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On the uniqueness of the unipotent

subgroups of some Moufang sets
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Dedicated to William M. Kantor on the occasion of his sixtieth birthday

Abstract. In this paper we consider all Moufang sets — or split BN-pairs of rank 1
— arising from a pair of opposite root groups in a Moufang building of rank 2, and the
Moufang sets corresponding to the Suzuki groups and the Ree groups. We show that in
all these cases (except for one well understood exception), the (natural) root groups are
the only subgroups U of the point stabilizers Gx satisfying the following three properties:
(1) U is normal in Gx; (2) U is nilpotent; (3) UH = Gx, for H = Gx,y, with y 6= x.

1. Introduction

Moufang sets are the Moufang buildings of rank 1. They are the axiomatization
of the permutation groups generated by two opposite root groups (belonging to
opposite roots R0 and R∞) in a Moufang building of rank at least 2, acting on
the set of roots R such that R ∪R0 or R ∪R∞ form an apartment. Similar, but
slightly different, notions are Timmesfeld’s rank one groups, and split BN-pairs
of rank one. Moufang sets were introduced some years ago by Jacques Tits as
tools in the classification programme of twin buildings — a programme that has
been successfully completed by Bernhard Mühlherr (and in Mühlherr’s approach,
Moufang sets play indeed a central role). In the present paper, we want to show a
uniqueness result for all Moufang sets arising from higher rank Moufang buildings
as mentioned above, and in addition also for some well known Moufang sets arising
from diagram automorphisms of some rank two buildings, in casu the Suzuki
groups (some of which also appear as above in Moufang octagons) and the Ree
groups in characteristic 3.

The motivation for this work, and for studying Moufang sets in general, is
threefold.
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• Firstly, results on Moufang sets can be applied in situations where one deals
with higher rank Moufang building, as is clear from the origin of the notion.
As an example, we refer to [1], where Moufang sets are used to prove the
uniqueness of the splitting of any spherical split BN-pair of rank at least two.
Other examples can be found in the papers [3] and [8], where Moufang sets
are used to characterize Moufang quadrangles in terms of “one half” of the
conditions, and [4], where an even weaker assumption is made.

• Secondly, Jacques Tits initiated in [10] (see also [11]) a geometric study of
buildings of rank one, via a procedure involving the unipotent subgroups of
the corresponding Moufang sets. The results of the current paper are very
useful in this respect.

• Thirdly, Moufang sets also appear outside the theory of buildings in situa-
tions where permutation groups are involved. For instance, when investigat-
ing automorphism groups of (finite) rank two geometries with Moufang-like
conditions, Moufang sets come naturally into play. Also, it has recently been
shown [2] that every Jordan division algebra gives rise, in a very natural way,
to a Moufang set with abelian root groups. Hence theorems about abelian
Moufang sets immediately imply results on Jordan division algebras. The
Main Result of the present paper covers all these abelian Moufang sets.

Roughly speaking, we will show in this paper that the root groups of large
classes of known Moufang sets are unique as transitive nilpotent normal subgroups
of the point stabilizers.

We will state this more precisely in the next section. In the course of the proof,
we also complete a slight oversight in [1].

Finally we remark that all finite Moufang sets are classified. In the case where
the little projective group (see below for a definition) is not sharply 2-transitive,
one has either PSL2(q), q ≥ 4, PSU3(q), q ≥ 3, Sz(q) ∼= 2B2(q), q ≥ 8, and
Re(q) ∼= 2G2(q), for appropriate prime powers q. This has been shown by Hering,
Kantor and Seitz [5] (odd characteristic) and Shult [7] (even characteristic).

2. Definitions and Statement of the Main Result

2.1. Definition of a Moufang Set.

A Moufang Set is a systemM = (X, (U+
x )x∈X) consisting of a set X and a family

of groups of permutations (we write the action of a permutation on a point on
the right, using exponential notation) of X indexed by X itself and satisfying the
following conditions.

(MS1) U+
x fixes x ∈ X and is sharply transitive on X\{x}.

(MS2) In the full permutation group of X , each U+
x normalizes the set of subgroups

{U+
y | y ∈ X}
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The group U+
x shall be called a root group. The elements of U+

x are often called
root elations.

If M = (X, (U+
x )x∈X) is a Moufang set, and Y ⊆ X , then Y induces a sub

Moufang set if for each x ∈ X ′, the stabilizer (U+
y )Y acts sharply transitively on

Y \ {y}. In this case (Y, ((U+
y )Y )y∈Y ) is a Moufang set.

The group generated by the U+
x , for all x ∈ X , is called the little projective

group of M. A (faithful) permutation group G of X is called a projective group
of M if U+

x E Gx, for all x ∈ X . A permutation of X that normalizes the set of
subgroups {U+

y | y ∈ X}, is called an automorphism of the Moufang set. For a
given projective group G, we shall call a subgroup Vx of Gx a unipotent subgroup
of G if

(US1) Vx acts transitively on X \ {x};

(US2) Vx EGx;

(US3) Vx is nilpotent.

In fact, the existence of a unipotent subgroup is equivalent with the Moufang
set being a split BN-pair of rank 1. If the little projective group of a Moufang
set is not sharply two-transitive, then in all known examples, the root groups are
unipotent subgroups of any projective group. The question arises whether the root
subgroups can be characterized in this way. We will show that it is indeed the case
for all Moufang sets related to Moufang buildings of rank 2 (including the ones
corresponding with the Suzuki groups) and the Ree groups in characteristic 3.

In order to provide a precise statement, we introduce these classes of Moufang
sets below.

We will not prove that these well known examples are in fact Moufang sets.
We will just define them. In most cases, this means that we give two root groups
as permutation groups. The other root groups are obtained by conjugation.

We also provide some so-called µ-actions. For a given (ordered) pair of distinct
root groups (U+

∞, U
+
0 ), with 0,∞ ∈ X , and for every element x ∈ X \{0,∞}, there

are unique elements u ∈ U+
0 and u′, u′′ ∈ U+

∞ such that u(x) = ∞ and µ(x) :=
u′uu′′ interchanges 0 with∞. The action of µ(x) on X is called the simple µ-action
with respect to (U+

∞, U
+
0 , x). If x′ ∈ X \ {0,∞}, then the action of µ(x, x′) :=

µ(x)−1µ(x′) is called the double µ-action with respect to (U+
∞, U

+
0 , x, x

′). The
latter fixes both 0 and ∞, and so it normalizes both U+

0 and U+
∞.

2.2. Projective lines over skew fields.

Let K be any skew field. Put X equal to the set of vector lines of the 2-dimensional
(left) vector space V (2,K) over K. After a suitable coordinatization, let 0 denote
the vector line spanned by (1, 0) and ∞ the vector line spanned by (0, 1). Then,
with regard to the usual (right) action of matrices on vectors (and hence on vector
lines), we define U+

0 as the group of matrices ( 1 0
k 1 ), for all k ∈ K. The group U+

∞
consists of the matrices ( 1 k

0 1 ), k ∈ K.
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The little projective group is here PSL3(K) in its natural action. We denote
this Moufang set as MPL(K) and call it the projective line over K. The corre-
sponding set is sometimes denoted by PG(1,K).

It is an elementary exercise to compute the µ-actions for the pair (U+
∞, U

+
0 ).

One obtains µ((1, a)) : K(x, y) 7→ K(ya−1,−xa). The double µ-action is now easy:
µ((1, 1), (1, a)) : K(x, y) 7→ K(xa−1, ya).

Identifying K(1, k) with k ∈ K and K(0, 1) with the element ∞, we may also
write the above actions as follows:

U+
∞ = {u : x 7→ x+ a,∞ 7→ ∞ | a ∈ K},

U+
0 = {u : x 7→ (x−1 + a−1)−1,−a 7→ ∞,∞ 7→ a, 0 7→ 0 | a ∈ K},

µ(a) : x 7→ −ax−1a, 0↔∞,
µ(1, a) : x 7→ axa.

We will refer to this as the non-homogeneous representation.

2.3. Projective lines over alternative division rings.

An alternative division ring is a ring A with identity 1 in which the following laws
hold.

(ADR1) For each non-zero element a, there exists an element b such that b · ac = c
and ca · b = c for all c ∈ A.

(ADR2) (ab · a)c = a(b · ac) and b(a · ca) = (ba · c)a for all a, b, c ∈ A.

(ADR3) ab · ca = a(bc · a) = (a · bc)a for all a, b, c ∈ A.

An alternative division ring is associative if and only if it is a skew field. The
only non-associative alternative division rings are the Cayley division rings. Ax-
iom (ADR2) implies that every two elements of an alternative division ring are
contained in a sub skew field.

As, by (ADR1), each element a of A has a unique inverse a−1, we may define
the root groups U+

0 and U+
∞ in the same way as we did for the skew fields in the

non-homogeneous representation. We then also obtain the same results for the
simple and double µ-actions (and note that expressions like axa are unambiguous
by (ADR2)). The corresponding Moufang set is denoted by MPL(A) and called
the projective line over A.

2.4. Polar lines.

Let K be a skew field and let σ be an involution of K (so (ab)σ = bσaσ, for all
a, b ∈ K). Define Kσ = {a+ aσ | a ∈ K} and FixK(σ) = {a ∈ K | aσ = a}. Let K0

be an additive subgroup of K such that

(IS1) Kσ ⊆ K0 ⊆ FixK(σ),
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(IS2) aσK0a ⊂ K0 for all a ∈ K,

(IS3) 1 ∈ K0.

Then (K,K0, σ) is called an involutory set. The restriction ofMPL(K) toK0∪{∞}
in the non-homogeneous representation is well defined and is a Moufang set, called
a polar line, denoted byMPL(K,K0, σ). Hence, again, the root group actions and
the µ-actions can be copied from the non-homogeneous representation of projective
lines over a skew field given above.

2.5. Hexagonal Moufang sets.

We recall the notion of a hexagonal system, which is essentially equivalent to the
notion of a quadratic Jordan division algebra of degree three.

A hexagonal system is a tuple (J,F,N,#,T,×, 1), where F is a commutative
field, J is a vector space over F, N is a function from J to F called the norm, #
is a function from J to itself called the adjoint, T is a symmetric bilinear form
on J called the trace, × is a symmetric bilinear map from J × J to J and 1 is a
distinguished element of J \ {0} called the identity such that for all t ∈ F and all
a, b, c ∈ J, the following identities hold.

1. 1# = 1, 7. T(a× b, c) = T(a, b× c),
2. (ta)# = t2a#, 8. N(a+ b) = N(a) + T(a#, b) + T(a, b#) + N(b),
3. N(ta) = t3N(a), 9. (a+ b)# = a# + a× b+ b#,
4. T(a, a#) = 3N(a), 10. a# × (a× b) = N(a)b+ T(a#, b)a,
5. a## = N(a)a, 11. a# × b# + (a× b)# = T(a#, b)b+ T(a, b#)a,
6. b = T(b, 1) · 1− 1× b, 12. N(a) = 0 if and only if a = 0.

If we define the inverse a−1 of an arbitrary nonzero a ∈ J as a−1 = N(a)−1a#,
then we can define the Moufang setMH(J) related to J in exactly the same way as
before for the projective line over a field K, in its non-homogeneous representation.
These Moufang sets are called hexagonal Moufang sets.

Hexagonal systems are classified by the work of various people. We refer to
[12] for more details.

2.6. Orthogonal Moufang sets.

Let K be a commutative field and let L0 be vector space over K. An anisotropic
quadratic form q on L0 is a function from L0 to K such that

(QF1) q(ta) = t2q(a) for all t ∈ K and all a ∈ L0,

(QF2) the function f : L0 × L0 → K given by f(a, b) = q(a + b) − q(a) − q(b), for
all a, b ∈ L0, is bilinear,

(QF3) q−1(0) = {0}.
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The map f is called the bilinear form associated with q. Now embed L0 in a vector
space L over K as a codimension 2 subspace; hence we may put L = K×L0 ×K,
and we define X as the set of all vector lines K(x−, v0, x+) in the vector space
K × L0 × K) such that x−x+ = q(v0). Then U+

(0,0,1) consists of the maps uw,

w ∈ L0, fixing K(0, 0, 1) and mapping K(1, v, q(v)) onto K(1, v + w, q(v + w)).
Likewise, U+

(1,0,0) consists of the maps u′w, w ∈ L0, fixing K(1, 0, 0) and mapping

K(q(v), v, 1) onto K(q(v + w), v + w, 1). This defines a Moufang set, called an
orthogonal Moufang set over K, and denoted by MO(K, q).

One calculates that uw maps K(q(v), v, 1) onto the vector line K(q(z), z, 1),
with

z = q(v)q(q(v)w + v)−1(q(v)w + v).

If L0 has dimension 1, then we may put q(x) = x2 andMO(K, q) is isomorphic
with the projective line MPL(K). If L0 has dimension 2, then q defines a field
extension F of K and MO(K, q) is isomorphic with MPL(F).

This class of Moufang sets also comprises the ones related to indifferent sets
(with the terminology of [12], see [11].

2.7. Hermitian Moufang sets.

Let (K,K0, σ) be an involutory set, let L0 be a right vector space over K and let
q be a function from L0 to K. Then q is an anisotropic pseudo-quadratic form on
L0 with respect to K0 and σ if there is a skew-hermitian form (with respect to σ)
f on L0 such that

(PF1) q(a+ b) ≡ q(a) + q(b) + f(a, b) (mod K0),

(PF2) q(at) ≡ tσq(a)t (mod K0) for all a, b ∈ L0 and all t ∈ K,

(PF3) q(a) ≡ 0 (mod K0) only for a = 0.

An anisotropic pseudo-quadratic space is a quintuple (K,K0, σ, L0, q) such that
(K,K0, σ) is an involutory set, L0 is a right vector space over K and q is an
anisotropic pseudo-quadratic form on L0 with respect to K0 and σ.

Let (K,K0, σ, L0, q) be some anisotropic pseudo-quadratic space and let f de-
note the corresponding skew-hermitian form. Following [12, (11.24)], let (T, ·)
denote the group {(a, t) ∈ L0 ×K | q(a)− t ∈ K0} with (a, t) · (b, u) = (a+ b, t+
u + f(b, a)) and choose (a, t) ∈ T \ {(0, 0)} and s ∈ K \ {0}. Then we may put
X = T∪{∞}, and the groupU+

∞ is given by the right action of T on itself. The dou-
ble µ-action is given by µ((0, 1), (a, t) =: µ(a,t) : (b, v) 7→ ((b−at−1f(a, b))tσ , tvtσ).

These Moufang sets are called Hermitian Moufang sets.

2.8. An exceptional Moufang set of type E7.

There is a Moufang set corresponding with an algebraic group of absolute type
E7 and which also arises from an exceptional Moufang quadrangle of type E8. We
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will not give a detailed description here, but in the course of our proof, we will
refer to [12] for a precise definition of this exceptional Moufang set of type E7.

2.9. Suzuki-Tits Moufang sets.

Let K be a field of characteristic 2, and denote by K2 its subfield of all squares.
Suppose that K admits some Tits endomorphism θ, i.e., the endomorphism θ is
such that it maps xθ to x2, for all x ∈ K. Let Kθ denote the image of K under
θ. Let L be a vector space over Kθ contained in K, such that Kθ ⊆ L and such
that L \ {0} is closed under taking multiplicative inverse. For a unique standard
notation, we also assume that L generates K as a ring. The Suzuki-Tits Moufang
set MSz(K, L, θ) can be defined as the action of a certain subgroup of the central-
izer of a polarity of a mixed quadrangle Q(K,Kθ;L,Lθ) on the corresponding set
of absolute points. A more precise and explicit description can be extracted from
Section 7.6 of [13], as follows.

Let X be the following set of points of PG(3,K), given with coordinates with
respect to some given basis:

X = {(1, 0, 0, 0)} ∪ {(a2+θ + aa′ + a′
θ
, 1, a′, a) | a, a′ ∈ L}.

Let (x, x′)∞ be the collineation of PG(3,K) determined by

(x0 x1 x2 x3) 7→ (x0 x1 x2 x3)




1 0 0 0

x2+θ + xx′ + x′θ 1 x′ x
x 0 1 0

x1+θ + x′ 0 xθ 1


 ,

and let (x, x′)0 be the collineation of PG(3,K) determined by

(x0 x1 x2 x3) 7→ (x0 x1 x2 x3)




1 x2+θ + xx′ + x′θ x x′

0 1 0 0
0 x1+θ + x′ 1 xθ

0 x 0 1


 .

The group Sz(K, L, θ) is generated by the subgroups

U+
∞ = {(x, x′)∞ | x, x′ ∈ L} and U+

0 = {(x, x′)0 | x, x′ ∈ L}.
Both subgroups U+

∞ and U+
0 indeed act on X , as an easy computation shows,

and they act sharply transitively on X \ {(1, 0, 0, 0)} and X \ {(0, 1, 0, 0)}, respec-
tively. Moreover, it can be checked easily that (U+

0 )(x,x′)∞ = (U+
∞)(y,y′)0 , with

y =
x′

x2+θ + xx′ + x′θ
and y′ =

x

x2+θ + xx′ + x′θ
.

It now follows rather easily that we indeed obtain a Moufang set. When em-
phasizing one particular point, namely (∞) := (1, 0, 0, 0), we can write (a, a′) :=
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(a2+θ+aa′+a′θ, 1, a′, a), and the unique element of U+
∞ that maps (0, 0) to (b, b′) is

given by (b, b′)∞ : (a, a′) 7→ (a+b, a′+b′+abθ). The root group U+
∞ is given by the

set {(a, a′)∞ | a, a′ ∈ L} with operation (a, a′)∞⊕(b, b′)∞ = (a+b, a′+b′+abθ)∞.
We remark that, if L = K, then the Moufang set can also be obtained from a

Moufang octagon, unlike the case L 6= K.

2.10. Ree-Tits.

Let K be a field of characteristic 3, and denote by K3 its subfield of all third powers.
Suppose that K admits some Tits endomorphism θ, i.e., the endomorphism θ is
such that it maps xθ to x3, for all x ∈ K. Let Kθ denote the image of K under
θ. The Ree-Tits Moufang set MRe(K, θ) can be defined as the action of a certain
subgroup of the centralizer of a polarity of a mixed Moufang hexagon H(K,Kθ) on
the corresponding set of absolute points. A more precise and explicit description
can be extracted from Section 7.7 of [13], as follows.

For a, a′, a′′ ∈ K, we put

f1(a, a′, a′′) = −a4+2θ − aa′′θ + a1+θa′
θ

+ a′′
2

+ a′
1+θ − a′a3+θ − a2a′

2
,

f2(a, a′, a′′) = −a3+θ + a′
θ − aa′′ + a2a′,

f3(a, a′, a′′) = −a3+2θ − a′′θ + aθa′
θ

+ a′a′′ + aa′
2
.

Let X be the following set of points of PG(6,K), given with coordinates with
respect to some given basis:

X = {(1, 0, 0, 0, 0, 0, 0)} ∪
{(f1(a, a′, a′′),−a′,−a,−a′′, 1, f2(a, a′, a′′), f3(a, a′, a′′)) | a, a′, a′′ ∈ K}.

Let (x, x′, x′′)∞ be the collineation of PG(6,K) determined by

(x0 x1 x2 x3 x4 x5 x6) 7→ (x0 x1 x2 x3 x4 x5 x6) · C

where

C =




1 0 0 0 0 0 0
p 1 0 −x 0 x2 −x′′ − xx′
q xθ 1 x′ − x1+θ r s
x′′ 0 0 1 0 x −x′

f1(x, x′, x′′) −x′ −x −x′′ 1 f2(x, x′, x′′) f3(x, x′, x′′)
x′ − x1+θ 0 0 0 0 1 −xθ

x 0 0 0 0 0 1




,
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with

p = x1+θ − x′θ − xx′′ − x2x′,

q = x′′
θ

+ xθx′
θ

+ x′x′′ − xx′2 − x2+θx′ − x1+θx′′ − x3+2θ,

r = x′′ − xx′ + x2+θ,

s = x′
2 − x1+θx′ − xθx′′,

and put (x, x′, x′′)0 := (x, x′, x′′)g∞, with g the collineation of PG(6,K) deter-
mined by

(x0 x1 x2 x3 x4 x5 x6) 7→ (x0 x1 x2 x3 x4 x5 x6)




0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 −1 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0




.

The group Re(K, θ) is generated by the subgroups

U+
∞ = {(x, x′, x′′)∞ | x, x′, x′′ ∈ K} and U+

0 = {(x, x′, x′′)0 | x, x′, x′′ ∈ K}.

Both subgroups U+
∞ and U+

0 indeed act on X , as the reader can verify with
a straightforward but tedious computation, and they act regularly on the sets
X \ {(1, 0, 0, 0, 0, 0, 0)} and X \ {(0, 0, 0, 0, 1, 0, 0)}, respectively. Moreover, it can
be checked that (U+

0 )(x,x′,x′′)∞ = (U+
∞)(y,y′,y′′)0 , with

y = −f3(x, x′, x′′)
f1(x, x′, x′′)

,

y′ = −f2(x, x′, x′′)
f1(x, x′, x′′)

,

y′′ = − x′′

f1(x, x′, x′′)
.

It now follows that we indeed obtain a Moufang set. When emphasizing one
particular point, namely (∞) := (1, 0, 0, 0, 0, 0, 0), we can write, following 7.7.7 of
[13],

(a, a′, a′′) := (f1(a, a′, a′′),−a′,−a,−a′′, 1, f2(a, a′, a′′), f3(a, a′, a′′)),

and the unique element of U+
∞ that maps (0, 0, 0) to (b, b′, b′′) is given by

(b, b′, b′′)∞ : (a, a′, a′′) 7→ (a+ b, a′ + b′ + abθ, a′′ + b′′ + ab′ − a′b− ab1+θ).

The root group U+
∞ is now the set {(a, a′, a′′)∞ | a, a′, a′′ ∈ K} with operation

(a, a′, a′′)∞ ⊕ (b, b′, b′′)∞ = (a+ b, a′ + b′ + abθ, a′′ + b′′ + ab′ − a′b− ab1+θ)∞.
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2.11. Main Result.

Our main result reads as follows.
Main Result. Let M be a projective line over a skew field or over a division

ring, a polar line, an orthogonal Moufang set, a Hermitian Moufang set, an excep-
tional Moufang set of type E7, a hexagonal Moufang set, a Suzuki-Tits Moufang
set, a Ree-Tits Moufang set, or any sub Moufang set of any projective line over a
skew field and let G be any projective group of M. Then every unipotent subgroup
of G is a root group of M, except if M is the Hermitian Moufang set acting on 9
points with little projective group PSU4(2), and G is PΣU4(2). In the latter case
Gx is not a root group, but it is a unipotent subgroup, for all x ∈ X.

In the next section, we will prove the Main Result. Note that [1] already
contains a partial proof of the Main Result, namely for the cases of a projective
line, a hexagonal Moufang set and an orthogonal Moufang set. However, due
to some change in the arguments for a projective line in the revised version of
that paper, the proof there became in fact incomplete for the hexagonal Moufang
sets, the projective lines over proper alternative division rings, and for orthogonal
Moufang sets. For this reason, we reprove these cases here, using a slightly more
direct and shorter argument.

We also note that Timmesfeld proved part of the Main Result in [9]. The
reason why we insist on giving yet a full proof here is that our arguments are more
streamlined, more general, and more elementary.

3. Proof of the Main Result

3.1. Moufang sets with commutative root groups.

The Moufang sets introduced in the previous section that have commutative root
groups are those isomorphic to a sub Moufang set of a projective line over a
(skew) field (which we shall refer to as semi projective lines (over a (skew) field),
the hexagonal and orthogonal Moufang sets, and the projective lines over proper
alternative division rings. We treat all these cases simultaneously. The arguments
are different from the ones in [1] in that we need a slightly more complicated
computation for the case of a projective line over a skew field, but this argument
can be copied for the other cases (this type of reasoning was alluded to in [1],
but unfortunately, the authors of the latter reference overlooked the fact that the
arguments given for the projective line over a skew field was not extendable).
Note that we also include some other type of Moufang sets with commutative root
groups, and contained in a projective line over a field in characteristic 2, see [6],
not explicitly mentioned here.

So let M = (X, (U+
x )x∈X) be a Moufang set with commutative root groups as

in the previous paragraph. Each of these Moufang sets is defined using (or “over”)
a field K. We choose arbitrarily two elements of X and call them 0 and ∞. Then



On the uniqueness of the unipotent subgroups of some Moufang sets 11

U+
∞ is an abelian group and we denote the composition low in this group by +.

Let G be any projective group of M.
Suppose U∞ is a second unipotent subgroup of G, contained in G∞. Since the

product of two normal nilpotent subgroups is nilpotent, we may assume without
loss of generality that U+

∞ � U∞. Since U+
∞ acts sharply transitively on the set

X \ {∞}, there exists ϕ ∈ U∞ fixing some element of X , and we may assume
without loss of generality that ϕ fixes 0.

Let z be a nontrivial element of the center of U∞, and let u ∈ U+
∞ be such that

zu fixes 0. Since zu centralizes U+
∞, it must fix X pointwise, hence z = u−1. In all

cases, the three elements 0, 0z and ∞ are contained in a semi projective line over
a field F. Without loss of generality, we may put 0z equal to the multiplicative
identity element 1 of F. Indeed, we pass to the new multiplication a · b = a(0z)−1b
if necessary. Moreover, in the case of hexagonal Moufang sets and projective lines
over alternative division rings, we may assume that 1 is the identity element of the
division algebra (this amounts to passing to a isotopic algebra; the Moufang sets
do not change). Hence z maps 0 to 1, i.e., u : x 7→ x+1. Now let a ∈ X \{0, 1,∞}
be arbitrary. Then 0, 1,∞ and a are contained in a semi projective line over some
skew field F′. The restriction to the points of X of the addition with respect to ∞
in F′ coincides with the + of our root group. Since we are in a skew field now, the
double µ-actions are well defined; hence a2 is well defined in particular (and one
can check that it is independent of the chosen sub Moufang set by considering the
intersection of all of them). Since the center is a characteristic subgroup of U∞,
it is normal in G∞, and since G contains the little projective group, it contains
all double µ-actions with respect to (U+

∞, U
+
0 , 1, a), for every a ∈ X \ {0,∞}. It

follows that x 7→ x + a2 also belongs to the center of U∞, and hence ϕ fixes all
squares in X .

First suppose that the characteristic of K is not equal to 2. Then every a ∈ X
can be written as a = 1

4 ((a + 1)2 − (a− 1)2). Note that a+ 1, a− 1 ∈ X , and so
x 7→ x+ (a+ 1)2− (a− 1)2 belongs to the center of U∞. Applying now the double
µ-action with respect to (U+

∞, U
+
0 , 1, 1/2), we see that x 7→ x + a belongs to the

center of U∞, and hence ϕ must fix all a ∈ X , a contradiction.

Next suppose thatK has characteristic 2. Define U
[0]
∞ := U∞, U

[j]
∞ := [U∞, U

[j−1]
∞ ]

for j ≥ 1 and take i such that U
[i]
∞ does not act freely on X \ {∞}, but U

[i+1]
∞ does

(i exists by nilpotency of U∞). We may clearly assume that ϕ ∈ U [i]
∞ . We prove

some properties of ϕ.

Observation 1. The map ϕ is additive, i.e., for all a, b ∈ X, we have (a+ b)ϕ =
aϕ + bϕ.

Proof. Denote U+
∞ 3 ta : x 7→ x + a, a ∈ X \ {∞}. We have (tatb)

ϕ = tϕa t
ϕ
b and

0t
ϕ
a = aϕ, so tϕa = taϕ . We get (ta+b)

ϕ = (tatb)
ϕ = tϕa t

ϕ
b = taϕtbϕ . Taking the

image of 0 , we obtain the result. ut

Observation 2. For all a, b ∈ X such that {0, 1, a, b,∞} is contained in a semi
projective line over some skew field L with the property that ϕ fixes the multiplica-
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tive identity 1, we have (aba)ϕ = aϕbϕaϕ (where juxtaposition is multiplication in
the skew field L). Consequently, (a−1)ϕ = (aϕ)−1 =: a−ϕ.

Proof. Denote the element of U+
0 mapping a to ∞ by t′a, and use the notation ta

of the previous proof, too. By definition the double µ-action µa := x 7→ axa is
equal to the product t1t

′
1t1tat

′
ata. As before, tϕa = taϕ and t′ϕa = t′aϕ . We now

have, remembering that ϕ fixes 1:

(aba)ϕ = bµaϕ = bt1t
′
1t1tat

′
ataϕ = (bϕ)(t1t

′
1t1tat

′
ata)ϕ

= (bϕ)t1t
′
1t1taϕ t

′
aϕ taϕ = (bϕ)µaϕ = aϕbϕaϕ.

So the first assertion is proved. Now put b = a−1 and the second assertion
follows. ut

For every b ∈ X , we have [ϕ, tb] = tb+bϕ and by nilpotency of U∞ and the
fact that ϕ cannot centralize U+

∞, there exists b ∈ X with b 6= bϕ such that

[ϕ, tb+bϕ ] = 1 and tb+bϕ 6= 1. So we have (b+ bϕ)ϕ = b+ bϕ, implying bϕ
2

= b.
Now [ϕ,U [i]] acts freely on X \ {∞}. Denote as above, for a ∈ X , the double

µ-action x 7→ axa by µa. Then [µaϕ
−1µ−1

a , ϕ−1] acts freely on X \{∞}, and since
both ϕ and µa fix 0, we get [µaϕ

−1µ−1
a , ϕ−1] = id. Now we claim that in all cases

except for M orthogonal, the set {0, 1, a, aϕ,∞} is contained in a semi projective
line over some skew field F. This is trivial if M is itself a semi projective line. If
it is a projective line over a proper alternative division ring, then this follows from
the fact that every two elements in such a division ring generate an associative
division ring. If M is a hexagonal Moufang set, then use [12, (30.6) and (30.17)].
The claim follows. If M is an orthogonal Moufang set, then, as is noted in [1],
{0, b, bϕ,∞} is contained in a sub Moufang set isomorphic to a projective line over
a field, which we can also denote by F (and which is isomorphic to a quadratic
extension of K). If this sub Moufang set does not contain the element 1 chosen
before, then we can re-choose it as b+ bϕ. It is fixed under ϕ.

We now calculate, using the multiplication in F, and taking into account bϕ
−2

=
b, b−ϕ

−1

= b−ϕ, and Observation 2,

b−1 = (b−1)[µbϕ
−1µ−1

b ,ϕ−1] = bϕµ
−1
b ϕµbϕ

−1µ−1
b ϕ

= (b−1)ϕ
−1

bϕ
−2

(b−1)ϕ
−1

bb−1b(b−1)ϕ
−1

bϕ
−2

(b−1)ϕ
−1

= cbc,

where c = b−ϕbb−ϕ. So we have cbc = b−1, which implies (cb)2 = 1. Since
charK = 2, we obtain cb = 1. Hence 1 = b−1cb2. But b2 = (b2)ϕ = (bϕ)2 (since ϕ
fixes all squares and then use the first assertion of Observation 2), and we obtain
1 = b−1b−ϕbbϕ, resulting in bbϕ = bϕb.

But now (b + bϕ)2 = b2 + (bϕ)2 + bbϕ + bϕb = b2 + b2 = 0, hence b = bϕ, a
contradiction. Hence ϕ is already the identity and U∞ = U+

∞.
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3.2. Hermitian Moufang sets.

Let Ξ = (K,K0, σ, L0, q) be a proper anisotropic pseudo-quadratic space as defined
above (see also [12, (11.17)]), with corresponding skew-hermitian form f : L0 ×
L0 → K. By [12, (21.16)], we may assume that q is non-degenerate, i.e. {a ∈
L0 | f(a, L0) = 0} = 0. Let (T, ·) be as in Subsection 2.7. Then the group U+

∞ is
isomorphic to T , and acts in a natural way on T itself by right multiplication; we
will write τ(a,t) for the element of U+

∞ mapping (b, v) ∈ T to (b, v) · (a, t). Then
Z(U+

∞) = {τ(0,t) | t ∈ K0}. We will also write T ∗ for T \ {(0, 0)}. In general,
we write a superscript ∗ when we delete the 0-element of a set (0-vector, additive
identity,. . . ).

As before, let U+
∞ � U∞. For convenience we shall write U = U∞ and U+ =

U+
∞. Also, put B := G∞. Since U+EB and U ≤ B, we have that Z(U+)EB and

Z(U+) E U . Let Ũ := U/Z(U+), Ũ+ := U+/Z(U+), and B̃ := B/Z(U+). Then
Ũ+ � Ũ , and Ũ is a non-trivial nilpotent group; in particular, Z̃ := Z(Ũ) 6= 1.
For every a ∈ L0, we let τa := τ(a,q(a))Z(U+) ∈ Ũ+; then the map a 7→ τa is an

isomorphism from (L0,+) to Ũ+. Note that Ũ+ 6= 1 by the properness of Ξ. The
natural action of B on T induces an action of B̃ on L0. Since Ũ+ acts regularly
on L0, there exists an element ϕ in Ũ \ Ũ+ fixing 0 ∈ L0. Then ϕ fixes the orbit

0Z̃ elementwise.
Since [Ũ+, Ũ ] ≤ Ũ+, it follows from the nilpotency of Ũ that there exists a

non-trivial element τ ∈ Ũ+ ∩ Z̃. Moreover, Z̃ E B̃; for every (a, t) ∈ T ∗, the
mapping

µa,t : b 7→
(
b− at−1f(a, b)

)
tσ ,

for all b ∈ L0, belongs to B̃. (See [12, (33.13)].) Let F := {c ∈ L0 | τc ∈ Z̃}.
Then F is a non-trivial additive subgroup of L0 such that µ(a,t)(F ) ⊆ F for all
(a, t) ∈ T ∗. If we can now show that F = L0, then it would follow that ϕ = 1,
which is a contradiction; hence it would follow that U = U+, which is we want
to obtain. We will see that there is one exception for which there really exists
U 6= U+.

We start by making some observations about the maps µ(a,t). Let b ∈ L∗0 be
fixed. If (a, t) ∈ T ∗ is such that f(a, b) = 0, then we have

µ(a,t)(b) = btσ ; (3.1)

in particular, if t ∈ K0, then µ(0,t)(b) = btσ = bt, since K0 ≤ FixK(σ), and hence
F is closed under right multiplication by K0.

Lemma 3.1. If F is a non-trivial K-subspace of L0, then F = L0.

Proof. Suppose that F is a non-trivial K-subspace of L0.
Let b ∈ F ∗ be fixed, let a ∈ L∗0 be arbitrary, and let t = q(a); then (a, t) ∈ T ∗.

If f(a, b) 6= 0, then b − µ(a,t)(b)t
−σ = at−1f(a, b) ∈ F , and hence a ∈ F . So

assume that f(a, b) = 0. Since q is non-degenerate, there exists a c ∈ L0 such that
f(c, b) 6= 0, and hence also f(a+ c, b) = f(c, b) 6= 0. Hence c ∈ F and a+ c ∈ F ,
so also in this case we have that a = (a+ c)− c ∈ F . ut
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If K0 generates K (as a ring), then it follows from the fact that F is closed
under right multiplication by K0, that F is a K-subspace of L0. So we may assume
that K0 does not generate K as a ring. By [12, (23.23)], this implies that K0 is
a commutative field, and either K/K0 is a separable quadratic extension and σ is
the non-trivial element of Gal(K/K0), or K is a quaternion division algebra over
K0 and σ is the standard involution of K. Let N and T denote the (reduced) norm
and trace of K/K0, respectively.

Assume first that dimK L0 = 1; we will, in fact, identify L0 and K in this case.
Let ρ := q(1) ∈ K \K0; then q(t) +K0 = tσρt +K0 = tσ(ρ +K0)t for all t ∈ K.
Also, f(1, 1) = γ := ρ− ρσ, and hence f(s, t) = sσγt for all s, t ∈ K. One can now
compute that

µ(t,tσ(ρ+c)t)(s) = (ρ+ c)−1(ρ+ c)σstσ(ρ+ c)σt ,

for all s, t ∈ K∗ and all c ∈ K0. Since N(ρ+ c) = (ρ+ c)(ρ + c)σ ∈ K0, it follows
that, for all s ∈ F ∗, (ρσ + c)2stσ(ρσ + c)t ∈ F as well, and hence

r2stσrt ∈ F , for all r ∈ 〈1, ρ〉K0 and all t ∈ K . (3.2)

Suppose first that K/K0 is a separable quadratic extension; then K is commuta-
tive, and K = 〈1, ρ〉K0 . Hence, by (3.2), r3s ∈ F for all r ∈ K. If K0 = GF(2), then
K = GF(4), and then r3 ∈ K0 for all r ∈ K (this is the case which will lead to the
exception). So assume that |K0| ≥ 3, and suppose thatK3 ⊆ K0. SinceK = K0(ρ)
is a quadratic extension field of K0, we have ρ2 = aρ+ b for some a, b ∈ K0. Then
ρ3 = (a2+b)ρ+ab, hence a2+b = 0, and therefore ρ2−aρ+a2 = 0. If char(K) = 3,
then this would imply (ρ + a)2 = 0 and thus ρ = −a ∈ K0, a contradiction. If
char(K) 6= 3, then (ρ+ t)3− ρ3− 1 = 3ρt(ρ+ t) ∈ K0, and therefore ρ(ρ+ t) ∈ K0

for all t ∈ K∗0 . Choose a t ∈ K0 \ {0,−1}; then ρ = ρ(ρ+ (t+ 1))− ρ(ρ+ t) ∈ K0,
again a contradiction. We conclude that K3 6⊆ K0, and hence F = K.

Suppose now that K is a quaternion division algebra over K0; in particular,
K0 is an infinite commutative field. If we consider (3.2) with r = ρ + c for some
c ∈ K0 \ {0} = Z(K)∗, subtract the same expression with r = ρ and r = c, and
divide by c, then we get that

ρ(ρ+ 2c)N(t)s+ (c+ 2ρ)stσρt ∈ F ,
for all c ∈ K∗0 . If char(K) = 2, then it follows that ρ2N(t)s + cstσρt ∈ F , for
all c ∈ K∗0 , and hence stσρt ∈ F for all t ∈ K. If char(K) 6= 2, then we write
ρ2 = aρ + b with a, b ∈ K0; if we take r = ρ − a/2 in (3.2), then we obtain that
stσρt ∈ F for all t ∈ K since r2 ∈ K∗0 and stσ(a/2)t ∈ sK0 ⊆ F . So we have shown
that, in all characteristics, F is invariant under right multiplication by elements
of the set K0 ∪ {tσρt | t ∈ K}. It remains to show that the subring generated by
K0 ∪ {tσρt | t ∈ K} is K. Suppose that

K1 := 〈K0 ∪ {tσρt | t ∈ K}〉ring 6= K .

Since every subring of K containing K0 is a K0-vector space of dimension 1, 2 or
4, and since ρ 6∈ K0, we must have dimK0 K1 = 2; hence we can find a t ∈ K \K1

for which T(t) = 0 and T(ρt) 6= 0. Then tσ = −t and ρt = −tσρσ + r for some
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r ∈ K∗; hence

tσρt = −t(−tσρσ + r) = tσt · ρσ − t · r 6∈ K1 ,

a contradiction. So K1 = K, and hence F = K in this case as well.
Now suppose that dimK L0 ≥ 2. If K is a quaternion division algebra over K0

or if K is a quadratic extension field over K0 with K0 6= GF(2), then it follows
from the result in dimension 1 that F is a K-subspace of L0, and hence F = L0

by Lemma 3.1. It only remains to consider the case where K0 = GF(2) and
K = GF(4).

Let b ∈ F \ {0} be arbitrary. Since dimK L0 ≥ 2, there exists an a ∈ L∗0 such
that f(a, b) = 0; by (3.1), bq(a)σ ∈ F . Since q is anisotropic, q(a)σ 6∈ K0, and it
thus follows that bK ∈ F . This shows that F is a K-subspace of L0, and we can
again conclude by Lemma 3.1 that F = L0.

We will now describe the exception. So let K0 = GF(2), let K = GF(4), and
let dimK L0 = 1; we will again identify L0 and K = GF(4). Then ρ := q(1) is one
of the two elements in K \K0, and f(1, 1) = γ := ρ− ρσ = 1; hence f(s, t) = sσt
for all s, t ∈ K. Then U+ ∼= T is a group of order 8. In the case that the projective
group is PΣU(3, 2), we have B+ = T · Gal(K/K0), which is a group of order 16.
If we take U = B+, then U is of course a normal subgroup of B+, but U is also
nilpotent (since it is a 2-group) and transitive (since U+ is already transitive),
giving us the desired exception to the Main Theorem.

3.3. Exceptional Moufang sets of type E7.

We now consider the case of the Moufang sets arising from a Moufang quadrangle
of type E6, E7 or E8. In fact, we have already handled E6 and E7, since these corre-
spond to Hermitian Moufang sets, but our approach does not make any distinction
between these three cases.

Let (K, L0, q) be a quadratic space of type E6, E7 or E8 as defined in [12,
(12.31)], with corresponding bilinear form f : L0 × L0 → K and with base point
ε ∈ L∗0. Let X0 be the vector space over K and (a, v) 7→ av be the map from
X0 ×L0 → X0 as defined in [12, (13.9)]. Let h be the bilinear map from X0 ×X0

to L0 defined in [12, (13.18) and (13.19)], let g be the bilinear map from X0 ×X0

to K defined in [12, (13.26)], and let π be the map from X0 to L0 as defined in
[12, (13.28)]. Moreover, let π(a, t) := π(a) + tε for all (a, t) ∈ X0. Following [12,
(16.6)], let (S, ·) be the group with underlying set X0×K and with group operation

(a, t) · (b, u) = (a+ b, t+ u+ g(a, b))

for all (a, t), (b, u) ∈ S. Then the group U+ := U+
∞ is isomorphic to S, and acts

in a natural way on S itself by right multiplication; we will write τ(a,t) for the
element of U+ mapping (b, v) ∈ S to (b, v) · (a, t). Then Z(U+) = {τ(0,t) | t ∈ K}.

Let U be a second unipotent subgroup in G∞, and assume, as before, U+ ≤ U .
Exactly as in section 3.2, we let Ũ := U/Z(U+), Ũ+ := U+/Z(U+), B̃ :=

B/Z(U+), and Z̃ := Z(Ũ) 6= 1. For every a ∈ X0, we let τa := τ(a,0)Z(U+) ∈ Ũ+;
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then the map a 7→ τa is an isomorphism from (X0,+) to Ũ+. The natural action of
U on S induces an action of Ũ on X0. Since Ũ+ acts regularly on X0, there exists

an element ϕ in Ũ \ Ũ+ fixing 0 ∈ X0, and hence fixing the orbit 0Z̃ elementwise.
Again, there exists a non-trivial element τ ∈ Ũ+ ∩ Z̃. For every (a, t) ∈ S∗, the
mapping

µa,t : b 7→ bπ(a, t) + ah(b, a)− f(h(b, a), π(a, t))

q(π(a, t))
aπ(a, t) ,

for all b ∈ X0, belongs to B̃. (The computation of this expression requires some
calculation, similar to the other cases in [12, Chapter 33]. Observe also that
q(π(a, t)) 6= 0 by [12, (13.49)].) Let F := {c ∈ X0 | τc ∈ Z̃}. Then F is a non-
trivial additive subgroup of X0 such that µ(a,t)(F ) ⊆ F for all (a, t) ∈ S∗. We will
again show that F = X0 to obtain the required contradiction.

First of all, observe that it follows from the fact that µ(0,t)(b) = tb for all t ∈ K
and all b ∈ X0 that F is a K-subspace of X0.

Lemma 3.2. Let b ∈ X∗0 . If b ∈ F , then bπ(b) ∈ F .

Proof. Let b ∈ F . Then, for all t ∈ K, also µb,t(b) ∈ F , that is,

µb,t(b) =

(
1− f(h(b, b), π(b, t))

q(π(b, t))

)
bπ(b, t) + bh(b, b) ∈ F . (3.3)

Note that h(b, b) = 2π(b) if char(K) 6= 2 and that h(b, b) = f(π(b), ε)ε if char(K) =
2, by [12, (13.28) and (13.45)]. Also observe that we have already shown that
b · sε ∈ F for all s ∈ K.

Assume first that char(K) 6= 2. Then it follows from (3.3) that
(

3− f(2π(b), π(b, t))

q(π(b, t))

)
bπ(b) ∈ F ,

for all t ∈ K, and it is easily checked that this expression is zero if and only if
q(π(b)) = 3t2. Choose any t for which q(π(b)) 6= 3t2; then it follows that bπ(b) ∈ F
since F is a K-subspace of X0.

Now assume that char(K) = 2. It now follows from (3.3) that
(

1 +
f(f(π(b), ε)ε, π(b, t))

q(π(b, t))

)
bπ(b) ∈ F ,

for all t ∈ K, and this expression is zero if and only if

t2 + f(π(b), ε)t+ q(π(b)) + f(π(b), ε)2 = 0 .

This quadratic equation has at most 2 solutions; let t be any element of K which
is not a solution of this equation. Then it follows that bπ(b) ∈ F in this case as
well. ut

Lemma 3.3. Let b ∈ X∗0 . If there exist elements s, t ∈ K, not both zero, such that
b(sπ(b) + tε) ∈ F , then b ∈ F .
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Proof. Let b ∈ X∗0 and s, t ∈ K (not both zero) be such that b(sπ(b) + tε) ∈ F .
If s = 0, then t 6= 0, and then tb ∈ F , hence b ∈ F . So assume that s 6= 0;
then bπ(b, s−1t) ∈ F . Assume without loss of generality that s = 1. It is shown
in the proof of [12, (13.67)] that π(bπ(b, t)) = q(π(b, t))π(b). By [12, (13.49)],
q(π(b, t)) 6= 0. If we now apply Lemma 3.2 on the element bπ(b, t) ∈ F , then we
get that bπ(b, t)π(b) ∈ F , and since π(b, t) = f(ε, π(b, t))ε− π(b, t), it also follows
that bπ(b, t)π(b, t) ∈ F . But bπ(b, t)π(b, t) = q(π(b, t))b by [12, (13.7)], so b ∈ F ,
and we are done. ut

As in [12, (13.42)], we define P (a, b) := f(h(a, b), ε) for all a, b ∈ X0; then P is
an alternating bilinear form, which is non-degenerate. (This form is called F in
[12], but we choose P to avoid confusion with our set F .)

Lemma 3.4. Let a, b ∈ X∗0 . If b ∈ F and P (b, a) 6= 0, then a ∈ F .

Proof. Let a ∈ X∗0 and let b ∈ F such that P (b, a) 6= 0. Then for all s, t ∈ K, we
have that µa,t(b)− µa,s(b) ∈ F . It follows that

f(h(b, a), π(a, s))

q(π(a, s))
aπ(a, s)− f(h(b, a), π(a, t))

q(π(a, t))
aπ(a, t) ∈ F ,

for all s, t ∈ K. Let x := f(h(b, a), π(a)) ∈ K and let y := P (b, a) ∈ K∗; then this
can be rewritten as(

x+ sy

q(π(a, s))
− x+ ty

q(π(a, t))

)
aπ(a) +

(
s
x+ sy

q(π(a, s))
− t x+ ty

q(π(a, t))

)
a ∈ F .

By [12, (13.41)], a and aπ(a) are linearly independent. On the other hand, since
y 6= 0, there exists only one element s ∈ K for which x+ sy = 0. If we now choose
s 6= t such that x + sy 6= 0 and x + ty 6= 0, then the expression above cannot
be zero, and hence we have found constants c, d ∈ K, not both zero, such that
a(cπ(a) + dε) ∈ F . It follows from Lemma 3.3 that a ∈ F , which is what we had
to show. ut

We are now in a position to show that X0 = F . We already know that F is
non-trivial, so choose some fixed element b ∈ F ∗. Now let c ∈ X∗0 be arbitrary.
If P (b, c) 6= 0, then c ∈ F by Lemma 3.4. If P (b, c) = 0, then choose an element
a ∈ X0 such that P (b, a) 6= 0 (such an element exists since P is non-degenerate).
But now the elements a and a+ c both satisfy the hypotheses of Lemma 3.4, and
hence they both belong to F . It follows that also c = (a + c) − a belongs to F ,
and hence we have shown that X0 = F .

3.4. Suzuki-Tits Moufang sets.

We start with some observations. We use the notation of Subsection 2.9.

Observation 3. The mapping x 7→ x1+θ induces a permutation of L. Also, the
Tits endomorphism x 7→ xθ is a bijection from L onto Lθ.
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Proof. Indeed, if x ∈ L, then xθ ∈ Lθ ⊆ Kθ, so x1+θ = xθx ∈ KθL = L.

Moreover, for given nonzero u ∈ L, the element uθ−1 is mapped onto uθ

u .
u2

uθ
= u.

Since u−1 ∈ L, also uθ−1 = uθu−1 ∈ L. The mapping x 7→ x1+θ is injective since
x 7→ xθ−1 is its inverse.

If xθ = yθ, then applying θ, we get x2 = y2, so x = y. ut

Observation 4. For each nonzero t ∈ Lθ, the mapping ht fixing (∞) and mapping
(a, a′) onto (ta, t1+θa′) belongs to Sz(K, L, θ).

Proof. This follows from a calculation similar to one culminating in the formulae
of (33.17) of [12], using the matrices in Subsection 2.9. ut

Observation 5. For |K| = 2, every projective group of MSz(K,K, id) is isomor-
phic to the little projective group G. Also, in this Moufang set the stabilizer G∞
related to (∞) is isomorphic to U+

∞ and hence this Moufang set has unique tran-
sitive nilpotent normal subgroups.

Proof. This readily follows from the well known fact that, in this case, the Moufang
set is a Frobenius group of order 20 acting on 5 elements, and that this group is a
maximal subgroup of the full symmetric group on five letters. ut

From now on, we may assume that |K| ≥ 8. The following observation is well
known for the classical case L = K.

Observation 6. The center Z+
∞ of U+

∞ coincides precisely with the set of elements
of U+

∞ of order less than or equal to 2. The orbit of (0, 0) under Z+
∞ is equal to

{(0, a′) | a′ ∈ L}, while the orbit of (∞) under the center Z+
0 of U+

0 is equal to
{(a, 0) | a ∈ L∗} ∪ {(∞)}.

Proof. An easy and straightforward computation shows that Z+
∞ = {(0, a′)∞ | a′ ∈

L}, and also that (a, a′)∞ has order two if and only if a = 0 and a′ 6= 0. Using
the matrices of Subsection 2.9, one now sees that Z+

0 = {(0, x′)0 | x ∈ L}, but
the element (0, a−1−θ)0 maps (1, 0, 0, 0) to (1, (a−1−θ)θ, 0, a−1−θ), which coincides
with (a2+θ, 1, 0, a) = (a, 0). ut

Our Main Result will strongly depend on the following lemma.

Lemma 3.5. Let ϕ be an automorphism of the Moufang set MSz(K, L, θ) fixing
(∞) and all elements (0, a′) with a′ ∈ Lθ. Then ϕ is necessarily the identity.

Proof. By the definition of automorphism, the permutation ϕ normalizes U+
∞, and

hence also Z+
∞. Likewise, it normalizes Z+

0 . Using Observation 6, this immediately
implies that ϕ stabilizes the sets {(0, a′) | a ∈ L} and (a, 0) | a ∈ L. Hence we
may write (a, 0)ϕ = (aϕ1 , 0), with ϕ1 a permutation of L fixing 0, and (0, a′)ϕ =
(0, a′ϕ2), with ϕ2 a permutation of L fixing Lθ pointwise. Since ϕ fixes (0, 0), we
may interpret the foregoing formulae as conjugation of elements of U+

∞ with ϕ.
Hence, we obtain
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(a, a′)ϕ∞ = (a, 0)ϕ∞ ⊕ (0, a′)ϕ∞ = (aϕ1 , a′
ϕ2)∞.

We now use the fact that ϕ induces an automorphism of U+∞ by conjugation.
The equality (a, 0)ϕ∞ ⊕ (b, 0)ϕ∞ = (a+ b, abθ)ϕ∞ translates implies

aϕ1(bϕ1)θ = (abθ)ϕ2 (3.4)

Putting a = 1, and taking into account that bθ ∈ Lθ is fixed by ϕ2, we see that
1ϕ1(bϕ1)θ = bθ. Putting b = 1, this implies 1ϕ1(1ϕ1)θ = 1, hence 1ϕ1 = 1 by
Observation 3. The previous equality now gives us (bϕ1)θ = bθ. Again using
Observation 3 we conclude ϕ1 = id.

Now putting b = 1 in Equation (3.4), we deduce aϕ1 = aϕ2 . The assertion now
follows. ut

Theorem 3.6. Let G be an arbitrary projective group of MSz(K, L, θ), and let
U∞ be a unipotent subgroup of G. Then U∞ ≡ U+

∞.

Proof. We may assume U+
∞ ≤ U∞. Let u ∈ Z(U∞). Then u acts fixed point

freely on X \ {(∞)}, and it commutes with every element of U+
∞. Identifying

the element (a, a′) with the group element (a, a′)∞, and noting that the action
of U+

∞ can hence be identified with the right action on itself, the action of u
can be described as left action on U+

∞. So, if u maps (0, 0) onto (c, c′), then we
may write u : (a, a′)∞ 7→ (c, c′)∞ ⊕ (a, a′)∞. Hence, if c 6= 0, then the map
ϕ : (a, a′)∞ 7→ (c, c′)∞⊕ (a, a′)∞⊕ (c, c′+ c1+θ)∞ is nontrivial, belongs to U∞ and
fixes all elements of the form (0, a′), with a′ ∈ L. This contradicts Lemma 3.5.

So c = 0. Considering the isomorphic Moufang set MSz(K, Lc′−1
, θ), we may

assume that c′ = 1. Since the center of U∞ is invariant under each mapping ht,
t ∈ Lθ. Observation 4 implies that (0, tθ)∞ ∈ Z(U∞). If U∞ 6= U+

∞, then there
exists a nontrivial element ϕ ∈ U∞ fixing (0, 0). Since ϕ commutes with (0, tθ),
t ∈ L, it fixes all elements (0, tθ), with t ∈ L. Lemma 3.5 shows that ϕ is the
identity, a contradiction. Hence U∞ must coincide with U+

∞.
The theorem is proved. ut

3.5. Ree-Tits Moufang sets.

We start again with some observations, using the notation of Subsection 2.10.

Observation 7. The mapping x 7→ x2+θ is a permutation of K, inducing a per-
mutation of K2. Also, the Tits endomorphism x 7→ xθ is a bijection from K onto
Kθ. Finally, the set {t1+θ | t ∈ K} contains K2.

Proof. The inverse of x 7→ x2+θ is given by x 7→ x2−θ, for x 6= 0, and 0 7→ 0.
Also, if xθ = yθ, then applying θ, we get x3 = y3, so x = y.
Finally, for any x ∈ K, the element (x−1+θ)1+θ is the arbitrary but prescribed

square x2 ∈ K2, which proves the last assertion. ut
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Observation 8. For each nonzero t ∈ K, the mapping ht fixing (∞) and mapping
(a, a′, a′′) onto (tθ−1a, t2a′, t1+θa′′) belongs to Re(K, θ).

Proof. The subgroups {(0, x′, 0)∞ | x′ ∈ K} ≤ U+
∞ and {(0, x′, 0)0 | x′ ∈ K} ≤

U+
0 preserve the set {(0, a′, 0) | a′ ∈ K} ∪ {(∞)}, inducing a Moufang set M′

isomorphic to a projective line over K. Using the matrices above related to the
mapping (0, x′, 0)∞ and (0, x′, 0)0, one now calculates that the mapping (0, a′, 0) 7→
(0, t2a′, 0), for any t ∈ K∗, which belongs to M′, acts on X as ht. ut

Observation 9. The center Z+
∞ of U+

∞ consists precisely of the elements (0, 0, a′′)∞,
with a′′ ∈ K. Also, the elements of U+

∞ of order less than or equal to 3 form a
subgroup V +

∞ = {(0, a′, a′′) | a′, a′′ ∈ K} which coincides precisely with the com-
mutator subgroup [U+

∞, U
+
∞], and also with the set of elements u ∈ U+

∞ satisfying
[u, U+

∞] ≤ Z+
∞. The orbit of (0, 0, 0) under Z+

∞ is equal to {(0, 0, a′′) | a′′ ∈ K},
while the orbit of (∞) under the center Z+

0 of U+
0 is equal to {(a, 0,−a2+θ) | a ∈

K∗} ∪ {(∞)}.

Proof. The first assertion follows from an easy and straightforward computation
using the operation ⊕ introduced above.

The second assertion follows from the identities

(a, a′, a′′)∞ ⊕ (a, a′, a′′)∞ ⊕ (a, a′, a′′)∞ = (0, 0,−a2+θ)∞

and

[(a, a′, a′′)∞, (b, b
′, b′′)∞] = (0, abθ−aθb, ab1+θ−a1+θb+aθb2−a2bθ +a′b−ab′)∞,

and from the following two claims: (1) for arbitrary a ∈ K, the identity abθ −
aθb = 0, for all b ∈ K, implies a = 0, and (2) the additive subgroup A of K
generated by the elements abθ − aθb, for a, b ∈ K, coincides with K itself.

We prove Claim (1). Putting b = 1, Observation 7 implies a = 1, a contradic-
tion since bθ − b = 0 is not an identity in K. We now prove Claim (2). Putting
a 6= b, we see that A is nontrivial. Let x ∈ A, x 6= 0, with x = abθ − aθb, for some
a, b ∈ K. Substituting ta and tb for a and b, respectively, with t ∈ K∗ arbitrary,
we see that t1+θx ∈ A. Observation 7 implies that, for all k ∈ K, the element xk2

belongs to A. For arbitrary y ∈ K, we now have

y = x(x−1 − y)2 − x(x−1)2 − xy2 ∈ A.
The claim is proved.

The explicit form (using matrices as in Subsection 2.10) of (0, 0, a′′)0 = (0, 0, a′′)g∞
shows that

(∞)(0,0,a′′)0

= (−f3(0, 0, a′′)f1(0, 0, a′′)−1,−f2(0, 0, a′′)f1(0, 0, a′′)−1,−a′′f1(0, 0, a′′)−1),

= (a′′
θ−2

, 0,−a′′−1
),

and the last assertion follows by putting a′′ = a−2−θ. ut
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We need one more observation before we can prove the analogue of Lemma 3.5
for Ree-Tits Moufang sets.

Observation 10. Let ϕ be an automorphism of the Moufang setMRe(K, θ) fixing
(∞) and (0, 0, 0). Then ϕ stabilizes the set {(0, a′, 0) | a′ ∈ K}.

Proof. Let a′ ∈ K∗ be arbitrary and let (b, b′, b′′) be the image of (0, a′, 0) under
ϕ. Then (0, a′, 0)ϕ∞ = (b, b′, b′′)∞. Since (0, a′, 0)∞ ∈ [U+

∞, U
+
∞], also (b, b′, b′′)∞

belongs to the commutator subgroup. It follows that b = 0. This argument
means in fact that (b, b′, b′′) must belong to the orbit of (0, 0, 0) under [U+

∞, U
+
∞].

Now we remark that (0,−b′−1
, 0)0 maps (∞) onto (0, b′, 0). Hence, similarly as

above, (0, b′, b′′) must belong to the orbit of (∞) under [U+
0 , U

+
0 ]. Using the same

technique as in the proof of the previous observation, one shows that this orbit
consists of, besides (∞), the elements

(−f3(0, x′, x′′)f1(0, x′, x′′)−1,−f2(0, x′, x′′)f1(0, x′, x′′)−1,−x′′f1(0, x′, x′′)−1),

for x′, x′′ ∈ K. Such an element also belongs to the orbit of (0, 0, 0) under [U+
∞, U

+
∞]

if and only if f3(0, x′, x′′) = 0, hence if and only if x′′θ = x′x′′. If x′′ = 0, then the

assertion follows. If x′′ 6= 0, then x′ = x′′θ−1
and we have f1(0, x′, x′′) = x′′2 +

x′′(θ−1)(θ+1)
= −x′′2, hence (0, b′, b′′) = (0, x′′1−θ, x′′−1

), for some x′′ ∈ K∗. In this
case, the image of (0,−a′, 0) must be equal to, in view of (0,−a′, 0)∞ = (0, a′, 0)−1

∞ ,

the element (0,−x′′1−θ,−x′′−1
). But then

−x′′1−θ = (−x′′)1−θ,

a contradiction. ut

Our Main Result will strongly depend on the following lemma.

Lemma 3.7. Let ϕ be an automorphism of the Moufang set MRe(K, θ) fixing
(∞) and all elements (0, 0, a′′) with a′′ ∈ K. Then ϕ is necessarily the identity.

Proof. By assumption, we have (0, 0, a′′)ϕ = (0, 0, a′′), for all a′′ ∈ K. By Obser-
vation 10, there is a permutation ϕ1 of K such that (0, a′, 0)ϕ = (0, a′ϕ1 , 0), for
all a′ ∈ K. Now, by definition of automorphism of a Moufang set, ϕ normalizes
U+

0 , and hence also its center Z+
0 . Using Observation 9, this implies that there is

a permutation ϕ2 of K such that (a, 0,−a2+θ)ϕ = (aϕ2 , 0,−(aϕ2)2+θ).
This implies

(a, a′, a′′)ϕ∞ = (a, 0,−a2+θ)ϕ∞ ⊕ (0, a′, 0)ϕ∞ ⊕ (0, 0, a′′ + a2+θ − aa′)ϕ∞,
= (aϕ2 , a′

ϕ1 , a′′ − (aϕ2)2+θ + aϕ2a′
ϕ1 + a2+θ − aa′)∞. (3.5)

Let a, b ∈ K be arbitrary. Equating the second positions of (a, 0, 0)ϕ∞⊕(b, 0, 0)ϕ∞
and (a+ b, abθ,−ab1+θ)ϕ∞, we obtain, using the general formulae (3.5),

aϕ2(bϕ2)θ = (abθ)ϕ1 , (3.6)

for all a, b ∈ K.



22 T. De Medts, F. Haot, R. Knop and H. Van Maldeghem

Similarly, equating the third positions of (0, c, 0)ϕ∞⊕(d, 0, 0)ϕ∞ and (d, c,−cd)ϕ∞,
we obtain, again using the general formulae (3.5),

−(dϕ2)2+θ + d2+θ − dϕ2cϕ1 = cd− (dϕ2)2+θ + dϕ2cϕ1 + d2+θ,

for all c, d ∈ K, which implies

cd = cϕ1dϕ2 , (3.7)

for all c, d ∈ K. Putting a = b = 1 in Equation (3.6), we see that 1ϕ2(1ϕ2)θ = 1ϕ1 ,
which implies, in view of Equation (3.7) with c = d = 1, that (1ϕ2)2+θ = 1.
Consequently, Observation 7 shows 1ϕ2 = 1. Putting d = 1 in Equation (3.7), we
now see c = cϕ1 , for all c ∈ K, so ϕ1 is the identity. The same Equation (3.7), now
again with general d ∈ K, now also shows that ϕ2 is the identity. Formula (3.5)
now implies that ϕ is trivial. ut

Theorem 3.8. Let G be an arbitrary projective group of MRe(K, θ), and let
U∞ ≤ G∞ be a unipotent subgroup of G. Then U∞ ≡ U+

∞.

Proof. We may assume U+
∞ ≤ U∞. Let u ∈ Z(U∞). If u maps (0, 0, 0) onto

(c, c′, c′′), then, similarly as in the beginning of the proof of Theorem 3.6, u can be
presented as u : (a, a′, a′′)∞ 7→ (c, c′, c′′)∞ ⊕ (a, a′, a′′)∞. Hence, if (c, c′) 6= (0, 0),
then the map ϕ : (a, a′, a′′)∞ 7→ (c, c′, c′′)∞⊕ (a, a′, a′′)∞ ⊕ (−c,−c′+ c1+θ,−c′′+
cc′−c2+θ)∞ belongs to U∞ and fixes all elements of the form (0, 0, a′′), with a′ ∈ L.
This contradicts Lemma 3.5.

So we may assume that (c, c′) = (0, 0). Then u = (0, 0, c′′)∞, for some c′′ ∈ K.
Since the center of U∞ is invariant under each mapping ht, t ∈ K, Observation 8
implies that (0, 0, t1+θc′′)∞ ∈ Z(U∞). Hence by Observation 7 (0, 0, k2c′′)∞ ∈
Z(U∞), for all k ∈ K. For arbitrary x ∈ K, we see that

(0, 0, x)∞ = (0, 0, (x− c′′−1
)c′′)∞ ⊕ (0, 0, x2c′′)−1

∞ ⊕ (0, 0, (c′′
−1

)2c′′)−1
∞ ,

which implies Z(U∞) = Z+
∞. Standard group theory now implies that ϕ fixes

all elements (0, 0, x), with x ∈ K. Lemma 3.7 shows that ϕ is the identity, a
contradiction. Hence U∞ must coincide with U+

∞.
The theorem, and also our Main result, are proved. ut

4. Final remarks

The present paper treats almost all known Moufang sets that do not arise from
sharply 2-transitive groups. Only the cases of an algebraic group of relative rank
1 and exceptional absolute type, or absolute type D4, were left out, as are the new
Moufang sets discovered in [6] and which arise from a polarity of an exceptional
Moufang quadrangle of type F4. However, all Moufang sets that appear in higher
rank 2-spherical Moufang buildings as permutation groups generated by opposite
root groups are covered by our Main Result, and by [1], this provides a new proof
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of the main result of loc.cit., namely the fact that in every split spherical BN-pair
of irreducible rank ≥ 2 the unipotent subgroups are unique as transitive nilpotent
normal subgroups of the Borel subgroups.

We end by noting that our Main Result implies that for the Moufang sets
under consideration, and for every projective group G, the root groups Ux are
characteristic subgroups of the point stabilizers Gx. It is this fact that we expect
to be very useful in geometric approach to the rank 1 buildings defined by Moufang
sets with nonabelian root groups, as proposed by Jacques Tits [10].
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89 – 102.

[11] J. Tits, Résumé de cours (Annuaire du Collège de France), 100e année, 1999-2000,
93 – 109.

[12] J. Tits and R. Weiss, Moufang Polygons, Springer-Verlag, Springer Monographs in
Mathematics, Berlin, Heidelberg, New York, 2002.

[13] H. Van Maldeghem, Generalized Polygons, Birkhauser Verlag, Basel, Boston, Berlin,
Monographs in Mathematics, 93, 1998.



24 T. De Medts, F. Haot, R. Knop and H. Van Maldeghem

Tom De Medts, Fabienne Haot & Hendrik Van Maldeghem, Ghent University, Depart-
ment of Pure Mathematics and Computer Algebra, Krijgslaan 281 S22, B-9000 Ghent,
Belgium

Email: tdemedts@cage.ugent.be; fhaot@cage.ugent.be; hvm@cage.ugent.be

Rafael Knop, Martin-Luther-Universität Halle-Wittenberg, Fachbereich Mathematik und
Informatik, Theodor-Lieser-Strasse 5, 06099 Halle, Germany

Email: knop@coxeter1.mathematik.uni-halle.de


