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Abstract

An inclusion of a Moufang polygon into another is called algebraic if
the algebraic structures which describe them can be chosen in such a way
that the one is a substructure of the other. We show that an inclusion of
Moufang n-gons is always algebraic if n ∈ {3, 6, 8}, but that this is not
always true when n = 4. We classify the algebraic inclusions of Moufang
quadrangles in the case where none of the root groups is 2-torsion, which
corresponds to the fact that the characteristic of the underlying (skew)
field is different from 2. Finally, we show that all full and ideal inclusions
of Moufang quadrangles without 2-torsion root groups are algebraic.

MSC-2000 : primary: 51E12, secondary: 08A30, 20E42, 51E24

1 Introduction

A generalized polygon is a rank-2 incidence geometry the incidence graph of
which has diameter n and girth 2n for some n ≥ 3 (and is then called a gener-
alized n-gon). A generalized polygon is in fact the same as a rank-2 spherical
building, and there is a vast literature on these objects. In many circumstances,
one is interested in subpolygons of a given generalized polygon, for various rea-
sons. To mention a few, they are used in characterizations of certain of these
polygons, they can be used to discover or describe other interesting structures
(such as spreads or ovoids), or they can be used in inductive arguments, for
example to study embeddings of generalized polygons in projective spaces or
other higher rank buildings.

A bit surprising, not too much has been written down on the study of sub-
polygons by itself. In the finite case, there are some results involving the order
of the polygons; see, for example, [10, section 1.8]. The case of the classical
compact connected polygons has been dealt with in [11].

In this paper, we will be interested in the case of the generalized polygons
satisfying the Moufang condition. Although this condition looks rather restric-
tive, it is satisfied quite often, and in particular, all classical polygons belong to
this class. Moreover, the Moufang polygons have been classified in [9] — but
there is no hope to be able to classify all generalized polygons, since there exist
free constructions, and even the finite case is still wide open. Two small pieces
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of the study of the inclusion of Moufang polygons have already been done be-
fore, namely the inclusion of Moufang octagons [5] and a study of the Moufang
polygons which do not have full or ideal subpolygons [10, section 5.9]. It is also
noteworthy that Moufang polygons (and spherical buildings of arbitrary rank in
general) play an important role in algebraic group theory and related subjects,
so our results might have consequences on the existence of subgroups of those
groups.

We will start by recalling some definitions and notations, and prepare the
setup for our algebraic approach to the problem. Then we will be dealing with
the cases of Moufang triangles, hexagons and octagons, which can be completely
settled by taking a closer look at the proof of the classification of Moufang
polygons in [9]. It goes without saying that we will have to rely heavily on
this book. The case of Moufang quadrangles is significantly harder, and it turns
out that the inclusion of Moufang polygons does not always translate nicely into
the inclusion of the corresponding algebraic structures. However, in many cases,
it does, and in particular in the case that the characteristic of the underlying
(skew) field is not 2, we show that all inclusions are either algebraic or dual
(see below for the exact definitions of these expressions). In the section which
follows, we then classify all algebraic inclusions, with the only restriction that
we do not allow the characteristic to be equal to 2 — a case which seems to
be much harder (although many of our results can be extended to this case as
well). In the last section, we describe all full and ideal subquadrangles of a given
Moufang quadrangle, and we show that our list is complete.

2 Preliminaries

We start with some definitions.

Definition 2.1. A generalized n-gon is a connected bipartite graph with diameter
n and girth 2n. A generalized polygon is a generalized n-gon for some finite
n ≥ 2. A generalized polygon Γ is called thick if |Γx| ≥ 3 for all vertices x of Γ.
A circuit of Γ of length 2n is called an apartment of Γ. A path of length n in Γ
is called a root or a half-apartment of Γ.

Definition 2.2. If α = (v0, . . . , vn) is a root of a generalized n-gon Γ, then the
group of all automorphisms of Γ which fix all the vertices of Γv1

∪ · · · ∪Γvn−1
is

called a root group of Γ (corresponding to the root α) and is denoted by Uα. If
Uα acts regularly on the set of apartments through α, then α is called a Moufang
root. If all roots of Γ are Moufang roots, then Γ is called a Moufang n-gon.

From now on, we assume that Γ is a thick Moufang n-gon for some n ≥ 3,
and we will fix an (arbitrary) apartment Σ which we label by the integers modulo
2n such that i+ 1 ∈ Γi and i+ 2 6= i for all i. We define Ui := U(i,i+1,...,i+n) for
all i, and we set U[i,j] = 〈Ui, Ui+1, . . . , Uj〉 for all i ≤ j < i+ n and U[i,i−1] = 1
for all i.

The definitions 2.3–2.6 were introduced in [9]. We present them in a different
but equivalent form.

Definition 2.3. Let Û[1,n] be a group generated by non-trivial subgroups Û1, . . . , Ûn

for some n ≥ 3. The (n + 1)-tuple (Û[1,n], Û1, . . . , Ûn) is called a root group
sequence if there exists a Moufang n-gon Γ and a labeled apartment Σ =
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(0, . . . , 2n− 1) in Γ such that there exists an isomorphism from Û[1,n] to U[1,n]

mapping Ûi to Ui for all i ∈ {1, . . . , n}. We will denote this root group sequence
by Θ(Γ,Σ). The number n will be called the length of the root group sequence.

Definition 2.4. If Θ = (U[1,n], U1, . . . , Un) is a root group sequence, then (U[1,n], Un, . . . , U1)
is also a root group sequence. It is called the opposite of Θ and is denoted by
Θop.

Definition 2.5. Consider two root group sequences Θ = (U[1,n], U1, . . . , Un) and
Θ′ = (U ′

[1,n], U
′

1, . . . , U
′

n). An isomorphism from Θ to Θ′ is an isomorphism from

U[1,n] to U ′

[1,n] mapping Ui to U ′

i for all i ∈ {1, . . . , n}. An anti-isomorphism

from Θ to Θ′ is an isomorphism from Θ to Θ′ op.

Definition 2.6. Let Θ = (U[1,n], U1, . . . , Un) be a root group sequence. For
each i ∈ {1, . . . , n}, let U ′

i be a non-trivial subgroup of Ui, and let U ′

[1,n]

denote the subgroup of U[1,n] generated by U ′

1, . . . , U
′

n. If the n-tuple Θ′ =
(U ′

[1,n], U
′

1, . . . , U
′

n) is again a root group sequence, then Θ′ will be called a sub-
sequence of Θ.

Recently, the classification of Moufang polygons has been completed by J.
Tits and R. Weiss in [9]. The following theorem is essential.

Theorem 2.7. Let Γ be an arbitrary Moufang n-gon. Then:

(i) n ∈ {3, 4, 6, 8}.

(ii) Let Σ = (0, . . . , 2n − 1) be an arbitrary apartment of Γ. Then up to
isomorphism, Γ is uniquely determined by the isomorphism class of its root
group sequence Θ(Γ,Σ) = (U[1,n], U1, . . . , Un). We denote this Moufang n-
gon by by Γ(Θ).

(iii) If Θ1 and Θ2 are two root group sequences such that Γ(Θ1) ∼= Γ(Θ2), then
Θ1 and Θ2 are isomorphic or anti-isomorphic.

Proof. (i) See [9, (17.1)].

(ii) See [9, (7.6) and (7.7)].

(iii) Suppose that Θ1 = Θ(Γ1,Σ1) and Θ2 = Θ(Γ2,Σ2) for some Moufang
n-gons Γ1 and Γ2 and some apartments Σ1 = (0, . . . , 2n − 1) and Σ2 =
(0′, . . . , (2n−1)′) of Γ1 and Γ2, respectively. It follows from (ii) that Γ1

∼=
Γ(Θ1) and Γ2

∼= Γ(Θ2), and hence Γ1
∼= Γ2. Let φ be an isomorphism from

Γ1 to Γ2, then φ maps Σ1 to some apartment φ(Σ1) = (φ(0), . . . , φ(2n−1))
of Γ2. By [9, (4.12)], there exists an automorphism ψ of Γ2 which maps
φ(Σ1) to Σ2 and maps the edge (φ(n), φ(n+ 1)) to the edge (n′, (n+ 1)′).
So ψ ◦ φ maps Σ1 to Σ2, and either it maps i to i for all i, in which case
Θ1 and Θ2 are isomorphic, or it maps i to 2n + 1 − i for all i, in which
case Θ1 and Θ2 are anti-isomorphic.

The following theorem defines the fundamental µ-maps, which play a very
important role in the whole theory of Moufang polygons, in particular for the
Moufang sets defined by opposite root groups in a Moufang polygon.
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Theorem 2.8. For each i and each ai ∈ U∗

i , there exist a unique element
µ(ai) ∈ U∗

i+naiU
∗

i+n such that (i− 1)µ(ai) = i+ 1 and (i+ 1)µ(ai) = i− 1. This

element µ(ai) fixes i and i + n and reflects Σ, and U
µ(ai)
j = U2i+n−j for each

ai ∈ U∗

i and each j.

Proof. See [9, (6.1)].

By the following theorem, the study of subpolygons of Moufang polygons is
equivalent to the study of subsequences of root group sequences. Nevertheless,
we will still use the polygons, since the µ-maps which we get from Theorem 2.8
will turn out to be very useful.

Theorem 2.9. (i) Let Γ2 be a Moufang n-gon and let Γ1 be a sub-n-gon of
Γ2. Then Γ1 is also a Moufang n-gon. If α is an arbitrary root of Γ1,

with corresponding root groups U
(1)
α of Γ1 and U

(2)
α of Γ2, then U

(1)
α is a

subgroup of U
(2)
α .

In particular, let Σ be an arbitrary labeled apartment of Γ1, then Θ1 :=
Θ(Γ1,Σ) is a subsequence of Θ2 := Θ(Γ2,Σ).

(ii) Let Θ2 be a root group sequence and let Θ1 be a subsequence of Θ2. Then
Γ(Θ1) is isomorphic to a subpolygon of Γ(Θ2).

Proof. (i) The fact that Γ1 is again Moufang is well known; see, for example,
[10, Lemma 5.2.2].

Consider an arbitrary root α of Γ1, and its corresponding root groups U
(1)
α

of Γ1 and U
(2)
α of Γ2. Let Σa and Σb be two apartments of Γ1 through α.

Then there is a unique element φ of U
(2)
α mapping Σa to Σb. Now consider

the subgraph ∆ := Γ1 ∩ φ(Γ1). Since Γ1 and φ(Γ1) have the apartment
Σb in common, their intersection ∆ is again a generalized n-gon (see, for
example, [10, Proposition 1.8.4]). Since φ is a root elation, it fixes at least
one pencil and at least one point row of Γ1. It follows (see, for example,
[10, Proposition 1.8.1]) that ∆ is a full and ideal subpolygon of both Γ1

and φ(Γ1), and hence (see, for example, [10, Proposition 1.8.2]) ∆, Γ1 and
φ(Γ1) coincide. We conclude that φ stabilizes Γ1, and hence its restriction

to Γ1 must be the unique element of U
(1)
α mapping Σa to Σb. Since this

holds for every pair of apartments Σa and Σb of Γ1 through α, we have

shown that every element of U
(1)
α is the restriction of a unique element of

U
(2)
α to Γ1. Hence U

(1)
α is a subgroup of U

(2)
α , for all roots α of Γ1.

(ii) It follows readily from the construction in [9, (7.1) and (7.2)] that the
vertex set X1 of Γ(Θ1) can be canonically identified with a subset of the
vertex set X2 of Γ(Θ2), and that any two elements x, y ∈ X1 which are
adjacent in Γ(Θ1) are also adjacent in Γ(Θ2). It follows that any two
elements x, y ∈ X1 which have distance i in Γ(Θ1) also have distance i in
Γ(Θ2), for all i ∈ {0, . . . , n}; in particular, two elements x, y ∈ X1 which
are non-adjacent in Γ(Θ1) are also non-adjacent in Γ(Θ2). We conclude
that Γ(Θ1) is isomorphic to a subpolygon of Γ(Θ2).

Theorem 2.10. If Θ = (U[1,n], U1, . . . , Un) is a root group sequence, then

4



(i) [Ui, Uj ] ≤ U[i+1,j−1] for all 1 ≤ i < j ≤ n;

(ii) The product map from U1 × · · · × Un to U[1,n] is bijective.

Proof. See [9, (5.5) and (5.6)].

Definition 2.11. Let ai ∈ Ui and aj ∈ Uj with i + 2 ≤ j < i + n. For each k
such that i < k < j, we set [ai, aj ]k = ak, where ak is the unique element of Uk

appearing in the factorization of [ai, aj ] ∈ U[i+1,j−1].

Lemma 2.12. Let Γ2 be a Moufang n-gon and let Γ1 be a sub-n-gon of Γ2;
let Σ be an arbitrary labeled apartment of Γ1. Then the µ(1)-maps defined by
Theorem 2.8 with respect to Γ1 are the restriction of the µ(2)-maps defined with
respect to Γ2, to the root groups of Γ1.

Proof. Note that, by Theorem 2.9.(i), the root groups of Γ1 are indeed subgroups
of the root groups of Γ2, so the statement of this lemma makes sense.

But this same fact implies that every element µ(1)(ai) ∈ (U
(1)
i+n)∗ ·ai ·(U

(1)
i+n)∗

with ai ∈ (U
(1)
i )∗ is also an element of (U

(2)
i+n)∗·ai·(U

(2)
i+n)∗, and by the uniqueness

of the µ(2)-maps in Theorem 2.8, this element has to be equal to µ(2)(ai).

For each possible value of n, we will now use the appropriate algebraic struc-
ture to describe an arbitrary Moufang n-gon, and we will redo certain steps of
the classification of Moufang n-gons, but for both the Moufang n-gon and its
sub-n-gon simultaneously, and make some appropriate choices during the proof.

3 Subtriangles of Moufang triangles

We start with the study of all possible subtriangles of a given Moufang triangle.
This is the easiest case, since Moufang triangles have a very simple description,
as was already shown in 1933 (but in a slightly different form; see [1] or [3]) by
R. Moufang (see [7]):

Definition 3.1. Let (A,+, ·) be an arbitrary alternative division ring, and let
U1, U2 and U3 be three groups parametrized by (A,+) via some (group) iso-
morphisms x1, x2 and x3. Let U+ be the group generated by U1, U2 and U3

with respect to the commutator relations

[U1, U2] = [U2, U3] = 1 ,

[x1(s), x3(t)] = x2(s · t) ,

for all s, t ∈ A. Then Θ = (U+, U1, U2, U3) is a root group sequence of length 3;
it is unique up to isomorphism (i.e., it does not depend on the choice of x1, x2

and x3), and will be denoted by ΘT (A). We also say that Θ is parametrized by
A via the isomorphisms x1, x2 and x3.

Theorem 3.2. Let Γ be an arbitrary Moufang triangle. Then there exists an
alternative division ring (A,+, ·) such that Γ ∼= Γ(ΘT (A)).

Proof. See [9, (17.2)].

Theorem 3.3. Let Γ1 and Γ2 be two Moufang triangles. Then Γ1 is isomorphic
to a subtriangle of Γ2 if and only if there exists an alternative division ring Ã
and a subring A of Ã such that Γ1

∼= Γ(ΘT (A)) and Γ2
∼= Γ(ΘT (Ã)).
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Proof. (i) Suppose that Γ1 is a subtriangle of Γ2; let Σ = (0, . . . , 5) be an
arbitrary labeled apartment of Γ1. We will write Ui and Ũi in place of

U
(1)
i and U

(2)
i , respectively, to denote the root groups of Γ1 and Γ2 with

respect to the labeled apartment Σ. By Theorem 2.9.(i), Ui ≤ Ũi for all i.

By [9, (19.4)], Ũ1 is abelian, and we choose an additive group Ã isomorphic
to Ũ1 and an isomorphism t 7→ x1(t) from Ã to Ũ1. Let A := x−1

1 (U1);
then A is an additive group isomorphic to U1. We now choose arbitrary
elements e1 ∈ U∗

1 and e3 ∈ U∗

3 , and for every t ∈ Ã, we let

x2(t) := x1(t)
µ(e3) and x3(t) := x2(t)

µ(e1) ,

where µ is defined by Theorem 2.8 with respect to Γ2. By Lemma 2.12

however, U2 = U
µ(e3)
1 and U3 = U

µ(e1)
2 as well, and hence Ui = xi(A) for

all i ∈ {1, 2, 3}.

Following [9, (19.6)], we now define a multiplication on Ã by defining
uv = u · v to be the unique element of Ã such that

[x1(u), x3(v)] = x2(uv) ,

for all u, v ∈ Ã. Since Ui = xi(A), it follows that A is also closed under
this multiplication. By [9, (19.7)], the left and right distributive laws
hold in Ã, and therefore also in A. Now let 1 ∈ Ã∗ denote the element
x−1

1 (e1); then 1 ∈ A∗ as well. By [9, (19.9) and (19.13)], both Ã and A
are alternative division rings with unit 1. In particular, A is a subring of
Ã, and Γ1

∼= Γ(ΘT (A)) and Γ2
∼= Γ(ΘT (Ã)).

(ii) Let Θ2 = ΘT (Ã) be the root group sequence parametrized by Ã via some
isomorphisms x1, x2 and x3. Now let Θ1 = ΘT (A) be the root group
sequence parametrized by A via the restriction of these same isomorphisms
x1, x2 and x3 to A. Then Θ1 is a subsequence of Θ2, and hence, by
Theorem 2.9.(ii), Γ(Θ1) is isomorphic to a subtriangle of Γ(Θ2).

4 Subhexagons of Moufang hexagons

We postpone the case of Moufang quadrangles for a while, and we now con-
sider subhexagons of a given Moufang hexagon. All Moufang hexagons can be
parametrized by an anisotropic cubic norm structure, which is more often called
an hexagonal system is this context (see [9, (15.15)]):

Definition 4.1. Let Ξ = (J, F, ]) be an arbitrary hexagonal system with norm
N , trace T , (Freudenthal) cross product × and unit 1 ∈ J∗. Let U1, U3 and U5

be three groups parametrized by J via some isomorphisms x1, x3 and x5, and
let U2, U4 and U6 be three groups parametrized by the additive group of F via
some isomorphisms x2, x4 and x6. Let U+ be the group generated by U1, . . . , U6
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with respect to the commutator relations

[U1, U2] = [U1, U4] = [U2, U3] = [U2, U4] = [U2, U5] = 1 ,

[U3, U4] = [U3, U6] = [U4, U5] = [U4, U6] = [U5, U6] = 1 ,

[x1(a), x3(b)] = x2(T (a, b)) ,

[x3(a), x5(b)] = x4(T (a, b)) ,

[x1(a), x5(b)] = x2(−T (a], b))x3(a× b)x4(T (a, b])) ,

[x2(t), x6(u)] = x4(tu) ,

[x1(a), x6(t)] = x2(−tN(a))x3(ta
])x4(t

2N(a))x5(−ta) ,

for all a, b ∈ J and all t, u ∈ F . Then Θ = (U+, U1, U2, U3, U4, U5, U6) is a root
group sequence of length 6; it is unique up to isomorphism (i.e., it does not
depend on the choice of the maps xi), and will be denoted by ΘH(Ξ). We also
say that Θ is parametrized by Ξ via the isomorphisms xi.

Theorem 4.2. Let Γ be an arbitrary Moufang hexagon. Then there exists an
hexagonal system Ξ = (J, F, ]) such that Γ ∼= Γ(ΘH(Ξ)).

Proof. See [9, (17.5)].

Definition 4.3. Let Ξ̃ = (J̃ , F̃ , ]̃) be an hexagonal system. Then we say that
an hexagonal system Ξ = (J, F, ]) is a subsystem of Ξ̃ if F ⊆ F̃ , J ⊆ J̃ , the
scalar multiplication F × J → J is the restriction of the scalar multiplication
F̃ × J̃ → J̃ , and ] is the restriction of ]̃ to J .

Theorem 4.4. Let Γ1 and Γ2 be two Moufang hexagons. Then Γ1 is isomorphic
to a subhexagon of Γ2 if and only if there exists an hexagonal system Ξ̃ and a
subsystem Ξ of Ξ̃ such that Γ1

∼= Γ(ΘH(Ξ)) and Γ2
∼= Γ(ΘH(Ξ̃)).

Proof. (i) Suppose that Γ1 is a subhexagon of Γ2; let Σ = (0, . . . , 9) be an
arbitrary labeled apartment of Γ1. We will write Ui and Ũi in place of

U
(1)
i and U

(2)
i , respectively, to denote the root groups of Γ1 and Γ2 with

respect to the labeled apartment Σ. By Theorem 2.9.(i), Ui ≤ Ũi for all i.

After relabeling the apartment Σ if necessary, we get, by [9, (29.11)],
that ∆ = (U2U4U6, U2, U4, U6) and ∆̃ = (Ũ2Ũ4Ũ6, Ũ2, Ũ4, Ũ6) are root
group sequences (of length 3); in particular, ∆ is a subsequence of ∆̃,
and therefore Γ(∆) is isomorphic to a subtriangle of Γ(∆̃), by Theorem
2.9.(ii). By Theorem 3.3, there exists an alternative division ring F̃ and
a subring F such that Γ(∆) ∼= Γ(ΘT (F )) and Γ(∆̃) ∼= Γ(ΘT (F̃ )). By the
argument following [9, (29.14)] however, F̃ is a commutative field. Using
the fact that ΘT (F )op = ΘT (F ) for every commutative field F , it follows
from Theorem 2.7.(iii) that ∆ ∼= ΘT (F ) and ∆̃ ∼= ΘT (F̃ ).

We now choose arbitrary elements e1 ∈ U∗

1 and e6 ∈ U∗

6 . By [9, (29.15)],
there exist isomorphisms t 7→ xi(t) from F̃ to Ũi for i ∈ {2, 4, 6} such that
x6(1) = e6, x6(t)

µ(e1) = x2(t), x2(t)
µ(e1) = x6(−t) and [x2(t), x6(u)] =

x4(tu), for all t, u ∈ F̃ . In particular, this last identity holds for all
t, u ∈ F , and hence, by definition of the operator ΘT , we have that ∆ ∼=
ΘT (F ) ∼= (x2(F )x4(F )x6(F ), x2(F ), x4(F ), x6(F )). Hence we may assume
that Ui = xi(F ) for all i ∈ {2, 4, 6}.
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As in [9, (29.16)], we choose an additive group J̃ isomorphic to Ũ1 and
an isomorphism a 7→ x1(a) from J̃ to Ũ1. Let x5(a) := x1(−a)

µ(e6) and
x3(a) := x5(a)

µ(e1), for all a ∈ J̃ . Let J := x−1
1 (U1). Then Ui = xi(J) for

i ∈ {1, 3, 5}.

Now let (t, a) 7→ ta be the map from F̃ × J̃ to J̃ defined so that

[x1(a), x6(t)
−1]5 = x5(ta) (1)

for all t ∈ F̃ and all a ∈ J̃ , and let ] : J̃ → J̃ be the map defined by setting

[x1(a), e6]3 = x3(a
]) , (2)

for all a, b ∈ J̃ . Then it is shown in [9, Chapter 29] that J̃ is a vector space
over F̃ with scalar multiplication given by (t, a) 7→ ta, that Ξ̃ = (J̃ , F̃ , ])
is an hexagonal system, and that Γ2

∼= Γ(ΘH(Ξ̃)). Since [x1(J), x6(F )]5 =
[U1, U6]5 ⊆ U5, it follows from (1) that F · J = J , and since [x1(J), e6]3 =
[U1, e6]3 ⊆ U3, it follows from (2) that J ] ⊆ J . So by applying the same
arguments, we can also conclude that Ξ = (J, F, ]) is an hexagonal system,
and that Γ1

∼= Γ(ΘH(Ξ)). Clearly, Ξ is a subsystem of Ξ̃.

(ii) Let Ξ = (J, F, ]) and Ξ̃ = (J̃ , F̃ , ]). Let Θ2 = ΘH(Ξ̃) be the root group
sequence parametrized by Ξ̃ via some isomorphisms xi. Now let Θ1 =
ΘH(Ξ) be the root group sequence parametrized by Ξ via the restriction
of these same isomorphisms x1, x3 and x5 to J and the restriction of x2,
x4 and x6 to F . Then Θ1 is a subsequence of Θ2, and hence, by Theorem
2.9.(ii), Γ(Θ1) is isomorphic to a subhexagon of Γ(Θ2).

5 Suboctagons of Moufang octagons

We now consider suboctagons of a given Moufang octagon. Although this has al-
ready been solved in [5, Theorem B], we also give a complete proof of this result,
to illustrate that our approach also works for the case of Moufang octagons.

All Moufang octagons can be parametrized by a so-called octagonal set (see
[9, (10.11)]):

Definition 5.1. Let (K,σ) be an arbitrary octagonal set, let U1, U3, U5 and U7

be four groups parametrized by the additive group of K via some isomorphisms
x1, x3, x5 and x7, and let U2, U4, U6 and U8 be four groups parametrized by

K
(2)
σ via some isomorphisms x2, x4, x6 and x8. Let U+ be the group generated

by U1, . . . , U8 with respect to certain commutator relations which can be found
in [9, (16.9)]. Then Θ = (U+, U1, . . . , U8) is a root group sequence of length 8; it
is unique up to isomorphism (i.e., it does not depend on the choice of the maps
xi), and will be denoted by ΘO(K,σ). We also say that Θ is parametrized by
(K,σ) via the isomorphisms xi.

Theorem 5.2. Let Γ be an arbitrary Moufang octagon. Then there exists an
octagonal set (K,σ) such that Γ ∼= Γ(ΘO(K,σ)).

Proof. See [9, (17.7)].
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Definition 5.3. Let (K̃, σ̃) be an octagonal set. Then we say that an octagonal
set (K,σ) is a subset of (K̃, σ̃) if K ⊆ K̃ and if σ is the restriction of σ̃ to K.

Theorem 5.4. Let Γ1 and Γ2 be two Moufang octagons. Then Γ1 is isomorphic
to a suboctagon of Γ2 if and only if there exists an octagonal set (K̃, σ) and a
subset (K,σ) of (K̃, σ) such that Γ1

∼= Γ(ΘO(K,σ)) and Γ2
∼= Γ(ΘO(K̃, σ)).

Proof. (i) Suppose that Γ1 is a suboctagon of Γ2; let Σ = (0, . . . , 11) be an
arbitrary labeled apartment of Γ1. We will write Ui and Ũi in place of

U
(1)
i and U

(2)
i , respectively, to denote the root groups of Γ1 and Γ2 with

respect to the labeled apartment Σ. By Theorem 2.9.(i), Ui ≤ Ũi for all i.

After relabeling the apartment Σ if necessary, we get, by [9, (31.8)], that
∆ = (U1U3U5U7, U1, U3, U5, U7) is the root group sequences of an indiffer-
ent Moufang quadrangle.

Let Vi := [Ui−2, Ui+1] and Ṽi := [Ũi−2, Ũi+1] for all even i. By [9, (31.16)
and (31.29)], this definition of Vi and Ṽi coincides with the definition given
in [9, (31.1)]. Clearly, Vi ≤ Ṽi for all even i.

We now choose arbitrary elements e1 ∈ U∗

1 and e8 ∈ V ∗

8 . By [9, (31.24)],
there exists an octagonal set (K̃, σ), and isomorphisms t 7→ xi(t) from K̃
to Ũi for i ∈ {1, 3, 5, 7} such that x1(1) = e1,

xi(t)
µ(e8) = x8−i(t) (3)

for i ∈ {1, 3, 5, 7} and for all t ∈ K̃, and

[x1(t), x7(u)] = x3(t
σu)x5(tu

σ) (4)

for all t, u ∈ K̃. Moreover, we let

x9(t) := x1(t)
µ(e1) (5)

for all t ∈ K̃.

Now let K := x−1
1 (U1); then (K,+) is an additive subgroup of (K̃,+)

isomorphic to U1. From (3) for i = 1, we get that x7(K) = x1(K)µ(e8) =

U
µ(e8)
1 = U7, and similarly, it follows from (5) that x9(K) = U9. It follows

from (4) that x3(K) = [e1, x7(K)]3 = [e1, U7]3 = U3, and by (3) with
i = 3, we get that x5(K) = U5 as well.

By [9, (31.9.ii) and (31.32)], we have that µ(x1(t)) = x9(t
−1)x1(t)x9(t

−1)
for all t ∈ K̃. If we restrict this identity to K, then it follows from the
fact that µ(a1) ∈ U∗

9 a1U
∗

9 for all a1 ∈ U∗

1 and from Lemma 2.12 that K is
closed under inverses.

Let x6(t) := [x3(t), e8] for all t ∈ K̃. By the argument following [9,
(31.25)], the map a3 7→ [a3, e8] is an isomorphism from Ũ3 to Ṽ6, and
hence x6 is an isomorphism from K̃ to Ṽ6. By the same argument, the map
a3 7→ [a3, e8] restricted to U3 is an isomorphism from U3 to V6, and since
U3 = x3(K), the restriction of x6 to K is an isomorphism from K to V6. If
we now set x4(t) := x6(t)

µ(e1), x2(t) := x6(t)
µ(e8) and x8(t) := x2(t)

µ(e1)

for all t ∈ K̃, then Ṽi = xi(K̃) and Vi = xi(K) for all i ∈ {2, 4, 6, 8}.

By [9, (31.26.ii)], we have that [x1(t), x6(u)] = x4(tu) for all t, u ∈ K̃.
If we restrict this identity to t, u ∈ K, then it follows from the fact that

9



[U1, V6] = V4 that K is closed under multiplication, and hence K is a
subfield of K̃. Moreover, it follows from (4) that Kσ ⊆ K, and hence
(K,σ) is a subset of (K̃, σ).

By the remainder of the classification result in [9, Chapter 31], we get that
Γ1

∼= Γ(ΘO(K,σ)) and Γ2
∼= Γ(ΘO(K̃, σ)).

(ii) Let Θ2 = ΘO(K̃, σ) be the root group sequence parametrized by (K̃, σ) via
some isomorphisms xi. Now let Θ1 = ΘO(K,σ) be the root group sequence
parametrized by (K,σ) via the restriction of these same isomorphisms x1,

x3, x5 and x7 to K and the restriction of x2, x4, x6 and x8 to K
(2)
σ .

Then Θ1 is a subsequence of Θ2, and hence, by Theorem 2.9.(ii), Γ(Θ1) is
isomorphic to a suboctagon of Γ(Θ2).

6 Subquadrangles of Moufang quadrangles

We now consider subquadrangles of a given Moufang quadrangle. In this case,
the result is not as nice as in the other cases; in particular, it is not true that
every inclusion of Moufang quadrangles can be described by the inclusion of the
corresponding algebraic structures, as we will see in Theorem 6.6. The situation
is not too bad, however, as will be illustrated by Lemma 6.15.

All Moufang quadrangles can be parametrized by a so-called quadrangular
system (see [2]):

Definition 6.1. Let Ω = (V,W, τV , τW , ε, δ) be an arbitrary quadrangular system
with corresponding biadditive maps F and H ; let U1 and U3 be two groups
parametrized by W via some isomorphisms x1 and x3, and let U2 and U4 be
two groups parametrized by V via some isomorphisms x2 and x4. Let U+ be the
group generated by U1, U2, U3 and U4 with respect to the commutator relations

[U1, U2] = [U2, U3] = [U3, U4] = 1 ,

[x1(w1), x3(w2)] = x2(H(w1, w2)) ,

[x2(v1), x4(v2)] = x3(F (v1, v2)) ,

[x1(w), x4(v)] = x2(vw)x3(wv) ,

for all v, v1, v2 ∈ V and all w,w1, w2 ∈ W , where we have denoted the maps
τV and τW by juxtaposition, i.e. vw := τV (v, w) and wv := τW (w, v) for all
v ∈ V and all w ∈ W . Then Θ = (U+, U1, U2, U3, U4) is a root group sequence
of length 4; it is unique up to isomorphism (i.e., it does not depend on the
choice of the maps xi), and will be denoted by ΘQ(Ω). We also say that Θ is
parametrized by Ω via the isomorphisms xi.

Theorem 6.2. Let Γ be an arbitrary Moufang quadrangle. Then there exists a
quadrangular system Ω = (V,W, τV , τW , ε, δ) such that Γ ∼= Γ(ΘQ(Ω)).

Proof. See [2, Section 5].

Definition 6.3. Let Γ be a Moufang quadrangle, and let Σ = (0, . . . , 7) be a
labeled apartment of Γ. Let U0, . . . , U7 be the root groups associated to Σ.
Then we write Vi := [Ui−1, Ui+1] ≤ Ui for all i, and we let Yi := CUi

(Ui−2) ≤ Ui

for each i. By [9, (21.20.i)], we have Yi = CUi
(Ui+2) as well.
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Theorem 6.4. By relabeling the vertices of Σ by the transformation i 7→ 5 − i
if necessary, we can assume that

(i) Yi 6= 1, [Ui, Ui] ≤ Vi ≤ Yi ≤ Z(Ui) for all odd i ;

(ii) Ui is abelian for all even i .

Proof. See [9, (21.28)].

Definition 6.5. Let Ω̃ = (Ṽ , W̃ , τṼ , τW̃ , ε̃, δ̃) be a quadrangular system. Then

we say that a quadrangular system Ω = (V,W, τV , τW , ε, δ) is a subsystem of Ω̃
if V ⊆ Ṽ , W ⊆ W̃ , ε = ε̃, δ = δ̃, and if τV and τW are the restriction of τṼ and
τW̃ to V ×W and W × V , respectively.

Theorem 6.6. Let Γ1 and Γ2 be two Moufang quadrangles.

(i) Suppose that Γ1 is a subquadrangle of Γ2. Let Σ be an apartment of Γ1,
labeled in such a way that the statements of Theorem 6.4 hold for the root
groups Ũi of Γ2. If Y1 ∩ Ỹ1 6= 1, and if one of the conditions

(a) Ỹ4 = 1 ,

(b) Ỹ4 6= 1, Y4 = 1 and U4 ∩ Ỹ4 6= 1 ,

(c) Ỹ4 6= 1, Y4 6= 1 and Y4 ∩ Ỹ4 6= 1 ,

is satisfied, then there exists a quadrangular system Ω̃ and a subsystem Ω
of Ω̃ such that Γ1

∼= Γ(ΘQ(Ω)) and Γ2
∼= Γ(ΘQ(Ω̃)).

(ii) If Γ1
∼= Γ(ΘQ(Ω)) and Γ2

∼= Γ(ΘQ(Ω̃)) for some quadrangular system Ω̃

and some subsystem Ω of Ω̃, then Γ1 is isomorphic to a subquadrangle of
Γ2.

Proof. (i) Suppose that Γ1 is a subquadrangle of Γ2. Let Σ = (0, . . . , 7) be an
apartment of Γ1, labeled in such a way that the statements of Theorem
6.4 hold for the root groups of Γ2. As before, we will write Ui and Ũi

in place of U
(1)
i and U

(2)
i , respectively, to denote the root groups of Γ1

and Γ2 with respect to the labeled apartment Σ, and by Theorem 2.9.(i),
Ui ≤ Ũi for all i.

We first show that the statements of Theorem 6.4 also hold for the root
groups Ui of Γ1. By applying this theorem on Γ1, we see that either
the statements hold for the given labeling, or they hold for the labeling
transformed by the map i 7→ 5 − i. We may assume the latter. Then
Ui is abelian for all odd i, and it is then obvious that [Ui, Ui] ≤ Vi and
Yi ≤ Z(Ui). By Definition 6.3, the statement Vi ≤ Yi is equivalent to
[[Ui−1, Ui+1], Ui−2] = 1; hence it follows from Ṽi ≤ Ỹi that Vi ≤ Yi for all
odd i. Finally, it follows from the assumption Y1 ∩ Ỹ1 6= 1 that Yi 6= 1 for
all odd i, and it follows from the fact that Ũi is abelian for all even i that
Ui is abelian for all even i. So the statements of Theorem 6.4 hold for the
given labeling of the root groups Ui, after all.

By Theorem 6.4.(ii), Ũ4 is abelian, so choose a group (Ṽ ,+) isomorphic to
U4 and an isomorphism v 7→ x4(v) from Ṽ to Ũ4, and choose a (possibly
non-abelian) group (W̃ ,�) isomorphic to U1 and an isomorphism w 7→
x1(w) from W̃ to Ũ1. Let V := x−1

4 (U4) and let W := x−1
1 (U1).
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Since Y1∩Ỹ1 6= 1, we can choose an element e1 ∈ Y ∗

1 ∩Ỹ ∗

1 ; let δ := x−1
1 (e1).

If we are in case (a) and Y4 = 1, then choose e4 ∈ U∗

4 arbitrarily; if Y4 6= 1,
then choose e4 ∈ Y ∗

4 arbitrarily. In both cases, e4 ∈ Ũ∗

4 as well. If we
are in case (b), then choose e4 ∈ U∗

4 ∩ Ỹ ∗

4 . Finally, if we are in case (c),
then choose e4 ∈ Y ∗

4 ∩ Ỹ ∗

4 . Let ε := x−1
1 (e4). Then δ and ε satisfy the

assumptions which are required in [2, Section 5], for both Γ1 and Γ2.

We now set x3(w) := [x1(w), e−1
4 ]3 and x5(w) := x1(w)µ(e1) for all w ∈ W̃

and x2(v) := [e1, x4(v)
−1]2 and x0(v) := x4(v)

µ(e4) for all v ∈ Ṽ . Then
Ũi = xi(Ṽ ) and Ui = xi(V ) for i ∈ {0, 2, 4}, and Ũi = xi(W̃ ) and Ui =
xi(W ) for i ∈ {1, 3, 5}.

As in [2, Section 5], we define a map τṼ from Ṽ × W̃ to Ṽ and a map

τW̃ from W̃ × Ṽ to W̃ , both of which are usually denoted by · or by
juxtaposition, by setting

[x1(w), x4(v)
−1]2 = x2(τṼ (v, w)) = x2(vw) ,

[x1(w), x4(v)
−1]3 = x3(τW̃ (w, v)) = x3(wv) ,

for all w ∈ W̃ and all v ∈ Ṽ . It follows from the previous paragraph that
τṼ (V,W ) ⊆ V and τW̃ (W,V ) ⊆ W . We denote these restrictions of τṼ
and τW̃ by τV and τW , respectively.

By the remaining part of [2, Section 5], Ω̃ := (Ṽ , W̃ , τṼ , τW̃ , ε, δ) and
Ω := (V,W, τV , τW , ε, δ) are quadrangular systems, Γ1

∼= Γ(ΘQ(Ω)) and

Γ2
∼= Γ(ΘQ(Ω̃)). It is clear from the previous paragraph that Ω is a

subsystem of Ω̃.

(ii) Let Ω = (V,W, τV , τW , ε, δ) and Ω̃ = (Ṽ , W̃ , τV , τW , ε, δ). Let Θ2 = ΘQ(Ω̃)

be the root group sequence parametrized by Ω̃ via some isomorphisms xi.
Now let Θ1 = ΘQ(Ω) be the root group sequence parametrized by Ω
via the restriction of these same isomorphisms x1 and x3 to W and the
restriction of x2 and x4 to V . Then Θ1 is a subsequence of Θ2, and hence,
by Theorem 2.9.(ii), Γ(Θ1) is isomorphic to a subquadrangle of Γ(Θ2).

Definition 6.7. Let Γ1 and Γ2 be two Moufang quadrangles, and suppose that
Γ1 is a subquadrangle of Γ2. Let Σ be an apartment of Γ1, labeled in such a way
that the statements of Theorem 6.4 hold for the root groups Ũi of Γ2. Suppose
that the statements of Theorem 6.4 do not hold for the root groups Ui of Γ1;
then by this theorem, they do hold after the relabeling i 7→ 5 − i. Then we say
that Γ1 is dually included in Γ2. Note that this definition is independent of the
choice of Σ.

If there exists a quadrangular system Ω̃ and a subsystem Ω of Ω̃ such that
Γ1

∼= Γ(ΘQ(Ω)) and Γ2
∼= Γ(ΘQ(Ω̃)), then we say that Γ1 is algebraically in-

cluded in Γ2.

Remark 6.8. In section 8, we will give an example of an inclusion which is not
algebraic but which is dual (8.1), as well as an example which is neither algebraic
nor dual (8.2).

Definition 6.9. A quadrangular system Ω = (V,W, τV , τW , ε, δ) is called indif-
ferent if F ≡ 0 and H ≡ 0, reduced if F 6≡ 0 and H ≡ 0, co-reduced if F ≡ 0
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and H 6≡ 0 and wide if F 6≡ 0 and H 6≡ 0. A Moufang quadrangle is called in-
different, reduced or wide if it is parametrized by a quadrangular system which
is indifferent, (co-)reduced or wide, respectively.

Remark 6.10. If Ω = (V,W, τV , τW , ε, δ) is a co-reduced quadrangular system,
then Ω∗ := (W,V, τW , τV , δ, ε) is a reduced quadrangular system; see [2, Theo-
rem 8.12]. Note that this can only occur if V and W are both 2-torsion groups,
i.e. every element of V and W has order 1 or 2.

Lemma 6.11. (i) If δ ∈ W has order 2 (in particular, if W is a 2-torsion
group), then V is a 2-torsion group.

(ii) If V contains an element of order 2, then V is a 2-torsion group.

Proof. From the defining axioms (Q9) and (Q12) in [2, Section 2], we get that
v(δ � δ) = v + v for all v ∈ V .

(i) If δ has order 2, then v + v = v(δ � δ) = 0 for all v ∈ V .

(ii) Let c ∈ V ∗ be an element for which c+c = 0, then c(δ�δ) = 0, and hence
δ � δ = 0, so by (i), V is a 2-torsion group.

Lemma 6.12. If Rad(F ) 6= 0, then V and W are 2-torsion groups.

Proof. See [2, Lemma 8.10].

The quadrangular systems have been classified; see [9, (17.4)] or [2]. It turns
out that there are six different classes of quadrangular systems, which we will
list now. We refer to [2] for more details about their definition.

Theorem 6.13. Let Ω = (V,W, τV , τW , ε, δ) be an arbitrary quadrangular sys-
tem, and assume that Ω is not co-reduced. Then (at least) one of the following
holds:

(i) Ω is indifferent, and Ω ∼= ΩD(K,K0, L0) for some indifferent set (K,K0, L0).
We say that Ω is of indifferent type.

(ii) Ω is reduced, and Ω ∼= ΩI(K,K0, σ) for some involutory set (K,K0, σ).
We say that Ω is of involutory type.

(iii) Ω is reduced, and Ω ∼= ΩQ(K,V0, q) for some anisotropic quadratic space
(K,V0, q). We say that Ω is of quadratic form type.

(iv) Ω is wide, and Ω ∼= ΩP (K,K0, σ, V0, π) for some anisotropic pseudo-
quadratic space (K,K0, σ, V0, π). We say that Ω is of pseudo-quadratic
form type.

(v) Ω is wide, and Ω ∼= ΩE(K,V0, q) for some quadratic space (K,V0, q) of
type E6, E7 or E8. We say that Ω is of type E6, E7 or E8.

(vi) Ω is wide, and Ω ∼= ΩF (K,V0, q) for some quadratic space (K,V0, q) of
type F4. We say that Ω is of type F4.

Moreover, if we are in case (i) or (vi), then V and W are 2-torsion groups.
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Remark 6.14. It is obvious from the defining commutator relations in 6.1 that
a (co-)reduced quadrangle can never be included in an indifferent quadrangle,
and that a wide quadrangle cannot be included in a (co-)reduced quadrangle.

The conditions in Theorem 6.6.(i) look very restrictive, but in fact, they are
satisfied quite often:

Lemma 6.15. Let Γ1 and Γ2 be two Moufang quadrangles, and suppose that
Γ1 is a subquadrangle of Γ2. Let Σ be an apartment of Γ1, labeled in such a way
that the statements of Theorem 6.4 hold for the root groups Ũi of Γ2.

(i) If Ũ4 is not a 2-torsion group, then the inclusion of Γ1 in Γ2 is either
algebraic or dual.

(ii) If Γ2 is of indifferent type or of involutory type, or if Γ2
∼= Γ(ΩQ(K,V0, q))

for some regular quadratic form q, then the inclusion of Γ1 in Γ2 is alge-
braic.

Proof. (i) Suppose that the inclusion is not dual, so that the statements of
Theorem 6.4 hold for the root groups Ui of Γ1 as well. Since Ũ4 is not
2-torsion, Lemma 6.11.(ii) implies that U4 is not 2-torsion either. We are
in one of the cases (ii), (iii), (iv) or (v) of Theorem 6.13, and in each case,
the fact that U4

∼= V is not 2-torsion implies that the defining (skew)
field K has characteristic different from 2. It is easily checked from their
definition that Im(F ) = Rad(H) 6= 0 in each case, and hence V1 = Y1 6= 1.
Similarly, Ṽ1 = Ỹ1 6= 1. Since Vi ≤ Ṽi for all i, it follows that Y1 ∩ Ỹ1 6= 1.

By Lemma 6.12, Rad(F̃ ) = 0, hence Ỹ4 = 1, so condition (a) of Theorem
6.6.(i) is satisfied. In particular, Γ1 is algebraically included in Γ2.

(ii) If Γ2 is indifferent or reduced, then [Ũ1, Ũ3] = 1, and in particular, [U1, U3] =
1. However, this is equivalent to Ỹ1 = Ũ1 and Y1 = U1, respectively, and
in particular, Y1 ∩ Ỹ1 = U1 6= 1.

If Γ2 is indifferent, then the same argument applies to Ũ4, and in particular
Y4 6= 1, Ỹ4 6= 1 and Y4 ∩ Ỹ4 = U4 6= 1, so condition (c) of Theorem 6.6.(i)
is satisfied.

If Γ2 is of involutory type but not indifferent, then Rad(F̂ ) = 0. If Γ2
∼=

Γ(ΩQ(K,V0, q)) for some quadratic form q with corresponding bilinear

form f , then Rad(F̂ ) = Rad(f), so the condition on q to be regular implies
that Rad(F̂ ) = 0 in this case as well. In both cases, Ỹ4 = 1, so condition
(a) of Theorem 6.6.(i) is satisfied.

In all these cases, we can conclude by Theorem 6.6.(i) that Γ1 is alge-
braically included in Γ2.

7 Algebraic inclusions of Moufang quadrangles

In this section, we will always assume that Γ1 and Γ2 are Moufang quadrangles
such that Γ1 is algebraically included in Γ2. Moreover, we will assume that
none of the root groups is 2-torsion. The goal of this section is to classify these
inclusions.
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By Definition 6.7, there exists a quadrangular system Ω̃ = (Ṽ , W̃ , τṼ , τW̃ , ε, δ)

and a subsystem Ω = (V,W, τṼ , τW̃ , ε, δ) of Ω̃ such that Γ1
∼= Γ(ΘQ(Ω)) and

Γ2
∼= Γ(ΘQ(Ω̃)). Since the root groups are not 2-torsion, neither are the groups

V , W , Ṽ and W̃ . In particular, we are in one (or more than one) of the cases
(ii), (iii), (iv) or (v) of Theorem 6.13.

Definition 7.1. A quadrangular system which is of involutory type but not of
quadratic form type will be called of proper involutory type. An involutory set
(K,K0, σ) is proper if and only if σ 6= 1 and K is generated by K0 as a ring. By
[9, (21.10)], a quadrangular system ΩI(K,K0, σ) is of proper involutory type if
and only if (K,K0, σ) is proper.

Definition 7.2. A quadrangular system of pseudo-quadratic form type is not
necessarily wide. If it is, then it is called of proper pseudo-quadratic form type.

Remark 7.3. If a quadrangular system Ω = (V,W, τV , τW , ε, δ) is of involutory
type Ω = ΩI (K,K0, σ), and V and W are not 2-torsion, then char(K) 6= 2;
in particular, K0 = FixK(σ), and Ω is completely determined by K and σ.
Hence we will denote the involutory set by (K,σ) in this case, and we will write
Ω = ΩI(K,σ).

By [9, (21.14)], (K,σ) is always proper, unless FixK(σ) is a commutative
field F , and either K = F and σ = 1, or K is a separable quadratic extension
over F (and then σ ∈ Gal(K/F )∗), or K is a quaternion division algebra over
F (and then σ is the standard involution of K/F ).

Remark 7.4. If a quadrangular system Ω = (V,W, τV , τW , ε, δ) is of pseudo-
quadratic form type Ω = ΩP (K,K0, σ, V0, π), and V and W are not 2-torsion,
then char(K) 6= 2; in particular, K0 = FixK(σ), and Ω is completely determined
by K, σ, V0 and π. Hence we will write Ω = ΩP (K,σ, V0, π).

By [9, (21.16)], ΩP (K,σ, V0, π) with char(K) 6= 2 is of proper pseudo-
quadratic form type if and only if V0 6= 0 and σ 6= 1.

Using Theorem 6.13, we can now conclude that Ω and Ω̃ are of exactly one of
the following types: proper involutory, quadratic form, proper pseudo-quadratic
form, E6, E7 or E8. We have summarized the different combinations in Table
1, and we will consider each of the cases separately.

≤ Ω̃proper
I Ω̃Q Ω̃proper

P Ω̃E

Ωproper
I 7.5 7.10 7.8 7.11

ΩQ 7.18 7.6 7.20 7.21

Ωproper
P 6.14 6.14 7.9 7.23

ΩE 6.14 6.14 7.22 7.23

Table 1: Algebraic inclusions of Moufang quadrangles

From now on, assume that Ω = (V,W, τV , τW , ε, δ) and Ω̃ = (Ṽ , W̃ , τṼ , τW̃ , ε̃, δ̃)

are quadrangular systems with V , W , Ṽ and W̃ not 2-torsion. Then Ω is iso-
morphic to a subsystem of Ω̃ if and only if there exist group monomorphisms
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φ : V ↪→ Ṽ and ψ : W ↪→ W̃ such that

φ(ε) = ε̃ , (6)

ψ(δ) = δ̃ , (7)

φ(v)ψ(w) = φ(vw) , (8)

ψ(w)φ(v) = ψ(wv) , (9)

for all v ∈ V and all w ∈ W . In each case, the groups V , W , Ṽ and W̃
will be parametrized by a certain algebraic structure, and we will denote the
isomorphisms by square brackets, as in [2].

Theorem 7.5. Let Ω ∼= ΩI(K,σ) and Ω̃ ∼= ΩI(K̃, σ̃) for some involutory sets
(K,σ) and (K̃, σ̃).

(i) Suppose that (K,σ) is proper. Then Ω is isomorphic to a subsystem of Ω̃
if and only if there exists a field monomorphism α from K into K̃ such
that α ◦ σ = σ̃ ◦ α.

(ii) Suppose that (K,σ) is not proper. Then Ω is isomorphic to a subsystem
of Ω̃ if and only if there exists a field monomorphism or a field anti-
monomorphism α from K into K̃ such that α ◦ σ = σ̃ ◦ α.

Proof. Let F := FixK(σ) and let F̃ := FixK̃(σ̃). By the definition of the

operator ΩI , we have that V = [K], W = [F ], Ṽ = [K̃] and W̃ = [F̃ ]. If
(K,σ) is not proper, then we are in one of the three cases of Remark 7.3, so
in particular F ≤ Z(K) and tσt = ttσ for all t ∈ K; it follows from these two
observations that tstσ = tσst for all t ∈ K and all s ∈ F .

First assume that there exists a field monomorphism α from K into K̃ or —
but only if (K,σ) is not proper — a field anti-monomorphism α from K into
K̃, such that α ◦ σ = σ̃ ◦ α. We define a map φ from V = [K] to Ṽ = [K̃] and
a map ψ from W = [F ] to W̃ = [F̃ ] by setting φ[t] := [α(t)] and ψ[s] := [α(s)]
for all t ∈ K and all s ∈ F . Since α is an (additive) monomorphism, so are φ
and ψ. Moreover,

φ(ε) = φ[1] = [1̃] = ε̃ ,

ψ(δ) = ψ[1] = [1̃] = δ̃ ,

and if α is a field monomorphism, then

φ[t]ψ[s] = [α(t)][α(s)] = [α(s)α(t)] = [α(st)] = φ[st] = φ([t][s]) ,

ψ[s]φ[t] = [α(s)][α(t)] = [α(t)σ̃α(s)α(t)] = [α(tσst)] = ψ[tσst] = ψ([s][t]) ,

for all t ∈ K and all s ∈ F , whereas if α is a field anti-monomorphism and
(K,σ) is not proper, then ts = st and tstσ = tσst for all t ∈ K and all s ∈ F ,
and therefore

φ[t]ψ[s] = [α(t)][α(s)] = [α(s)α(t)] = [α(ts)] = [α(st)] = φ[st] = φ([t][s]) ,

ψ[s]φ[t] = [α(s)][α(t)] = [α(t)σ̃α(s)α(t)]

= [α(tstσ)] = [α(tσst)] = ψ[tσst] = ψ([s][t]) ,
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for all t ∈ K and all s ∈ F . In both cases, we can conclude that Ω is isomorphic
to a subsystem of Ω̃.

Now assume that Ω is isomorphic to a subsystem of Ω̃, with corresponding
group monomorphisms φ and ψ satisfying (6)–(9). We define a map α from K
to K̃ and a map β from F to F̃ by setting φ[t] := [α(t)] and ψ[s] := [β(s)] for
all t ∈ K and all s ∈ F . Since φ and ψ are group monomorphisms, α and β
are additive monomorphisms as well. The conditions (6)–(9) translate into the
following:

α(1) = 1̃ , (10)

β(1) = 1̃ , (11)

β(s)α(t) = α(st) , (12)

α(t)σ̃β(s)α(t) = β(tσst) , (13)

for all t ∈ K and all s ∈ F . If we set t = 1 in (12), then we get that β is the
restriction of α to F . By (12) again, α(s)α(t) = α(st) for all t ∈ K and all
s ∈ F . If we set s = 1 in (13), then we get that α(t)σ̃α(t) = α(tσt) for all t ∈ K.
If we replace t by t + 1 and subtract the original identity, then it follows that
α(t)σ̃ + α(t) = α(tσ + t), and since α is additive, we get that α ◦ σ = σ̃ ◦ α.

If (K,σ) is proper, then K is generated (as a ring) by F , and it follows by
induction on the identity α(s)α(t) = α(st) for all t ∈ K and all s ∈ F that α is
multiplicative on K, hence it is a field monomorphism.

If (K,σ) is not proper, we have to proceed in a different way. It follows from
(12) and (13) that α(tσs)α(t) = α(tσst) for all t ∈ K and all s ∈ F . If we set
s = (tσ)−1t−1 ∈ F , then it follows that α(t−1)α(t) = α(1) = 1̃, and hence α
preserves inverses. It then follows from Hua’s identity

aba = a− (a−1 + (b−1 − a)−1)−1

that α(aba) = α(a)α(b)α(a) for all a, b ∈ K, and hence α is a Jordan ho-
momorphism. It follows from a result by Jacobson and Rickart [4] that α is
a homomorphism or an anti-homomorphism. Since we already now that α is
injective, the proof is finished.

Theorem 7.6. Let Ω ∼= ΩQ(K,V0, q) and Ω̃ ∼= ΩQ(K̃, Ṽ0, q̃) for some anisotropic

quadratic spaces (K,V0, q) and (K̃, Ṽ0, q̃) with base points e and ẽ, respectively.
Then Ω is isomorphic to a subsystem of Ω̃ if and only if there exists a vector
space monomorphism (β, α) from (K,V0) into (K̃, Ṽ0) such that α(e) = ẽ and
q̃(α(v)) = β(q(v)) for all v ∈ V0.

Proof. By the definition of the operator ΩQ, we have that V = [V0], W = [K],

Ṽ = [Ṽ0] and W̃ = [K̃].
First assume that there exists a vector space monomorphism (β, α) from

(K,V0) into (K̃, Ṽ0) such that α(e) = ẽ and q̃(α(v)) = β(q(v)) for all v ∈ V0.
We define a map φ from V = [V0] to Ṽ = [Ṽ0] and a map ψ from W = [K] to
W̃ = [K̃] by setting φ[v] := [α(v)] and ψ[t] := [β(t)] for all v ∈ V0 and all t ∈ K.
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Since α and β are additive monomorphisms, so are φ and ψ. Moreover,

φ(ε) = φ[e] = [ẽ] = ε̃ ,

ψ(δ) = ψ[1] = [1̃] = δ̃ ,

φ[v]ψ[t] = [α(v)][β(t)] = [β(t)α(v)] = [α(tv)] = φ[tv] = φ([v][t]) ,

ψ[t]φ[v] = [β(t)][α(v)] = [β(t)q̃(α(v))] = [β(t)β(q(v))] = ψ[tq(v)] = ψ([t][v]) ,

for all v ∈ V0 and all t ∈ K, and we can conclude that Ω is isomorphic to a
subsystem of Ω̃.

Now assume that Ω is isomorphic to a subsystem of Ω̃, with corresponding
group monomorphisms φ and ψ satisfying (6)–(9). We define a map α from V0

to Ṽ0 and a map β from K to K̃ by setting φ[v] := [α(v)] and ψ[t] := [β(t)] for
all t ∈ K and all s ∈ F . Since φ and ψ are group monomorphisms, α and β
are additive monomorphisms as well. The conditions (6)–(9) translate into the
following:

α(e) = ẽ , (14)

β(1) = 1̃ , (15)

β(t)α(v) = α(tv) , (16)

β(t)q̃(α(v)) = β(tq(v)) , (17)

for all v ∈ V0 and all t ∈ K. It only remains to show that β is multiplicative;
it will then follow from (16) that (β, α) is a vector space morphism, and the
condition on the quadratic forms follows from (17) with t = 1. But by repeated
use of (16), we get that β(s)β(t)α(e) = β(s)α(te) = α(ste) = β(st)α(e) for all
s, t ∈ K, and hence β is multiplicative.

Remark 7.7. Since the Moufang quadrangles arising from anisotropic quadratic
spaces (K,V0, q) and (K,V0, γq) are isomorphic, for every value of γ ∈ K∗,
the base points e and ẽ in Theorem 7.6 can be chosen arbitrarily (there is no
restriction, since char(K) 6= 2, and hence Rad(f) = 0). Therefore the condition
α(e) = ẽ is not really a restriction.

Theorem 7.8. Let Ω ∼= ΩI (K,σ) and Ω̃ ∼= ΩP (K̃, σ̃, Ṽ0, π̃) for some involutory
set (K,σ) and some anisotropic pseudo-quadratic space (K̃, σ̃, Ṽ0, π̃). Then Ω
is isomorphic to a subsystem of Ω̃ if and only if Ω is already isomorphic to a
subsystem of ΩI(K̃, σ̃).

Proof. Let F := FixK(σ) and let F̃ := FixK̃(σ̃). Denote the skew-hermitian

form corresponding to Ω̃ by h̃. By the definition of the operators ΩI and ΩP ,
we have that V = [K], W = [F ], Ṽ = [K̃] and W̃ = [T̃ ], where (T̃ ,�) is the
group with underlying set {(a, t) ∈ Ṽ0 × K̃ | π̃(a) − t ∈ F̃}, and with group
action (a, t) � (b, s) = (a+ b, t+ s+ h̃(b, a)) for all (a, t), (b, s) ∈ T̃ .

First assume that Ω is isomorphic to a subsystem of ΩI(K̃, σ̃). Since ΩI (K̃, σ̃)
is obviously a subsystem of Ω̃, it then follows that Ω is isomorphic to a subsystem
of Ω̃.

So assume now that Ω is isomorphic to a subsystem of Ω̃, with corresponding
group monomorphisms φ and ψ satisfying (6)–(9). We define a map α from K
to K̃, a map β from F to Ṽ0 and a map γ from F to K̃ by setting φ[t] := [α(t)]
and ψ[s] := [β(s), γ(s)] ∈ [T̃ ] for all t ∈ K and all s ∈ F . Since φ and ψ are
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group morphisms, α and β are additive morphisms as well (but note that it does
not follow that γ is additive). The conditions (7) and (9) imply the following:

β(1) = 0 , (18)

β(s)α(t) = β(tσst) , (19)

for all t ∈ K and all s ∈ F . We only need to show that β = 0, since it
will then follow that ψ(F ) ≤ (0, F̃ ), and hence Ω is in fact isomorphic to a
subsystem of ΩI(K̃, σ̃). If we set s = 1 in (19), then we get that β(tσt) = 0
for all t ∈ K. Replacing t by t + 1 and subtracting the original equation, we
get that β(t + tσ) = 0 for all t ∈ K. But since char(K) 6= 2, this implies that
β(s) = β((s/2) + (s/2)σ) = 0 for all s ∈ F , and we are done.

Theorem 7.9. Let Ω ∼= ΩP (K,σ, V0, π) and Ω̃ ∼= ΩP (K̃, σ̃, Ṽ0, π̃) for some
proper anisotropic pseudo-quadratic spaces (K,σ, V0, π) and (K̃, σ̃, Ṽ0, π̃). De-
note the skew-hermitian forms corresponding to Ω and Ω̃ by h and h̃, respectively.
Then Ω is isomorphic to a subsystem of Ω̃ if and only if there exists a vector
space monomorphism (β, α) from (K,V0) into (K̃, Ṽ0) such that β ◦ σ = σ̃ ◦ β
and β(h(a, b)) = h̃(α(a), α(b)) for all a, b ∈ V0.

Proof. Let F := FixK(σ) and let F̃ := FixK̃(σ̃). By the definition of the

operator ΩP , we have that V = [K], W = [T ], Ṽ = [K̃] and W̃ = [T̃ ], where
the groups (T,�) and (T̃ ,�) are defined as in the previous theorem.

First assume that there exists a vector space monomorphism (β, α) from
(K,V0) into (K̃, Ṽ0) such that β ◦ σ = σ̃ ◦ β and β(h(a, b)) = h̃(α(a), α(b)) for
all a, b ∈ V0. We define a map φ from V = [K] to Ṽ = [K̃] and a map ψ from
W = [T ] to W̃ = [T̃ ] by setting φ[s] := [β(s)] and ψ[a, t] := [α(a), β(t)] for all
(a, t) ∈ T and all s ∈ K. Since α and β are additive monomorphisms, so are φ
and ψ, because of the condition that β(h(a, b)) = h̃(α(a), α(b)) for all a, b ∈ V0.
Moreover,

φ(ε) = φ[1] = [1̃] = ε̃ ,

ψ(δ) = ψ[0, 1] = [0, 1̃] = δ̃ ,

φ[s]ψ[a, t] = [β(s)][α(a), β(t)] = [β(t)β(s)] = [β(ts)] = φ[ts] = φ([s][a, t]) ,

ψ[a, t]φ[s] = [α(a), β(t)][β(s)] = [α(a)β(s), β(s)σ̃β(t)β(s)]

= [α(as), β(sσts)] = ψ[as, sσts] = ψ([a, t][s]) ,

for all s ∈ K and all (a, t) ∈ T , and we can conclude that Ω is isomorphic to a
subsystem of Ω̃.

Now assume that Ω is isomorphic to a subsystem of Ω̃, with corresponding
group monomorphisms φ and ψ satisfying (6)–(9). We define a map β from K
to K̃, a map α from T to Ṽ0 and a map γ from T to K̃ by setting φ[t] := [β(t)]
and ψ[a, t] := [α(a, t), γ(a, t)] ∈ [T̃ ] for all t ∈ K and all (a, t) ∈ T . If we restrict
ψ to [0, F ], then we are back in the situation of Theorem 7.8, and therefore β
is a field monomorphism from K into K̃ such that β ◦ σ = σ̃ ◦ β; moreover,
α(0, t) = 0 and γ(0, t) = β(t) for all t ∈ F .

Define α(a) := α(a, π(a)) for all a ∈ V0. Since ψ is a group morphism, so is
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α : T → Ṽ0, and hence

α(a, t) = α((a, π(a)) � (0, t− π(a)))

= α(a, π(a)) + α(0, t− π(a))

= α(a, π(a)) = α(a)

for all (a, t) ∈ T . Again using the fact that ψ is a group morphism, we have
that

γ(a+ b, t+ s+ h(b, a)) = γ(a, t) + γ(b, s) + h̃(α(b), α(a)) (20)

for all (a, t), (b, s) ∈ T . By condition (8), we have that γ(a, t)β(s) = β(ts) for
all s ∈ K and all (a, t) ∈ T . Since β is multiplicative, we get that γ(a, t) = β(t)
for all (a, t) ∈ T . If we apply this on equation (20), then we get, using the fact
that β is additive, that β(h(b, a)) = h̃(α(b), α(a)) for all a, b ∈ V0. It follows
from (9) that α(a)β(t) = α(at) for all a ∈ V0 and all t ∈ K, so (β, α) is a vector
space morphism.

It only remains to show that α : V0 → Ṽ0 is injective. So suppose that
α(a) = α(b) for some a, b ∈ V0. Note that (a, π(a)) and (b, π(b)) are contained
in T . Since ψ[T ] ≤ [T̃ ], we have that [α(a), β(π(a))] = ψ[a, π(a)] ∈ [T̃ ], and
hence π̃(α(a)) − β(π(a)) ∈ F̃ , and similarly π̃(α(b)) − β(π(b)) ∈ F̃ . Since
α(a) = α(b), this implies that β(π(b)−π(a)) ∈ F̃ . It follows that β(π(b)−π(a))
is fixed under σ̃, and hence π(b)− π(a) is fixed under σ since β ◦ σ = σ̃ ◦ β and
since β is injective. So π(b) − π(a) ∈ F , and hence (a, π(b)) ∈ T . But then

ψ[a, π(b)] = [α(a), β(π(b))] = [α(b), β(π(b))] = ψ[b, π(b)] ,

and since ψ is injective, it follows that a = b. We conclude that α is injective,
and we are done.

Theorem 7.10. Let Ω ∼= ΩI(K,σ) and Ω̃ ∼= ΩQ(K̃, Ṽ0, q̃) for some proper

involutory set (K,σ) and some anisotropic quadratic space (K̃, Ṽ0, q̃) with base
point ẽ. Then Ω cannot be isomorphic to a subsystem of Ω̃.

Proof. Let F := FixK(σ). By the definition of the operators ΩI and ΩQ, we

have that V = [K], W = [F ], Ṽ = [Ṽ0] and W̃ = [K̃].
Assume that Ω is isomorphic to a subsystem of Ω̃, with corresponding group

monomorphisms φ and ψ satisfying (6)–(9). We define a map α from K to
Ṽ0 and a map β from F to K̃ by setting φ[t] := [α(t)] and ψ[s] := [β(s)] for
all t ∈ K and all s ∈ F . Since φ and ψ are group monomorphisms, α and β
are additive monomorphisms as well. The conditions (6)–(9) translate into the
following:

α(1) = ẽ , (21)

β(1) = 1̃ , (22)

β(s)α(t) = α(st) , (23)

β(s)q̃(α(t)) = β(tσst) , (24)

for all t ∈ K and all s ∈ F . If we set t = 1 in (23), then we get that α(s) = β(s)ẽ
for all s ∈ F . By induction using (23) again, α(s1 · · · sn) = β(s1) · · ·β(sn)ẽ
for all s1, . . . , sn ∈ F . Since (K,σ) is proper, K is generated (as a ring) by

F , and it follows that β can be extended to a field morphism β̂ : K → K̃
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such that α(t) = β̂(t)ẽ. Since α is injective, so is β̂. It then follows from

(24) that β̂(s)β̂(t)2 = β̂(tσ)β̂(s)β̂(t) for all t ∈ K and all s ∈ F , and hence

β̂(tσ) = β̂(t) for all t ∈ K. Since β̂ is injective, it follows that tσ = t for
all t ∈ K, which contradicts the properness of (K,σ). Hence Ω cannot be
isomorphic to a subsystem of Ω̃.

Theorem 7.11. Let Ω ∼= ΩI(K,σ) and Ω̃ ∼= ΩE(K̃, Ṽ0, q̃) for some proper
involutory set (K,σ) and some quadratic space (K̃, Ṽ0, q̃) of type E6, E7 or E8.
Then Ω cannot be isomorphic to a subsystem of Ω̃.

Proof. Let F := FixK(σ). By the definition of the operators ΩI and ΩE , we
have that V = [K], W = [F ], Ṽ = [Ṽ0] and W̃ = [S̃], where (S̃,�) is the
(non-abelian) group with underlying set X0 ×K as defined in [9, (16.6)]. (See
[9] for more details; we only mention that X0 is a certain vector space over K
and that the group operation � is additive on the X0-component.)

Assume that Ω is isomorphic to a subsystem of Ω̃, with corresponding group
monomorphisms φ and ψ satisfying (6)–(9). We define a map β from K to Ṽ0,
a map α from F to X̃0 and a map γ from F to K̃ by setting φ[t] := [β(t)] and
ψ[s] := [α(s), γ(s)] ∈ [S̃] for all t ∈ K and all s ∈ F . Since φ and ψ are group
morphisms, α and β are additive morphisms as well, By (7), ψ[1] = [0, 1], so
in particular α(1) = 0. Condition (9) implies that α(tσst) = α(s)β(t) for all
t ∈ K and all s ∈ F . If we set s = 1, then it follows that α(tσt) = 0 for all
t ∈ K. Replacing t by t + 1 and subtracting the original equation, we obtain
α(t + tσ) = 0 for all t ∈ K, and hence α(F ) = 0 since char(K) 6= 2. It follows
that ψ(W ) ≤ [0,K], so in fact Ω is isomorphic to a subsystem of ΩQ(K̃, Ṽ0, q̃).
But since Ω is of proper involutory type, this contradicts Theorem 7.10, so Ω
cannot be isomorphic to a subsystem of Ω̃.

The next case we will deal with is by far the most interesting. We will first
recall some definitions and facts from the theory of quadratic forms.

Definition 7.12. Let (K,V0, q) be an anisotropic regular quadratic space (where
K has arbitrary characteristic). Then we define the Clifford algebra C(V0, q) :=
T (V0)/I(V0, q), where T (V0) is the tensor algebra of the vector space V0, i.e.
T (V0) := K ⊕ V0 ⊕ (V0 ⊗ V0) ⊕ (V0 ⊗ V0 ⊗ V0) ⊕ · · · , and I(V0, q) is the ideal
〈u ⊗ u − q(u) · 1 | u ∈ V0〉 of T (V0). The multiplication in C(V0, q) is usually
denoted by juxtaposition, so in particular uu = q(u) ∈ K for all u ∈ V0. The
even Clifford algebra C0(V0, q) is the subalgebra of C(V0, q) generated by the
set {uv | u, v ∈ V0}. The Clifford algebra and the even Clifford algebra admit
a canonical involution τ : v1v2 · · · vk 7→ vkvk−1 . . . v1 for all v1, . . . , vk ∈ V0. If
dimK V0 = n, then dimK C(V0, q) = 2n and dimK C0(V0, q) = 2n−1. Both the
Clifford algebra and the even Clifford algebra are either simple, or the direct
sum of two isomorphic simple algebras.

Definition 7.13. Let (K,V0, q) be an anisotropic regular quadratic space (where
K has arbitrary characteristic) with base point e ∈ V ∗

0 ; denote the bilinear form
corresponding to q by f . Let v := f(e, v)e−v for all v ∈ V0. Then we define the
Clifford algebra with base point C(V0, q, e) := T (V0)/I(V0, q, e), where I(V0, q, e)
is the ideal 〈e − 1, u ⊗ u − q(u) · 1 | u ∈ V0〉 of T (V0). The multiplication in
C(V0, q, e) will also be denoted by juxtaposition, so in particular e = 1 and
uu = q(u) ∈ K for all u ∈ V0. The Clifford algebra with base point admits a
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canonical involution τe : v1v2 · · · vk 7→ vk vk−1 . . . v1 for all v1, . . . , vk ∈ V0. If
dimK V0 = n, then dimK C(V0, q, e) = 2n−1.

Lemma 7.14. Let (K,V0, q) be an anisotropic regular quadratic space with base
point e ∈ V ∗

0 . Then C0(V0, q) ∼= C(V0, q, e). More precisely, there is a K-linear
isomorphism χ : C(V0, q, e) → C0(V0, q) such that χ(u) = eu for all u ∈ V0.
Moreover, χ ◦ τe = τ ◦ χ.

Proof. See, for example, [9, (12.51)], except for the last statement, which can
be checked by a straightforward calculation.

The following definition will become clear in Theorem 7.18:

Definition 7.15. Let (K,V0, q) be an anisotropic regular quadratic space with
char(K) 6= 2. Then we will say that (K,V0, q) is involutoric if one of the
following two conditions is satisfied:

(i) C0(V0, q) ∼= D for some division algebra D ;

(ii) dimK V0 ≡ 0 (mod 4) and C0(V0, q) ∼= D ⊕ D for some division algebra
D .

In case (i), let τ be the canonical involution of C0(V0, q); in case (ii), it follows
from [6, (8.4)] that the canonical involution of C0(V0, q) maps each of the two
components two itself, and hence induces an involution τ onD. In both cases, we
call Ωenv

I (K,V0, q) := ΩI(D, τ) the enveloping quadrangular system of involutory
type of ΩQ(K,V0, q).

Remark 7.16. Let (K,V0, q) be an involutoric quadratic space. Then Ωenv
I (K,V0, q)

is of proper involutory type, except if dimK V0 ≤ 3, or if dimK V0 = 4 and q is
the norm form of a quaternion division algebra.

Lemma 7.17. Let (K,V0, q) be an involutoric quadratic space with base point
e, and let C := C(V, q, e). If C ∼= D for some division algebra D, then let π1

be the identity map from C to D. If C ∼= D ⊕D for some division algebra D,
then let π1 be the projection from C onto the first D-component. In both cases,
the restriction of π1 to V0 is injective.

Proof. This is obvious if C ∼= D, so assume that C ∼= D ⊕ D. Since π1 is
additive, it suffices to show that π1(v) = 0 for some v ∈ V0 implies that v = 0.

So assume that v ∈ V0 is such that π1(v) = 0. Then π1(q(v)e) = π1(vv) =
π1(v)π1(v) = 0, but since π1(e) = 1, this implies that q(v) = 0 and hence v = 0
since q is anisotropic.

Theorem 7.18. Let Ω ∼= ΩQ(K,V0, q) and Ω̃ ∼= ΩI(K̃, σ̃) for some anisotropic

quadratic space (K,V0, q) with base point e and some involutory set (K̃, σ̃). Then
Ω is isomorphic to a subsystem of Ω̃ if and only if (K,V0, q) is involutoric and
Ωenv

I (K,V0, q) is isomorphic to a subsystem of Ω̃. In particular, Ω is isomorphic
to a subsystem of Ωenv

I (K,V0, q) itself.

Proof. Let F̃ := FixK̃(σ̃). By the definition of the operators ΩQ and ΩI , we

have that V = [V0], W = [K], Ṽ = [K̃] and W̃ = [F̃ ].
First assume that (K,V0, q) is involutoric, and that Ωenv

I (K,V0, q) is iso-
morphic to a subsystem of Ω̃. Without loss of generality, we may assume that
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Ω̃ = Ωenv
I (K,V0, q). By Lemma 7.14, we may consider K̃ = D and F̃ = FixK(τe)

as subalgebras of C := C(V0, q, e). Let π1 : C → D be the morphism defined
in Lemma 7.17; then π1(V0) ≤ K̃ and π1(K) = π1(Ke) ≤ F̃ since τe(e) = e.
We define a map φ from V = [V0] to Ṽ = [K̃] and a map ψ from W = [K]
to W̃ = [F̃ ] by setting φ[v] := [π1(v)] and ψ[t] := [π1(t)] for all v ∈ V0 and all
t ∈ K. Then it follows from Lemma 7.17 that φ and ψ are group monomor-
phisms. Moreover,

φ(ε) = φ[e] = [π1(e)] = [1] = ε̃ ,

ψ(δ) = ψ[1] = [π1(1)] = [1] = δ̃ ,

φ[v]ψ[t] = [π1(v)][π1(t)] = [π1(t)π1(v)] = [π1(tv)] = φ[tv] = φ([v][t]) ,

ψ[t]φ[v] = [π1(t)][π1(v)] = [π1(v)
τeπ1(t)π1(v)]

= [π1(vtv)] = [π1(tq(v))] = ψ[tq(v)] = ψ([t][v]) ,

for all v ∈ V0 and all t ∈ K, and we can conclude that Ω is isomorphic to a
subsystem of Ω̃.

Now assume that Ω is isomorphic to a subsystem of Ω̃, with corresponding
group monomorphisms φ and ψ satisfying (6)–(9). We define a map α from V0

to K̃ and a map β from K to F̃ by setting φ[v] := [α(v)] and ψ[t] := [β(t)] for
all v ∈ V0 and all t ∈ K. Since φ and ψ are group monomorphisms, α and β
are additive monomorphisms as well. The conditions (6)–(9) translate into the
following:

α(e) = 1̃ , (25)

β(1) = 1̃ , (26)

β(t)α(v) = α(tv) , (27)

α(v)σ̃β(t)α(v) = β(tq(v)) , (28)

for all v ∈ V0 and all t ∈ K. By repeated use of (27), we get that β(s)β(t)α(e) =
β(s)α(te) = α(ste) = β(st)α(e) for all s, t ∈ K, hence β is multiplicative; it
follows that β(K) is a commutative field which is contained in F̃ . By (28) with
t = 1, we get that

α(v)σ̃α(v) = β(q(v)) (29)

for all v ∈ V0. Replacing v by v+ e and subtracting the original equation yields
α(v) + α(v)σ̃ = β(f(e, v)) and hence, by (27),

α(v) = α(f(e, v)e− v) = β(f(e, v))α(e) − α(v) = α(v)σ̃ (30)

for all v ∈ V0. It follows from (29) and (30) that α(v)α(v) = β(q(v)), and since
α(e) = β(1) by (25) and (26), it follows that there exists an algebra morphism
α̂ : C := C(V0, q, e) → K̃ such that β is the restriction of α̂ to K and α is the
restriction of α̂ to V0.

Suppose first that C is simple. Since α and β are injective, the kernel of α̂
cannot be equal to C, hence it has to be trivial, and therefore α̂ is an algebra
monomorphism. It follows that C is a division algebra. We will write C = D
and γ = α̂ in this case, and we let τ be the standard involution τe of C.

Now suppose that C is the direct sum of two isomorphic simple algebras,
say C = D ⊕D. By the structure theory of Clifford algebras (see, for example,
[6, (8.2)]), this can only occur if dimK V0 is even. Again, the kernel of α̂ cannot
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be equal to C. It cannot be trivial, either, since C has zero divisors but K̃
does not. So it has to be equal to one of the two direct summands, say 0 ⊕D.
But then the restriction of α̂ to the first direct summand is injective, and hence
the induced map from D to K̃ — which we will denote by γ — is an algebra
monomorphism, so D is a division algebra in this case as well. By (30), v ∈ ker α̂
if and only if v ∈ ker α̂. But if we would have dimK V0 ≡ 2 (mod 4), then it
would follow from [6, (8.4)] that the standard involution of the even Clifford
algebra switches the two direct components, and using Lemma 7.14, we would
obtain a contradiction. Hence dimK V0 ≡ 0 (mod 4) in this case. Now we let τ
be the restriction of the standard involution τe of C to its first component D.

So we have shown that (K,V0, q) is involutoric. It remains to show that
Ωenv

I (K,V0, q) = ΩI(D, τ) is isomorphic to a subsystem of Ω̃ = ΩI (K̃, σ̃). But
γ is an injective map from D into K̃, and it follows from (30) that γ ◦ τ = σ̃ ◦ γ.
By Theorem 7.5, this finishes the proof of this theorem.

We have now reduced the case ΩQ ≤ ΩI to the case ΩI ≤ ΩI which we have
already considered in Theorem 7.5.

Remark 7.19. The condition on a quadratic space to be involutoric looks very
restrictive, and in fact, it is. Nevertheless, involutoric quadratic spaces exist in
any dimension. The following example was communicated by J.-P. Tignol, and
is a slight modification of the appendix of [8].

Let K be a field with char(K) 6= 2. Suppose that Q1, . . . , Qn are quaternion
algebras over K such that A := Q1 ⊗ · · · ⊗Qn is a division algebra, and denote
by i1, j1, . . . , in, jn the usual generators of the quaternion algebras Q1, . . . , Qn;
moreover let k` := i`j` for every ` ∈ {1, . . . , n}. Consider the elements u` :=
k1 · · · k`−1i` and v` := k1 · · · k`−1j` for every ` ∈ {1, . . . , n − 1}, and let w :=
k1 · · · kn. These elements pairwise anticommute and are square-central; denote
their squares by a1, b1, . . . , an, bn, c.

We can map the Clifford algebra of the 2n-dimensional quadratic form q =
〈a1, b1, . . . , an, bn〉 to A by carrying the basis elements of the quadratic space to
the elements u1, v1, . . . , un, vn. This gives us an algebra homomorphism C(q) →
A, which has to be injective since C(q) is simple, and has to be surjective by
dimension count, and hence C(q) ∼= A. Since A is division, q is anisotropic.

If the quaternion algebrasQ1, . . . , Qn are chosen in such a way that disc(q) 6∈
K2, then it follows that C0(q) is also a division algebra, which is central over
the discriminant extension field of q.

Similarly, we can consider the (2n + 1)-dimensional anisotropic quadratic
form q′ = 〈a1, b1, . . . , an, bn, c〉, and one can check that C0(q

′) ∼= A.

Theorem 7.20. Let Ω ∼= ΩQ(K,V0, q) and Ω̃ ∼= ΩP (K̃, σ̃, Ṽ0, π̃) for some
anisotropic quadratic space (K,V0, q) and some anisotropic pseudo-quadratic
space (K̃, σ̃, Ṽ0, π̃). Then Ω is isomorphic to a subsystem of Ω̃ if and only if Ω
is already isomorphic to a subsystem of ΩI (K̃, σ̃).

Proof. Let F̃ := FixK̃(σ̃). Denote the bilinear form corresponding to Ω by f .
By the definition of the operators ΩQ and ΩP , we have that V = [V0], W = [K],

Ṽ = [K̃] and W̃ = [T̃ ], where the group (T,�) is defined as in Theorem 7.8.
Assume that Ω is isomorphic to a subsystem of Ω̃, with corresponding group

monomorphisms φ and ψ satisfying (6)–(9). We define a map α from V0 to K̃,
a map β from K to Ṽ0 and a map γ from K to K̃ by setting φ[v] := [α(v)] and
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ψ[t] := [β(t), γ(t)] ∈ [T̃ ] for all v ∈ V0 and all t ∈ K. Since φ and ψ are group
morphisms, α and β are additive morphisms as well. The conditions (7) and
(9) imply the following:

β(1) = 0 , (31)

β(t)α(v) = β(tq(v)) , (32)

for all v ∈ V0 and all t ∈ K. If we set t = 1 in (32), then we get that β(q(v)) = 0
for all v ∈ V0. Linearizing this identity gives us that β(f(u, v)) = 0 for all
u, v ∈ V0. Since char(K) 6= 2, f 6= 0, and hence f is surjective, so β(K) = 0. It
follows that ψ[K] ≤ [0, F̃ ], and hence Ω is in fact isomorphic to a subsystem of
ΩI(K̃, σ̃).

Theorem 7.21. Let Ω ∼= ΩQ(K,V0, q) and Ω̃ ∼= ΩE(K̃, Ṽ0, q̃) for some anisotropic

quadratic space (K,V0, q) and some anisotropic quadratic space (K̃, Ṽ0, q̃) of type
E6, E7 or E8. Then Ω is isomorphic to a subsystem of Ω̃ if and only if Ω is
already isomorphic to a subsystem of ΩQ(K̃, Ṽ0, q̃).

Proof. The proof of this theorem is very similar to the proof of Theorem 7.20.
Denote the bilinear form corresponding to Ω by f . By the definition of the
operators ΩQ and ΩE , we have that V = [V0], W = [K], Ṽ = [Ṽ0] and W̃ = [S̃],

where (S̃,�) is the (non-abelian) group with underlying set X0 ×K as defined
in [9, (16.6)], as in Theorem 7.11.

Assume that Ω is isomorphic to a subsystem of Ω̃, with corresponding group
monomorphisms φ and ψ satisfying (6)–(9). We define a map α from V0 to Ṽ0,
a map β from K to X̃0 and a map γ from K to K̃ by setting φ[v] := [α(v)] and
ψ[t] := [β(t), γ(t)] ∈ [S̃] for all v ∈ V0 and all t ∈ K. Since φ and ψ are group
morphisms, α and β are additive morphisms as well. The conditions (7) and
(9) imply the following:

β(1) = 0 , (33)

β(t)α(v) = β(tq(v)) , (34)

for all v ∈ V0 and all t ∈ K. If we set t = 1 in (34), then we get that β(q(v)) = 0
for all v ∈ V0. Again, it follows that β = 0, and hence ψ[K] ≤ [0, K̃]. Therefore
Ω is in fact isomorphic to a subsystem of ΩQ(K̃, Ṽ0, q̃).

Theorem 7.22. Let Ω ∼= ΩE(K,V0, q) and Ω̃ ∼= ΩP (K̃, σ̃, Ṽ0, π̃) for some
anisotropic quadratic space (K,V0, q) of type E6, E7 or E8, and some proper
anisotropic pseudo-quadratic space (K̃, σ̃, Ṽ0, π̃). Then Ω cannot be isomorphic
to a subsystem of Ω̃.

Proof. Assume that Ω is isomorphic to a subsystem of Ω̃. Then in particular,
ΩQ(K,V0, q) is isomorphic to a subsystem of Ω̃. By Theorem 7.20, this implies

that ΩQ(K,V0, q) is isomorphic to a subsystem of ΩI(K̃, σ̃). It thus follows
from Theorem 7.18 that (K,V0, q) has to be involutoric. But by [9, (12.43)],
C0(q) ∼= Mat4(E) if q is of type E6, C0(q) ∼= Mat4(D)⊕Mat4(D) if q is of type
E7, and C0(q) ∼= Mat32(K) ⊕ Mat32(K) if q is of type E8. In all three cases,
we obtain a contradiction, and hence Ω cannot be isomorphic to a subsystem of
Ω̃.
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The remaining two cases are very similar to each other, and we consider
them together. The group S, the map (a, v) 7→ av from X0 ×V0 → X0, and the
maps h, θ and g (and similar objects for Ω̃) are as in [9, (16.6)].

Theorem 7.23. (i) Let Ω ∼= ΩP (K,σ,X0, π) and Ω̃ ∼= ΩE(K̃, Ṽ0, q̃) for some
proper anisotropic pseudo-quadratic space (K,σ, V0, π) and some quadratic
space (K̃, Ṽ0, q̃) of type E6, E7 or E8 with base point ẽ. Then Ω is iso-
morphic to a subsystem of Ω̃ if and only if (K,σ) is not proper, with
Ω ∼= ΩQ(F,K, q), and there exists a field monomorphism γ : F ↪→ K̃ and

γ-vector space monomorphisms β : K ↪→ Ṽ0 and α : X0 ↪→ X̃0 such that

β(1) = ẽ ,

α(av) = α(a)β(v) ,

γ(q(v)) = q̃(β(v)) ,

h̃(α(a), α(b)) = β(h(a, b)) ,

for all a, b ∈ X0 and all v ∈ V0.

(ii) Let Ω ∼= ΩE(K,V0, q) and Ω̃ ∼= ΩE(K̃, Ṽ0, q̃) for some quadratic spaces
(K,V0, q) and (K̃, Ṽ0, q̃) of type E6, E7 or E8, with base points e and
ẽ, respectively. Then Ω is isomorphic to a subsystem of Ω̃ if and only
if there exists a field monomorphism γ : K ↪→ K̃ and γ-vector space
monomorphisms β : V0 ↪→ Ṽ0 and α : X0 ↪→ X̃0 such that

β(e) = ẽ ,

α(av) = α(a)β(v) ,

γ(q(v)) = q̃(β(v)) ,

h̃(α(a), α(b)) = β(h(a, b)) ,

for all a, b ∈ X0 and all v ∈ V0.

Proof. We start by showing that if Ω ∼= ΩP (K,σ,X0, π) is isomorphic to a
subsystem of Ω̃ ∼= ΩE(K̃, Ṽ0, q̃), then the choice of the involutory set (K,σ) is
very limited. So suppose that Ω ≤ Ω̃, then also ΩI(K,σ) is isomorphic to a
subsystem of Ω̃. Then Theorem 7.11 implies that (K,σ) is not proper. Also,
since the pseudo-quadratic space (K,σ,X0, π) is proper, we have σ 6= 1. It
follows from Remark 7.3 that Ω ∼= ΩQ(F,K, q), where F is a commutative field,
and K is either a separable quadratic extension field over F with norm q, or
a quaternion division algebra over F with norm q. In these two cases, we can
reparametrize the quadrangular system Ω in exactly the same way as we do
for the exceptional quadrangular systems of type E6, E7 and E8 (by defining
V0 := K and S being the group with underlying set X0 × F defined as usual),
using the isomorphism T → S : (a, t) 7→ (a, t − π(a)) for all (a, t) ∈ T ; see also
[9, (26.44)]. Note that the map (a, v) 7→ av from X0 × V0 = K → X0 and the
map h : X0 ×X0 → V0 = K do not change under this isomorphism.

Only to avoid confusion in the notation, we will assume from now on that
we are in case (ii), even though the proof of case (i) is now completely identical.

First assume that there exists a field monomorphism γ : K ↪→ K̃ and γ-
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vector space monomorphisms β : V0 ↪→ Ṽ0 and α : X0 ↪→ X̃0 such that

β(e) = ẽ , (35)

α(av) = α(a)β(v) , (36)

γ(q(v)) = q̃(β(v)) , (37)

h̃(α(a), α(b)) = β(h(a, b)) , (38)

for all a, b ∈ X0 and all v ∈ V0. Since g(a, b) = f(h(b, a), e)/2 for all a, b ∈ X0

by [9, (13.26)], and similarly for g̃, it follows from (35), (37) and (38) that
g(α(a), α(b)) = γ(g(a, b)) for all a, b ∈ X0. We define a map φ from V = [V0]
to Ṽ = [Ṽ0] and a map ψ from W = [S] to W̃ = [S̃] by setting φ[v] := [β(v)]
and ψ[a, t] := [α(a), γ(t)] for all v ∈ V0 and all (a, t) ∈ S. Since α and β
are additive monomorphisms, so are φ and ψ, because of the condition that
γ(g(a, b)) = g̃(α(a), α(b)) for all a, b ∈ X0. Since θ(a, v) = h(a, av)/2 for all
a ∈ X0 and all v ∈ V0 by [9, (13.28)], it follows from (36) and (38) that
θ̃(α(a), β(v)) = β(θ(a, v)) for all a ∈ X0 and all v ∈ V0, and since β is a
γ-semilinear vector space isomorphism, we also have β(tv) = γ(t)β(v) for all
t ∈ K and all v ∈ V0. Using (35), (36) and (37), we thus get that

φ(ε) = φ[e] = [β(e)] = [ẽ] = ε̃ ,

ψ(δ) = ψ[0, 1] = [α(0), γ(1)] = [0, 1̃] = δ̃ ,

φ[v]ψ[a, t] = [β(v)][α(a), γ(t)] = [θ̃(α(a), β(v)) + γ(t)β(v)]

= [β(θ(a, v) + tv)] = φ[θ(a, v) + tv] = φ([v][a, t]) ,

ψ[a, t]φ[v] = [α(a), γ(t)][β(v)] = [α(a)β(v), γ(t)q̃(β(v))]

= [α(av), γ(tq(v))] = ψ[av, tq(v)] = ψ([a, t][v]) ,

for all v ∈ V0 and all (a, t) ∈ S, and we can conclude that Ω is isomorphic to a
subsystem of Ω̃.

Now assume that Ω is isomorphic to a subsystem of Ω̃, with corresponding
group monomorphisms φ and ψ satisfying (6)–(9). We define a map β from V0

to Ṽ0, a map α from S to X̃0 and a map γ from S to K̃ by setting φ[t] := [β(t)]
and ψ[a, t] := [α(a, t), γ(a, t)] ∈ [S̃] for all t ∈ K and all (a, t) ∈ S. Moreover,
let α(a) := α(a, 0) and γ(t) := γ(0, t) for all a ∈ X0 and all t ∈ K. By (6),
β(e) = ẽ. If we restrict ψ to [0,K], then we are back in the situation of Theorem
7.21, and therefore γ : K → K̃ is a field monomorphism and β : V0 → Ṽ0 is a
γ−semilinear vector space monomorphism, such that q̃(β(v)) = γ(q(v)) for all
v ∈ V0; moreover, α(0, t) = 0 for all t ∈ F . Since ψ is additive,

α(a+ b, t+ s+ g(a, b)) = α(a, t) + α(b, s) , (39)

γ(a+ b, t+ s+ g(a, b)) = γ(a, t) + γ(b, s) + g̃(α(a, t), α(b, s)) , (40)

for all (a, t), (b, s) ∈ X0. If we set t = 0 and b = 0 in (39), then we get that
α(a, s) = α(a, 0) + α(0, s) for all (a, s) ∈ X0, and hence α(a, s) = α(a) for all
(a, s) ∈ X0. Similarly, γ(a, s) = γ(a, 0)+γ(s) for all (a, s) ∈ X0. If we substitute
this last identity in (40), then we get that

γ(a+ b, 0) + γ(g(a, b)) = γ(a, 0) + γ(b, 0) + g̃(α(a), α(b)) (41)

for all a, b ∈ X0. Remember that char(K) 6= 2. If we interchange a and b in
(41), and add the result to (41), then we get, using the fact that g and g̃ are
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anti-symmetric by [9, (13.47.i)], that 2γ(a + b, 0) = 2(γ(a, 0) + γ(b, 0)) for all
a, b ∈ X0, and hence γ : S → K is additive in the X0-component. The identities
(8) and (9) translate into the following:

θ̃(α(a), β(v)) + γ(a, t)β(v) = β(θ(a, v) + tv) , (42)

α(a)β(v) = α(av) , (43)

γ(a, t)q̃(β(v)) = γ(av, tq(v)) , (44)

for all v ∈ V0 and all (a, t) ∈ S. If we substitute 2v for v and 0 for t in (44),
then we get that γ(a, 0)q̃(2β(v)) = γ(2av, 0) for all a ∈ X0 and all v ∈ V0.
Using the fact that γ : S → K is additive in the X0-component, it follows that
4γ(a, 0)q̃(β(v)) = 2γ(av, 0) = 2γ(a, 0)q̃(β(v)), and if we choose v 6= 0, then
q̃(β(v)) 6= 0 since β is injective and q̃ is anisotropic; hence γ(a, 0) = 0 for all
a ∈ X0, and therefore γ(a, t) = γ(t) for all (a, t) ∈ S.

Since β is a γ-vector space morphism, β(te) = γ(t)ẽ for all t ∈ K, and it
thus follows from (43) that α(ta) = α(a · te) = α(a)β(te) = γ(t)α(a) for all
t ∈ K and all a ∈ X0, so α is a γ-vector space morphism as well. Also, since ψ
is injective, α : X0 → X̃0 and γ : K → K̃ are injective as well.

It only remains to show that h̃(α(a), α(b)) = β(h(a, b)) for all a, b ∈ X0. By
[9, (26.19.i)],

θ(a+ b, e) − θ(a, e) − θ(b, e) = h(b, a) − g(a, b)e (45)

for all a, b ∈ X0, and a similar identity holds in Ω̃. On the other hand, it follows
from (42) with t = 0 that θ̃(α(a), ẽ) = β(θ(a, e)) for all a ∈ X0. If we evaluate
this identity in a+ b with a, b ∈ X0, then it follows from (45) that

h̃(α(b), α(a)) − g̃(α(a), α(b))ẽ = β(h(b, a)) − β(g(a, b)e)

for all a, b ∈ X0. Since β(g(a, b)e) = γ(g(a, b))ẽ = g̃(α(a), α(b))ẽ by (41), we
conclude that h̃(α(b), α(a)) = β(h(b, a)) for all a, b ∈ X0, and we are done.

8 Some examples of non-algebraic inclusions of

Moufang quadrangles

In this section, we give two examples of inclusions of Moufang quadrangles which
are not algebraic.

First assume that Γ1 and Γ2 are two Moufang quadrangles such that Γ1 is a
subquadrangle of Γ2, and that none of the root groups is 2-torsion. By Lemma
6.15.(i), the inclusion is either algebraic or dual. We now show that these dual
inclusions do really exist.

Theorem 8.1. Let Ω̃ ∼= ΩE(K,V0, q) for some quadratic space (K,V0, q) of
type E6, E7 or E8 with base point e ∈ V ∗

0 , and assume that char(K) 6= 2. We
will write π(a) := θ(a, e) for all a ∈ X0. Let a ∈ X0 be arbitrary, let Va be
the one-dimensional subspace of V0 generated by a, and let qa : Va → K be the
quadratic form defined by qa(ta) = t2 for all t ∈ K. Let Ω ∼= ΩQ(K,Va, qa).

Then Γ(Ω) is isomorphic to a dually included subquadrangle of Γ(Ω̃).
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Proof. Let φ1, . . . , φ4 be the maps defined by

φ1 : U1 → Ũ4 : x1(t) 7→ x̃4(te) ,

φ2 : U2 → Ũ3 : x2(ta) 7→ x̃3(−ta, 0) ,

φ3 : U3 → Ũ2 : x3(t) 7→ x̃2(tπ(a)) ,

φ4 : U4 → Ũ1 : x4(ta) 7→ x̃1(ta, 0) ,

for all t ∈ K. Note that x̃3(−ta, 0) = x̃3(ta, 0)−1 since char(K) 6= 2. We have
to show that these maps preserve the commutator relations, that is, we have to
check whether

φ2([x1(t), x3(s)]) = [φ1(x1(t)), φ3(x3(s))] ,

φ3([x2(ta), x4(sa)]) = [φ2(x2(ta)), φ4(x4(sa))] ,

φ2([x1(t), x4(sa)]2) · φ3([x1(t), x4(sa)]3) = [φ1(x1(t)), φ4(x4(sa))] ,

for all s, t ∈ K.

φ2([x1(t), x3(s)]) = φ2(x2(0)) = x̃3(0, 0) ,

[φ1(x1(t)), φ3(x3(s))] = [x̃4(te), x̃2(sπ(a))] = [x̃2(sπ(a)), x̃4(−te)
−1]−1

= x̃3(0, f(sπ(a),−te))−1 = x̃3(0, 0)−1 = x̃3(0, 0) ,

for all s, t ∈ K, where we have used the fact that f(e, π(a)) = 0 by [9, (13.41)].

φ3([x2(ta), x4(sa)]) = φ3([x2(ta), x4(−sa)
−1]) = φ3(x3(fa(ta,−sa)))

= φ3(x3(−2st)) = x̃2(−2stπ(a)) ,

[φ2(x2(ta)), φ4(x4(sa))] = [x̃3(−ta, 0), x̃1(sa, 0)] = [x̃1(sa, 0), x̃3(ta, 0)−1]−1

= x̃2(h(sa, ta))
−1 = x̃2(−2stπ(a)) ,

for all s, t ∈ K, where we have used the fact that h(a, a) = 2π(a) by [9, (13.28)].

φ2([x1(t), x4(sa)]2) · φ3([x1(t), x4(sa)]3)

= φ2([x1(t), x4(−sa)
−1]2) · φ3([x1(t), x4(−sa)

−1]3)

= φ2(x2(−tsa)) · φ3(x3(tqa(−sa)))

= x̃3(tsa, 0) · x̃2(ts
2π(a)) ,

[φ1(x1(t)), φ4(x4(sa))] = [x̃4(te), x̃1(sa, 0)]

= [x̃1(sa, 0), x̃4(−te)
−1]−1

=
(

x̃2(θ(sa,−te)) · x̃3(sa · (−te), 0)
)

−1

= x̃3(tsa, 0) · x̃2(ts
2π(a)) ,

for all s, t ∈ K, where we have used the fact that θ(sa, tv) = s2tθ(a, v) for all
a ∈ X0, all v ∈ V0 and all s, t ∈ K, by [9, (13.35)]. Hence all the commutator
relations are preserved. It is obvious that the maps φ1, . . . , φ4 are monomor-
phisms, so we are done.

This is just one example of a dual inclusion; there are definitely more exam-
ples, but we do not want to give a classification of all dual inclusions here.
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We now give an easy example of a non-algebraic non-dual inclusion; this
can only exist if some of the root groups are 2-torsion, so we have to consider
algebraic structures where the characteristic of the corresponding (skew) field
has characteristic equal to 2.

Theorem 8.2. Let F = GF(2) be the field with 2 elements, and let K := F (α)
for some α which is algebraically independent over F . Let V0 be a 3-dimensional
vector space over K, and let q : V0 → K : (y1, y2, y3) 7→ α(y2

1 + y1y2 + y2
2) + y2

3;
then q is an anisotropic quadratic form from V0 to K with base point e =
(0, 0, 1) ∈ V ∗

0 . Let V1 be a 2-dimensional vector space over K, and let p :
V1 → K : (z1, z2) = (z2

1 + z1z2 + z2
2); then q is an anisotropic quadratic form

from V1 to K with base point d = (1, 0) ∈ V ∗

1 . Let Ω̃ ∼= ΩQ(K,V0, q) and
Ω ∼= ΩQ(K,V1, p). Then Γ(Ω) is isomorphic to a non-algebraically and non-

dually included subquadrangle of Γ(Ω̃).

Proof. Observe that

f0((y1, y2, y3), (z1, z2, z3)) = α(y1z2 + y2z1) and

f1((y1, y2), (z1, z2)) = y1z2 + y2z1

for all y1, y2, y3, z1, z2, z3 ∈ K. Let φ1, . . . , φ4 be the maps defined by

φ1 : U1 → Ũ1 : x1(t) 7→ x̃1(t) ,

φ2 : U2 → Ũ2 : x2(z1, z2) 7→ x̃2(z1, z2, 0) ,

φ3 : U3 → Ũ3 : x3(t) 7→ x̃3(αt) ,

φ4 : U4 → Ũ4 : x4(z1, z2) 7→ x̃4(z1, z2, 0) ,

for all t, z1, z2 ∈ K. Note that all elements of the root groups are equal to their
own inverse, since all the root groups are 2-torsion. Again, we start by showing
that these maps preserve the commutator relations. The relation [U1, U3] = 1
is obviously preserved. Moreover,

φ3([x2(y1, y2), x4(z1, z2)]) = φ3(x3(y1z2 + y2z1))

= x̃3(α(y1z2 + y2z1)) ,

[φ2(x2(y1, y2)), φ4(x4(z1, z2))] = [x̃2(y1, y2, 0), x̃4(z1, z2, 0)]

= x̃3(α(y1z2 + y2z1)) ,

for all y1, y2, z1, z2 ∈ K, and

φ2([x1(t), x4(y1, y2)]2) · φ3([x1(t), x4(y1, y2)]3)

= φ2(x2(ty1, ty2)) · φ3(x3(t(y
2
1 + y1y2 + y2

2)))

= x̃2(ty1, ty2, 0) · x̃3(αt(y
2
1 + y1y2 + y2

2)) ,

[φ1(x1(t)), φ4(x4(y1, y2))] = [x̃1(t), x̃4(y1, y2, 0)]

= x̃2(ty1, ty2, 0) · x̃3(tα(y2
1 + y1y2 + y2

2)) ,

for all t, y1, y2 ∈ K, and hence all commutator relations are preserved.
It remains to show that the inclusion is not algebraic. So suppose that there

exists a quadrangular system Ω̃′ = (Ṽ , W̃ , τV , τW , ε, δ) with corresponding maps
F̃ and H̃ , and a subsystem Ω′ = (V,W, τV , τW , ε, δ) of Ω̃′ with corresponding
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maps F and H , such that Γ(Ω) ∼= Γ(Ω′) and Γ(Ω̃) ∼= Γ(Ω̃′). Since CU4
(U2) = 1,

Rad(F ) = 0, and in particular ε 6∈ Rad(F ). On the other hand, CŨ4
(Ũ2) 6= 1,

since it contains the element x4(e), so Rad(F̃ ) 6= 0, and by axiom (Q10) in [2,
Section 2], ε ∈ Rad(F̃ ) ≤ Rad(F ). This contradiction finishes the proof.

The same remark as with the previous example also holds here: There are
lots of other examples of non-algebraic non-dual inclusions, but we do not clas-
sify them in this paper. In particular, one can construct some more peculiar
examples in the exceptional quadrangles of type E6, E7 and E8, as well as in
those of type F4, but it is out of the scope to go into detail on those examples
here.

9 Full and ideal inclusions of Moufang quadran-

gles

In this final section, we will describe the full and ideal inclusions of two Moufang
quadrangles.

Definition 9.1. Let Γ2 be an arbitrary generalized polygon. Then a subquad-
rangle Γ1 of Γ2 is called a full subpolygon if every point row of Γ1 coincides
with the corresponding point row of Γ2; it is called an ideal subpolygon if every
line pencil of Γ1 coincides with the corresponding line pencil of Γ2.

Lemma 9.2. Let Γ1 and Γ2 be Moufang quadrangles for which none of the root
groups is 2-torsion, and suppose that Γ1 is a full or ideal subquadrangle of Γ2.
Then Γ1 is algebraically included in Γ2.

Proof. Let Γ1
∼= Γ(Ω) and Γ2

∼= Γ(Ω̃) for some quadrangular systems Ω =
(V,W, τV , τW , ε, δ) and Ω̃ = (Ṽ , W̃ , τṼ , τW̃ , ε̃, δ̃). By Lemma 6.15.(i), the inclu-
sion of Γ1 in Γ2 is either algebraic or dual.

So suppose that it is dual, and let φi : Ui ↪→ Ũ5−i for i ∈ {1, . . . , 4} be group
monomorphisms preserving the commutator relations. In particular,

[φ1(U1), φ3(U3)] = 1 and (46)

[φ2(U2), φ4(U4)] 6= 1 . (47)

It follows from (47) that [Ũ1, Ũ3] 6= 1, hence Ω̃ is wide, so it is either of pseudo-
quadratic form type, or of type E6, E7 or E8; in particular, W̃ is not abelian.
Since V is abelian, we cannot have that V ∼= W̃ , and in particular, φ2(U2) 6= Ũ3

and φ4(U4) 6= Ũ1. But since the inclusion is full or ideal, we must then have
φ1(U1) = Ũ4 and φ3(U3) = Ũ2. It then follows from (46) that [Ũ2, Ũ4] = 1,
which contradicts the fact that none of the root groups is 2-torsion. Hence the
inclusion cannot be dual, so it must be algebraic.

Definition 9.3. Let Ω̃ = (Ṽ , W̃ , τV , τW , ε, δ) be a quadrangular system, and
let Ω = (V,W, τV , τW , ε, δ) be a subsystem of Ω̃ such that the corresponding
inclusion of Moufang quadrangles is full or ideal. Then we say that Ω is a full
subsystem of Ω̃. If V = Ṽ , then we call Ω a V -full subsystem of Ω̃, and if
W = W̃ , then we call it a W -full subsystem of Ω̃.

We now consider an arbitrary quadrangular system of a certain type, and
we examine which quadrangular systems can occur as full subsystems.
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Theorem 9.4. (i) Let Ω̃ ∼= ΩI(K,σ) for some proper involutory set (K,σ).
Then Ω̃ does not have full subsystems other than Ω̃ itself.

(ii) Let Ω̃ ∼= ΩQ(K,V0, q) for some anisotropic quadratic space (K,V0, q).

Then every W -full subsystem of Ω̃ is of the form Ω ∼= ΩQ(K,V1, q|V1
)

for some subspace V1 of V0; Ω̃ does not have V -full subsystems other than
Ω̃ itself.

(iii) Let Ω̃ ∼= ΩP (K,σ, V0, π) for some proper pseudo-quadratic space (K,σ, V0, π).
Then every V -full subsystem of Ω̃ is of the form Ω ∼= ΩP (K,σ, V1, π|V1

)
for some subspace V1 of V0 (where Ω might or might not be proper); Ω̃
does not have W -full subsystems other than Ω̃ itself.

(iv) Let Ω̃ ∼= ΩE(K,V0, q) for some quadratic space (K,V0, q) of type E6, E7

or E8. Then there is only one proper V -full subsystem of Ω̃, namely
Ω ∼= ΩQ(K,V0, q); Ω̃ does not have W -full subsystems other than Ω̃ itself.

Proof. Let Ω̃ = (Ṽ , W̃ , τV , τW , ε, δ) be a quadrangular system, and let Ω =
(V,W, τV , τW , ε, δ) be a subsystem of Ω̃.

(i) Suppose that Ω̃ ∼= ΩI(K,σ). Then F̃ (Ṽ , Ṽ ) = W̃ since char(K) 6= 2. In
particular, if V = Ṽ , then it follows from F (V, V ) ≤ W that W = W̃ as
well, hence Ω = Ω̃.

On the other hand, suppose that W = W̃ . Since (K,σ) is proper, K
is generated by FixK(σ), and hence every element v ∈ Ṽ = [K] can be
written as v = εw1 · · ·wn for some n and some elements w1, . . . , wn ∈
W̃ = [FixK(σ)]. But this implies that v ∈ εW · · ·W ≤ V , so V = Ṽ as
well, and again, we conclude that Ω = Ω̃.

(ii) Suppose that Ω̃ ∼= ΩQ(K,V0, q) for some anisotropic quadratic space

(K,V0, q). By Theorem 7.10, every subsystem of Ω̃ has to be of quadratic
form type as well. Since char(K) 6= 2, the bilinear form f corresponding
to q is not identically zero, and hence surjective, so F̃ (Ṽ , Ṽ ) = W̃ . Again,
it follows that every V -full subsystem is also W -full and hence equal to Ω̃
itself.

So suppose that W = W̃ . It then follows that Ω ∼= ΩQ(K,V1, p) for some
subspace V1 ≤ V0, and since τW ([t], [v]) = [tq(v)] for all t ∈ K and all
v ∈ V0, and similarly τW ([t], [v]) = [tp(v)] for all t ∈ K and all v ∈ V1, it
follows that p is the restriction of q to V1, which is what we had to show.

Note that, in principle, we have to require V1 to contain the base point of
(K,V0, q), but since the base point can be chosen arbitrarily (see Remark
7.7), this restriction is obsolete.

(iii) Suppose that Ω̃ ∼= ΩP (K,σ, V0, π) for some proper pseudo-quadratic space
(K,σ, V0, π). Suppose that W = W̃ . Since (K,σ, V0, π) is proper, the
corresponding skew-hermitian map h : V0×V0 → K is not identically zero,
and hence onto. Therefore H̃(W̃ , W̃ ) = Ṽ , and it follows that V = Ṽ as
well, so Ω = Ω̃.

So assume that V = Ṽ . Suppose first that Ω is of involutory type. Since
V = Ṽ = [K], we must have Ω ∼= ΩI(K,σ

′) for some involution σ′ of K.
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But if we evaluate εF (ε, [t]) − [t] in Ω and in Ω̃, then we get that σ′ = σ,
and hence Ω ∼= ΩI(K,σ) ∼= ΩP (K,σ, 0, 0).

Next, suppose that Ω is of quadratic form type. By Theorem 7.20, Ω is
a subsystem of ΩI(K,σ), and by Theorem 7.18, the involutory set (K,σ)
is not proper, and hence ΩI(K,σ) is of quadratic form type. Since Ω is a
V -full subsystem of ΩI(K,σ), it follows from (ii) of this theorem that we
must have Ω ∼= ΩI(K,σ) ∼= ΩP (K,σ, 0, 0).

Now suppose that Ω is of proper pseudo-quadratic form type. Since V =
Ṽ = [K], we must have Ω ∼= ΩP (K,σ′, V1, π

′) for some involution σ′ of K,
some vector space V1 over K and some anisotropic pseudo-quadratic form
π′ from V1 to K. Since ΩI(K,σ

′) is then also a V -full subsystem of Ω̃, it
follows as before that σ′ = σ. It follows from the relation [a, 0][t] = [at, 0]
for all a ∈ V0 and all v ∈ K that the additive subgroup V1 ≤ V0 is in fact
a K-subspace of V0. Since π′(v) = h(v, v)/2 = π(v) for all v ∈ V1, π

′ is
the restriction of π to V1, and hence we have shown that Ω is as required.

Finally, Ω cannot be of type E6, E7 or E8 by Theorem 7.22.

(iv) Suppose that Ω̃ ∼= ΩE(K,V0, q) for some quadratic space of type E6, E7

or E8. Suppose that W = W̃ . By [9, (13.25)], the corresponding map
h : X0 ×X0 → V0 is surjective. Therefore H̃(W̃ , W̃ ) = Ṽ , and it follows
that V = Ṽ as well, so Ω = Ω̃.

So assume that V = Ṽ . We have that F̃ (Ṽ , Ṽ ) = [0,K] < [S] = W̃ , and
hence F (V, V ) = [0,K] as well; in particular, [0,K] ≤ W . If W = [0,K],
then Ω ∼= ΩQ(K,V0, q). So we may now assume that there exists an
element (ξ, t) ∈ S such that [ξ, t] ∈ W . Since [0, t] ∈ W as well, we also
have that [ξ, 0] ∈ W . It then follows from the relation [a, 0][v] = [av, 0]
for all a ∈ X0 and all v ∈ V0 that [ξv, 0] ∈ W . Continuing in this way, we
obtain that [ξV0 · · ·V0, 0] ≤ W . By [9, (27.7)], however, ξC0(V0, q) = X0,
and hence [X0, 0] ≤W . Again using the fact that [0,K] ≤W , we conclude
that W = W̃ , and hence Ω = Ω̃.
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Abh. Math. Sem. Univ. Hamburg 9, 1933, pp. 207–222.

[8] J.-P. Tignol: Réduction de l’indice d’une algèbre simple centrale sur le
corps des fonctions d’une quadrique, Bull. Soc. Math. Belg., Sér. A 42,
1990, pp. 735–745.

[9] J. Tits and R. Weiss: “Moufang Polygons”, Springer Monographs in
Mathematics, Springer-Verlag, Berlin/Heidelberg/New York, 2002.

[10] H. Van Maldeghem: “Generalized Polygons”, Monographs in Mathe-
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