
IDENTITIES IN MOUFANG SETS

TOM DE MEDTS1 AND YOAV SEGEV2

Abstract. Moufang sets were introduced by Jacques Tits as an axiom-
atization of the buildings of rank one that arise from simple algebraic
groups of relative rank one. These fascinating objects have a simple def-
inition and yet their structure is rich, while it is rigid enough to allow for
(at least partial) classification. In this paper we obtain two identities
that hold in any Moufang set. These identities are closely related to
the axioms that define a quadratic Jordan algebra. We apply them in
the case when the Moufang set is so-called special and has abelian root
groups. In addition we push forward the theory of special Moufang sets.

1. Introduction

During the last few years, there has been a growing interest in Moufang
sets, which were introduced in 1990 by Jacques Tits in [Ti]. The notion of
a Moufang set is equivalent to that of a group with a split BN -pair of rank
one. Another essentially equivalent concept is that of (an abstract) rank one
group, as introduced by F. Timmesfeld in [T]. (The latter requires the root
groups to be nilpotent; this is not required for Moufang sets.)

Moufang sets are of great importance: On the one hand for purely group-
theoretical purposes (and in particular, for classification purposes of both
simple algebraic groups and finite simple groups). On the other hand, there
are many deep connections with algebraic structures (octonion algebras,
Jordan algebras, Albert algebras, quadratic forms, hermitian forms as well
as other structures).

The first systematic study of Moufang sets was begun only recently by
T. De Medts and R. Weiss in [DW]. The paper [DW] had set the path
along which the current paper follows and both papers show that it may be
possible to classify at least certain classes of Moufang sets (e.g. the so-called
special ones, see Definition 4.1).

In order to make the statements of our results accessible we first need to
give some definitions. A Moufang set is a permutation group G† on a set X
together with a conjugacy class of subgroups {Ux | x ∈ X} which generate
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G†, such that for every x ∈ X, Ux fixes x, acts regularly on X r {x},
and Uϕx = Uxϕ, for all ϕ ∈ G†. In particular, G† is a doubly transitive

permutation group. The group G† is called the little projective group of the
Moufang set, and the subgroups {Ux | x ∈ X} are called the root groups of
the Moufang set.

Any Moufang set can be constructed as follows (see [DW]). Start with
a group U and let ∞ be a new symbol (not in U). Let X denote the set
X := U ∪ {∞}. We write U in additive notation even though we do not
assume that U is commutative. For a ∈ U ∗ := U r{0}, we let αa ∈ Sym(X)
be the permutation which fixes ∞ and maps x to x + a for every x ∈ U .
Suppose that τ ∈ Sym(X) with 0τ =∞ and ∞τ = 0, and let

U∞ = {αa | a ∈ U}, U0 = U τ∞, and Ua = Uαa0 for all a ∈ U ∗.
Then G† := 〈Ux | x ∈ X〉 and the subgroups {Ux | x ∈ X} are candidates
for being a Moufang set. These “candidates” are encoded by the notation
M(U, τ). For a ∈ U ∗, let

µa := ατ(−a)τ−1αaα
τ
−(aτ−1),

where for group elements g, h, gh = h−1gh. These complicated looking
permutations µa play an important role in the analysis of Moufang sets.
It can be easily shown that µa interchanges 0 and ∞, for all a ∈ U ∗. In
particular, for a ∈ U ∗, τµa fixes 0 and∞ and hence acts as a permutation on
the set U . In the main theorem (Theorem 2) of [DW] it is proved that the fact
that M(U, τ) is a Moufang set is equivalent to the fact that τµa ∈ Aut(U),
for all a ∈ U ∗.

The permutations µa, a ∈ U∗ are invariants of M(U, τ) in the following
sense: From the definition of M(U, τ) it follows that M(U, τ) = M(U, ρ)
for every permutation ρ ∈ Sym(X) that interchanges 0 and ∞ and satisfies
Uρ∞ = U τ∞ = U0. Although the permutations µa appear to depend on τ , once
it is established that M(U, τ) is a Moufang set, it turns out that µa depends
only on the subgroups U0 and U∞: it is the unique element in U0αaU0 that
interchanges 0 and ∞ (see Lemma 3.3(2)).

This paper shows that some of the connections between special Moufang
sets and quadratic Jordan division algebras discovered in [DW], actually
exist in a more general context: We prove

Theorem 1.1. Assume M(U, τ) is a Moufang set. Then

(1) µaµb = µ−1
b µ−1

a µb, for all a, b ∈ U r {0};
(2) µ(aτ−1−bτ−1)τ = µ−bµb−aµa, for all a, b ∈ U r {0} with a 6= b.

It turns out that in the case when U is abelian and M(U, τ) is a special
Moufang set, identity (1) of Theorem 1.1 is equivalent to the “fundamental
identity” in the theory of quadratic Jordan algebras (axiom (QJ3) in §2),
while identity (2) of Theorem 1.1 is closely related to axiom (QJ2).

The exact way the identities of Theorem 1.1 translate to identities in the
theory of quadratic Jordan division algebras becomes more transparent once
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the Hua maps (relative to τ) are introduced. These maps come from [DW],
see Notation 3.2. They are given by

ha = τµa.

A word of caution is needed here: though τ does not appear in the notation
ha, nevertheless ha does depend on τ .

We now discuss the application of Theorem 1.1 to special Moufang sets
with abelian root groups. By [T, Thm. 5.2(a), p. 55], if M(U, τ) is a special
Moufang set such that U is abelian, then U is a vector space over Q or over
GF(p) for some prime p (see also Proposition 4.6(5) below). Thus U has
a natural characteristic. The following theorem generalizes Theorem 7 of
[DW]. We refer the reader to §2 for the definition of a quadratic Jordan
division algebra.

Theorem 1.2. Assume that M(U, τ) is a special Moufang set and that U is
abelian of characteristic distinct from 2 and 3. Fix e ∈ U ∗ and let ha := µeµa
be the Hua maps relative to µe, a ∈ U∗. Let H : U → Aut(U) be the map
H : x 7→ hx, and suppose that the map (x, y) 7→ hx+y − hx− hy, from U ×U
to End(U) is biadditive.

Then (U,H, e) is a quadratic Jordan division algebra.

In §5 there are additional results related to special Moufang sets with abelian
root groups: In Propositions 5.5 and Corollary 5.6 we show some interesting
conditions which are equivalent to axiom (QJ2) in the context of Moufang
sets.

Section 4 is devoted to special Moufang sets: In Lemma 4.3 we deduce a
variety of identities involving the permutations µa and αa, a ∈ U∗. Proposi-
tion 4.6 shows that if U is torsion free, then U is a uniquely divisible group
(and there are results also in the case when U contains torsion). Proposi-
tion 4.9 shows that two µ-maps µa and µb can only be equal if b = ±a and
Proposition 4.10(5) shows that if a ∈ U ∗ has finite order then µ4

a = 1. There
are various additional results in this paper. We note that some of the results
of §4 were applied in [SW].

Acknowledgment: Both authors are grateful to Richard Weiss for his
careful reading of the paper which resulted in valuable comments.

2. Quadratic Jordan algebras

Throughout this paper we compose maps from left to right and we apply
maps on the right side of the variable. For a set X containing a zero element,
X∗ will denote X r {0}.

We first recall the definition of quadratic Jordan algebras, as introduced
by K. McCrimmon [Mc1]. Note that we will use the notation Jx in place of
the more common notation Ux, to avoid confusion with our notation for the
root groups.

Let k be an arbitrary commutative field, let J be a vector space over k
of arbitrary dimension, and let 1 ∈ J ∗ be a distinguished element. For each
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x ∈ J , let Jx ∈ Endk(J), and assume that the map J : x 7→ Jx from J to
End(J) is quadratic, i.e.

Jxt = Jxt
2 for all t ∈ k, and

the map (x, y) 7→ Jx,y is k-bilinear,

(note that we multiply scalars on the right) where

Jx,y := Jx+y − Jx − Jy
for all x, y ∈ J . Let

zVx,y := yJx,z

for all x, y, z ∈ J . Then the triple (J,J , 1) is a quadratic Jordan algebra if
the identities

(QJ1) J1 = idJ ;
(QJ2) JxVx,y = Vy,xJx ;
(QJ3) JyJx = JxJyJx

hold strictly, i.e. if they continue to hold in all scalar extensions of J . (It
suffices for them to hold in the polynomial extension Jk[t] and this is auto-
matically true if the base field k has at least 4 elements.)

Any element e ∈ J such that Je = idJ is called an identity element. An
element x ∈ J is called invertible if there exists y ∈ J such that

yJx = x and 1JyJx = 1.

In this case y is called the inverse of x and is denoted y = x−1. By [Mc2,
6.1.2], an element x ∈ J is invertible if and only if Jx is invertible; we then
have J−1

x = Jx−1 . In particular,

(x−1)−1 = x and x−1 = xJ−1
x .

If all elements in J∗ are invertible, then (J,J , 1) is called a quadratic Jordan
division algebra.

3. Moufang sets

For a permutation group H ≤ Sym(X) and elements x, y ∈ X we denote
by Hx the stabilizer in H of x, by Hx,y := Hx ∩ Hy, and by H{x,y} the
stabilizer of the set {x, y} in H. Also, for any group G, elements x, y ∈ G
and a subgroup H ≤ G, xy = y−1xy and Hy = y−1Hy.

For the sake of being orderly we repeat (and expand) here some of the
definitions and notation given in the introduction. A Moufang set is a set
X together with a permutation group

G† ≤ Sym(X),

and a collection of subgroups

{Ux | x ∈ X},
satisfying the following properties:

(MFS1) G† = 〈Ux〉;
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(MFS2) Ux ≤ G†x and Ux is regular on X r {x}, for all x ∈ X (in particular,
G† is doubly transitive);

(MFS3) for all x ∈ X, we have that Uϕ
x = Uxϕ for all ϕ ∈ G†. In particular,

Ux is weakly closed in G†x with respect to G†.

The subgroups Ux are called the root (sub)groups of the Moufang set; the
group G† is called its little projective group.

Notation 3.1. (1) Throughout this paper U denotes a group which is
not necessarily commutative but written in additive notation.

(2) Throughout ∞ is a new symbol (not in U) and X denotes the set

X := U ∪ {∞}.
(3) For a ∈ U ∗ we let αa ∈ Sym(X) be the permutation

xαa :=

{
x+ a if x ∈ U ;

∞ if x =∞ .

(4) Suppose that τ ∈ Sym(X) with 0τ =∞ and∞τ = 0, then we denote
U∞ = {αa | a ∈ U}, U0 = U τ∞, and Ua = Uαa0 for all a ∈ U ∗.

Notation 3.2. Let a ∈ U ∗; following [DW] we denote

(1) γa := ατa ;
(2) µa := γ(−a)τ−1αaγ

−1
aτ−1 ;

(3) ha := ταaτ
−1α−1

aτ−1τα
−1
(−(aτ−1))τ

; these maps ha are called the Hua

maps corresponding to τ .
(4) It will be convenient to define µ0 := 0 and h0 := 0.

Lemma 3.3. Let a ∈ U ∗, then

(1) µ−a = µ−1
a ;

(2) µa is the unique element in U0αaU0 interchanging 0 and ∞.

Proof. (1) is immediate from the definition of µa.
To show (2), let ρ ∈ U0αaU0 and assume that 0ρ =∞ and∞ρ = 0. Write

ρ = γxαaγy, with γx, γy ∈ U0. Then ∞ = 0ρ = aγy = ((aτ−1) + y)τ . Hence
aτ−1 + y =∞τ−1 = 0, so y = −(aτ−1). Also,

0 =∞ρ =∞γxαaγy =∞τ−1αxταaγy = xταaγy = (xτ + a)γy.

It follows that xτ + a = 0γ−1
y = 0, so x = (−a)τ−1. �

Notation 3.4. (1) Let X be a set. Suppose that for each x ∈ X we
are given a subgroup Ux ≤ Sym(X) that fixes x. We denote this
situation by (X, (Ux)x∈X).

(2) M(U, τ) := (X, (Ux)x∈X), where X = U ∪ {∞} and τ , Ux are as in
Notation 3.1(2) and 3.1(4).

Theorem 3.5 ([DW], Thm. 2). M(U, τ) is a Moufang set if and only if the
map ha restricted to U is an automorphism of U , for all a ∈ U ∗.
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Notation 3.6. Let Λ ⊂ Sym(X) be the set of all permutations λ ∈ Sym(X)
such that 0λ = ∞ and ∞λ = 0. Then we can define M(U, λ), for λ ∈ Λ,
where M(U, λ) is as in Notation 3.4(2), with τ replaced by λ. We let M ⊂ Λ
be the smallest subset satisfying the following properties: (i) τ ∈M; (ii) if
ρ ∈M, then ρ−1 ∈M; (iii) if λ ∈ Λ is such that Uλ

∞ = Uρ∞, for some ρ ∈M,
then λ ∈M.

Lemma 3.7. Let M be as in Notation 3.6 and suppose M(U, τ) is a Moufang
set. Then

(1) M(U, ρ) is a Moufang set for each ρ ∈M;
(2) the permutation µx,ρ := αρ

(−x)ρ−1αxα
ρ
−(xρ−1)

belongs to M for each

ρ ∈M and x ∈ U ∗. Furthermore M(U, µx,ρ) = M(U, ρ) = M(U, µ−1
x,ρ);

(3) given ρ, σ ∈M, M(U, ρ) = M(U, σ) if and only if U ρ
∞ = Uσ∞.

Proof. First notice that (3) is immediate from the definitions. Then by (3)
to show (1) it suffices to show that if for some λ ∈ Λ, M(U, λ) is a Moufang
set, then also M(U, λ−1) is a Moufang set. We show this for τ ; so we must
show that M(U, τ−1) is a Moufang set. For a ∈ U ∗ consider the permutation
ga := τ−1αaτα

−1
aτ τ

−1α−1
(−(aτ))τ−1 ∈ Sym(X). Notice that ga is the Hua map

corresponding to τ−1 (see Notation 3.2(3)). By [DW, Lemma 8(i)], ga = h−1
aτ ,

so in particular, ga ∈ Aut(U). It follows by Theorem 3.5 that M(U, τ−1) is
a Moufang set.

It remains to prove (2). Note that the map µx,ρ is the “µ-map” as defined
in Notation 3.2(1) and 3.2(2), with τ replaced by ρ. Now by (1), M(U, ρ)
is a Moufang set and, by definition, µx,ρ is in the little projective group
corresponding to the Moufang set M(U, ρ). Furthermore, by Lemma 3.3(2),
µx,ρ ∈ Λ. Thus (2) follows from the fact that M(U, ρ) is a Moufang set (in
particular from axiom (MFS3)), using (3). �
Proposition 3.8. Assume that M(U, τ) is a Moufang set. Then

(1) M(U, ρ) = M(U, τ) for any ρ ∈ Sym(X) which interchanges 0 and
∞ and satisfies U ρ

∞ = U0; in particular, this holds for ρ = µa, where
a is an arbitrary element in U ∗;

(2) G†0,∞ = 〈µaµb | a, b ∈ U ∗〉 and G†{0,∞} = 〈µa | a ∈ U∗〉 ;
(3) G†0,∞ ≤ Aut(U).

Proof. (1) This follows from Lemma 3.7(3) and 3.7(2).
(2) The first part of (2) is [DW, Thm. 1(ii)]. The second part follows

from the first and from Lemma 3.3(2).
(3) By (2) it suffices to show that µaµb ∈ Aut(U). But replacing τ with

µa and using (1), we get from Proposition 3.9(1) below that the
corresponding Hua maps are µaµb and by Theorem 3.5, these maps
are in Aut(U).

�
Proposition 3.9. Assume M(U, τ) is a Moufang set, let a, b ∈ U ∗ and let
Λ ⊂ Sym(X) be the set of permutations that interchange 0 and ∞. Then
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(1) µa = τ−1ha;
(2) if ρ ∈ Λ is such that M(U, ρ) = M(U, τ) = M(U, ρ−1), then µaρ =

ρ−1µ−1
a ρ, it follows that µag = g−1µag, for every g ∈ G†0,∞;

(3) if M(U, τ) = M(U, τ−1), then haτ = τ−1h−aτ and hahb = h−bh−1
aτ hb.

Proof. (1) By [DW, Lemma 8.1(ii)], we have that µa = h−1
−aτ . Therefore,

by Lemma 3.3(1), we have that µa = µ−1
−a = τ−1ha.

(2) Assume that M(U, τ) = M(U, τ−1). We first prove (2) for ρ = τ .
Following [DW], we define the maps ga := τ−1αaτα

−1
aτ τ

−1α−1
(−(aτ))τ−1

for all a ∈ U ∗. Then by definition, the maps ga are the Hua maps
corresponding to τ−1. Since we are assuming that M(U, τ−1) =
M(U, τ), we can apply (1) to the maps ga. Note that by Lemma
3.3(2), the maps µa are independent of τ . Therefore, taking in (1)
ga in place of ha and τ−1 in place of τ we have

µa = τga .

On the other hand, we know from [DW, Lemma 8(i)] that ga = h−1
aτ ,

and hence

µaτ = τ−1haτ = τ−1g−1
a = τ−1µ−1

a τ ,

which shows (2) for ρ = τ . Now if ρ ∈ Λ is such that M(U, ρ) =
M(U, τ) = M(U, ρ−1), just replace τ by ρ in the above argument, so
the first part of (2) holds. The second part of (2) is a consequence of
the first, noticing that by Proposition 3.8(1), M(U, µx) = M(U, τ) =
M(U, µ−1

x ), for each x ∈ U ∗, and using Proposition 3.8(2).
(3) First, by (1) and (2), haτ = τµaτ = µ−1

a τ = τ−1(τµ−a)τ = τ−1h−aτ .
Next, again by (1) and (2),

hahb = τµaτµb = τµ−1
b µ−1

aτ µb = τµ−bµ
−1
aτ τ

−1τµb = h−bh
−1
aτ hb .

�

Proposition 3.10. Assume M(U, τ) is a Moufang set. Let a ∈ U ∗ and set
∼a := (−(aτ−1))τ . Then

(1) ∼ is independent of τ , i.e., ∼a = (−(aρ−1))ρ, for every ρ ∈ Sym(X)
that interchanges 0 and ∞ and satisfies M(U, ρ) = M(U, τ);

(2) if M(U, τ) = M(U, τ−1), then µa = αaγ−aτ−1α−(∼a);
(3) ∼a = −((−a)µa);
(4) µ−a = α−(∼a)µ−aαaµ−aα∼(−a);

(5) let c := aγ−(bτ−1) = (aτ−1 − bτ−1)τ , then c is independent of the
choice of τ , and µbµcµ−a = µb−a.

Proof. (1) Let x ∈ U ∗, then ∼a = (−(aτ−1))τµ−xµx = (−(aµ−1
x ))µx,

because τµ−x ∈ Aut(U). By Lemma 3.3(2), µx is independent of τ ,
and hence the same equalities hold with ρ in place of τ , which im-
plies (1).
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(2) Notice that by (1) and by the definition of µa in Notation 3.2(2),

µaτ = γ∼aαaτγ−a .

Using Lemma 3.3(1) and Proposition 3.9(2) we have µ−1
a = µτ

−1

aτ =

α∼aατ
−1

aτ α−a. Hence µa = αaα
τ−1

−aτα−(∼a). SinceM(U, τ) = M(U, τ−1)
and since µa is independent of τ , this last equality holds with τ re-
placed by τ−1.

(3) By (2) we have

−((−a)µa) = −(−a)αaτ
−1α−1

aτ−1τα
−1
(−(aτ−1))τ

= −(∞)α−1
aτ−1τα

−1
(−(aτ−1))τ

= (−(aτ−1))τ = ∼a .
(4) Since statement (4) is independent of τ , using Proposition 3.8(1) we

may (and we will) assume that M(U, τ) = M(U, τ−1) by replacing τ
by some µx. By part (2) with τ replaced by τ−1, we have that

µa = αaτα−aτ τ
−1α−(∼a)

and hence
α−aµaα∼a = τα−aτ τ

−1 ; (3.1)

since the left hand side is independent of τ , we can replace τ by any
µx, and therefore

α−aµaα∼a = µxα−aµxµ−x , (3.2)

for all x ∈ U ∗. In particular, if we put x = −a, then we get, using
the identity in part (3), that

α−aµaα∼a = µ−aα∼(−a)µa

which can be rewritten as

α−(∼a)µ−aαaµ−aα∼(−a) = µ−a .

(5) First notice that, for all x ∈ U ∗,
c = (aτ−1 − bτ−1)τµ−1

x µx = (aµ−1
x − bµ−1

x )µx ,

because, by Proposition 3.9(1), τµ−1
x ∈ Aut(U). Hence, using Propo-

sition 3.8(1), we may (and we will) again assume that M(U, τ) =
M(U, τ−1) by replacing τ by some µx.

We have that ∼c = (bτ−1− aτ−1)τ . Note that c = aγ−bτ−1 , so by
part (2), c = aα−bµbα∼b, or

c = (a− b)µb + (∼b) ; (3.3)

by interchanging a and b we get

∼c = (b− a)µa + (∼a) . (3.4)

In particular, c is independent of the choice of τ , and hence we have
that

c = (aτ−1 − bτ−1)τ = (aτ − bτ)τ−1 .
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Notice that since ∼b = (−(bτ))τ−1, bτ = −((∼b)τ). Also, ∼(∼b) = b
and by Proposition 3.9(2) and Lemma 3.3(1), µ∼b = µ−b. From
equation (3.1) (with a replaced by ∼b) it now follows that

ταbτ τ
−1 = α−(∼b)µ−bαb. (3.5)

Thus, by a repeated use of (3.1), we get that

α−cµcα∼c = τα−cτ τ
−1

= ταbτ−aτ τ
−1

= ταbτ τ
−1τα−aτ τ

−1

= α−(∼b)µ−bαbα−aµaα∼a .

It follows that

µc = αc−(∼b)µ−bαbα−aµaα(∼a)−(∼c) ,

and using (3.3) and (3.4), we can write this as

µc = α(a−b)µbµ−bαb−aµaα−(b−a)µa .

Therefore

µbµcµ−a = µbα(a−b)µbµ−b · αb−a · µaα−(b−a)µaµ−a .

We now apply equation (3.5) (with µb in place of τ and (a − b) in
place of b) and equation (3.2), and we get that

µbµcµ−a = α−∼(a−b)µb−aαa−b · αb−a · αa−bµb−aα∼(b−a)

= α−∼(a−b)µb−aαa−bµb−aα∼(b−a)

= µb−a

where we have used part (4) with a− b in place of a.
�

4. Special Moufang sets

In this section M(U, τ) is a special Moufang set. We start by defining this
notion, which has been introduced by F. Timmesfeld [T] in the context of
(abstract) rank one groups.

Definition 4.1. A Moufang set M(U, τ) is called special if the condition

(−a)τ = −(aτ) for all a ∈ U ∗ (∗)
holds.

Lemma 4.2. Let M be as in Notation 3.6. Then (−a)ρ = −(aρ), for
each ρ ∈ M and each a ∈ U ∗. In particular, (−a)τ−1 = −(aτ−1) and
(−a)µx = −(aµx), for all a, x ∈ U ∗.
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Proof. We first show that (−a)µx = −(aµx), for all a, x ∈ U ∗. By Propo-
sition 3.9(1) and Theorem 3.5, µxτ

−1 ∈ Aut(U). Hence (−a)µxτ
−1 =

−(aµxτ
−1), so

(−a)µx = (−a)µxτ
−1τ = (−(aµxτ

−1))τ = −(aµxτ
−1τ) = −(aµx).

Let now ρ ∈M and assume first that M(U, ρ) = M(U, τ). Then by Propo-
sition 3.9(1) (with ρ replacing τ), ρµx ∈ Aut(U), where x is an arbitrary
element in U ∗. Then (−a)ρ = (−a)ρµxµ−x = (−(aρµx))µ−x = −(aρ), using
the first paragraph of the proof.

Finally, using the previous paragraph of the proof and the definition of
M, to prove the lemma, it remains to show that (−a)τ−1 = −(aτ−1). Notice
that (−(aτ−1))τ = −a = (−a)τ−1τ , so (−a)τ−1 = −(aτ−1). �

Lemma 4.3. Assume that M(U, τ) = M(U, τ−1). Let a ∈ U ∗ then,

(1) µa = αaγ−aτ−1αa;
(2) aµa = −a = aµ−a;
(3) µa = αaα

µεa
a αa, where ε ∈ {+, −};

(4) µ2
a centralizes αa and µ4

a = (αaµa)
3, in particular, if µa is an invo-

lution, then (αaµa)
3 = 1;

(5) if a + a = 0, then αa is an involution, µa is conjugate to αa, so µa
is an involution as well and 〈αa, µa〉 ∼= Sym3.

Proof. (1) Notice that since M(U, τ) is special, ∼a := (−(aτ−1))τ = −a.
Hence (1) follows from Lemma 3.10(2).

(2) By part (1), aµ−a = aα−aγaτ−1α−a = 0γaτ−1α−a = −a. Using
Lemma 4.2 it follows that a = (−a)µa = −(aµa).

(3) By Proposition 3.8(1), Lemma 3.10(2) holds with µεa in place of τ .
so (3) follows from (2).

(4) By Proposition 3.8(3), µ2
a ∈ Aut(U), so by (2), α

µ2
a
a = αaµ2

a
= αa,

this shows the first part of (4). Then, by Lemma 3.10(4), µ−a =
αaµ−aαaµ−aαa, multiplying this equality by µ2

a on the left and by
µ3
a on the right using the fact that µ2

a commutes with αa gives the
rest of (4).

(5) Clearly αa is an involution and by Lemma 3.3(1), µa is an involution.
Then by (3), µa is conjugate to αa. The rest of (5) follows from (4).

�

Lemma 4.4. Let a, b ∈ U ∗. Then

(1) if a 6= b, then (aτ−1 − bτ−1)τ = (a− b)µb − b = a+ (a− b)µa;
(2) if a 6= −b, then (aτ−1 + bτ−1)τ = (a+ b)µ−b + b = a+ (a+ b)µa;
(3) if a 6= −b, then aµa+b = −b− a+ aµb − b.

Proof. We already observed in Proposition 3.10(5) that (aτ−1 − bτ−1)τ is
independent of τ . Hence, by Proposition 3.8(1) we may (and we will) assume
thatM(U, τ) = M(U, τ−1). Also, (in the notation of Lemma 3.10), ∼x = −x,
for x ∈ U ∗. Now (1) follows from equations (3.3) and (3.4). Since by
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Lemma 4.2 (−x)τ−1 = −(xτ−1), (2) follows from (1) by replacing b with −b
in (1).

Replacing in (1) a with a + b we get aµb − b = a + b + aµa+b, and part
(3) follows. �

Lemma 4.5. Let M be as in Notation 3.6, ρ ∈ M and a ∈ U ∗. Then the
order of a is equal to the order of aρ (and one is infinite if and only if the
other is). In particular, the order of a is equal to the order of aτ , aτ−1 and
aµb, b ∈ U∗.

Proof. We show that the order of aτ is equal to the order of a, relying only
on the fact that M(U, τ) is a special Moufang set. By Lemma 3.7(1) and
Lemma 4.2, M(U, ρ) is a special Moufang set for all ρ ∈M, hence the lemma
holds for any ρ ∈M.

We have aτ = aτµ−1
x µx and by Theorem 3.5 and Proposition 3.9(1),

τµ−1
x = τµ−x ∈ Aut(U), so it suffices to show (by replacing a with aτµ−1

x )
that the order aµx is equal to the order of a. By Lemma 4.3(2), a =
(−a)µaµx and by Proposition 3.8(3), µaµx ∈ Aut(U), so the lemma follows.

�

Proposition 4.6. Let a ∈ U ∗, n ≥ 1 be a positive integer such that a·n 6= 0,
and ρ ∈ Sym(X) such that ρ interchanges 0 and ∞ and satisfies M(U, ρ) =
M(U, τ) = M(U, ρ−1). Then

(1) there exists a unique b ∈ U ∗ such that b ·n = a, we denote b := a · 1
n ;

(2) (aρ) · n 6= 0; (a · n)ρ = (aρ) · 1
n , and hence (a · 1

n)ρ = (aρ) · n;
(3) if U is torsion free, then U is a uniquely divisible group;
(4) if b ∈ U ∗ has a finite order, then the order of b is a prime number;
(5) ([T, Thm. 5.2(a), p. 55]) if U is abelian then either U is an elemen-

tary abelian p-group, for some prime p, or U is a divisible torsion
free abelian group;

(6) assume U is abelian and that U · n 6= 0 and let s ∈ {n, n−1}. Then
xµa·s = xµa · s2, for all x ∈ U ∗. It follows that ha·s = ha · s2.

Proof. (1&2) Let n ≥ 1 be a positive integer. Assume that the equality

(a · n)µ−a · n = −a for all a ∈ U ∗ such that a · n 6= 0, (4.1)

holds. We claim that then (1) and (2) hold for n. First, by Lemma
4.3(2), aρ = (−a)µ−aρ. Now µ−aρ is the inverse of the map ρ−1µa
which, by Proposition 3.9(1), is a Hua map corresponding to ρ−1, so
µ−aρ ∈ Aut(U). It follows that

(aρ) · n = (−a)µ−aρ · n = ((−a) · n)µ−aρ 6= 0.

Also, the equality

(a · n)ρ · n = aρ for all a ∈ U ∗ such that a · n 6= 0, (4.2)
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holds. This is because

((a · n)ρ) · n = ((a · n)µ−1
a µaρ) · n

= (((a · n)µ−1
a ) · n)µaρ = (−a)µaρ = aρ,

since µaρ ∈ Aut(U). It follows (by taking ρ = µa) that the element
b := ((−a) · n)µa satisfies b · n = a. Furthermore, if c · n = a, then
by (4.2) (with c in place of a and µ−1

a in place of ρ),

((−a) · n) = (aµ−1
a ) · n = (c · n)µ−1

a · n = cµ−1
a ,

so c = b.
It thus remains to show (4.1). The proof is by induction on n.

For n = 1, this is Lemma 4.3(2). Assume that a · (n+ 1) 6= 0. Note
that if a · n = 0, then a · (n + 1)µa · (n + 1) = aµa · (n + 1) = −a,
so we may assume that a · n 6= 0. Notice that also a · (n+ 1)n 6= 0,
because otherwise we would get (a · n) · n = (−a) · n, but then, by
the uniqueness in part (1) and by induction, a · n = −a, which is
false. Hence a · (n+ 1) · 1

n makes sense.
By Lemma 3.10(4), µ−a = αaµ−aαaµ−aαa. Notice that by induc-

tion we may assume that equation (4.2) holds. Using Lemma 4.3(2)
and induction we get

−((a · (n+ 1))µ−a) = ((−a) · (n+ 1))µ−a
= ((−a) · (n+ 1))αaµ−aαaµ−aαa

= ((−a) · n)µ−aαaµ−aαa
induction

= (a · 1
n + a)µ−aαa

= (a · (n+ 1) · 1
n)µ−aαa

induction
= (a · (n+ 1)µ−a) · n+ a.

Hence, (a · (n+ 1))µ−a · (n+ 1) = −a. This completes the proof of
(1) and (2).

(3) This follows immediately from (1).
(4) Assume first that b ∈ U ∗ is an element of order p2, where p is a

prime. Then b · p 6= 0, so, by (2), (b · p)µa · p = bµa. However, by
Lemma 4.5, (b · p)µa · p = 0, a contradiction.

Let p, q be distinct primes and assume that b has order pq. By
(1), there exists a unique x ∈ U ∗ such that x · p = b. But then one
easily checks that the order of x must be p2q, so the order of x · q is
p2, a contradiction. This shows (4).

(5) If U is torsion free this follows from (3), so assume U contains torsion
and let p be a prime such that V := {x ∈ U | x · p = 0} 6= {0}. Set
U · p := {x · p | x ∈ U}. Then V and U · p are subgroups of U and
by (1), U = U · p ∪ V . If U = V , then we are done, so assume not.
Then since no group is a union of two proper nontrivial subgroups,
U = U · p. Since V 6= {0} this implies the existence of an element of
order p2 in U contradicting (4).
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(6) By Proposition 3.8(1), we may assume that τ = µx, for some x ∈ U ∗.
Then M(U, τ) = M(U, τ−1) so we may apply part (2) with τ in place
of ρ. We note that by Lemma 3.3(2), replacing τ by µx does not
change the permutations µa, a ∈ U∗.

We first show that

xγ(a·n)τ−1 = ((x · 1
n)γaτ−1) · n, −a · n 6= x ∈ U ∗. (4.3)

Indeed,

xγ(a·n)τ−1 = xτ−1α(a·n)τ−1τ
(2)
= (xτ−1 + (aτ−1) · 1

n)τ

= (((xτ−1) · n+ aτ−1) · 1
n)τ

(2)
= (((x · 1

n)τ−1 + aτ−1)τ) · n = ((x · 1
n)γaτ−1) · n.

It follows from Lemma 4.3(1) that,

xµ−a·n = (x− a · n)γ(a·n)τ−1α−a·n
(4.3)
= [(x · 1

n − a)γaτ−1 ] · n− a · n

= ([(x · 1
n − a)γaτ−1 ]− a)n = ((x · 1

n)µ−a) · n
(2)
= (xµ−a) · n2,

for all x ∈ U ∗. Replacing −a with a we get (6) for s = n. The case
s = n−1 follows.

�

The following two technical lemmas will be used in the proof of Proposi-
tion 4.9.

Lemma 4.7. Let a, b ∈ U ∗ such that a · 2 6= 0. Then for all t ∈ Q such that
a · t is defined and non-zero, we have that,

(1) −b− a · t+ aµb · 1
t − b · 2− a · t = aµb · 1

2t − b · 2− a · 2t+ aµb · 1
2t − b;

(2) in particular, if aµb = −a, then

a · t+ b · 2 + a · (t+ 1
t ) + b = b+ a · (2t+ 1

2t ) + b · 2 + a · 1
2t .

Proof. First we remark that by “a · t is defined” we mean the following.
Write t = m

n with m,n ∈ Z and gcd(m,n) = 1. Then a · t is defined
provided that either the order of a is infinite, or the order of a is the prime
p and gcd(n, p) = 1. Then, by Proposition 4.6(1), a · t = (a ·m) · 1

n is well
defined; see also Proposition 4.6(4).

(1) We first observe that if b = a · r for some r ∈ Q such that a · r is
defined, the statement is obvious since a and b then commute. So
we may assume that b 6= a · r for all such r; in particular, a+ b 6= 0
and a · 2 + b 6= 0.

We will compute aµa·2+b in two different ways. On the one hand, if
we replace a by a ·2 in Lemma 4.4(3), then we get, using Proposition
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4.6(2), that

aµa·2+b = (a · 2)µa·2+b · 2
=
(
− b− a · 2 + (a · 2)µb − b

)
· 2

=
(
− b− a · 2 + aµb · 1

2 − b
)
· 2

= − b− a · 2 + aµb · 1
2 − b · 2− a · 2 + aµb · 1

2 − b.

On the other hand, if we replace b by a + b in Lemma 4.4(3), then
we get

aµa·2+b = aµa+(a+b)

= − (a+ b)− a+ aµa+b − (a+ b)

= − b− a · 2− b− a+ aµb − b · 2− a .
Comparing these two expressions, we get that

− b− a+ aµb − b · 2− a = aµb · 1
2 − b · 2− a · 2 + aµb · 1

2 − b .

Now let t ∈ Q such that a · t is defined and non-zero, and replace a
by a · t. Then we get, using Proposition 4.6(2), that

− b− a · t+ aµb · 1
t − b · 2− a · t = aµb · 1

2t − b · 2− a · 2t+ aµb · 1
2t − b .

(2) Assume now that aµb = −a. Then it follows that

− b− a · t− a · 1
t − b · 2− a · t = − a · 1

2t − b · 2− a · 2t− a · 1
2t − b .

Taking the negative of both sides gives us the required identity.

�

Lemma 4.8. Assume that M(U, τ) = M(U, τ−1) and let a, b ∈ U ∗. Then

(1) If aµb = −a, then aµc = −a, for all c ∈ {a,−a, b,−b};
(2) if aµb = −a and b 6= −a, then (b+ a)τ−1 + (a+ b)τ−1 = bτ−1;
(3) if aµb = −a and bµa = −b, then a, b ∈ 〈(a + b)µa, (b + a)µa〉 =: T,

and a, b are conjugate in T ;
(4) if aµb = −a and bµa = −b, then 〈a, b〉 is nilpotent of class ≤ 2.

Proof. (1) This is obvious.
(2) By Lemma 4.3(1),

−a = aµb = aαbγ−bτ−1αb = aαbτ
−1α−bτ−1ταb,

hence

(a+ b)τ−1 − bτ−1 = aαbτ
−1α−bτ−1

= (−a)α−bτ
−1 = (−a− b)τ−1 = −(b+ a)τ−1.

This shows (2).
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(3) Let c ∈ {−a,−b}. Taking in (2) τ = µc we see that

(b+ a)µ−c + (a+ b)µ−c = −b,

by symmetry also,

(a+ b)µ−c + (b+ a)µ−c = −a.

It follows that a, b ∈ T . Clearly (a + b)µa + (b + a)µa is conjugate
to (b+ a)µa + (a+ b)µa in T , so a and b are conjugate in T .

(4) Case 1: The order of a and b is 2.

By Lemma 4.3(5), µa is conjugate in G† to αa, so µa has a unique
fixed point. Since both a and b are fixed points of µa, a = b and (4)
holds.

Case 2: The order of a and b is 3.

By Lemma 4.7(2), with t = 1 we get a− b− a+ b = b + a − b − a.
That is b commutes with a− b− a. Replacing a with −a (using (1))
we get that b commutes with [a, b] = −a− b+ a+ b. By symmetry
also a commutes with [a, b] so 〈a, b〉 is nilpotent of class ≤ 2.

Case 3: The order of a and b is 5.

By Lemma 4.7(2), with t = 1 we get

a+ b · 2 + a · 2 + b = b · 3 + a · 3.

Subtracting b · 3 from both sides of the above equality we get

a+ b · 2 + a · 2− b · 2 = b · 3 + a · 3− b · 3.

It follows that

a = (b · 3 + a · 3− b · 3) + (b · 2 + a · 3− b · 2). (i)

Set X = b · 3 + a · 3 − b · 3 and Y = b · 2 + a · 3 − b · 2. Then
by equation (i), a = X + Y and replacing a by −a in equation (i)
(using (1)) we get that −a = −X − Y . However −a = −Y − X,
so X and Y commute. Conjugating X and Y by b · 2 we see that
a · 3 commutes with b + a · 3 − b, and hence also a commutes with
b + a · 3 − b = (b + a − b) · 3. Thus a commutes with b + a − b.
Replacing b with −b we see again that a commutes with [a, b] and by
symmetry also b commutes with [a, b] so 〈a, b〉 is nilpotent of class
≤ 2.

Case 4: a and b are of order p ≥ 7 or of infinite order.

Let t ∈ Z such that for each s ∈ {t, t2 − 1, t2 + 1}, a · s 6= 0.
Replacing in Lemma 4.7(2) t with 1

t we get

a · 1
t + b · 2 + a · (t+ 1

t ) + b = b+ a · ( 2
t + t

2 ) + b · 2 + a · t2 . (ii)
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Subtracting equation (ii) from the equation in Lemma 4.7(2) we get

a · t− a · 1
t =

b+ a · (2t+ 1
2t) + b · 2 + a · ( 1

2t − t
2)− b · 2− a · ( 2

t + t
2)− b.

or

−b+ a · t− a · 1
t + b =

a · (2t+ 1
2t) + b · 2 + a · ( 1

2t − t
2)− b · 2− a · ( 2

t + t
2). (iii)

Replacing t with −t in equation (iii) we see that

−(−b+ a · t− a · 1
t + b) =

−a · (2t+ 1
2t ) + b · 2− a · ( 1

2t − t
2)− b · 2 + a · ( 2

t + t
2 ). (iv)

From equations (iii) and (iv) we get

a · (2t+ 1
2t ) + b · 2 + a · ( 1

2t − t
2 )− b · 2− a · ( 2

t + t
2) =

−a · (2
t + t

2) + b · 2 + a · ( 1
2t − t

2)− b · 2 + a · (2t+ 1
2t ). (v)

Let
X = a · (( 2

t + t
2) + (2t+ 1

2t )) = a · 5(t2+1)
2t

and
Y = b · 2 + a · ( 1

2t − t
2)− b · 2.

Then equation (v) implies X +Y −X = Y . So X commutes with Y
and hence, by Proposition 4.6(1), a commutes with Y . By equation

(iii) it follows that a commutes with −b+a t2−1
t +b = (−b+a+b) t

2−1
t ,

and eventually, a commutes with −b + a + b. Again we see that a
and (by symmetry) b commutes with [a, b] and 〈a, b〉 is nilpotent of
class ≤ 2. The proof of the lemma is now complete.

�
Proposition 4.9. Let a, b ∈ U ∗, then

(1) if aµb = −a and a+ b = b+ a, then b ∈ {a,−a};
(2) if b 6= −a, aµb = −a and bµa = −b, then (a+ b)µb+a = −(a+ b) and

(b+ a)µa+b = −(b+ a);
(3) if aµb = −a and bµa = −b, then b ∈ {a,−a}, in particular,
(4) if µb = µa, then b ∈ {a,−a}.

Proof. By Proposition 3.8(1) we may (and we will) assume that M(U, τ) =
M(U, τ−1), by taking τ = µx, for some x ∈ U ∗.

(1) Assume the hypotheses of (1) and that b 6= −a. If b · 2 6= 0, then by
Lemma 4.8(2) and by Proposition 4.6(2),

(a+ b)τ−1 · 2 = (b · 2)τ−1 · 2.
By Proposition 4.6(1) we get a+ b = b · 2 so a = b.

If b · 2 = 0, then from the equality (a + b)τ−1 · 2 = bτ−1, and by
Lemma 4.5, we get that (a+ b)τ−1 · 2 has order 2. Hence (a+ b)τ−1

has order 4. This contradicts Proposition 4.6(4).
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(2) By Lemma 4.8(2) with τ = µ−1
b+a we get

(b+ a)µb+a + (a+ b)µb+a = bµb+a.

By Lemma 4.3(2) and Lemma 4.4(3) it follows that

−(b+ a) + (a+ b)µb+a = −a− b+ bµa − a = −a− b− b− a.
Hence (a+ b)µb+a = −(a+ b). By symmetry (b+a)µa+b = −(b+a).

(3) Assume that b 6= −a. Set x = (a + b)µa and y = (b + a)µa. Then,
by (2), Proposition 3.9(2) and Lemma 4.8(1),

xµy = (a+ b)µaµ
−1
a µ−1

b+aµa = (a+ b)µ−1
b+aµa = −(a+ b)µa = −x.

Similarly yµx = −y. By Lemma 4.8(4), 〈x, y〉 is nilpotent of class
≤ 2, and by Lemma 4.8(3), a, b ∈ 〈x, y〉 and a, b are conjugate in
the group 〈x, y〉. But two conjugate elements in a nilpotent group
of class ≤ 2 commute. Thus a and b commute, so, by (1), b = a.

(4) This follows immediately from (3) because µa = µb implies aµb = −a
and bµa = −b.

�
Proposition 4.10. Let a ∈ U ∗ and k1, k2,m1,m2 ∈ Z such that 0 /∈ {a ·
ki, a ·mi}, for i = 1, 2. Set k = k1

k2
and m = m1

m2
. Then

(1) (a · k)µa·m = −a · m2

k , and hence µµa·ma·k = µ
a·m2

k

. It follows that

(a · k)µ2
a·m = a · k and hence µ2

a·m centralizes µa·k ;

(2) if a·(k+m) 6= 0, then µa·m2µa·km = µa·m(k+m)µa·k(k+m) = µa·kmµa·k2 ;

(3) if 0 /∈ {a · k, a · (k + 1)}, then µaµa·k = µa·Nµa·kN for every N =

k`(k + 1)`
′

where `, `′ ∈ Z ;

(4) if a · 2 6= 0, then µ2
a·2 = µ2

a, and if t ∈ Z is such that a · t 6= 0, then
µ2
a = µ2

a·t2 ;

(5) if a ∈ U ∗ is such that the order of a is finite, then µ4
a = 1 .

Proof. (1) By Proposition 4.6(2), (a · k)µa·m = (aµa·m) · 1
k . Also, by

Proposition 4.6(2) and lemma 4.3(2),

aµa·m = ((a ·m) · 1
m )µa·m

= ((a ·m)µa·m) ·m = (−a ·m) ·m = −a ·m2.

This shows the first part of (1). For the second part we use Propo-
sition 3.9(2) and lemma 3.3(1) to get

µµa·ma·k = µ−1
(a·k)µa·m

= µ−1

−a·m2

k

= µ
a·m2

k

.

(2) Notice that if the order of a is finite, then, by Proposition 4.6(4),
the order of a is a prime number, so by Proposition 4.6, a · k, a ·m
are well defined as well as a · (k +m) and

a · rs 6= 0 for all r, s ∈ {k,m, k +m}.



18 T. DE MEDTS AND Y. SEGEV

By Proposition 3.10(5) we have

µ(bτ−1−cτ−1)τ = µ−cµc−bµb, for all b, c ∈ U ∗,
Taking b = a ·k and c = −a ·m and using Proposition 4.6(2), we get

(bτ−1 − cτ−1)τ = ((a · k)τ−1 + (a ·m)τ−1)τ

= ((aτ−1) · 1
k + (aτ−1) · 1

m)τ = ((aτ−1) · k+m
km )τ = a · km

k+m . (*)

On the other hand, using Proposition 3.9(2) and using (1) with k+m
in place of k and −m in place of m, we get

µ−cµc−bµb = µa·mµ−a(k+m)µa·k = µ(a(k+m))µ−a·mµa·mµa·k
= µ−a· m2

k+m

µa·mµa·k . (**)

By (*) and (**) we have

µa· km
k+m

= µ−a· m2

k+m

µa·mµa·k,

or

µ
a· m2

k+m

µa· km
k+m

= µa·mµa·k,

replacing a by a · (k+m) we get the first equality in (2). The second
equality is obtained by inverting (i.e. taking the inverses) the first
equality, replacing a with −a and interchanging m and k.

(3) Putting m = 1 in (2), we get that

µaµa·k = µa·(k+1)µa·k(k+1) = µa·kµa·k2 ,

which shows that (iii) holds for N = k+1 and for N = k. Replacing
a by a · (k + 1)−1 and by a · k−1 in this equality also shows the
result for N = (k + 1)−1 and for N = k−1. The result for general

N = k`(k + 1)`
′

now follows by induction.
(4) The first equality in (4) follows from (3) by taking k = 1. Next, By

(1) we have µµata = µa·t2 . Hence since µ2
a centralizes µa·t (by (1)),

µ2
a = (µ2

a)
µa·t = µ2

a·t2 .
(5) Let a ∈ U ∗ be an element of finite order p and note that p is a prime

by Proposition 4.6(4). If p = 2, then µa = µ−a = µ−1
a , so µ2

a = 1.
So assume that p > 2.

Suppose first that −1 is a square modulo p and let t ∈ Z such that
t2 ≡ −1 (mod p). Then, by (4), µ2

a = µ2
a·t2 = µ2

−a and (5) follows.
So we may assume that −1 is a non-square modulo p. Now let

t ∈ GF(p) such that t is a square in GF(p), but t+ 1 is not a square.
Note that since −1 is not a square in GF(p), and t + 1 is a non-
square, the order of t+ 1 in the multiplicative group of GF(p) must
be even so there exists an `0 ∈ Z such that (t+ 1)`0 = −1 in GF(p).

Taking ` = 0 and `′ = `0 in (3), we get that

µaµa·t = µ−aµ−a·t,
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or µ2
−a = µ2

a·t. Since t is a square in GF(p), it follows from (4)

that µ2
a·t = µ2

a, and we conclude that µ2
−a = µ2

a and therefore again
µ4
a = 1.

�

5. Proving (QJ2)

In this section we assume that M(U, τ) is a special Moufang set with U
an abelian group, and that τ = µe, e ∈ U∗ (but e will occasionally vary).
Note that by Lemma 5.1 (below), τ is an involution. Also, by Lemma 3.8(1)
M(U, τ) = M(U, µe′), for all e′ ∈ U∗.

By Theorem 3.5, ha ∈ Aut(U), for all a ∈ U ∗; we wish to show that under
certain conditions, Ue := (U,H, e) is a quadratic Jordan division algebra,
where H : x 7→ hx := µeµx, for x ∈ U . Of course Ue depends on e, because
the Hua-maps ha = µeµa depend on e. We call Ue an isotope.

Lemma 5.1. Let a ∈ U ∗, then µa = µ−a and hence µa is an involution.

Proof. We use condition (∗) of Definition 4.1. By Lemma 4.3(1) (and Nota-
tion 3.2(1)), µa = αaτ

−1α−1
aτ−1ταa, and hence

xµa = ((x+ a)τ−1 − aτ−1)τ + a

for all x. Using condition (∗), we see that (−x)µ−a = −xµa, so by Lemma
4.2 it follows that xµ−a = xµa for all x, and hence µ−a = µa. But by Lemma
3.3(1), µ−a = µ−1

a so µa is an involution.
�

Proposition 5.2. Let a, b ∈ U ∗ and let g ∈ G†{0,∞}. Then

(1) ha = h−a;
(2) g−1µag = µag;
(3) haτ = h−1

a ;
(4) hahbha = hbha;
(5) µa = µb if and only if a ∈ {b,−b};
(6) g centralizes µa if and only if ag ∈ {a,−a}.

Proof. (1) By Lemma 5.1, µa = µ−a, and hence by Proposition 3.9(1),
ha = τµa = τµ−a = h−a.

(2) This follows from Lemma 5.1 and Proposition 3.9(2).
(3) By (2) and Proposition 3.9(1), haτ = τµaτ = ττµaτ = µaτ = h−1

a ,
because τ is an involution.

(4) By (1), (3) and Proposition 3.9(3), hahb = h−bh−1
aτ hb = hbhahb.

(5) Assume µa = µb. Then, by Lemma 4.3(2), aµb = aµa = −a, so
b ∈ {a,−a} by Lemma 4.9(1).

(6) If ag ∈ {a,−a}, then, by Lemma 5.1 and by part (2), µa = µag =
g−1µag. Conversely, suppose µa = g−1µag = µag. Then by (5),
ag ∈ {a,−a}.

�
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Notation 5.3. By Proposition 4.6(5), U is a vector space over Q or over
GF(p), for some prime p. In the first case we write char(U) = 0 and in
the second char(U) = p. Let F always denote Q or GF(p) in the respective
cases. As usual we will multiply elements of U by scalars from F on the
right.

Proposition 5.4. If char(U) 6∈ {2, 3}, then U is a quadratic Jordan division
algebra if and only if condition (QJ2) is satisfied, i.e., if and only if

ahc,bha = cha,bha for all a, b, c ∈ U. (5.1)

Proof. Recall that condition (QJ2) says

hxVx,y = Vy,xhx,

where

hx,y = hx+y − hx − hy and zVx,y = yhx,z.

Hence bhaVa,c = cha,bha and bVc,aha = ahc,bha, and therefore (QJ2) can be
rewritten as the identity (5.1).

Note that by Proposition 3.9(1), he = idU , and by Proposition 5.2(4), U
satisfies (QJ3). So suppose that U also satisfies (QJ2). Then, replacing c by
c+d in equation (5.1) and using the fact that ha and hx,y are endomorphisms
of U , we get that ahc+d,b = ahc,b + ahd,b for all a, b, c, d ∈ U , i.e. the map
(x, y) 7→ hx,y is biadditive. Since ha·s = ha · s2 for all s ∈ F by Proposition
4.6(6), this implies that the map x 7→ hx is a quadratic map from U to
EndF(U). Since the base field F has at least 5 elements, the identities (QJ1),
(QJ2) and (QJ3) automatically hold strictly, and hence U is a quadratic
Jordan algebra. Finally, by definition, every map ha (with a 6= 0) is a
permutation of X so it is invertible (with inverse map haτ ); therefore, U is
a quadratic Jordan division algebra. �

The following proposition and the corollary following it give some useful
identities which are equivalent to (QJ2).

Proposition 5.5. The following statements are equivalent:

(i) (QJ2) holds ;

(ii) aτ(µb+c−µb−µc)τµa = cτ(µa+bτµa−µa−µbτµa) for all a, b, c ∈ U ∗ ;

(iii) (−a)(µb+c − µb − µc) = cµa(µa+b − µa − µb) for all a, b, c ∈ U ∗.

Proof. By the above, (QJ2) is equivalent to the identity (5.1), and since
hx = τµx, for all x ∈ U ∗, it follows that hx,y = τ(µx+y − µx − µy) so it is
clear that (i) and (ii) are equivalent.
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Let ρ = µe′ , for some e′ ∈ U∗. Then ρτ ∈ Aut(U). Replacing a by aρτ in
(ii) and using Proposition 5.2(2), we get

aρ(µb+c − µb − µc)τµaρτ = cτ(µaρτ+bτµaρτ − µaρτ − µbτµaρτ )

⇐⇒ aρ(µb+c − µb − µc)ρµaρτ = cτ(µaρτ+bρµaρτ − µaρτ − µbρµaρτ )

⇐⇒ aρ(µb+c − µb − µc)ρµaρτ = cρ(µa+bρµa − µa − µbρµa)ρτ

⇐⇒ aρ(µb+c − µb − µc)ρµa = cρ(µa+bρµa − µa − µbρµa) ,

which is (ii) with ρ in place of τ . This implies that (ii) is independent of the
choice of e ∈ U ∗ (i.e. if it holds for τ = µe, for some e ∈ U ∗, then it holds
for τ = µx, for all x ∈ U ∗). Taking τ = µa in (ii) we get that (ii) implies
(iii).

We now show that (iii) implies (ii). So assume that (iii) holds. Then by
(iii) with −aτ in place of a, we have, using Lemma 5.1,

(aτ)(µb+c−µb−µc) = cµaτ (µ−aτ+b−µaτ −µb), for all a, b, c ∈ U ∗. (5.2)

By Proposition 3.9(2) and since τ is an involution, we get that µaτ = τµaτ ,
and note that we also get µaτµxτµa = µxτµa , for all x ∈ U ∗. Thus by
equation (5.2) and again using Lemma 5.1, we have that for all a, b, c ∈ U ∗,

(aτ)(µb+c − µb − µc)τµa = cτµaτ(µ−aτ+b − µaτ − µb)τµa
= cτ(µ(−aτ+b)τµa − µ(aτ)τµa − µbτµa)

= cτ(µ−aµa+bτµa − µaµa − µbτµa)

= cτ(µa+bτµa − µa − µbτµa) .

But this is the equality (ii), so we see that (iii) implies (ii). �
Corollary 5.6. If the identity ehb,c = chb,e, for all b, c ∈ U ∗, holds in each
isotope Ue, e ∈ U∗, then the stronger identity (QJ2) holds for each isotope
Ue, e ∈ U∗.
Proof. Notice that the identity ehb,c = chb,e, is precisely the identity in (iii)
of Proposition 5.5, with the letter a replaced by the letter e (and hence
τ = µa), so the corollary holds by Proposition 5.5. �
Lemma 5.7. For all a, b ∈ U ∗ such that b 6= −a, we have that

(1) bµa+b = −a · 2− b+ bµa ;
(2) bτha,b = −a · 2 .

Proof. (1) This comes from Lemma 4.4(3), because U is abelian.
(2) Using (1) and Lemma 4.3(2), we get that

bτha,b = bµa+b − bµa − bµb
= −a · 2− b+ bµa − bµa + b

= −a · 2 .
�

Proposition 5.8. Let a, b ∈ U ∗ and let c = (aτ + bτ)τ , then
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(1) µaµa+bµb = µc = µbµa+bµa ;
(2) hahaτ,bτhb = ha,b = hbhaτ,bτha ;
(3) µaµb commutes with µaµa+b, so hb commutes with hb+e ;
(4) ha,a = ha · 2 ;
(5) aha,e = eha,a .

Proof. (1) This follows from Proposition 3.10(5), recalling that τ and
µx, x ∈ U∗ are involutions, that U is abelian and that M(U, τ) is
special.

(2) Since the maps µx are involutions, the left equality of (1) can be
rewritten as

µ−1
a µa+b = µ−1

c µb ;

since hx = τµx for all x, this is equivalent with

h−1
a ha+b = h−1

c hb .

Replacing a ↔ aτ and b ↔ bτ and using Proposition 5.2(3), we get
that

hahaτ+bτhb = ha+b .

Using Proposition 5.2(3) twice more, this implies that

hahaτ,bτhb = ha,b .

The other equality of (2) is similar.
(3) By (1),

µaµbµa+bµa = µa+bµb.

Multiplying this equality on the left by µaµa+b we get

(µaµb)
µa+bµa = µaµb.

This shows the first part of (3). Taking a = e and using Proposition
3.9(1) gives the second part.

(4) ha,a = ha·2 − ha · 2, so (4) follows from Proposition 4.6(6).
(5) Since ha,a = ha · 2, and τ = µe we must show that

aµb(µa+b − µa − µb) = bµbµa · 2 ;

applying µaµb to this equality and noticing that by (3) µaµb =
(µbµa)

−1 commutes with µbµa+b, we must show that

aµaµa+b − a− aµaµb = b · 2 .
But by Lemma 5.7(1), aµaµa+b = −(aµa+b) = −(−b · 2 − a+ aµb),
so we get

aµaµa+b − a− aµaµb = b · 2 + a− aµb − a+ aµb = b · 2.
�

Lemma 5.9. Assume that h−a,b = −ha,b for all a, b ∈ U . Then

(1) ha,b·s = ha,b · s ;
(2) ha+b·s = ha + ha,b · s+ hb · s2 ;

for all a, b ∈ U and all s ∈ F.
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Proof. We first show that

ha,a+b = ha · 2 + ha,b (5.3)

for all a, b ∈ U . Indeed, using the fact that h−a,b = −ha,b for all a, b ∈ U
and using Proposition 5.8(4), and Lemma 5.2(1) we get

ha,a+b = −h−a,a+b = −hb + ha + ha+b

= −hb + ha + ha,b + ha + hb = ha · 2 + ha,b .

We now show that for all a, b ∈ U and all n ∈ Z,

ha·n,b = ha,b · n . (5.4)

Since h−a,b = −ha,b for all a, b ∈ U , we may assume that n > 0, and we
will use induction on n. The statement is obvious for n = 1, so assume
that it holds for n = k (for all a, b ∈ U). Then, using equation (5.3) and
Proposition 4.6(6), we get that

ha·(k+1),b = ha·(k+1)+b − ha·(k+1) − hb
= ha·k+(a+b) − ha · (k + 1)2 − hb
= ha·k,(a+b) + ha·k + ha+b − ha · (k + 1)2 − hb
= ha,a+b · k + ha · k2 + ha,b + ha + hb − ha · (k + 1)2 − hb
= ha · 2k + ha,b · k + ha · k2 + ha,b + ha − ha · (k + 1)2

= ha,b · (k + 1) ,

which shows the statement for n = k + 1. Hence equation (5.4) holds; this
implies (1). It now follows from (1) and Proposition 4.6(6) that also (2)
holds. �

Lemma 5.10. Let a, b, c, d ∈ U . Then

(1) ahb+c,d = ahb,d + ahc,d ⇐⇒ ahb,c+d = ahb,c + ahb,d ;
(2) ahb,c+aτ = ahb,c − b · 2 .

Proof. (1) Both sides can be rewritten as

a(hb+c+d + hb + hc + hd − hb+c − hb+d − hc+d) = 0 ,

and hence they are equivalent.
(2) This follows from (1) with d = aτ using Lemma 5.7(2).

�

Theorem 5.11. Assume that char(U) 6∈ {2, 3}, and that

(i) h−a,b = −ha,b for all a, b ∈ U ;
(ii) aha,b+c = aha,b + aha,c for all a, b, c ∈ U .

Then U satisfies (QJ2). It follows that U is a quadratic Jordan division
algebra.
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Proof. First notice that assumption (ii) together with Lemma 5.10(1) implies
that

aha+c,b = aha,b + ahc,b for all a, b, c ∈ U. (5.5)

We start with the identity ha+eha = haha+e from Proposition 5.8(3). We
substitute a+ b · s for a in this identity, where s ∈ F; using Lemma 5.9(2),
we then get that

(ha+e + ha+e,b · s+ hb · s2)(ha + ha,b · s+ hb · s2)

= (ha + ha,b · s+ hb · s2)(ha+e + ha+e,b · s+ hb · s2)

for all a, b ∈ U . Since char(U) = 0 or char(U) ≥ 5, we can take at least 5
different values for s, and hence the coefficients of each power of s have to
coincide (see, for example, [TW, (2.26)]). Equating the coefficients of s1, we
get

ha+e,bha + ha+eha,b = haha+e,b + ha,bha+e .

We now apply this identity to the element aτ , and we get, using Lemma
5.7(2) and Lemma 4.3(2), that

aτha+e,bha + aτha+eha,b = − aha+e,b − bha+e · 2 . (5.6)

By Lemma 5.10(2) with aτ in place of a and e in place of c, we get that

aτha+e,bha = aτhb,eha − bha · 2 . (5.7)

Also, using Lemma 5.7(2) and Lemma 4.3(2), we get that

aτha+eha,b = aτ(ha + 1 + ha,e)ha,b = − aha,b − b · 2− eha,b · 2 . (5.8)

It follows from equation (5.5) that

− aha+e,b = − aha,b − ahe,b ; (5.9)

by definition, the equation

− bha+e · 2 = − bha · 2− b · 2− bha,e · 2 . (5.10)

also holds. If we plug in the equations (5.7), (5.8), (5.9) and (5.10) into
(5.6), then we get that

aτhb,eha − eha,b · 2 = − ahe,b − bha,e · 2 . (5.11)

On the other hand, if we replace a by a+ b in the identity eha · 2 = aha,e,
which follows from Proposition 5.8(4 and 5), then we get using equation
(5.5)

eha+b · 2 = (a+ b)ha+b,e

= aha+b,e + bha+b,e

= aha,e + ahb,e + bha,e + bhb,e

= eha · 2 + ahb,e + bha,e + ehb · 2
and hence

eha,b · 2 = ahb,e + bha,e . (5.12)



IDENTITIES IN MOUFANG SETS 25

If we plug this in into equation (5.11), then we get that

aτhb,eha = − bha,e ;

replacing a by aτ then gives

ahb,e = − bhaτ,eha . (5.13)

By Proposition 5.8(2) with b = e, since eτ = −e and by our assumption (i),
we have that haτ,eha = − ha,e. Hence identity (5.13) becomes

ahb,e = bha,e .

Together with equation (5.12) and the fact that char(U) 6= 2, this shows that
eha,b = bha,e for all a, b. By Corollary 5.6, we can conclude that (QJ2) holds,
and hence, by Proposition 5.4, U is a quadratic Jordan division algebra. �
Corollary 5.12. Assume that the map (x, y) 7→ hx,y is biadditive and that
char(U) 6∈ {2, 3}. Then U is a quadratic Jordan division algebra.

Proof. If the map (x, y) 7→ hx,y is biadditive, then the conditions (i) and (ii)
in Theorem 5.11 are satisfied, so the result follows from that theorem. �
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