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Abstract

Let (G, B, N) be a group with an irreducible spherical BN-pair of rank at least
2, and let U be a nilpotent normal subgroup of B such that B = U(B ∩ N). We
show that U is unique with respect to B. As a corollary, we obtain a complete
classification of all irreducible spherical split BN-pairs of rank at least two.

Mathematics Subject Classification 2000: 20E42, 51E12, 51E24.
Key words and phrases: Split BN-pairs, Tits systems, spherical buildings, Moufang buildings, Mouf-
ang polygons

1 Introduction

Let (G,B,N) be a group with a BN-pair (also called a Tits system). In this paper,
we will only be interested in the spherical case, i. e. the case where the Weyl group
W = N/(B ∩ N) is finite (and irreducible). The BN-pair is called split if there exists a
normal nilpotent subgroup U of B such that UH = B, where H = B ∩ N . There is a
unique spherical building Ω associated with (G,B,N), and B is associated with a unique
maximal flag, or chamber, C of Ω. The condition UH = B now immediately translates
into the property that U acts transitively on the set of chambers of Ω opposite C. Hence
it makes sense to call U a transitive normal nilpotent subgroup of B. We remark that
we always assume that B acts faithfully on Ω; this can be achieved by factoring out
the kernel of the action. There is no point in classifying the transitive normal nilpotent
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subgroups of the Borel subgroup in case G does not act faithfully on Ω (because one can
take arbitrary direct products). The only interesting case in that respect is when G is a
perfect central extension of the corresponding simple group. Our result easily implies that
in this case the transitive normal nilpotent subgroup of B has to contain the standard
unipotent subgroup U+ (see below for definitions).

To every Tits system corresponds a building. Spherical Tits systems correspond to spher-
ical buildings, and when the (irreducible) rank is at least three, then these buildings are
classified. However, there may be many Tits systems related to one building, and a clas-
sification seems out of reach, as Tits pointed out in 11.14 of [10]. In the rank 2 case, even
the buildings are not classified [5, 11], but recently it was shown that a split BN-pair of
spherical and irreducible rank 2 is essentially equivalent to the so-called Moufang condi-
tion for the associated generalized polygon (see [6, 7, 8]; the finite case was already treated
back in the seventies [1, 2]). More precisely, if (G,B,N) defines a generalized n-gon Ω
for n > 2, and if there is a normal nilpotent subgroup U of B such that B = U(B ∩N),
then Ω is a Moufang polygon and G contains all root groups. In the present paper we
will show first that already U has to contain the appropriate root groups, i.e., U necessar-
ily coincides with the standard unipotent subgroup U+ of B, which is a product of root
groups. Then it will follow that, if the (spherical and irreducible) rank of (G,B,N) is at
least 3, and if this BN-pair splits, then G must contain all root groups, and U is again
unique: it is necessarily the product of all root groups the corresponding roots of which
contain the chamber C associated to B.

So the splitting of the spherical BN-pair can be viewed as a group-theoretic Moufang con-
dition. It is rather unexpected that a purely geometric transitivity condition translates
in such full generality to a group-theoretic condition involving nilpotency of a certain
subgroup (and in the arguments, nilpotency is essential!). Hence the notions of an irre-
ducible spherical split BN-pair of rank ≥ 2, an irreducible spherical Moufang building of
rank ≥ 2, a (possibly twisted) Chevalley group of rank ≥ 2 or semi-simple algebraic group
of relative rank ≥ 2 are essentially equivalent.

We remark that the fact that the uniqueness of U for rank 2 implies the classification
of split BN-pairs of higher rank was also noticed independently by Timmesfeld [9], who
proved a result similar to ours for a rather restricted class of BN-pairs of rank 2, namely,
only those appearing as proper residues in an irreducible spherical BN-pair of higher rank.

Our proof will also yield uniqueness of a transitive normal nilpotent subgroup of the Borel
subgroup of a split BN-pair of rank 1 in certain cases. We will not pursue this here. We
content ourselves by mentioning that this easily follows from our proof for the Tits systems
arising from skew fields. For the other ones treated below, a recoordinatization will be
carried out, and hence an additional argument is needed to obtain the desired result.
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2 Notations and Main Result

Henceforth (B,N) is a BN-pair, or Tits system, in a group G (for precise definitions and
background, see Chapter 3 of [10]). We denote by Ω the corresponding building. Most
of the work will be in rank 2, so we concentrate for a moment on this case. Then the
corresponding Weyl group W = N/(B ∩ N) is a dihedral group of order 6, 8, 12 or 16.
Hence Ω is a generalized n-gon, n ∈ {3, 4, 6, 8}. That means that Ω can be viewed as a
bipartite graph with bipartition {Ω0,Ω1}, and with girth 2n and diameter n. We will refer
to Ω0 as the point set of Ω, and to Ω1 as its line set. Also, if a point and a line are adjacent
in Ω, then we will also say that they are incident and we use the symbol ∼ for incident
elements. Remember that G acts faithfully on Ω. We assume the existence of a transitive
normal nilpotent subgroup U of B. By the results in [6, 7, 8], Ω is a Moufang polygon. To
define this, we need some preparations. As the girth of Ω is 2n, there are closed 2n-paths
in Ω, and we call these apartments. Any n-path contained in an apartment is a root,
and the vertices different from the extreme ones are called internal. A root is called a
Moufang root if the group of collineations (type preserving automorphisms, i. e. graph
automorphisms that preserve the sets Ω0 and Ω1) fixing every neighbor of every internal
vertex of that root acts transitively on the set of apartments containing the root. Such
collineations are called root elations and the corresponding groups are called root groups.
If every root is a Moufang root, then Ω is a Moufang polygon. The little projective group
G+ of Ω is the group of collineations generated by all root elations. Note that G+ is
usually a simple group (the exceptions only occur in the small cases, i.e. when there are
only three points on a line or three lines through a point; more precisely, the exceptions
are the groups B2(2), G2(2) and 2F4(2)); it is always a Chevalley group of rank 2 (but
sometimes a twisted one). A similar statement holds in the higher rank case.

Now the Borel subgroup B fixes a unique chamber C of Ω andN stabilizes some apartment
Σ containing C. Here, a chamber is just an edge, hence an incident point-line pair. Two
chambers are said to be opposite if, as edges, they are at distance n from each other in
the edge graph of Ω. It is well known that B acts transitively on the set of chambers
opposite C. Let U+ be the group generated by all elations related to roots in Σ which
contain the vertices of C. Then it is well known that U+ is a transitive normal nilpotent
subgroup of B. In fact, U+ acts sharply transitively on the set of chambers opposite C,
and it is independent of the choice of the apartment Σ through C (or, equivalently, of N).

We can now state our Main Result.

Main Result. Let (G,B,N) be an irreducible Tits system of rank 2 acting faithfully on
the corresponding generalized polygon, and suppose U is a normal nilpotent subgroup of
B such that UH = B, where H = B ∩N . Then U = U+ as defined above.

We say that a spherical irreducible Tits system (G,B,N) of rank at least 2, which acts
faithfully on the corresponding spherical building, is Moufang ifG contains all root groups,
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i.e., if G ≥ G+.

Corollary. Let (G,B,N) be an irreducible Tits system of rank ≥ 2 acting faithfully on
the corresponding building, and suppose that U is a normal nilpotent subgroup of B such
that UH = B, where H = B ∩ N . Then U = U+ as defined above, the corresponding
building satisfies the Moufang condition and (G,B,N) is Moufang.

A good introduction to buildings is [14]; also [10] can be used for more background.

3 Proof of the Main Result

3.1 Generalities

We keep the notations of the previous section. In particular, U is a transitive normal
nilpotent subgroup of B, where (G,B,N) is an irreducible Tits system of rank 2, with
Weyl group W of order 6, 8, 12 or 16.

Since U and U+ normalize each other, we may replace U by UU+ and consequently we
may assume that U+ ≤ U . But now, if |W | = 16, our Main Result follows directly from
3.14 of [6]. Note that we do not need the classification of Moufang octagons to derive
our Main Result for |W | = 16, unlike for the other values of |W |, where we shall use the
classification of Moufang projective planes, Moufang quadrangles and Moufang hexagons
as given in [12].

Our general aim is to show that U = U+. For the rest of the proof we assume, by way of
contradiction, that U 6= U+. Then U ∩N is nontrivial. Let ϕ be a nontrivial element of
U ∩N . We will study the consequences of the existence of ϕ in some rank 1 Tits systems
related to vertices of the apartment Σ, stabilized by N . We now introduce these rank 1
Tits systems.

Let v∗ be any vertex in Σ and let w∗
∞ and w∗

0 be the unique (distinct) vertices in Σ adjacent
to v∗ such that w∗

∞ is closer to C than v∗. Let G∗ be the quotient of the stabilizer in
G of v∗ by the group K∗ that fixes every vertex adjacent to v∗; let B∗ be the quotient
of the stabilizer in G of v∗ and w∗

∞ by K∗, and let N∗ be the quotient of the stabilizer
in G of the pair {w∗

∞, w
∗
0} by K∗. Then (G∗, B∗, N∗) is a Tits system of rank 1. Also,

since Ω is a Moufang polygon and hence admits a highly symmetric group (in particular
there are automorphisms fixing all neighbors of v∗ and acting transitively on the set of
chambers at the same distances to {v∗, w∗

∞} and to {v∗, w∗
0} as C), it is easily seen that B∗

is isomorphic to the stabilizer in B of v∗ modulo the pointwise stabilizer in B of the set of
vertices adjacent to v∗. If U∗ denotes the subgroup of B∗ induced by U in this way, then
we see that U∗ is a transitive normal nilpotent subgroup of B∗ (and hence (G∗, B∗, N∗)
is a split BN-pair of rank 1). We also write U∗

+ for the group induced in B∗ by U+. Our
assumptions imply U∗

+ E U∗. We denote by ϕ∗ the element of U∗ induced by ϕ.
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The strategy of our proof will now be to examine some possible rank 1 groups and show
that U∗

+ = U∗ (and this will be achieved once we show that ϕ∗ is necessarily the identity).
For n = 3, 6, we will study all possibilities; for n = 4, we will only need “half” of them
(see below for more details). The upshot of our investigations will in any case be that ϕ
fixes every vertex adjacent to any vertex v∗ of Σ (for n 6= 4), or to any vertex v∗ of fixed
type (for n = 4).

Since all Moufang polygons are classified, there is a precise list of all possible rank 1 Tits
systems (G∗, B∗, N∗) that we need to consider. We start with the ones related to skew
fields, and we fix ϕ∗ ∈ U∗ ∩N∗, which we assume to be nontrivial.

3.2 Skew fields

Let K be a skew field and consider the 2-transitive group G∗ = PSL2(V ), with V a 2-
dimensional right vector space over K, acting on the vector lines of V . We identify w∗

∞
with the Y -axis, and w∗

0 with the X-axis. Then U∗
+ can be identified with the additive

group of K. Also, we may identify the set of vertices adjacent to v∗ with K∪{∞} in such
a way that 0 corresponds to w∗

0, ∞ corresponds to w∗
∞, and a generic element ta of U∗

+

acts as x 7→ x + a, x, a ∈ K, with ∞ fixed. Since [U∗
+, U

∗] ≤ U∗
+, we see that there is a

nontrivial element of U∗
+ in the center of U∗. Without loss of generality, we may assume

that it is t1. Note that ϕ∗ fixes both ∞ and 0. Let Z∗ be the center of U∗. Then ϕ∗

fixes the orbit 0Z
∗

pointwise. Moreover Z∗ is a normal subgroup of B∗. Now the mapping
µa : x 7→ axa (and ∞ fixed), a, x ∈ K, a 6= 0, belongs to B∗. Hence we deduce that
ta2 ∈ Z∗, for all a ∈ K. If the characteristic of K is different from 2, then we deduce
ta = t(1+a/2)2t−1t−a2/4 ∈ Z∗. This implies ϕ∗ = id. Hence U∗ = U∗

+.

Suppose now that K has characteristic 2. Let t′a, a ∈ K be the unique element of G∗ that
is contained in the conjugate of U∗

+ which fixes 0 pointwise, and which maps ∞ to a. Note
that the image of x ∈ K under t′a equals x(1 + xa−1)−1. Now we consider the element
ψ := ϕ∗−1t′aϕ

∗. Since the conjugates of U∗
+ are normal subgroups in the full stabilizer of

their fixed element, we have that ψ = t′b, for some b ∈ K. Comparing images of ∞ under
both ϕ∗−1t′aϕ

∗ and t′b, we see that b = aϕ
∗
. Now we compare the images of 1 under these

two expressions of the same map, and we obtain

((1 + a−1)−1)ϕ
∗

= 1ψ = 1t
′
b = (1 + (aϕ

∗
)−1)−1.

This holds for every a ∈ K. From the first half of the proof of Lemma 8.5.10 in [13] it
follows that (a2)ϕ

∗
= (aϕ

∗
)2 and that ϕ∗ is an automorphism or an antiautomorphism.

Since we already know ta2 ∈ Z∗, we have (a2)ϕ
∗

= a2.

The result is now clear from the following lemma, which we state in full generality.
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Lemma 3.1 Let D be an arbitrary field or skew field (possibly infinite-dimensional over
its center), and let φ be an arbitrary automorphism or anti-automorphism of D such that
(a2)φ = a2 for all a ∈ D. Then φ = id.

Proof. If the characteristic of D is different from 2, then a = ((a+ 1)2 − a2 − 1)/2, and
hence aφ = a for all a ∈ D.

So we may assume that the characteristic of D is 2. Let F be the set of fixed elements of
φ in D. Since (a + b)2 = a2 + ab + ba + b2 for all a, b ∈ D, we have ab + ba ∈ F for all
a, b ∈ D. In particular, if we replace b by ab, we obtain a(ab + ba) = a(ab) + (ab)a ∈ F
for all a, b ∈ D. Also, if a ∈ F \ {0}, then (a−1)φ = (aφ)−1 = a−1, hence a−1 ∈ F as well.

Now suppose that φ 6= id, and let c be a fixed element of D such that cφ 6= c. Let d := c+cφ,
then d 6= 0. Then cd = c2 + ccφ = (c2)φ + ccφ = dcφ 6= dc, hence cd + dc ∈ F \ {0}, and
therefore (cd + dc)−1 ∈ F as well. Also, c2d = c3 + c2cφ = c3 + (c3)φ = c3 + cφc2 = dc2,
and it follows that c(cd+ dc) = (cd+ dc)c.

Assume first that φ is an automorphism. Then

cφ =
(
c · (cd+ dc) · (cd+ dc)−1

)φ
= (c(cd+ dc))φ ·

(
(cd+ dc)−1

)φ
= c(cd+ dc) · (cd+ dc)−1

= c ,

which contradicts the assumption that cφ 6= c. Now assume that φ is an anti-automorphism.
Then

cφ =
(
c · (cd+ dc) · (cd+ dc)−1

)φ
=

(
(cd+ dc)−1

)φ · (c(cd+ dc))φ

= (cd+ dc)−1 · c(cd+ dc)

= (cd+ dc)−1 · (cd+ dc)c

= c ,

again contradicting our assumption. We conclude that φ must be the identity. �

3.3 Alternative fields, hexagonal systems and indifferent sets in
characteristic 2

The three algebraic structures in the title have one common property that will be respon-
sible for U∗

+ being unique. Indeed, they are all algebras defined over some field K, which
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can be regarded as a subsystem of it, and every element x in such a structure is together
with K contained in a subsystem L, which is again a field. For alternative fields, this
is a well known property; it holds similarly for hexagonal systems by Lemma (38.2) of
[4]. For indifferent sets in characteristic 2, we can argue as follows. Let K be the field of
squares of some field K′ of characteristic 2. An indifferent set L is a subset of K′ which is
at the same time a vector space over K, and which is closed under taking (multiplicative)
inverses (see Chapter 10 of [12]). If x ∈ L, then we claim that, for any two polynomials
f and g over K, the quotient f(x)/g(x) belongs to L (granted g(x) 6= 0), which implies
immediately that K(x) ⊆ L. Suppose not, and let f(x)/g(x) be a counterexample with
deg f + deg g minimal. We may assume that deg f < deg g, and that f(x) 6= 0. Then
g(x)/f(x) /∈ L. Now we can write g(x)/f(x) = q(x)+r(x)/f(x), and hence r(x)/f(x) is a
counterexample with deg r+ deg f < deg f + deg g, a contradiction. The claim is proved.

Each of the three classes of algebraic structures in the title of the current subsection
defines in a unique way a Tits system of rank 1. This Tits system can be viewed as a
permutation group acting on the algebraic structure union the singleton {∞}. The group
U∗

+ can be identified with the additive group of the algebra. Also, up to equivalence, one
may choose the element 1 arbitrarily (this boils down to recoordinatizing in the generalized
polygon Ω). Hence, with the above notation, if ϕ∗ belongs to a transitive normal nilpotent
subgroup U∗ of B∗, then we may assume that ϕ∗ fixes 0 and 1 (and of course also ∞),
because we may without loss of generality assume that the center Z∗ of U∗ contains the
element x 7→ x+ 1, as before.

Now let a be an arbitrary element of the structure, and consider the field F generated
by K and a. Then, together with ∞, this defines a Tits subsystem, implying that, for
all b ∈ F, the mapping x 7→ xb2 in F is induced by an element of the big Tits system.
The arguments in the previous subsection now imply easily that ϕ∗ fixes F pointwise, and
hence a. But a was arbitrary. So ϕ∗ is the identity and we conclude U∗ = U∗

+.

3.4 Quadratic form sets

In this case, the Tits system (G∗, B∗, N∗) of rank 1 contains an orthogonal group defined
by a quadratic form of Witt index 1 (over some field K), and acts faithfully on the set of
corresponding singular 1-spaces. We may identify w∗

0 and w∗
∞ with two arbitrary singular

1-spaces. This defines the root group U∗
∞ EB∗ fixing w∗

∞ and acting sharply transitively
on the other singular 1-spaces. We denote by U∗ a transitive normal nilpotent subgroup
of B∗ and we assume that ϕ∗ ∈ U∗ fixes both w∗

0 and w∗
∞. As before, the center of U∗

contains an element of U∗
∞ mapping w∗

0 to some 1-space w∗. It follows that ϕ∗ fixes w∗.
Now consider any singular 1-space x∗. Then the four 1-spaces w∗

0, w
∗
∞, w

∗ and x∗ generate
either a 3-space or a 4-space and we consider the restriction of the Tits system to that
space. In case of a 3-space, the Tits system corresponds to the one defined by the field
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K, and hence by our results above, ϕ∗ fixes x∗. In case of a 4-space the corresponding
quadratic form now defines a field extension of K and hence our results above again yield
that ϕ∗ fixes x∗. Note that the field extension could be inseparable (in characteristic 2),
but this does not make a difference for the arguments.

We conclude that ϕ∗ must be the identity; hence U∗ = U∗
∞.

3.5 The cases n = 3, 6

Suppose that Ω is a generalized n-gon with n ∈ {3, 6} corresponding to a split Tits
system (G,B,N) of rank 2, with some transitive normal nilpotent subgroup U of B.
Remember that we may assume that U+ ≤ U . If U 6= U+, then there is some nontrivial
collineation ϕ ∈ U fixing the standard apartment Σ pointwise. Let v∗ be as before. If the
corresponding (split) Tits system of rank 1 is defined by one of the structures dealt with
in the previous three subsections, then ϕ fixes automatically all elements of Ω adjacent
to v∗. If n = 3, 6, then clearly this is true for all vertices v∗ in Σ (see [12](17.2),(17.5));
hence ϕ is the identity. Consequently U = U+.

Remark. At this point we could also give an alternative proof for the case n = 8. Indeed,
if n = 8, then for one bipartition class of the vertices v∗, the corresponding rank 1 Tits
system is defined by a field (see [12](17.7)), and hence the fixed elements of Ω under ϕ form,
up to duality, a thick ideal suboctagon (for terminology, see [13]). By Proposition 5.9.13
of [13] (originally due to Joswig and the last author [3]), ϕ is the identity.

3.6 The case n = 4 concluded

Hence there remains to consider the case n = 4. In this case, we put the set of vertices
of Σ equal to {x0, x1, . . . , x7}, with subscripts modulo 8, and such that xi and xi+1 are
adjacent for all i. To fix the ideas, we may think of x0 as a point, and then x1 is a line of
Ω. We put C = {x0, x1}.

By the classification of Moufang quadrangles (see [12]) we may suppose that the rank 1
Tits systems related to x2i+1 (for any integer i) are commutative. Also by that same
classification result, we may assume that this rank 1 group corresponds either to a skew
field (Moufang quadrangles of involution type, of quadratic form type, and of pseudo-
quadratic form type), or to a quadratic form of Witt index 1 (Moufang quadrangles of
exceptional types E6, E7, E8, F4), or to an indifferent set in characteristic 2 (indifferent of
mixed Moufang quadrangles). Hence, if U 6= U+, and if ϕ is a nontrivial element of U
fixing Σ pointwise, then ϕ fixes all points incident with one of x2i+1 (see Subsection 3.1,
where x∗ plays the role of x2i+1). We now show that ϕ is necessarily the identity, showing
that U = U+. Henceforth we assume ϕ 6= 1 and we seek a contradiction.

8



We first introduce some (standard) notation. For three vertices a, b, c such that a ∼
b ∼ c 6= a, the root group fixing all elements incident with a, b, c is denoted by G

[1]
a,b,c.

The group of collineations that fixes all elements at distance 2 from a certain vertex a is
denoted by G

[2]
a . Every member of G

[2]
a is called a central elation (with center a). The

conjugate of U under a collineation that maps the chamber C to another chamber C ′ is
denoted by U [C ′] (and we have obviously U = U [C]).

We denote by {1}E Z1(U) E Z2(U) E · · ·E Z`(U) = U the ascending central series of U
(and U is nilpotent of class `).

We show the Main Result in a few small steps.

Step 1 For every chamber C ′ = {xi, xi+1}, we have ϕ ∈ U [C ′].

Indeed, let g be a nontrivial elation in G
[1]
x1,x2,x3 which commutes with ϕ (g exists

as [ϕ,G
[1]
x1,x2,x3 ] ≤ G

[1]
x1,x2,x3 ≤ U and as U is nilpotent). Hence ϕ fixes xg7. Now let

h ∈ G
[1]
x5,x6,x7 be such that xh1 = xg7. Since ϕ fixes xh1 , we have [ϕ, h] = 1, and hence

[ϕ, hg−1] = 1. Consequently ϕ = ϕhg
−1 ∈ Uhg−1

= U [{x0, x7}]. A similar argument
now shows that ϕ ∈ U [{x6, x7}]. Continuing like this, the assertion follows.

Step 2 Suppose y ∼ x2 is not fixed by ϕ, and let u ∈ G
[1]
x3,x4,x5 be such that yu = yϕ. Then

u 6∈ G[2]
x4.

Under the stated assumptions, choose g ∈ G
[1]
x4,x5,x6 \ {1} arbitrarily. Then let

v ∈ G
[1]
x1,x2,x3 be such that yϕg

−1v is fixed under ϕ (this can be accomplished by

putting yϕg
−1v equal to the unique vertex adjacent to xϕg

−1v
2 at distance 2 from x7).

Then α := [ϕ−1, gv] ∈ G
[1]
x3,x4,x5 . But evaluating yα, we see that yα = yu, hence

α = u. So α is not the identity and hence ϕ cannot fix xv5 (if it did, then α would
fix all elements incident with xv6, a contradiction). This now implies that u cannot
fix all elements incident with xv5, and so u is not a central elation.

Step 3 Let y be an arbitrary vertex adjacent to x0 but different from x1. Let u ∈ Zi(U) be

a non-central elation in G
[1]
y,x0,x1 with i minimal. Then [u, ϕ] = 1.

Indeed, it is clear that [ϕ, u] is a central elation by minimality of i, and that
(xu3)

[u,ϕ] = (xu3)
ϕ. If ϕ fixes xu3 , then so does [u, ϕ], and hence it is trivial. Oth-

erwise, we apply Step 2 to obtain an immediate contradiction (noting that xu3 is
adjacent to x2).

We can now finish the proof of the Main Result for n = 4.

Let u′ ∈ G[1]
y′,x0,x1

be noncentral and contained in Zi(U), with i minimal, and with y′ some
line through x0 different from x1. We may assume that u′ does not fix all points on x7.
Then [u′, ϕ] = 1 by Step 3.
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We claim that we can re-choose y′ in such a way that it is not fixed under ϕ. i.e., we claim
that there exists y ∼ x0 and a noncentral elation u ∈ G

[1]
y′,x0,x1

∩ Zi(U) such that yϕ 6= y.
Indeed, suppose zϕ = z for all z ∼ x0 which are fixed pointwise under u′. Now let y ∼ x0

with yϕ 6= y and let v ∈ G[1]
x1,x2,x3 with (y′)v = y. Note that u′ 6∈ G[1]

y , hence [u′, v−1] 6∈ G[1]
y′

and in particular [u′, v−1] 6= 1. Now u = u′v ∈ G[1]
y,x0,x1 is an elation belonging to Zi(U). It

remains to show that u is noncentral. Since u and u′ have the same action on the set of
vertices adjacent to x2, but u 6= u′, they cannot both be elations in the same root group.
Hence u does not fix every point on y′, which is fixed under ϕ (and y′ will play the role
of x7 below). The claim is proved.

So we assume that u ∈ G
[1]
y,x0,x1 and yϕ 6= y. Let y ∼ y2 ∼ y3 ∼ x4, and let w ∈ G

[1]
y,y2,y3

be such that xw1 = x7. Then uw ∈ Zi(U [x7, x0]), and hence [uw, ϕ] = 1 (using Steps 1 and

3). But then also [[u,w], ϕ] = 1. Notice that [u,w] ∈ G
[1]
y2,y,x0 \ {1}, because the action

on the points incident with x1 is nontrivial. Since yϕ 6= y, it is hence impossible that
[[u,w], ϕ] = 1.

This contradiction proves the Main Result for n = 4.

4 Proof of the Corollary

For BN-pairs of rank 2, the corollary is contained in the Main Result and [6, 7]. So we
now assume that (G,B,N) is an irreducible spherical BN-pair of rank at least 3. Let
Ω be the corresponding building, let Σ be the apartment fixed by N and let C be the
chamber fixed by B. Further, let Σ+ be a half apartment in the apartment Σ containing
C. Let ϕ be an arbitrary element of U fixing all chambers contained in Σ+. Let P be
a panel in the interior of Σ+ and let R be a flag of corank 2 contained in P . Consider
the stabilizer BR of R in B, and the stabilizer UR of R in U . Clearly UR EBR and UR is
nilpotent. Let CR be the unique chamber containing R nearest to C (the projection of C
onto R in building language), and let C∗

R be the chamber in Σ containing R opposite CR
in the residue of R. Let C ′

R be any chamber containing R opposite CR in the residue of
R. There is an apartment Σ′ containing C ′

R and C (by the very definition of a building),
and hence there exists u ∈ U mapping Σ to Σ′. Clearly u fixes R and maps C∗

R onto C ′
R.

Hence UR is transitive. So, if we denote by K the kernel of the action of GR on the residue
of R, then URK/K is a splitting of the rank 2 BN-pair (GR/K,BRK/K,NRK/K) (with
obvious notation). It follows from our Main Result that ϕ fixes all chambers containing
P , i.e., ϕ is a root elation by definition. Hence U coincides with the standard unipotent
subgroup U+ and the Corollary is proved.
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