can also be deduced directly from assertion b
and its analogue for a sharply transitive subgroup of the stabilizer of K(1, 0, 0). �

1.4 Definition. Let T be the (normal) subgroup of PU (σ) generated by all conjugates
of Ξ′ =

{
ξ0,p : (u, v) 7→ (u, v + p) | p ∈ K−}

.

1.5 Remarks. The elements of Ξ (and their conjugates) are also known as Eichler trans-
formations, cf. [7] p. 214f. It is known that T is a simple group, see [4] II § 4, where T
appears as T3(K, f)/W3(K, f)), or [7] 6.3.16, where T is denoted by PEU3(V ). We will see
in 3.2 below that Ξ is contained in T. This yields that T coincides with its commutator
subgroup, acts two-transitively (and thus primitively) on U , and is generated by the con-
jugates of an abelian normal subgroup (namely, Ξ′) of a stabilizer. This is the standard
situation for Iwasawa’s criterion for simplicity [10], cf. [9] II §6, 6.12 or [14] 1.2.

2 Reflections.

Our next aim is to characterize the reflections in PU (σ) by their action on the unital.
The following arguments are needed only in the case where K is not commutative. Let Z
denote the center of K.

2.1 Lemma. Assume that J ∈ U (σ) induces an involution [J ] fixing all the absolute
points of an exterior line `, but no other absolute point. Then [J ] is the reflection at `.

Proof: If [J ] fixes all the points on some line then [J ] is the unitary reflection at that
line. In the present case, the axis has to be ` because every secant contains more than two
absolute points. So assume, to the contrary, that [J ] does not have an axis. Then the fixed
points of [J ] form a Baer subplane B by [1], cf. [8] IV.3.

Using 1.3.a, we may also assume that ` is the polar of K(0, 1, 0), then [J ] fixes the
(absolute) points K(1, 0, 0) and K(0, 0, 1), and the point K(0, 1, 0). Thus we have

J =

 a 0 0
0 b 0
0 0 c

 with a2 = b2 = c2 ∈ Z, a c = b b = 1.
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Since [J ] is a Baer involution, there is a third fixed point K(0, 1, x) on the line joining
K(0, 0, 1) and K(0, 1, 0). This means that there exists x ∈ K r {0} such that bx = xc.
Now a simple computation shows that K(1, x ,− x x

2
) is an absolute fixed point outside `,

contradicting our hypotheses. �

2.2 Definitions. A reflection γ ∈ PU (σ) is called confusable if there is an automorphism
α of the unital (U,B) such that β := α−1γα is a Baer involution. We call β a confusable
Baer involution, in that case.

A unitary reflection is called admissible if it belongs to T, and is not confusable. A
point or line is called admissible if it is the center or the axis of an admissible reflection.

A reflection is called exterior (interior) if its axis — and then also its center — is
exterior (interior).

We hasten to remark that we do not have any example of a confusable involution. Most
of the evidence collected below indicates that, even if they exist, such examples would be
hard to construct explicitly. From 2.1 one knows that Aut (U,B) leaves invariant the set
E of exterior reflections. Thus we have:

2.3 Lemma. a. Every confusable reflection is interior.

b. A confusable Baer involution never fixes an absolute point or line.

c. The product of two exterior reflections is never a confusable involution. �

Let γ be a confusable reflection. Then CE(γ) is not empty: every line joining the center
of γ to an absolute point is a secant because there are no absolute (i.e., tangent) lines
through the (interior) center of γ.

2.4 Corollary. The centralizer CE(ϕ) of a confusable involution ϕ in the set E of exterior
reflections does not contain any two commuting elements.

Proof: We may assume that ϕ is an interior reflection. For any two commuting elements
ε1, ε2 in E , the product ε1ε2 is a reflection: in fact, the center of εj lies on the axis of ε3−j.
Using matrix representations, it is easy to see that the line joining the centers is an axis for
the product. If the two commute with ϕ, the center of ϕ lies on both axes, and ϕ coincides
with the product. �

2.5 Remark. It would be very nice if we could distinguish the centralizers of interior
reflections and Baer involutions (taken in T) by group-theoretic properties. It seems that
the centralizer of a reflection tends to be something like a unitary group in two dimensions
(plus a considerable centralizer), while the centralizer of a Baer involution is a unitary
group in three dimensions, over a smaller field. However, we have to deal with anisotropic
forms on vector spaces of low dimension here, and everything is quite complicated.

3 Reflections in T.

After 2.1, we are able to recognize the exterior reflections from their action on the unital.
Our next aim is to locate as many reflections as possible inside T. We will show in
Section 4 below that the group T is characterized inside Aut (U,B) by its action on the
unital. Section 5 treats the question of confusability.
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3.1 Lemma. For any two points in U , there is an element of T interchanging them.
Moreover, the stabilizer of the block joining the two points contains the unitary reflection
at the line that induces the block.

Proof: We use homogeneous coordinates. Matrices enclosed in square brackets instead of
parentheses denote the induced collineations. Since PU (σ) acts two-transitively on U , we
may assume that the two points in question are ∞ = K(0, 0, 1) and K(1, 0, 0). The linear
transformation (x0, x1, x2) 7→ (x2, x1, x0) induces an involution ι ∈ PU (σ) interchanging
the two points, but we do not yet know whether ι belongs to T (cf. 3.5 and 3.7 below,
where ι occurs as [J−1]). However, we have

ιΞ′ι =


 1 0 0

0 1 0
p 0 1

 ∣∣∣∣∣∣ p ∈ K−

 ≤ T , and for each p ∈ K− r {0} the product

ψp :=

 1 0 p
0 1 0
0 0 1

 1 0 0
0 1 0

−p−1 0 1

 1 0 p
0 1 0
0 0 1

 =

 0 0 p
0 1 0

−p−1 0 0


belongs to Ξ′(ιΞ′ι)Ξ′ ≤ T. Now ψp interchanges K(0, 0, 1) and K(1, 0, 0), while its square
ψ2

p is the reflection. �

Computing the commutator ξ2x,0 = ψ2
p(ξ

−1
x,0ψ

2
pξx,0) ∈ T, we obtain:

3.2 Corollary. The group Ξ is contained in T. �

Every unitary reflection [R] is determined by its axis because the center has to be the
image of the axis under the polarity π, and center and axis form the spaces of fixed points
for R and −R. Since T acts two-transitively on U , the exterior lines (secants) form an
orbit under T, and we have:

3.3 Lemma. The group T contains the set E of exterior reflections, and this set forms a
single conjugacy class in T. �

The involution ι : K(x0, x1, x2) 7→ K(x2, x1, x0) is the unitary reflection with cen-
ter K(1, 0,−1). It depends on the field K and the anti-involution σ whether the point
K(1, 0,−1) is exterior: for instance, it is interior if K ∈ {C,H} and σ is the standard
anti-involution (with K+ = R).

Every unitary reflection at a point K(x, y, z) (necessarily outside U) is a conjugate of a
reflection at some point K(1, 0, s), because the center K(x, y, z) lies on some secant, which
may be moved to (0, 1, 0)⊥ by some element of U (σ); cf. 1.3.a (this is even possible by
some element of T, see 1.5). Note that s 6= −s follows from K(1, 0, s) /∈ U . Using the
group Ξ′, we may even achieve s ∈ K+ r {0}. Now the point K(1, 0, s) is interior if the
equation x x = 2s does not admit any solution x ∈ K r {0}.

3.4 Examples. The standard involution u + iv 7→ u − iv on K = F (i) yields interior
points K(1, 0, s) in the cases where F ∈ {Q,R} and s < 0, but also in several cases where
F = Q and s > 0; the smallest example with integer s is s = 3 /∈

{
u2 + v2 | u, v ∈ Q

}
.

Straightforward computations show:
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3.5 Lemma. Let s ∈ K+ r {0}. The unitary reflection at K(1, 0, s) is induced by

Js :=

 0 0 s
0 −1 0
s−1 0 0

 .

In particular, we have [J−1] = ι. The reflection [Js] is exterior if, and only if, one has
s ∈

{
1
2
x x

∣∣ x ∈ K×}
. �

3.6 Lemma. For each s ∈
{
−1

2
x x

∣∣ x ∈ K r {0}
}
, the reflection [Js] belongs to T.

Proof: We compute 1 x −1
2
x x

0 1 −x
0 0 1

 1 0 0
−2x−1 1 0

−2(x x )−1 2x −1 1

 1 x −1
2
x x

0 1 −x
0 0 1

 = [J− 1
2
x x ] ,

noting that the factors belong to Ξ ∪ ιΞι ⊆ T, cf 3.2. �

3.7 Lemma. Let s ∈ K+ r {0}, and assume that there exists p ∈ K− r {0} such that
sp = ps. Then [Js] belongs to T.

Proof: Our assumption entails −2sp ∈ K−, and ψ−2sp ∈ T, cf. 3.1. We compute that [Js]
equals ψ−2psψp[J 1

2
], and lies in T. �

3.8 Remark. Lemma 3.7 completely settles the case where σ is an involution of the sec-
ond kind (i.e., where K− ∩ Z 6= {0}). In particular, this includes the case where K is
commutative; it even shows:

∀z ∈ Z+ r {0} : [Jz] ∈ T .

Now [J1J2], [J−1J2], [Jz] ∈ T and 3.6 may be used to see

∀z ∈ Z+ r {0} ∀x ∈ K r {0} : [Jzx x ] ∈ T .

3.9 Example. In general, not every reflection in T is obtained by one of the constructions
presented above. For instance, many elements of K+ may have trivial centralizer in K−:

Consider the involution σ = (x 7→ −k x k) on K := HQ = Q + Qi + Qj + Qk: here
K− = Qk, and i anti-commutes with every element of K−. The set{

zxxσ
∣∣ z ∈ Q×, x ∈ H×

Q
}
∪

{
s ∈ H+

Q
∣∣ ∃p ∈ H−

Q r {0} : ps = sp
}

=
{
q
(
(a2 − b2 + c2 − d2) + 2(ac− bd)i+ 2(ab+ cd)j

) ∣∣ q ∈ Q, a, b, c, d ∈ Z
}

forms a rather small part of H+
Q = Q + Qi+ Qj.

3.10 Remark. If the dimension dimZ K is finite, it is a perfect square m2 (for instance,
see [11] VII §11 Prop. 1), and σ is of one of the following types (see [5] pp. 378f):

Type I: Z ≤ K+, and dimZ K
+ = 1

2
m(m+ 1).
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Type II: Z ≤ K+, and dimZ K
+ = 1

2
m(m− 1).

Type III: Z is not contained in K+.

Types I and II occur with an involution σ of the first kind, while type III belongs to invo-
lutions of the second kind. Note that the passage between hermitian and skew-hermitian
forms (as in 1.2) interchanges types I and II: in fact, for p ∈ K− r {0}, the map x 7→ xp
is a Z-linear bijection from K+ onto the set

{
q ∈ K | p−1 q p = −q

}
.

Consider a unitary reflection [J ]. Without loss, we may assume that we are dealing
with the reflection at K(1, 0, s), where s ∈ K+ r {0}. If there exists p ∈ K− r {0} such
that sp = ps, we have [J ] ∈ T by 3.7.

Now assume that sp 6= ps holds for each p ∈ K−r{0}. Then surely σ is not of type III,
the Z-linear map λ : K− → K+ : p 7→ sp−ps is injective, and dimZ K

− ≤ dimZ K
+ follows.

This means that σ is of type I. In order to apply results of [5] or [7], one has to switch to a
skew-hermitian form, and σ is replaced by an involution of type II, cf. 1.2. Unfortunately,
this is the case which is not understood very well.

4 Translations.

In this section, we identify the group T inside Aut (U,B).

4.1 Definition. Let T(∞) denote the set of all elements of Aut (U,B) fixing every block
through ∞ = K(0, 0, 1) (i.e., every vertical block).

The commutator group Ξ′ is contained in T(∞). Our first aim is to show that the two
groups coincide. We adapt the argument that was given in [16] for the commutative case:

4.2 Lemma. The group T(∞) acts sharply transitively on each vertical block. Therefore,
it coincides with Ξ′.

Proof: Since Ξ′ ≤ T(∞) acts sharply transitively on each vertical block, it suffices to
show that the stabilizer T(∞)(0,0) is trivial. Assume, to the contrary, that γ ∈ T(∞)(0,0)

moves a point q := (u, v) ∈ U . Then q belongs to A, and we may assume u 6= 0 without
loss of generality, because every point on [0] is the intersection of two blocks that are
determined by their points outside [0]. According to 1.3, there exists α ∈ PU (σ) such that
qα = (u−1u, u−1v u−1 ), and δ := α−1γα still fixes (0, 0) and all verticals, but moves the
point b := qα = (1, s), where s := u−1v u−1 .

The line joining (0, 0) and b is [s, 0]. Let [s′, 0] be the line joining (0, 0) and bδ;
then s′ 6= s. For h ∈ K, we define Lh :=

{
x ∈ K | ∃y ∈ K : (x, y) ∈ [h, 0] ∩ U

}
={

x ∈ K
∣∣ xh+ xh = −x x

}
. Since δ fixes each vertical, we have Ls′ = Ls. Thus each solu-

tion x of xs+ xs = −x x also has to satisfy x(s′− s) = −x(s′ − s) . Putting e := (s′− s),
we find xe = − e x . Now b ∈ A implies 1 ∈ Ls, yielding s + s = −1 and e ∈ K−.
On the other hand, the elements −2 s ∈ Ls and −2 s′ ∈ Ls′ give −2 s e = −2es and
−2 s′ e = −2es′, leading to e2 = e(s′ − s) = (− s + s′ )e = (s − 1 − s′ + 1)e = −e2,
contradicting s 6= s′. �

4.3 Corollary. The full group Aut (U,B) of automorphisms of the unital normalizes T. �
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4.4 Corollary. Via conjugation, the group Aut (U,B) acts on the set E of reflections at
exterior points, and on the set R of admissible reflections. �

We will use this action to reconstruct the ambient projective plane from the action, see
Section 6 below.

4.5 Lemma. The centralizer of T in Aut (U,B) is trivial.

Proof: The group T(∞) fixes exactly one point of U , namely K(0, 0, 1). Therefore, the
centralizer of T fixes each point in the orbit U of K(0, 0, 1) under PU (σ). �

4.6 Theorem. The group Aut (U,B) coincides with the subgroup Ψ of Aut (T) that leaves
invariant the set of conjugates of Ξ′.

Proof: From 4.3 and 4.5 we know that Aut (U,B) acts faithfully on T. According to the
geometric characterization 4.2 of Ξ′, the set C of conjugates of Ξ′ is invariant under this
action, and Aut (U,B) induces a subgroup of Ψ.

The normalizer of Ξ′ in Aut (T) contains the stabilizer of ∞ in T. This stabilizer is a
maximal subgroup because T acts two-transitively on U , and we infer that the normalizer
and the stabilizer coincide. Thus the action of T on U is equivalent to the action of T
on C, and the latter extends to the action of Ψ on C. The blocks may be characterized
as unions of orbits of conjugates of Ξ′ sharing more than a single point, and Ψ acts by
automorphisms on (U,B). �

4.7 Remark. If K is a commutative field then T is a simple algebraic group over K, and
Ξ′ is the commutator subgroup of the unipotent radical of a minimal parabolic subgroup.
The algebraic group T has rank 1, and all minimal parabolic subgroups are conjugates.
Thus the group Ψ defined in 4.6 contains the group of all automorphisms of the algebraic
group T.

After 4.2, one might be tempted to conjecture that the group of automorphisms of
the unital fixing all points of a block b and all blocks induced by lines through to b⊥ acts
sharply transitively on these blocks. However, this is not the case, as the following example
shows.

4.8 Example. Let H = R + Ri + Rj + Rk be the field of Hamilton’s quaternions, and
consider the involution σ : x = x1 +xii+xjj+xkk 7→ x̃ := x1 +xii+xjj−xkk. (We refrain
from our suggestive bar notation here.) In order to simplify notation in this example, we
use the σ-hermitian form on H3 given by 〈(x, y, z)|(u, v, w)〉 := (x+ y)ũ+ xṽ + zw̃.

The point e := K(1, 0, 0) is exterior, its polar e⊥ is spanned by (1,−1, 0) and (0, 0, 1).
The block induced by e⊥ is b =

{
K(1,−1, w) | w ∈ R + Rk, ww̃ = 1

}
.

The group of collineations induced by unitary transformations that fix all points in the
line e⊥ is strictly larger than the group of collineations induced by unitary transformations
that fix all points in the block b. In fact, the first of these groups acts freely on each line
through e. The latter group, however, is obtained as

 a 0 0
a− b b 0

0 0 b

 ∣∣∣∣∣∣ a ∈ H, b ∈ R + Rk, aã = 1 = b̃b

 ,

and the stabilizer of K(0, 1, 0) is given by the condition a = b.
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5 Admissible Reflections.

5.1 Proposition. Let ∞δ be a point in U r {∞}, and consider ξ ∈ Ξ and η ∈ δ−1Ξδ.

a. If ξηξδ−1 fixes ∞ then ξηξ is induced by a linear map that fixes the vector (0, 1, 0).

b. If ξηξ is an involution with ∞ξηξ = ∞δ then ξηξ is a reflection.

Proof: Without loss, we may assume ∞δ = K(1, 0, 0). Then there are x, y ∈ K and
p, q ∈ K− such that

ξ =

 1 x p− 1
2
x x

1 −x
1

 , η =

 1
− y 1

q − 1
2
y y y 1

 , ξηξ =

 1− x y + cd ∗ ∗
− y − x d ∗ ∗

d dx+ y ∗

 ,
where we have abbreviated c := p − 1

2
x x and d := q − 1

2
y y . The entries marked ∗ are

complicated, and will not be used before we have simplified the formula.
The assumption that ∞ = K(0, 0, 1) and K(1, 0, 0) are interchanged yields the condi-

tions 0 = 1 − x y + cd = dx + y and 0 = y + x d (because the pole K(0, 1, 0) of the line
joining the two points is fixed).

For x = 0 we infer y = 0 and cd = −1. Then ξηξ = ψc is not an involution; in fact, the
square (ξηξ)2 is the reflection at K(0, 1, 0). However, the collineation ξηξ is induced by a
linear map that fixes the vector (0, 1, 0).

There remains the case x 6= 0, and we infer d = d . Using the conditions derived above,
we compute ξηξ = [M ] with

M =

 0 0 c
0 1− x y x y x − 2x
d 0 0

 ,
and M ∈ U (σ) implies x y = 2 and c d = 1. If ξηξ is an involution, we find cd = −1, and
c ∈ K−. Now M = Jc, and ξηξ = [Jc] is the reflection with axis K(1, 0, c) +K(0, 1, 0). �

Applying 5.1 to the description for [J− 1
2
x x ] obtained in 3.6, we find:

5.2 Corollary. For every x ∈ K×, the reflection [J− 1
2
x x ] is admissible. �

5.3 Lemma. Assume that ρ1, . . . , ρn are admissible reflections such that their axes pass
through an exterior point p, and that the product π = ρ1 · · · ρn is an involution. Then π is
an admissible reflection.

Proof: It suffices to show that every conjugate πα with α ∈ Aut (U,B) is a reflection. We
will use the fact that a linear map λ fixing a non-zero vector induces an involution [λ] only
if λ2 = id. Any non-trivial element of U (σ) sharing this property is a reflection.

Let ρ be the reflection at p. Then our assumption on the axes means that ρ commutes
with ρk, for each k, and every conjugate ρα

k commutes with ρα. Now each of the reflections
ρk is described by a linear map fixing a generator of the center p of ρ, and each of the con-
jugates is described by a linear map fixing a generator v of the center of ρα. Consequently,
the product πα is described by a linear map fixing v, and πα is a reflection. �
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Writing [Jzx x ] = [J− 1
2
x x ][J− 1

2
][Jz], we obtain:

5.4 Theorem. For each x ∈ K× and each z ∈ (Z+)×, the reflection [Jzx x ] is admissible. �

5.5 Theorem. If σ is an involution of the second kind, then every reflection is admissible.

Proof: Our assumption means that there exists a non-trivial element p ∈ K− ∩ Z. For
each s ∈ K+ r {0}, we find an exterior reflection ε and elements ξj ∈ Ξ′ and ηj ∈ ι(Ξ′)ι
such that [Js] = (ξ1η1ξ1)(ξ2η2ξ2)ε, cf. 3.1. Explicitly, we may choose

ξj :=

 1 0 −uj

0 1 0
0 0 1

 , ηj :=

 1 0 0
0 1 0
u−1

j 0 1

 , with u1 := −2ps, u2 := p, and ε := [J 1
2
].

Conversely, a straightforward matrix computation shows that each of the involutions in the
set J :=

{
(ξ1η1ξ1)(ξ2η2ξ2)ε | ξj ∈ Ξ′, ηj ∈ ι(Ξ′)ι, ε ∈ E , ∞ε = K(1, 0, 0)

}
is a reflection.

Since the description of J is invariant under all automorphisms of (U,B) that fix the set
{∞,∞ι}, all these reflections are admissible. �

Our results so far may be summarized, as follows:

5.6 Theorem. a. If the center of some unitary reflection has a representative v with
〈v|v〉 ∈

{
zx x | z ∈ Z×, x ∈ K×}

∪
{
s ∈ K+ | ∃p ∈ K− r {0} : ps = sp

}
then that

reflection is admissible.

b. Every exterior reflection is admissible, and the product of two commuting exterior
reflections is always an admissible reflection.

c. If σ is of the second kind then every reflection is admissible. �

6 Reconstructing the Projective Plane.

In this section, we reconstruct the projective plane from the action of the group T. However,
we will need the assumption that every unitary reflection is admissible (i.e., belongs to T,
and all its conjugates under Aut (U,B) are reflections).

Let ρc be the unitary reflection with center c. Then c 7→ ρc defines a bijection from
the set R of admissible points onto the set R of admissible reflections. Composing this
bijection with the polarity, we also obtain a model of the sets of admissible lines. It remains
to describe the incidence relation; we will do this in such a way that it is obvious that the
action of Aut (U,B) on P := U ∪ R (cf. 4.4) is an action by collineations. We define the
following binary relation ∗ on P :

For u, v ∈ U : u ∗ v ⇐⇒ u = v. ( ⇐⇒ u < v⊥ )
For u ∈ U, a ∈ R: u ∗ ρa ⇐⇒ uρa = u ⇐⇒ ρa ∗ u ( ⇐⇒ u < a⊥ ⇐⇒ a < u⊥ )
For e, f ∈ R: ρe ∗ ρf ⇐⇒ ρeρf = ρfρe ∧ ρe 6= ρf ( ⇐⇒ e < f⊥ ⇐⇒ f < e⊥ )

We obtain:

6.1 Theorem. If all unitary reflections are admissible, then (U ∪ R , U ∪ R , ∗ ) is iso-
morphic to the projective plane over K, and the action of Aut (U,B) on (U,B) extends
to an action on the projective plane. Consequently, the groups Aut (U,B) and PΓU (σ)
coincide. �
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6.2 Remarks. See 5.6 for criteria that ensure that every reflection is admissible. One
could interpret the reconstruction also in the general case (where we do not know whether
all reflections are admissible): Then the action of the normalizer of the set of reflections ex-
tends to an action on the plane, and we obtain that this normalizer coincides with PΓU (σ).

7 Higher Dimensions.

Let X be a left vector space of finite1 dimension d + 1 := dimK X ≥ 3 over K. We
identify X with the space Kd+1 of row vectors, and write these vectors as x = (x0, u, xd),
where x0, xd ∈ K and u ∈ V := Kd−1. We obtain a polarity of the projective space
PG (X) ∼= PGd(K), described by a sesquilinear form 〈x|y〉 := 〈(x0, u, xd)|(y0, v, yd)〉 :=
x0 yd + uH v ′ + xd y0 , where H is an invertible σ-hermitian matrix: H ′ = H. Here, for
any matrix M with entries from K, the matrix M is obtained by applying σ to each entry,
and M ′ is the transpose of M .

The case where uH v ′ describes a hermitian form of positive Witt index corresponds to
the case where U completely contains nontrivial projective subspaces, and these subspaces
form a Tits building (more traditionally, a polar space). This case is understood rather well
(see [15]), we shall henceforth concentrate on the case where H describes an anisotropic
form, that is, the case where uH u ′ = 0 implies u = 0.

We extend the definitions of ∞, A and T(∞) from the discussion of the plane case,
writing 0 for the zero vector in V . Applying the arguments of the proof of 4.2 to the plane
spanned by ∞ = K(0,0, 1), K(1,0, 0) and a hypothetical point q moved by an element of
T(∞)(0,0), we obtain:

7.1 Proposition. The group T(∞) acts sharply transitively on each vertical block. There-
fore, it is contained in PU (σ), and the subgroup T ≤ PU (σ) generated by all conjugates
of T(∞) forms a normal subgroup of Aut (U,B), again. The centralizer of T in Aut (U,B)
is trivial, and Aut (U,B) may be interpreted as a group of automorphisms of T. �

We interpret the projective space as a point–hyperplane geometry, and identify non-
absolute points and hyperplanes with the corresponding unitary reflections. Proceeding as
in the proof of 6.1, we find:

7.2 Theorem. If all unitary hyperplane reflections are admissible, then every automor-
phism of (U,B) is induced by an automorphism of the projective space. Consequently, the
groups Aut (U,B) and PΓU (σ) coincide under these circumstances. �

7.3 Remark. Note that it may happen that a unital has quite different embeddings into
projective spaces. For instance, the unital in projective 3-space over C (with respect to
the standard involution on C) is isomorphic to a unital in the plane over H (with respect
to the involution σ discussed in 4.8). The classes of involutions that act as reflections are
different, but both consist of admissible involutions in these two cases.

In general, it appears that the passage between embeddings in different projective
spaces might help in cases where not all reflections are admissible.

1Finiteness of dimension is implied by our requirement that the projective space admits a polarity.
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[10] Iwasawa, Kenkiti: Über die Einfachheit der speziellen projektiven Gruppen, Proc. Imp.
Acad. Tokyo 17 (1941), 57–59.

[11] Jacobson, Nathan: Structure of rings, Providence, R. I.: American Mathematical
Society 1956.

[12] O’Nan, M.E.: Automorphisms of unitary block designs, J. Algebra 20 (1972), 495–511.

[13] Stroppel, M.: Affine parts of topological unitals. Manuscript, Stuttgart. 2003.

[14] Taylor, Donald E.: The geometry of the classical groups, Berlin: Heldermann 1992.

[15] Tits, Jacques: Buildings of spherical type and finite BN pairs, Lecture Notes in Math-
ematics 386, Berlin etc.: Springer, 1974.
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