IDENTITIES IN MOUFANG SETS

TOM DE MEDTS! AND YOAV SEGEV?

ABSTRACT. Moufang sets were introduced by Jacques Tits as an axiom-
atization of the buildings of rank one that arise from simple algebraic
groups of relative rank one. These fascinating objects have a simple def-
inition and yet their structure is rich, while it is rigid enough to allow for
(at least partial) classification. In this paper we obtain two identities
that hold in any Moufang set. These identities are closely related to
the axioms that define a quadratic Jordan algebra. We apply them in
the case when the Moufang set is so-called special and has abelian root
groups. In addition we push forward the theory of special Moufang sets.

1. INTRODUCTION

During the last few years, there has been a growing interest in Moufang
sets, which were introduced in 1990 by Jacques Tits in [Ti]. The notion of
a Moufang set is equivalent to that of a group with a split BN-pair of rank
one. Another essentially equivalent concept is that of (an abstract) rank one
group, as introduced by F. Timmesfeld in [T]. (The latter requires the root
groups to be nilpotent; this is not required for Moufang sets.)

Moufang sets are of great importance: On the one hand for purely group-
theoretical purposes (and in particular, for classification purposes of both
simple algebraic groups and finite simple groups). On the other hand, there
are many deep connections with algebraic structures (octonion algebras,
Jordan algebras, Albert algebras, quadratic forms, hermitian forms as well
as other structures).

The first systematic study of Moufang sets was begun only recently by
T. De Medts and R. Weiss in [DW]. The paper [DW] had set the path
along which the current paper follows and both papers show that it may be
possible to classify at least certain classes of Moufang sets (e.g. the so-called
special ones, see Definition 4.1).

In order to make the statements of our results accessible we first need to
give some definitions. A Moufang set is a permutation group G' on a set X
together with a conjugacy class of subgroups {U, | z € X} which generate
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G*, such that for every x € X, U, fixes z, acts regularly on X ~ {z},
and Uy = Uy, for all ¢ € G'. In particular, G is a doubly transitive
permutation group. The group G' is called the little projective group of the
Moufang set, and the subgroups {U, | x € X} are called the root groups of
the Moufang set.

Any Moufang set can be constructed as follows (see [DW]). Start with
a group U and let oo be a new symbol (not in U). Let X denote the set
X = U U{oo}. We write U in additive notation even though we do not
assume that U is commutative. For a € U* := U ~. {0}, we let o, € Sym(X)
be the permutation which fixes co and maps x to x 4+ a for every = € U.
Suppose that 7 € Sym(X) with 07 = co and cor = 0, and let

Uss ={0g | a €U}, Uy=Ul, and U, = U for all a € U™.

o0

Then Gt := (U, | z € X) and the subgroups {U, | 2 € X} are candidates
for being a Moufang set. These “candidates” are encoded by the notation
M(U, 7). For a € U*, let

T T
Ha = C —a)'r—laaa—(a’r—l)7

where for group elements g,h, ¢" = h~'gh. These complicated looking
permutations p, play an important role in the analysis of Moufang sets.
It can be easily shown that p, interchanges 0 and oo, for all a € U*. In
particular, for a € U*, T, fixes 0 and oo and hence acts as a permutation on
the set U. In the main theorem (Theorem 2) of [DW] it is proved that the fact
that M(U, 7) is a Moufang set is equivalent to the fact that 7u, € Aut(U),
for all a € U*.

The permutations ., a € U* are invariants of M(U, 7) in the following
sense: From the definition of M(U, 1) it follows that M(U,7) = M(U, p)
for every permutation p € Sym(X) that interchanges 0 and oo and satisfies
Uk = UL, = Uy. Although the permutations y, appear to depend on 7, once
it is established that M(U, 7) is a Moufang set, it turns out that u, depends
only on the subgroups Uy and Uy,: it is the unique element in Uya,Up that
interchanges 0 and oo (see Lemma 3.3(2)).

This paper shows that some of the connections between special Moufang
sets and quadratic Jordan division algebras discovered in [DW], actually
exist in a more general context: We prove

Theorem 1.1. Assume M(U, ) is a Moufang set. Then

(1) trapy = 15 1 1, for all a,b € U ~ {0
(2) Har=1—br=1)7 = H—bHb—alla; for all a,b € U \ {0} with a # b.

It turns out that in the case when U is abelian and M(U, ) is a special
Moufang set, identity (1) of Theorem 1.1 is equivalent to the “fundamental
identity” in the theory of quadratic Jordan algebras (axiom (QJ3) in §2),
while identity (2) of Theorem 1.1 is closely related to axiom (QJ2).

The exact way the identities of Theorem 1.1 translate to identities in the
theory of quadratic Jordan division algebras becomes more transparent once
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the Hua maps (relative to 7) are introduced. These maps come from [DW],
see Notation 3.2. They are given by

he = Tlq.

A word of caution is needed here: though 7 does not appear in the notation
hg, nevertheless h, does depend on 7.

We now discuss the application of Theorem 1.1 to special Moufang sets
with abelian root groups. By [T, Thm. 5.2(a), p. 55], if M(U, 7) is a special
Moufang set such that U is abelian, then U is a vector space over QQ or over
GF(p) for some prime p (see also Proposition 4.6(5) below). Thus U has
a natural characteristic. The following theorem generalizes Theorem 7 of
[DW]. We refer the reader to §2 for the definition of a quadratic Jordan
division algebra.

Theorem 1.2. Assume that M(U, 1) is a special Moufang set and that U is
abelian of characteristic distinct from 2 and 3. Fixe € U* and let hy 1= peftq
be the Hua maps relative to pe, a € U*. Let H: U — Aut(U) be the map
H: x — hy, and suppose that the map (x,y) — hyty — hy — hy, from U x U
to End(U) is biadditive.

Then (U, H,e) is a quadratic Jordan division algebra.

In §5 there are additional results related to special Moufang sets with abelian
root groups: In Propositions 5.5 and Corollary 5.6 we show some interesting
conditions which are equivalent to axiom (QJ2) in the context of Moufang
sets.

Section 4 is devoted to special Moufang sets: In Lemma 4.3 we deduce a
variety of identities involving the permutations u, and oy, a € U*. Proposi-
tion 4.6 shows that if U is torsion free, then U is a uniquely divisible group
(and there are results also in the case when U contains torsion). Proposi-
tion 4.9 shows that two p-maps p, and up can only be equal if b = +a and
Proposition 4.10(5) shows that if @ € U* has finite order then p? = 1. There
are various additional results in this paper. We note that some of the results
of §4 were applied in [SW].

ACKNOWLEDGMENT: Both authors are grateful to Richard Weiss for his
careful reading of the paper which resulted in valuable comments.

2. QUADRATIC JORDAN ALGEBRAS

Throughout this paper we compose maps from left to right and we apply
maps on the right side of the variable. For a set X containing a zero element,
X* will denote X ~ {0}.

We first recall the definition of quadratic Jordan algebras, as introduced
by K. McCrimmon [Mc1]. Note that we will use the notation J, in place of
the more common notation Uy, to avoid confusion with our notation for the
root groups.

Let k be an arbitrary commutative field, let J be a vector space over k
of arbitrary dimension, and let 1 € J* be a distinguished element. For each
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x € J, let J, € Endg(J), and assume that the map J: z — J, from J to
End(J) is quadratic, i.e.

Jpt = Jot? for all t € k, and

the map (x,y) — Jy 4 is k-bilinear,
(note that we multiply scalars on the right) where

Joy = Jogy — Jz — Jy
for all z,y € J. Let
va,y = ny,z

for all z,y,z € J. Then the triple (J,J,1) is a quadratic Jordan algebra if
the identities
(QJ1) Jy =idy;
(QJ2) JoViy = Vyadas
(QJ3) Jyj, = JudyJa
hold strictly, i.e. if they continue to hold in all scalar extensions of J. (It
suffices for them to hold in the polynomial extension Ji; and this is auto-
matically true if the base field k has at least 4 elements.)

Any element e € J such that J. = id; is called an identity element. An
element x € J is called invertible if there exists y € J such that

yJy =2 and 1J,J, =1

In this case y is called the inverse of z and is denoted y = x~!. By [Mc2,
6.1.2], an element = € J is invertible if and only if J, is invertible; we then
have J;1 = J, 1. In particular,

(zHt=z and z7!'=2J'.

If all elements in J* are invertible, then (J, J,1) is called a quadratic Jordan
division algebra.

3. MOUFANG SETS

For a permutation group H < Sym(X) and elements =,y € X we denote
by H, the stabilizer in H of x, by H,, = H, N Hy, and by Hy,, the
stabilizer of the set {x,y} in H. Also, for any group G, elements z,y € G
and a subgroup H < G, 2¥ =y~ 'zy and HY =y~ ' Hy.

For the sake of being orderly we repeat (and expand) here some of the
definitions and notation given in the introduction. A Moufang set is a set
X together with a permutation group

G' < Sym(X),
and a collection of subgroups
{U, | z € X},
satisfying the following properties:
(MFS1) Gl = (Uz);
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(MFS2) U, < Gl and U, is regular on X ~ {z}, for all z € X (in particular,
G' is doubly transitive);
(MFS3) for all z € X, we have that Uy = Uy, for all € GT. In particular,

U, is weakly closed in GL with respect to GT.

The subgroups U, are called the root (sub)groups of the Moufang set; the
group G1 is called its little projective group.

Notation 3.1. (1) Throughout this paper U denotes a group which is
not necessarily commutative but written in additive notation.
(2) Throughout oo is a new symbol (not in U) and X denotes the set

X :=U U{o0}.
(3) For a € U* we let a, € Sym(X) be the permutation
{:c +a ifzxelU;
TQg 1= .
00 ifx=o00.

(4) Suppose that 7 € Sym(X) with 0™ = co and co”™ = 0, then we denote
Usws ={aq |a €U}, Uy =UZL, and U, = Uy for all a € U*.

Notation 3.2. Let a € U*; following [DW] we denote

(1) Va 1= Qg ; .
(2) pa = V(—a)yr—10 Vg 13
(3) hg := TaaT_la;T,lTa(_(aT,l))T; these maps h, are called the Hua

maps corresponding to 7.
(4) It will be convenient to define g := 0 and hg := 0.

Lemma 3.3. Let a € U*, then
(1) H—a = M;l;
(2) pq is the unique element in Uya,Ug interchanging 0 and oco.
Proof. (1) is immediate from the definition of p,.
To show (2), let p € Upa,Up and assume that 0p = oo and cop = 0. Write
P = Vula Yy, With 7,7, € Up. Then oo = 0p = ay, = ((ar™1) 4+ y)7. Hence
at ' +y=00r"t=0,s0 y = —(ar™ ). Also,
0 = 00p = 00V Yy = OOT_IOéxTOéa’)/y = xTaqYy = (27 + a)yy.
It follows that 7 + a = Oyy_l =0,s0 v = (—a)T L. O
Notation 3.4. (1) Let X be a set. Suppose that for each z € X we
are given a subgroup U, < Sym(X) that fixes x. We denote this
situation by (X, (Uz)zex)-

(2) M(U,7) := (X, (Ug)zex), where X = U U {00} and 7, U, are as in
Notation 3.1(2) and 3.1(4).

Theorem 3.5 ([DW], Thm. 2). M(U, 1) is a Moufang set if and only if the
map hg restricted to U is an automorphism of U, for all a € U*.



6 T. DE MEDTS AND Y. SEGEV

Notation 3.6. Let A C Sym(X) be the set of all permutations A € Sym(X)
such that OA = co and coA = 0. Then we can define M(U, \), for A € A,
where M(U, \) is as in Notation 3.4(2), with 7 replaced by A\. We let 9t C A
be the smallest subset satisfying the following properties: (i) 7 € 9M; (ii) if
p € M, then p~1 € M; (iii) if A € A is such that U2 = UL, for some p € M,
then A € 9.

Lemma 3.7. Let M be as in Notation 3.6 and suppose M(U, T) is a Moufang
set. Then
(1) M(U, p) is a Moufang set for each p € IM;
(2) the permutation py , = af_x)p,lama’i(w,l) belongs to M for each
p € Mandx € U*. Furthermore M(U, i, p) = M(U, p) = M(U, pi},);
(3) given p,o € M, M(U, p) = M(U, o) if and only if US, = UZ,.

Proof. First notice that (3) is immediate from the definitions. Then by (3)
to show (1) it suffices to show that if for some A € A, M(U, \) is a Moufang
set, then also M(U, A\™!) is a Moufang set. We show this for 7; so we must
show that M(U, 771) is a Moufang set. For a € U* consider the permutation
G i= T_laaToz;TlT_la(il(m))T_l € Sym(X). Notice that g, is the Hua map
corresponding to 7! (see Notation 3.2(3)). By [DW, Lemma 8(i)], g4 = h .,
so in particular, g, € Aut(U). It follows by Theorem 3.5 that M(U, 7~!) is
a Moufang set.

It remains to prove (2). Note that the map p, , is the “u-map” as defined
in Notation 3.2(1) and 3.2(2), with 7 replaced by p. Now by (1), M(U, p)
is a Moufang set and, by definition, p, , is in the little projective group
corresponding to the Moufang set M(U, p). Furthermore, by Lemma 3.3(2),
pa,p € A. Thus (2) follows from the fact that M(U, p) is a Moufang set (in
particular from axiom (MFS3)), using (3). O

Proposition 3.8. Assume that M(U, 1) is a Moufang set. Then
(1) M(U, p) = M(U,T) for any p € Sym(X) which interchanges 0 and
oo and satisfies UL, = Uy; in particular, this holds for p = i, where
a is an arbitrary element in U*;

(2) G(T),oo = (ot | a,b € U*) and G}O,oo} = (g |aeU");
(3) G} o < Aut(U).

Proof. (1) This follows from Lemma 3.7(3) and 3.7(2).
(2) The first part of (2) is [DW, Thm. 1(ii)]. The second part follows
from the first and from Lemma 3.3(2).
(3) By (2) it suffices to show that pgup € Aut(U). But replacing 7 with
e and using (1), we get from Proposition 3.9(1) below that the
corresponding Hua maps are g, and by Theorem 3.5, these maps
are in Aut(U).
(]

Proposition 3.9. Assume M(U, T) is a Moufang set, let a,b € U* and let
A C Sym(X) be the set of permutations that interchange 0 and oo. Then
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(1) Ha = Tﬁlha;

(2) if p € A is such that M(U,p) = M(U,7) = M(U, p~ 1), then pap, =
ptustp, it follows that Hag = g Y ag, for every g € G&OO;

(3) if M(U,7) = M(U,771), then har = 77 h_om and hap, = h_ph hy.

Proof. (1) By [DW, Lemma 8.1(ii)], we have that p, = h~.7. Therefore,
by Lemma 3.3(1), we have that g = p=) = 77 1h,,.

(2) Assume that M(U,7) = M(U,7~1). We first prove (2) for p = 7.
Following [DW], we define the maps g, := T_laaTa;TlT_la(_ (ar))r-1
for all @ € U*. Then by definition, the maps g, are the Hua maps
corresponding to 7~ !. Since we are assuming that M(U,77!) =
M(U, 7), we can apply (1) to the maps g,. Note that by Lemma
3.3(2), the maps p, are independent of 7. Therefore, taking in (1)

ga in place of h, and 77! in place of 7 we have

Ha = TGa -

On the other hand, we know from [DW, Lemma 8(i)] that g, = h_},
and hence

Har = T_lhm‘ = T_lga_l = 7_—1”;17_7

which shows (2) for p = 7. Now if p € A is such that M(U, p) =
M(U, 1) = M(U, p~1), just replace 7 by p in the above argument, so
the first part of (2) holds. The second part of (2) is a consequence of
the first, noticing that by Proposition 3.8(1), M(U, u,) = M(U, 1) =
M(U, u; 1), for each z € U*, and using Proposition 3.8(2).

(3) First, by (1) and (2), har = Tpar = p; 7 =7 T o)7 = 7 h_o7.
Next, again by (1) and (2),

Rahy, = Tharu, = THY Har b = TH_pfigr ™ Ty = h_phgthy .
0

Proposition 3.10. Assume M(U, 1) is a Moufang set. Let a € U* and set
~a = (—(ar™1))7T. Then
(1) ~is independent of T, i.e., ~a = (—(ap~1))p, for every p € Sym(X)
that interchanges 0 and oo and satisfies M(U, p) = M(U, 7);

choice of T, and pppieft—q = tp—q-

Proof. (1) Let x € U*, then ~a = (—(a7™ ) Tp_pptz = (—(apz))piz,
because Tu_, € Aut(U). By Lemma 3.3(2), p, is independent of 7,
and hence the same equalities hold with p in place of 7, which im-
plies (1).
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(2) Notice that by (1) and by the definition of p, in Notation 3.2(2),
Har = VY~a®ar—a -

Using Lemma 3.3(1) and Proposition 3.9(2) we have u; ! = Mg;l =
el a_q. Hence pg = aaa:;a,(Na). Since M(U, 7) = M(U, 771)
and since pu, is independent of 7, this last equality holds with 7 re-
placed by 771

(3) By (2) we have

—((—a)pq) = —(—a)aaT_la;Tl,lTa(j(aT,l))T

- (Oo)ac;'l_l Ta(_j(aT_l))T

= (—(ar™ V)T = ~a.

(4) Since statement (4) is independent of 7, using Proposition 3.8(1) we
may (and we will) assume that M(U, 7) = M(U, 7~1) by replacing 7
by some .. By part (2) with 7 replaced by 7!, we have that

Ua = ozaTa,aTTfla,(Na)
and hence
O—aftaOlmg = TO_aqrT ©: (3.1)
since the left hand side is independent of 7, we can replace 7 by any
1, and therefore
O_qllaOnag = Ux&—qau, H—z 5 (32)
for all x € U*. In particular, if we put x = —a, then we get, using
the identity in part (3), that
O_qMlaOng = fb—aO¥n~(—a)Ha

which can be rewritten as

C_(~va)H—a®all—aCn(—a) = H—a -

(5) First notice that, for all z € U*,

c=(ar " = br Nrpg e = (apy " — buy e
because, by Proposition 3.9(1), 7u,t € Aut(U). Hence, using Propo-
sition 3.8(1), we may (and we will) again assume that M(U,7) =
M(U,7~1) by replacing 7 by some .
We have that ~c = (br—! —ar~1)7. Note that ¢ = ay_;,-1, so by
part (2), ¢ = ac_ppptyp, Or

¢=(a—0b)up+ (~b); (3-3)
by interchanging a and b we get
~e = (b—a)uq + (~a). (3.4)

In particular, c is independent of the choice of 7, and hence we have

that

c=(ar™ ' —br Y7 = (ar — br)r L.
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Notice that since ~b = (—(b7))7 7L, b = —((~b)7). Also, ~(~b) = b
and by Proposition 3.9(2) and Lemma 3.3(1), p~p = p—p. From
equation (3.1) (with a replaced by ~b) it now follows that

Ty T = QU (o) H—b - (3.5)
Thus, by a repeated use of (3.1), we get that
A _cfhcOnc = 7—05707'7—71
= 7_OébT—aTTi1
_ -1 -1
=TT T _qrT
= Q_(~h) -y X —gqlgOng, -
It follows that
He = Qe (nb) H—bO O —abaC(~g)—(~c) 5
and using (3.3) and (3.4), we can write this as
He = Xa—b)uy H—bO¥b—alba®—(b—a)pq -
Therefore
Hbtefb—a = HbC(a—b)u, H—b - Ob—a * Ha®¥—(b—a)u, H—a -

We now apply equation (3.5) (with y; in place of 7 and (a — b) in
place of b) and equation (3.2), and we get that

Hpthefb—a = O — ~(a—b)Hb—a®a—b * Ab—a * Ca—bHb—al~(b—a)
= O ~(a—b)Hb—a®a—bHb—a®¥~(b—a)
= Hb—a

where we have used part (4) with a — b in place of a.

4. SPECIAL MOUFANG SETS

In this section M(U, 7) is a special Moufang set. We start by defining this
notion, which has been introduced by F. Timmesfeld [T] in the context of
(abstract) rank one groups.

Definition 4.1. A Moufang set M(U, 7) is called special if the condition
(—a)T = —(ar) for all a € U* (%)
holds.

Lemma 4.2. Let M be as in Notation 3.6. Then (—a)p = —(ap), for
each p € M and each a € U*. In particular, (—a)t™! = —(a77!) and
(—a)py = —(apy), for all a,xz € U*.



10 T. DE MEDTS AND Y. SEGEV

Proof. We first show that (—a)u, = —(au,), for all a,x € U*. By Propo-
sition 3.9(1) and Theorem 3.5, p,7! € Aut(U). Hence (—a)u,7 ! =

—(ap,771), so
()t = (~paarr = (a7 = —(aptam7) = ~(apsa).

Let now p € M and assume first that M(U, p) = M(U, 7). Then by Propo-
sition 3.9(1) (with p replacing 7), ppy € Aut(U), where z is an arbitrary
element in U*. Then (—a)p = (—a)ppzpi—z = (—(appz))i—z = —(ap), using
the first paragraph of the proof.

Finally, using the previous paragraph of the proof and the definition of
9, to prove the lemma, it remains to show that (—a)7 ! = —(ar™!). Notice
that (—(a7™Y))7T = —a = (—a)77 17, 50 (—a)77! = —(a771). O

Lemma 4.3. Assume that M(U,7) = M(U,77'). Let a € U* then,

(1) Ha = QaV—qr—1CQqa;

(2) Aflg = —Q = Qfl—q;

(3) o = Qu0h““ g, where € € {+, —};

(4) u2 centralizes aq and put = (apa)?, in particular, if ug is an invo-
lution, then (qqpq)® = 1;

(5) if a+a =0, then oy is an involution, , is conjugate to g, SO g
is an involution as well and (o, pg) = Syms.

Proof. (1) Notice that since M(U, 7) is special, ~a := (—(a7~!))7 = —a.
Hence (1) follows from Lemma 3.10(2).
(2) By part (1), api—q = a@—_qYgr—10—q = 0ygr—100_q = —a. Using
Lemma 4.2 it follows that a = (—a)u, = —(apa)-
(3) By Proposition 3.8(1), Lemma 3.10(2) holds with ., in place of 7.
so (3) follows from (2).

(4) By Proposition 3.8(3), u2 € Aut(U), so by (2), ozﬁfg = Qqu2 = Qq,
this shows the first part of (4). Then, by Lemma 3.10(4), p_q =
Qafl—aOafl—qCq, multiplying this equality by 2 on the left and by
p3 on the right using the fact that u2 commutes with o, gives the
rest of (4).

(5) Clearly oy is an involution and by Lemma 3.3(1), 1, is an involution.
Then by (3), g is conjugate to a,. The rest of (5) follows from (4).

(]

Lemma 4.4. Let a,b € U*. Then
(1) ifa #b, then (a7t —br )7 = (a —b)up —b=a+ (a — b)pa;
(2) ifa# —b, then (ar™ ' + b7 D1 = (a+b)p_p +b=a+ (a + b)a;
(3) if a # —b, then aprgrp = —b—a + app — b.

Proof. We already observed in Proposition 3.10(5) that (a7=! — b7 ~1)7 is
independent of 7. Hence, by Proposition 3.8(1) we may (and we will) assume
that M(U, 7) = M(U, 771). Also, (in the notation of Lemma 3.10), ~z = —uz,
for x € U*. Now (1) follows from equations (3.3) and (3.4). Since by
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Lemma 4.2 (—z)7~! = —(2771), (2) follows from (1) by replacing b with —b

in (1).
Replacing in (1) a with a + b we get aup — b = a + b + apqtp, and part
(3) follows. O

Lemma 4.5. Let 91 be as in Notation 3.6, p € M and a € U*. Then the
order of a is equal to the order of ap (and one is infinite if and only if the
other is). In particular, the order of a is equal to the order of at, a1 and
app, b e U*.

Proof. We show that the order of ar is equal to the order of a, relying only
on the fact that M(U,7) is a special Moufang set. By Lemma 3.7(1) and
Lemma 4.2, M(U, p) is a special Moufang set for all p € 9, hence the lemma
holds for any p € 9.

We have ar = arp; 'y, and by Theorem 3.5 and Proposition 3.9(1),
Tzl = 7u_p € Aut(U), so it suffices to show (by replacing a with arp;?!)
that the order ap, is equal to the order of a. By Lemma 4.3(2), a =
(—a)pqpt, and by Proposition 3.8(3), uep, € Aut(U), so the lemma follows.

O

Proposition 4.6. Leta € U*, n > 1 be a positive integer such that a-n # 0,
and p € Sym(X) such that p interchanges 0 and co and satisfies M(U, p) =
M(U,7) = M(U, p~1). Then
(1) there exists a unique b € U* such that b-n = a, we denote b :=a-
(2) (ap) -1 #0; (a-n)p = (ap) - L, and hence (a- L)p = (ap) - n;
(3) if U is torsion free, then U is a uniquely divisible group;
(4) if b € U* has a finite order, then the order of b is a prime number;
(5) ([T, Thm. 5.2(a), p. 55]) if U is abelian then either U is an elemen-
tary abelian p-group, for some prime p, or U is a divisible torsion
free abelian group;
(6) assume U is abelian and that U -n # 0 and let s € {n,n~'}. Then
Tlha.s = Tlhg * s2, for all x € U*. It follows that hg.s = hg - 5.

1

n’

Proof. (1&2) Let n > 1 be a positive integer. Assume that the equality
(@-n)p—q -n = —a for all a € U* such that a-n # 0, (4.1)
holds. We claim that then (1) and (2) hold for n. First, by Lemma

4.3(2), ap = (—a)p_qp. Now pi_qp is the inverse of the map p~'u,

which, by Proposition 3.9(1), is a Hua map corresponding to p~*, so

p—qp € Aut(U). It follows that
(ap) - = (—a)pu—qap -n = ((—a) - n)p—ap # 0.
Also, the equality

(a-n)p-n=ap for all a € U* such that a-n # 0, (4.2)



12

(3)
(4)
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holds. This is because
((a-m)p) -1 = (@ )iz prap)
= (((a-n)pg ") - n)pap = (—a)pap = ap,

since pqp € Aut(U). It follows (by taking p = p,) that the element
b:= ((—a) - n)u, satisfies b - n = a. Furthermore, if ¢-n = a, then
by (4.2) (with ¢ in place of @ and p, ! in place of p),

-1
a

((=a)-n) = (apg ') -n=(c-n)ug" -n=cug ',

so c=b.

It thus remains to show (4.1). The proof is by induction on n.
For n = 1, this is Lemma 4.3(2). Assume that a - (n + 1) # 0. Note
that if a-n =0, then a- (n + Dug - (n+1) = apq - (n+ 1) = —a,
so we may assume that a-n # 0. Notice that also a - (n 4+ 1)n # 0,
because otherwise we would get (a - n)-n = (—a) - n, but then, by
the uniqueness in part (1) and by induction, a - n = —a, which is
false. Hence a - (n+ 1) - 2 makes sense.

By Lemma 3.10(4), p—q = Qapi—aQafi—aCq. Notice that by induc-
tion we may assume that equation (4.2) holds. Using Lemma 4.3(2)
and induction we get

—((a-(n+1))p—a) = ((=a) - (n+1))p—a
= ((=a) - (n+ 1)) afi—aQapi—aCa
- ((_a) ’ n)u—aaau—aaa
indtgtion (CL . % + a)uiaaa

induction

— (0 (0 1) gty " (0 (n+ Dpy) nta
Hence, (a- (n+1))p—q - (n + 1) = —a. This completes the proof of
(1) and (2).

This follows immediately from (1).

Assume first that b € U* is an element of order p?, where p is a
prime. Then b-p # 0, so, by (2), (b p)pa - p = bu,. However, by
Lemma 4.5, (b p)pq - p = 0, a contradiction.

Let p,q be distinct primes and assume that b has order pq. By

(1), there exists a unique € U™ such that = - p = b. But then one
easily checks that the order of  must be p?q, so the order of z - ¢ is
p?, a contradiction. This shows (4).
If U is torsion free this follows from (3), so assume U contains torsion
and let p be a prime such that V :={x € U | z-p = 0} # {0}. Set
U-p:={z-p|xeU}. ThenV and U - p are subgroups of U and
by (1), U =U-pUV. If U=V, then we are done, so assume not.
Then since no group is a union of two proper nontrivial subgroups,
U ="U -p. Since V # {0} this implies the existence of an element of
order p? in U contradicting (4).
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(6) By Proposition 3.8(1), we may assume that 7 = p,, for some z € U*.
Then M(U, 7) = M(U, 77!) so we may apply part (2) with 7 in place
of p. We note that by Lemma 3.3(2), replacing 7 by p, does not
change the permutations u,, a € U*.

We first show that

IY(an)r—1 = ((x ’ %)’7@7*1) ‘n, —a-nFwelU" (43)
Indeed,

TY(@n)r-1 =TT Qamyr1 T @ (zr™ '+ (ar7h) - )7

=(((zr™ ) n+art) - L7

n

2@ D ar ) n= (@ D arn)

It follows from Lemma 4.3(1) that,

Tp—aqn = (T —a- n)Py(wn)T*la—a-n = [(z - % —a)Yar-1] M —a-n

©))
= ([(z- 5 = a)Var—1] —a)n = ((z - )i-a) -1 = (zp-a) - 1%,
for all z € U*. Replacing —a with a we get (6) for s = n. The case

s =n"1 follows.
O

The following two technical lemmas will be used in the proof of Proposi-
tion 4.9.

Lemma 4.7. Let a,b € U* such that a-2 # 0. Then for all t € Q such that
a -t is defined and non-zero, we have that,

1) —b—a-tdauy -+ —b-2—a-t=auy -~ —b-2—a-2t+auy, = —b;
t 2t 2t

(2) in particular, if apy = —a, then
a-t+b-24+a-t+i)+b=b+a-2+L)+b-2+a- 4.

Proof. First we remark that by “a -t is defined” we mean the following.
Write t = = with m,n € Z and gcd(m,n) = 1. Then a -t is defined
provided that either the order of a is infinite, or the order of a is the prime
p and ged(n,p) = 1. Then, by Proposition 4.6(1), a-t = (a-m) - % is well

defined; see also Proposition 4.6(4).

(1) We first observe that if b = a - r for some r € Q such that a - r is

defined, the statement is obvious since a and b then commute. So

we may assume that b # a - r for all such r; in particular, a + b # 0
and a-2+b#0.

We will compute agiq.21p in two different ways. On the one hand, if

we replace a by a-2 in Lemma 4.4(3), then we get, using Proposition
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4.6(2), that
apta2+b = (@ 2)pa2+p - 2
=(-b—a-2+(a-2)up—b)-2
:(—b—a-2+aub-%—b)-2
= —b—a'2—|—a,ub-%—b-2—a-2—|—a,ub-%—b.

On the other hand, if we replace b by a + b in Lemma 4.4(3), then
we get

Aflg-24b = Qg (a+b)
— —(a+b)—a+apers— (a+b)
=—-b—a-2-b—-—at+aup—-0b-2—a.

Comparing these two expressions, we get that

—b—a-i—a,ub—b-Q—a:am,-%—b-2—a~2—|—a,ub~%—b.

Now let ¢t € Q such that a - ¢ is defined and non-zero, and replace a

by a-t. Then we get, using Proposition 4.6(2), that
—b—a-t—i—a,u,b-%—b-2—a~t:a,ub-%—b-Q—a-%—i—aub-%—b.

(2) Assume now that app = —a. Then it follows that

1 _ 1 1
—b-a-t—a-y-b-2—a-t=—-a 5 —-b-2-a-2t—a- -5 —b.

Taking the negative of both sides gives us the required identity.
O

Lemma 4.8. Assume that M(U,7) = M(U,7~!) and let a,b € U*. Then

(1) If app = —a, then ap. = —a, for all ¢ € {a,—a,b, —b};

(2) if apy = —a and b # —a, then (b+a)7 ' + (a+b)7~ 1 =br~1;

(3) if aup = —a and bu, = —b, then a,b € ((a + b)pia, (b + a)pq) = T,
and a,b are conjugate in T;

(4) if apy = —a and bu, = —b, then (a,b) is nilpotent of class < 2.

Proof. (1) This is obvious.
(2) By Lemma 4.3(1),

—a = Ay = a0Y_pr-105 = AT Oy 1T Oy,
hence
(a+b)7 "t —brt = aaym ta_y,
= (—a)a_yr P =(—a—b)r = —(b+a)r L.

This shows (2).
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(3) Let ¢ € {—a,—b}. Taking in (2) 7 = p. we see that
b+ a)—c+ (a+bpu_c=—b,
by symmetry also,
(a4+b)p_c+ (b+a)u_c= —a.

It follows that a,b € T. Clearly (a + b)pq + (b + a)pq is conjugate
to (b+a)uq + (a+ b)ug in T, so a and b are conjugate in T'.
(4) CASE 1: The order of a and b is 2.

By Lemma 4.3(5), p1q is conjugate in GT to ag, so p, has a unique
fixed point. Since both a and b are fixed points of p,, a = b and (4)
holds.

CASE 2: The order of a and b is 3.
By Lemma 4.7(2), witht =1weget a—b—a+b=b+a—b—a.
That is b commutes with a — b — a. Replacing a with —a (using (1))

we get that b commutes with [a,b] = —a — b+ a + b. By symmetry
also a commutes with [a, ] so (a,b) is nilpotent of class < 2.

CASE 3: The order of ¢ and b is 5.
By Lemma 4.7(2), with t = 1 we get

a+b-24+a-2+b=>b-3+a-3.
Subtracting b - 3 from both sides of the above equality we get
a+b-2+a-2-0-2=b-34+a-3—-5b-3.
It follows that
a=0b-3+a-3-b0-3)+(b-2+a-3-0b-2). (i)

Set X =b-34+a-3—b-3andY =b-24+a-3—0b-2. Then
by equation (i), « = X + Y and replacing a by —a in equation (i)
(using (1)) we get that —a = —X — Y. However —a = =Y — X,
so X and Y commute. Conjugating X and Y by b -2 we see that
a - 3 commutes with b+ a - 3 — b, and hence also a commutes with
b+a-3—b=(b+a—>)-3. Thus a commutes with b + a — b.
Replacing b with —b we see again that a commutes with [a, b] and by
symmetry also b commutes with [a,b] so (a,b) is nilpotent of class
< 2.

CASE 4: a and b are of order p > 7 or of infinite order.

Let t € Z such that for each s € {t,t> — 1,12+ 1}, a-s # 0.
Replacing in Lemma 4.7(2) ¢ with 1 we get

a-ltb-24a-t+H+o=bta- G+ +b-2+a- L. (ii)
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Subtracting equation (ii) from the equation in Lemma 4.7(2) we get
1

a-t—a-;=
bt+a-(2t+L)+b-2+a- (£ -3 —b-2—a-(2+L)—b.
or
~b+a-t—a-1+b=

a-2t+F)+b-24a-(F—-L)—-b-2—a-(2+1). (iif)

Replacing ¢ with —¢ in equation (iii) we see that
—(~b+a-t—a-14+b)=

—a-(2t+ L) +b-2—a- (& -5 —b-2+a-(2+1L). (iv)
From equations (iii) and (iv) we get

a-(2t+L)+b-24a (L -4 —b-2—a - (2+1L) =

—a -2+ 5 +b-2+a- (L -5 —b-2+a- (2t + %) (v)
Let

X=a-(2+L)+@2t+L)=a- 2+
and
Y=b-2+a (-5 —b-2

Then equation (v) implies X +Y — X =Y. So X commutes with Y’
and hence, by Proposition 4.6(1), a commutes with Y. By equation
(iii) it follows that a commutes with —b—l—aﬁTfl—i—b = (—b—i—a—i—b)ﬁ%l,
and eventually, a commutes with —b + a + b. Again we see that a
and (by symmetry) b commutes with [a,b] and (a,b) is nilpotent of
class < 2. The proof of the lemma is now complete.

O

Proposition 4.9. Let a,b € U*, then
(1) if aupy = —a and a+b=b+ a, then b € {a, —a};
(2) if b # —a, app = —a and bu, = —b, then (a+b)puprq = —(a+0b) and
(b + a)#a-i—b = _(b + a);
(3) if apy = —a and bu, = —b, then b € {a, —a}, in particular,
(4) if pp = pa, then b € {a,—a}.

Proof. By Proposition 3.8(1) we may (and we will) assume that M(U, ) =
M(U, 7~ 1), by taking 7 = p, for some x € U*.
(1) Assume the hypotheses of (1) and that b # —a. If b-2 # 0, then by
Lemma 4.8(2) and by Proposition 4.6(2),

(a+b)yrt-2=(0b-2)r7" 2.

By Proposition 4.6(1) we get a +b=1>-2so a =b.

If b-2 = 0, then from the equality (a + b)7~!-2 = br~!, and by
Lemma 4.5, we get that (a +b)7~! -2 has order 2. Hence (a +b)7 !
has order 4. This contradicts Proposition 4.6(4).
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(2) By Lemma 4.8(2) with 7 = ubj:a we get

(b + a)tpta + (@ + b)pora = bitbra-
By Lemma 4.3(2) and Lemma 4.4(3) it follows that

—(b+a)+(a+b)ppra=—a—b+byug—a=—-a—b—>b—a.

Hence (a+b)pprq = —(a+b). By symmetry (b+a)pqp = —(b+a).
(3) Assume that b # —a. Set x = (a + b)p, and y = (b + a)pq. Then,
by (2), Proposition 3.9(2) and Lemma 4.8(1),

Ty = (a+ b)papiy iy o tta = (@ + b)py o pa = —(a + b)pg = —2.

Similarly yu, = —y. By Lemma 4.8(4), (z,y) is nilpotent of class
< 2, and by Lemma 4.8(3), a,b € (z,y) and a,b are conjugate in
the group (x,y). But two conjugate elements in a nilpotent group
of class < 2 commute. Thus a and b commute, so, by (1), b = a.

(4) This follows immediately from (3) because p, = pp implies apy = —a
and bu, = —b.

O

Proposition 4.10. Let a € U* and ky,ko,m1,ma € Z such that 0 ¢ {a -
ki,a-m;}, fori=1,2. Set k = IZ—; and m = 2—; Then

Ha-m

(1) (a-k)ugm = —a - mTQ, and hence pl5™ = Hrom?- It follows that
(a-k)u2,, =a-k and hence u2., centralizes jiqy ;
(2) ifa'(k"i_m) # 0, then pg.m2 fha-km = Ha-m(k+m)Ha-k(k+m) = Ha-kmMa-k2 ;
(3) 0 ¢ {a-koa- (k+ 1), then paptar = fanbany for every N =
EY(k 4 1)Y where £,0' € Z;
(4) ifa-2#0, then u2, = p2, and if t € Z is such that a -t # 0, then
Mo =t
(5) if a € U* is such that the order of a is finite, then put =1.
Proof. (1) By Proposition 4.6(2), (a - k)pgm = (apigm) - 7. Also, by
Proposition 4.6(2) and lemma 4.3(2),
Qllg-m = ((a ) m) : %)Mwm
= ((a-m)ptgm) -m=(—a-m)-m=—a-m?.

This shows the first part of (1). For the second part we use Propo-
sition 3.9(2) and lemma 3.3(1) to get

Ha-m __ —1 _ —1 _
Pok = Mok pgm — M 2 = M m2.

—a a7

(2) Notice that if the order of a is finite, then, by Proposition 4.6(4),
the order of a is a prime number, so by Proposition 4.6, a - k, a - m
are well defined as well as a - (k + m) and

a-rs#0forall r,s € {k,m,k+m}.
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By Proposition 3.10(5) we have
H(br—1—cr—1)r = H—cle—blp, for all b,c € U,
Taking b = a-k and ¢ = —a-m and using Proposition 4.6(2), we get
br ' —er Hr=((a k)" + (a-m)r )T
= ((ar™) - g+ (ar ) - )7 = ((ar™ ) - BT = a- 2L (*)
On the other hand, using Proposition 3.9(2) and using (1) with k+m
in place of kK and —m in place of m, we get
H—cte—bHb = Ha-mM—a(k+m)MHak = H(a(k+m))p—g.m Hambak
= ,u_a,m_QMwm,U'a-k . (**)

k+m

By (*) and (**) we have
Ma.]ﬁ*__mm = /’L_a,kri_fnuwmua-k’

or

B om2 P, km = Mamba-ks

k
a k4+m k+m

replacing a by a- (k+m) we get the first equality in (2). The second
equality is obtained by inverting (i.e. taking the inverses) the first
equality, replacing a with —a and interchanging m and k.

Putting m = 1 in (2), we get that

Hala-k = Ha-(k+1)Ha-k(k+1) — Ha-kHa-E2

which shows that (iii) holds for N = k+1 and for N = k. Replacing
a by a-(k+1)"! and by a- k™! in this equality also shows the
result for N = (k + 1)~! and for N = k~!. The result for general
N = k‘(k 4+ 1)¥ now follows by induction.

The first equality in (4) follows from (3) by taking & = 1. Next, By

(1) we have ph® = p,42. Hence since p? centralizes pq.; (by (1)),

2 (2 et — 2

Mg = (:U’a) - 'u’a-tQ’
Let a € U* be an element of finite order p and note that p is a prime
by Proposition 4.6(4). If p = 2, then g = p_q = pu; ', so u2 = 1.
So assume that p > 2.

Suppose first that —1 is a square modulo p and let ¢t € Z such that
t* = —1 (mod p). Then, by (4), pu2 = p2 ,, = p, and (5) follows.

So we may assume that —1 is a non-square modulo p. Now let
t € GF(p) such that ¢ is a square in GF(p), but ¢ + 1 is not a square.
Note that since —1 is not a square in GF(p), and ¢ + 1 is a non-
square, the order of ¢t 4+ 1 in the multiplicative group of GF(p) must
be even so there exists an £y € Z such that (¢t +1)% = —1 in GF(p).

Taking ¢ = 0 and ¢/ = £y in (3), we get that

Hallat = H—alb—a-t,
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or u?, = p2,. Since t is a square in GF(p), it follows from (4)
that p2, = 2, and we conclude that p? , = p2 and therefore again
Hé =1

O

5. PrROVING (QJ2)

In this section we assume that M(U, 7) is a special Moufang set with U
an abelian group, and that 7 = p., e € U* (but e will occasionally vary).
Note that by Lemma 5.1 (below), 7 is an involution. Also, by Lemma 3.8(1)
M(U, 1) = M(U, p), for all ¢’ € U*.

By Theorem 3.5, h, € Aut(U), for all a € U*; we wish to show that under
certain conditions, U, := (U, H,e) is a quadratic Jordan division algebra,
where H: x — hy := peliy, for x € U. Of course U, depends on e, because
the Hua-maps h, = pepty depend on e. We call U, an isotope.

Lemma 5.1. Let a € U*, then u, = i—q and hence pg i an involution.

Proof. We use condition (x) of Definition 4.1. By Lemma 4.3(1) (and Nota-
tion 3.2(1)), pa = aanla;Tl_lTaa, and hence

zpe = (z+a)7™  —ar D71 +a

for all . Using condition (x), we see that (—z)u_, = —Z i, so by Lemma
4.2 it follows that zu_, = xpu, for all z, and hence pu_, = p. But by Lemma
3.3(1), p—q = p; ' 80 ju1q is an involution.

U

Proposition 5.2. Let a,b € U* and let g € GI

{0,00}"
(1) ha = hfa;

) 9 a9 = ftag;
) ar — h 1;

) hahohe = hon, s
)

)

Then

(2
(3
(4
(5) pa = pp if and only if a € {b, —b};

(6) g centralizes g if and only if ag € {a,—a}.

Proof. (1) By Lemma 5.1, pq = pi—q, and hence by Proposition 3.9(1),
he = THe = TH—q = h_q.
(2) This follows from Lemma 5.1 and Proposition 3.9(2).
(3) By (2) and Proposition 3.9(1), har = Thar = TTHaT = HaT = hy L,
because 7 is an involution.
(4) By (1), (3) and Proposition 3.9(3), hahb = h_ph,, hb hyhghp.
(5) Assume p, = pp. Then, by Lemma 4.3(2), aup = apg = —a, so
b € {a,—a} by Lemma 4.9(1).
(6) If ag € {a,—a}, then, by Lemma 5.1 and by part (2), ptq = flag =
g pag. Conversely, suppose fiq = ¢ 'fiag = ftag- Then by (5),
ag € {a,—a}.
U



20 T. DE MEDTS AND Y. SEGEV

Notation 5.3. By Proposition 4.6(5), U is a vector space over QQ or over
GF(p), for some prime p. In the first case we write char(U) = 0 and in
the second char(U) = p. Let F always denote Q or GF(p) in the respective
cases. As usual we will multiply elements of U by scalars from F on the
right.

Proposition 5.4. Ifchar(U) ¢ {2,3}, thenU is a quadratic Jordan division
algebra if and only if condition (QJ2) is satisfied, i.e., if and only if

ahephg = chqpn, for all a,b,c € U. (5.1)
Proof. Recall that condition (QJ2) says
hwvm,y = Vy,azhmv

where
hx,y = thry - hx - hy and ZV%y = yh%z.

Hence bhoVye = chqph, and bV, ohe = ahcphg, and therefore (QJ2) can be
rewritten as the identity (5.1).

Note that by Proposition 3.9(1), he = idy, and by Proposition 5.2(4), U
satisfies (QJ3). So suppose that U also satisfies (QJ2). Then, replacing ¢ by
c+d in equation (5.1) and using the fact that h, and h, , are endomorphisms
of U, we get that ahciqp = ahcp + ahqp for all a,b,c,d € U, i.e. the map
(z,y) — hy,y is biadditive. Since hq.s = h, - s* for all s € F by Proposition
4.6(6), this implies that the map = +— h; is a quadratic map from U to
Endp(U). Since the base field F has at least 5 elements, the identities (QJ1),
(QJ2) and (QJ3) automatically hold strictly, and hence U is a quadratic
Jordan algebra. Finally, by definition, every map h, (with a # 0) is a
permutation of X so it is invertible (with inverse map h,;); therefore, U is
a quadratic Jordan division algebra. O

The following proposition and the corollary following it give some useful
identities which are equivalent to (QJ2).

Proposition 5.5. The following statements are equivalent:
(1) (QJ2) holds;
(i) a7 (poge— o — fe)THa = CT(Batbrug — Ha — Hbrp,) for all a,b,c € U ;
(iil) (=a)(fotre = o = fc) = cpra(fatb — fa — ) for all a,b,c € U™,
Proof. By the above, (QJ2) is equivalent to the identity (5.1), and since

hy = Tpg, for all x € U*, it follows that hyy = T(fgty — fe — fy) SO it is
clear that (i) and (ii) are equivalent.
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Let p = per, for some ¢’ € U*. Then pr € Aut(U). Replacing a by apr in
(ii) and using Proposition 5.2(2), we get
a’p(/’bb‘i’c - lL[/b - IU/C)TIU/CLP’T = CT(MGPT+b7#apT IU/Clp’T - IU/bTMapT)
= ap(fore = Mo = fe) PapT = CT(uapT+bpuapT Hapr = Hbppiapr)
= ap(Hbre = Mo — He) PHaPT = cp(Hatbppa — Ha — Hbpua)PT
— ap(,U/bJrc — My — ,Uc)p,ua = Cp(Ua+bpua — HMa — ,prua) )
which is (ii) with p in place of 7. This implies that (ii) is independent of the
choice of e € U* (i.e. if it holds for 7 = p, for some e € U*, then it holds
for 7 = pg, for all x € U*). Taking 7 = p, in (ii) we get that (ii) implies
(ii).
We now show that (iii) implies (ii). So assume that (iii) holds. Then by
(iii) with —a7 in place of a, we have, using Lemma 5.1,

(aT) (e — o — te) = Ciar (H—artb — Har — ), for all a,b,c € U™, (5.2)
By Proposition 3.9(2) and since 7 is an involution, we get that pg, = TpaT,
and note that we also get poTpzTia = Haru,, for all x € U*. Thus by
equation (5.2) and again using Lemma 5.1, we have that for all a,b,c € U*,

(aT)(ttbse — o — pe)THa = CTlaT (B—artb — Har — [b)THa
= T (W(—ar+b)rpa — Har)ria — Hbrpa)
= T (l—apat+bria = Hapa — Hbrpa)
= T (fatbrpa — Ha = Hbrpa) -
But this is the equality (ii), so we see that (iii) implies (ii). O
Corollary 5.6. If the identity ehy . = chy e, for all b,c € U*, holds in each

isotope U, e € U*, then the stronger identity (QJ2) holds for each isotope
U, ec U".

Proof. Notice that the identity ehy . = chy, is precisely the identity in (iii)
of Proposition 5.5, with the letter a replaced by the letter e (and hence
T = lg), so the corollary holds by Proposition 5.5. O
Lemma 5.7. For all a,b € U* such that b # —a, we have that

(1) bptasp = —a-2— b+ bjta;

(2) bThep=—a-2.

Proof. (1) This comes from Lemma 4.4(3), because U is abelian.
(2) Using (1) and Lemma 4.3(2), we get that

bThap = bta+b — bpa — by
=—a-2—b+bug—bus+b
=—a-2.

Proposition 5.8. Let a,b € U* and let ¢ = (aT + bT)T, then
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Hallat+by = e = Hblat+bMa 5
hahaT,bThb = ha,b = hbhaT,bTha 5

1)

2)

3) taty commutes with pafiqrp, S0 hy commutes with hyye ;
)

5)

ahge = €hgq -

Proof. (1) This follows from Proposition 3.10(5), recalling that 7 and
lg, © € U* are involutions, that U is abelian and that M(U, 7) is
special.

(2) Since the maps p, are involutions, the left equality of (1) can be
rewritten as

Pa tars = po
since h, = T, for all z, this is equivalent with
hglha+b = h(?lhb .
Replacing a < at and b < br and using Proposition 5.2(3), we get
that
hahaT+bThb = ha-‘,—b .
Using Proposition 5.2(3) twice more, this implies that
hahaT,bThb = ha,b .
The other equality of (2) is similar.
(3) By (1),
Haftbat+ba = Ha+bib-
Multiplying this equality on the left by piqpe+ps We get

(Hap) s tHe = papip.
This shows the first part of (3). Taking a = e and using Proposition
3.9(1) gives the second part.
(4) hg,q = ha2 — hg - 2, so (4) follows from Proposition 4.6(6).
(5) Since hqq = hq - 2, and 7 = p. we must show that
apy(favd — Ha — M) = Dlippla - 2;
applying pqpp to this equality and noticing that by (3) paepy =
(pppta)~! commutes with pippiesp, we must show that
Albgflat+b — A — Qg by = b-2.
But by Lemma 5.7(1), apqpiars = —(apiary) = —(=b-2 —a + app),
so we get

Aflaflatp — @ — Qflgflp = b2 +a —app — a+ apy = b - 2.

Lemma 5.9. Assume that h_qp = —hgp for all a,b € U. Then
(1) ha,b-s = ha,b * Sy
(2) hatbs = ha + ha,b s+ hy - s? 5

for all a,b € U and all s € F.
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Proof. We first show that
ha,aer =hg 2+ ha,b (5.3)
for all a,b € U. Indeed, using the fact that h_,, = —hgyp for all a,b € U
and using Proposition 5.8(4), and Lemma 5.2(1) we get
ha,aer = _hfa,aer = _hb + ha + haer
= —hy+ha +hap +he+hp=he 2+ hep.

We now show that for all a,b € U and all n € Z,
hanp = hap-n. (5.4)

Since h_qp = —hgyp for all a,b € U, we may assume that n > 0, and we
will use induction on n. The statement is obvious for n = 1, so assume
that it holds for n = k (for all a,b € U). Then, using equation (5.3) and
Proposition 4.6(6), we get that
Pa-(kt1)6 = Pa-(k+1) 45 — Pa-(k1) — Mo
= hakt(atrs) = ha- (K +1)* = hy
= ha-k,(a+b) + hax + haer —hq - (k + 1)2 — Iy
= haart b+ ha  k* + hap+ ha + hy — ho - (k+1)% — hy
=hg 2k +hapk+hak*+ hap+he — hg - (k+1)?
— Doy (k+1),
which shows the statement for n = k + 1. Hence equation (5.4) holds; this
implies (1). It now follows from (1) and Proposition 4.6(6) that also (2)
holds. O
Lemma 5.10. Let a,b,c,d € U. Then
(1) ahpyca = ahyg+aheqg <= ahpcrq = ahpe+ ahyg;
(2) ahbﬁﬂ” = ahbﬁ —-b-2.
Proof. (1) Both sides can be rewritten as
a(hotetrd + Mo+ he + ha — Pore — hora — heta) = 0,

and hence they are equivalent.
(2) This follows from (1) with d = a7 using Lemma 5.7(2).

Theorem 5.11. Assume that char(U) & {2,3}, and that
(i) h—gp = —hqp for all a,be U;
(ii) ahgpre = ahgp+ ahgc for all a,b,c € U.

Then U satisfies (QJ2). 1t follows that U is a quadratic Jordan division
algebra.
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Proof. First notice that assumption (ii) together with Lemma 5.10(1) implies
that
ahgtep = ahgp + ahep  for all a,b,c € U. (5.5)

We start with the identity hgiehqy = hghate from Proposition 5.8(3). We
substitute a + b - s for a in this identity, where s € [F; using Lemma 5.9(2),
we then get that
(ha-i-e + haJre,b s+ hy - 32)(ha + ha,b s+ hy - 32)
= (ha + hap -5+ hp - 52)(hate + harep - 5+ hp - 5%)

for all a,b € U. Since char(U) = 0 or char(U) > 5, we can take at least 5
different values for s, and hence the coefficients of each power of s have to
coincide (see, for example, [TW, (2.26)]). Equating the coefficients of s!, we
get

ha—l—e,bha + haJreha,b = haha-i-e,b + ha,bhaJre .
We now apply this identity to the element ar, and we get, using Lemma
5.7(2) and Lemma 4.3(2), that

athgtepha + atharehap = — ahgiep — bhate - 2. (5.6)
By Lemma 5.10(2) with a7 in place of @ and e in place of ¢, we get that
athgtepha = athy chq — bhy - 2. (5.7)
Also, using Lemma 5.7(2) and Lemma 4.3(2), we get that
athgyehap = at(hg + 1+ hoe)hap = —ahgp —b-2—ehgp-2.  (5.8)
It follows from equation (5.5) that
—ahgtep = —ahgp — ahep; (5.9)
by definition, the equation
—bhgte 2= —bhg-2—b-2—Dbhge-2. (5.10)
also holds. If we plug in the equations (5.7), (5.8), (5.9) and (5.10) into
(5.6), then we get that
athychg — €hgp -2 = —ahep — bhge-2. (5.11)

On the other hand, if we replace a by a + b in the identity eh, - 2 = ahqe,
which follows from Proposition 5.8(4 and 5), then we get using equation
(5.5)
eha+b -2 = (CL + b)ha+b,e

= ahaer,e + bhaer,e

= a,ha76 + ahb,e + bha,e + bhb,e

= ¢ehg - 2+ ahpe + bhge + ehy - 2
and hence

ehmb -2 = ahb,e + bhme . (5.12)
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If we plug this in into equation (5.11), then we get that
athyehg = — bhge;

replacing a by a7 then gives

ahpe = — bharehq . (5.13)
By Proposition 5.8(2) with b = e, since er = —e and by our assumption (i),
we have that herchq = — hge. Hence identity (5.13) becomes
ahpe = bhap .

Together with equation (5.12) and the fact that char(U) # 2, this shows that
ehgp = bhge for all a,b. By Corollary 5.6, we can conclude that (QJ2) holds,
and hence, by Proposition 5.4, U is a quadratic Jordan division algebra. [J

Corollary 5.12. Assume that the map (x,y) — hg, is biadditive and that
char(U) & {2,3}. Then U is a quadratic Jordan division algebra.

Proof. If the map (x,y) — hy, is biadditive, then the conditions (i) and (ii)
in Theorem 5.11 are satisfied, so the result follows from that theorem. [
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