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Abstract

Let S be a proper partial geometry pg(s, t, 2), and let G be an
abelian group of automorphisms of S acting regularly on the points of
S. Then either t ≡ 2 (mod s+1) or S is a pg(5, 5, 2) isomorphic to the
partial geometry of van Lint and Schrijver [11]. This result is a new
step towards the classification of partial geometries with an abelian
Singer group and further provides an interesting characterization of
the geometry of van Lint and Schrijver.

1 Introduction and motivation

One of the most important and longstanding conjectures in the theory of
finite projective planes is certainly the following:

Let P be a finite projective plane and suppose thatG is an abelian
Singer group (that is, an abelian group acting regular on the
points of P), then P is Desarguesian.

Although with the techniques of today it seems impossible to prove this con-
jecture, several weaker versions have been proved and an extensive literature
on the subject exists (we refer to [9] for a recent survey containing extensive
bibliographic information).

∗The author is Research Assistant of the Fund for Scientific Research Flanders (FWO-
Vlaanderen)
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More generally it is now natural to wonder what happens in the case of other
geometries admitting a(n) (abelian) Singer group. This motivated Ghinelli [8]
to study generalized quadrangles (GQs) admitting a (not necessarily abelian)
Singer group. At this point we want to mention that looking at GQs is
natural as both projective planes and GQs are members of the larger class
of generalized polygons.

Recently a question of J. C. Fisher at the 2004 conference ”Incidence Geom-
etry” (May, 2004, La Roche, Belgium) inspired the author and K. Thas to
study this subject in the case of GQs. In [7] they obtained that every finite
GQ which admits an abelian Singer group necessarily arises as the general-
ized linear representation of a generalized hyperoval. Further it was noted in
that paper that no finite generalized n-gon with n > 4 can admit an abelian
Singer group.

In the present paper we will study partial geometries pg(s, t, 2) admitting an
abelian Singer group. This is a natural generalization since partial geome-
tries generalize projective planes as well as GQs. Further this study is also
motivated by the existence of an interesting example: the so-called van Lint-
Schrijver partial geometry [11].

Before proceeding we will now provide some definitions and notation.

A partial geometry pg(s, t, α) is a finite partial linear space S of order (s, t),
s, t ≥ 2, such that

• for every antiflag (p, L) of S there are exactly α > 0 lines through p
intersecting L.

Partial geometries were introduced in 1963 by Bose [3]. It is easily seen that
these geometries have a strongly regular point graph srg(v = (s + 1)(st +
α)/α, s(t+1), s−1+t(α−1), α(t+1)). Partial geometries for which α = 1 are
known as generalized quadrangles (GQs). A partial geometry will be called
proper if 1 < α < min(s, t). If two distict points x and y of S are collinear
this will be denoted by x ∼ y, while the line determined by these points
will be denoted by 〈x, y〉. The maximal size of a clique in the point graph
of S equals s + 1, and if C is a clique of this size, then every point p not
belonging to C is adjacent to exactly α elements of C. Finally we mention
two constructions of partial geometries.

Let R = {PG(0)(m, q),PG(1)(m, q), . . . ,PG(t)(m, q)}, t ≥ 1, be a set of mu-
tually disjoint PG(m, q) in PG(n, q). We say that R is a PG-regulus if and
only if the following condition is satisfied.
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• If PG(m+1, q) contains PG(i)(m, q), i = 0, 1, . . . , t, then it has a point
in common with α > 0 elements of R \ {PG(i)(m, q)}.

PG-reguli are a special case of the more general class of SPG-reguli which
were introduced in 1983 by J. A. Thas [14] (these SPG-reguli give rise to
so-called semipartial geometries). Now suppose that R is a PG-regulus in
Π := PG(n, q) and embed Π as a hyperplane in PG(n+1, q). Define S to be
the geometry with as point set the set of all points of PG(n+ 1, q) \Π, with
as line set the set of all PG(m+ 1, q) ⊂ PG(n+ 1, q) that are not contained
in Π and intersect Π in an element of R, and for which the incidence relation
is the natural one. Then S is a partial geometry pg(qm+1− 1, t, α) (see Thas
[14]).

To end this section we provide a construction of the above mentioned van Lint-
Schrijver partial geometry [11]. Let β be a primitive element of GF(81) and
define γ := β16. Define S to be the geometry with point set the set of elements
of GF(81), with line set the set of 6-tuples (b, 1+b, γ+b, γ2+b, γ3+b, γ4+b),
b ∈ GF(81), and with as incidence relation symmetrized containment. Then
van Lint and Schrijver have shown that S is a partial geometry pg(5, 5, 2).
It is worthwhile to notice that the point graph of this partial geometry is a
cyclotomic graph.

2 A Benson-type theorem for partial geome-

tries

In this section we will provide an analogue for partial geometries of the
theorem of Benson [2] on automorphisms of generalized quadrangles. The
proof of this theorem is analogoues to the proof of Benson’s theorem as given
in [13] (Section 1.9, page 23), so we will only give a sketch of the proof here.

Theorem 2.1 Let S be a partial geometry pg(s, t, α), and let θ be any au-
tomorphism of S. Denote by f the number of fixed points of S under θ and
by g the number of points x of S for which x 6= xθ ∼ x. Then

(1 + t)f + g ≡ (1 + s)(1 + t) (mod s+ t− α + 1).

Proof. Let P = {x0, x1, . . . , xv} be the point set of S. If we denote by A
the adjacency matrix of S, then A2 + (t − s + α + 1)A + (t + 1)(α − s)I =
α(t+ 1)J , with I the identiy matrix and J the matrix with all entries equal
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to 1. Consequently A has eigenvalues s(t + 1), −1 − t and s − α, with
respective multiplicities m0 = 1, m1 and m2, where m1 and m2 can easily
be computed. Next, if we denote by D the incidence matrix of S, then
M := DDT = A + (t + 1)I, and so M has eigenvalues (1 + s)(1 + t), 0
and t + 1 + s − α, with respective multiplicities m0 = 1, m1 and m2. Now
let Q be the matrix with the ij-th entry 1 if xθ

i = xj and 0 otherwise.
Then Q is a permutation matrix and one can show that QM = MQ (see
[13]). Consequently, if θ has order n, then (QM)n = QnMn = Mn. One
deduces that the eigenvalues of QM are the eigenvalues of M multiplied
with the appropriate roots of unity. From QMJ = MJ = (s + 1)(t + 1)J
it follows that (s + 1)(t + 1) will be an eigenvalue of QM . By m0 = 1, this
eigenvalue will have multiplicity 1. Further 0 will be an eigenvalue of QM
with multiplicity m1. Let d be a divisor of n. Then the multiplicity of the
eigenvalue ξd(s + t − α + 1) of QM , will only depend on d and not on the
primitive dth rooth of unity ξd. Denote this multiplicity by ad. Further, as
the sum of all dth primitive roots of unity is an integer Ud [10] we obtain
that tr(QM) =

∑
d|n ad(s+ t+α− 1)Ud + (s+1)(t+1). On the other hand

it is clear that tr(QM) = (t+ 1)f + g. The theorem follows. ¤

We will apply this theorem to the case of partial geometries admitting a
regular abelian group of automorphisms, but first we shall obtain an easy
lemma which will be used frequently in the rest of this paper without further
notice.

Lemma 2.2 Let S be a partial geometry admitting a regular abelian group
of automorphisms G. Suppose g ∈ G. If for some point x of S there holds
that xg ∼ x, then for any point y of S there holds that yg ∼ y.

Proof. By the regularity of G there exists an h ∈ G, such that xh = y. As h
is an automorphism of S and as G is abelian, we obtain xh ∼ xgh = xhg = yg,
that is, y ∼ yg. ¤

Corollary 2.3 If S is a partial geometry pg(s, t, α), α 6= s+1, and S admits
a regular abelian group G of automorphisms, then

(s+ 1)
st+ α

α
≡ (1 + s)(1 + t) ≡ 0 (mod s+ t− α + 1).

Proof. First notice that if an element of G has a fixed point then it is
necessarily the identity. To obtain the first equivalence, choose any g ∈
G\{id} for which there exists a point x such that x ∼ xg, and apply Theorem
2.1. In order to obtain the second equivalence, choose a g ∈ G for which there
does not exist an x such that x ∼ xg (notice that g exists as α 6= s+ 1). ¤
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3 Subdivision into three classes

The following basic observation will yield a natural subdivision into three
classes of the pairs (S, G), with S a partial geometry and G an abelian
automorphism group of S acting regularly on the points of S.

Lemma 3.1 Let S be a partial geometry pg(s, t, α) and G an abelian Singer
group of S. Let L be any line of S. Then either |StabG(L)| = 1, or
|StabG(L)| = s+ 1.

Proof. Let x be any point on L and suppose that g ∈ G \ {id} stabilizes L.
Let xh, h ∈ G, be any point of L\{x, xg}. Clearly xhg is a point of L, distinct
from xh. It follows that Lh−1

= 〈xh, xhg〉h
−1

= 〈x, xg〉 = L. Consequently h
stabilizes L and |StabG(L)| = s+ 1. ¤

Based on the above observation we can introduce the following three classes
of partial geometries S with an abelian Singer group G:

• the pair (S, G) is of spread type if |StabG(L)| = s+1 for each line L of
S;

• the pair (S, G) is of rigid type if |StabG(L)| = 1 for each line L of S;

• the pair (S, G) is of mixed type otherwise.

Remark 3.2 Notice that such a division into classes of spread, rigid and
mixed type can be introduced for any partial linear space with an abelian
Singer group. (Lemma 3.1 only uses the fact that S is a partial linear space).

4 Pairs (S, G) of spread-type

In [7] it is shown that for every partial geometry S with α = 1, that is
every finite generalized quadrangle, which admits an abelian Singer group
G, the pair (S, G) is of spread-type, yielding that S is the generalized linear
representation of a generalized hyperoval.

Next suppose that α ≥ 2 and that (S, G) is of spread type. Choose any point
x in S and denote the t+1 lines through x by L0, L1, . . . , Lt. It readily follows
that LG

i determines a spread (of symmetry) of S, explaining the introduced
terminology. Let Si be the stabilizer in G of the line Li, i = 0, 1, . . . , t. Then
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it is also easily seen that the pair (G, J = {S0, S1, . . . , St}) is an SPG-family
in the sense of [6]. From Theorem 2.5 of that same paper [6] it then follows
that S is isomorphic to a partial geometry constructed from a PG-regulus.
We will now have a closer look at the parameters in the case α = 2.

Theorem 4.1 Let S be a partial geometry pg(s, t, 2) and let G be an abelian
regular automorphism group of S. If the pair (S, G) is of spread type, then
either S is a translation net pg(s, 2, 2) or t = 2(s + 2), in each case s =
qm+1 − 1 with q a prime power, and more specifically in the second case
q = 3h.

Proof. By Theorem 2.5 of [6] S is constructed from an (S)PG-regulusR, say
an (S)PG-regulus consisting of m-dimensional spaces in PG(n, q), implying
s = qm+1 − 1 for a certain prime power q. Consider two distinct intersecting
lines. The stabilizers in G of these lines have size s+ 1 and clearly generate
a subgroup of G of size (s + 1)2. Consequently v = (s + 1)(st + 2)/2 is
divisible by (s + 1)2. It follows that t = z(s + 1) + 2, z ∈ N. If z = 0,
then S is a translation net. Next suppose that z ≥ 1. Let L0, . . . , Lt denote
the t + 1 lines through a fixed point x. Denote the stabilizers in G of Li

by Si, i = 0, 1, . . . , t. The lines L0 and L1 determine in a natural way an
(s + 1) × (s + 1)-grid L0L1, which corresponds to the subgroup S0S1 of G.
As S is a pg(s, t, 2), at most s of the lines L2, . . . , Lt can intersect this grid
in a point distinct from x. Consequently there exists a line, say without
loss of generality L2, intersecting L0L1 only in x. It follows that S0S1S2 is a
subgroup of order (s+ 1)3 of G. Hence (s+ 1)2 should divide st+ 2. As we
already know that s + 1 divides t − 2, we easily see that s + 1 must divide
(t− 2)/(s+1)− 2. If (t− 2)/(s+1)− 2 = 0, then t = 2(s+2). Now assume
that s + 1 ≤ (t − 2)/(s + 1) − 2. This implies t ≥ s2 + 4s + 5. As on the
other hand for partial geometries (s + 1 − 2α)t ≤ (s + 1 − α)2(s − 1) (see
Chapter 13 of [13]), we see that (s − 3)t ≤ (s − 1)3. Consequently s = 3
(the case s = 2 yields a dual net, which we do not consider). Substitution
in the identity (s + 1)(t + 1) ≡ 0 (mod s + t − 1) from Corollary 2.3 yields
4(t + 1) ≡ 0 (mod t + 2), and so t + 2 must divide 4. Hence t ∈ {0, 2},
a contradiction. Finally to obtain that q = 3h, it is sufficient to substitute
t = 2(s + 2) in (s + 1)(t + 1) ≡ 0 (mod s + t − 1) from Corollary 2.3. This
proves the theorem. ¤

Consequently, if S is a proper partial geometry with α = 2 admitting an
abelian Singer group G such that the pair (S, G) is of spread type, then S is
a pg(3h(m+1)− 1, 2(3h(m+1) +1), 2) constructed from a PG-regulus consisting
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of m-dimensional subspaces of PG(3m+2, 3h), for certain m ∈ N and certain
q = 3h.

Remark 4.2 It is important to notice that there exists a very interesting
example of an PG-regulus R in PG(5, 3) yielding a pg(8, 20, 2). This PG-
regulus is due to Mathon [5] and is the only known PG-regulus yielding a
pg(s, 2(s + 2), 2). Further notice that such a partial geometry has the same
parameters as the partial geometry T ∗

2 (K), which would arise from a maximal
3-arc K in PG(2, q); it is however well known that such a maximal arc does
not exist, see Cossu [4], Ball, Blokhuis and Mazzocca [1].

5 Pairs (S, G) of mixed-type

Let S be a partial geometry pg(s, t, 2) and G an abelian Singer group of
S. Suppose that the pair (S, G) is of mixed type. Then there are x(s + 1),
x ∈ N0, lines L through any given point such that the stabilizer of L in G
is trivial (as the orbit of any such line contains exactly s + 1 lines through
the given point), and p lines through any given point with a stabilizer in G
of order s+ 1. So t+ 1 = x(s+ 1) + p for certain x, p ∈ N0.

Lemma 5.1 It holds that p 6= 1.

Proof. Suppose by way of contradiction that p = 1. From Corollary 2.3 we
obtain that

x(s+ 1)2 + s+ 1 ≡ 0 (mod (x+ 1)(s+ 1)− 2).

Hence, after multiplying with (x+ 1)2 we obtain

x [(x+ 1)(s+ 1)]2 + (x+ 1) [(x+ 1)(s+ 1)] ≡ 0 (mod (x+ 1)(s+ 1)− 2),

that is,

6x+ 2 ≡ 0 (mod (x+ 1)(s+ 1)− 2).

Consequently 5x + 3 ≥ xs + s, and so s < 5. For s = 3 we find that 6x + 2
must be divisible by 4x + 2, yielding x = 0, a contradiction. If s = 4, then
6x + 2 has to be divisible by 5x + 3, from which follows that x = 1 and
consequently t = 5. Substitution in the original identity (s + 1)(t + 1) ≡ 0
(mod s+ t− 1) yields 30 ≡ 0 (mod 8), the final contradiction. ¤
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Lemma 5.2 There holds that p = y(s+1)+3 for certain y ∈ {0, 1}. Further,
if y = 1, then also x = 1.

Proof. Consider two distinct intersecting lines with stabilizers in G of size
s+1. As in Theorem 4.1 we obtain that (s+1)2 divides v = (s+1)(st+2)/2
and consequently that t = z(s + 1) + 2, that is p = y(s + 1) + 3 for certain
y ∈ N. Suppose that y ≥ 1. Again as in Theorem 4.1 we deduce that (s+1)3

must divide v, which yields that t = 2(s+ 2), that is x = y = 1. ¤

Remark 5.3 Although the author strongly tends to believe that no partial
geometries pg(s, t, 2) S with an abelian Singer group G exist such that (S, G)
is of mixed type, he has not yet been able to prove this conjecture to be
correct. In view of the existence of pg(s, 2(s + 2), 2), divisibility conditions
will clearly not help excluding this case.

6 Pairs (S, G) of rigid type

In this section we will obtain that there is a unique partial geometry pg(s, t, 2)
S such that the pair (S, G) is of rigid type, namely the partial geometry
pg(5, 5, 2) of van Lint and Schrijver.

6.1 The parameters

From now on let S be a proper partial geometry pg(s, t, 2) admitting an
abelian Singer group such that the pair (S, G) is of rigid type. One immedi-
ately observes that t+ 1 = x(s+ 1) for certain x ∈ N0 (same argument as in
the previous section). Further, from Corollary 2.3 we obtain that 2 + st ≡ 0
(mod s+ t− 1), that is

2 + xs2 + (x− 1)s ≡ 0 (mod (x+ 1)s+ x− 2).

Multiplying with (x+ 1)2 yields

2(x+ 1)2 + x [(x+ 1)s]2 + (x2 − 1) [(x+ 1)s] ≡ 0 (mod (x+ 1)s+ x− 2)

from which follows that

9x ≡ 0 (mod (x+ 1)s+ x− 2).

Hence 9x ≥ (x+ 1)s+ x− 2 from which we deduce that s < 8.

8



Theorem 6.1 It is necessarily so that (s, t) = (5, 5).

Proof. We will one by one handle the cases s = 3, 4, . . . , 7.

• If s = 3 we obtain that 9x must be divisible by 4x + 1 which yields
that x = 2 and hence t = 7. Substituting this in the original identity
2 + st ≡ 0 (mod s+ t− 1) gives us a contradiction.

• In the case where s = 4 we obtain that 9x is divisible by 5x+ 2. This
implies x = 0, a contradiction.

• For s = 5 we obtain that 9x is divisible by 6x + 3, and so x = 1 and
t = 5.

• Finally, the cases s = 6 and s = 7 can easily be excluded analoguesly
as the case s = 4.

¤

6.2 G is elementary abelian

Let S and G be as in the previous subsection, that is, S is a pg(5, 5, 2) and
G is an abelian automorphism group of S acting regularly on the points of
S. We will show that G is elementary abelian. Although we know that
s = t = 5, we will in this subsection always write s, as we believe that this
makes general arguments easier to read.

Now choose any fixed point x in S. We will identify the point y of S with
the unique g ∈ G for which xg = y. Finally, D will denote the set of all
points (elements of G), with exclusion of id, that are collinear with id. We
notice that this notation comes from the theory of partial difference sets, as
it is easily checked that D is a partial difference set in G (see e.g. [12]).

Lemma 6.2 There holds that D2 ⊂ D.

Proof. Choose any g ∈ D, and consider the lines L = 〈id, g〉 and Lg. The
line Lg consists of all points fg with f ∈ L. For any such f with id 6= f 6= g
the point fg is collinear with f and g on L. Would g2 not be collinear with
id, then necessarily with certain f ∈ L \ {id, g}. However this f is already
collinear with g and fg on Lg, implying that f would be collinear with more
then 2 points on Lg, a contradiction. We conclude that g2 ∈ D. (Notice that
g2 /∈ L since otherwise the stabilizer of L in G would not be trivial). ¤
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Lemma 6.3 Suppose L is a line through id. If we denote the points of L by
id, g1, g2, . . . , gs, then L2 := {id, g2

1, g
2
2, . . . , g

2
s} is a set of two by two collinear

points, no three on a line.

Proof. From the previous lemma we know that id ∼ g2
i , for all i ∈

{1, 2, . . . , s}. We now show that g2
i ∼ g2

j , for i 6= j. Consider the lines
Mi := 〈gi, g

2
i 〉 and Mj := 〈gj, g

2
j 〉. Then Mi ∩Mj = gigj. From the fact that

gi ∼ gj it follows that the point glgi on Mi is collinear with the point glgj on
Mj, for all l /∈ {i, j}. Now assume that g2

i would not be collinear with g2
j .

Then g2
i has to be collinear with either gj or glgj for certain l 6= j. If g2

i would
be collinear with gj, then it would be collinear with at least three points on
L, a contradiction. Would g2

i be collinear with glgj for certain l 6= j, then glgj
would be collinear with the distinct points gigj, glgi and g2

i on Mi, again a
cotradiction. It follows that L2 is indeed a set of two by two collinear points.
Next, suppose there is a line containing at least three distinct points of L2.
From the fact that α = 2 it is immediate that in this case L2 is a line through
id (distinct from L), say, without loss of generality, Lg1

−1

. Hence g2g
−1
1 = g2

j

for certain j. This implies that j = 2, as the point g2g
−1
1 is collinear with id,

g2 and gj on L. But then g−1
1 = g2, a contradiction. The lemma follows. ¤

Although the following lemma can be avoided, it provides interesting infor-
mation on the structure of the geometry S with respect to the group G.

Lemma 6.4 Let the line L be as in the previous lemma. Suppose h ∈ G,
with h /∈ D ∪ {id}. Then one, and only one, of the following cases occurs:

• h ∈ 〈g2
i , g

2
j 〉 for unique i and j, i 6= j;

• h ∈ 〈gi, g
2
i 〉 for exactly two values of i.

Proof. Suppose h = 〈g2
i , g

2
j 〉 ∩ 〈g

2
l , g

2
k〉 or h = 〈g2

i , g
2
j 〉 ∩ 〈gl, g

2
l 〉. In each case

g2
l would be collinear with three points on 〈g2

i , g
2
j 〉, a contradiction.

Any point h ∈ 〈gi, g
2
i 〉 \ {gi, g

2
i } can be written as h = gjgi for certain j 6= i.

Hence, such h also belongs to the the line 〈gj, g
2
j 〉. Now assume that there

would be a third index k, with i 6= k 6= j, such that h ∈ 〈gk, g
2
k〉. Then g2

k

would be collinear with the three distinct points gkgi, h and g2
i on 〈gi, g

2
i 〉, a

contradiction.

Denote by X1 the number of elements of G \ (D ∪ {id}) on lines of type
〈g2

i , g
2
j 〉 and by X2 the number of elements of G \ (D ∪ {id}) on lines of type

〈gi, g
2
i 〉. An easy counting shows

X1 = s(s− 1)2/2
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,

X2 = s(s− 1)/2

and hence

|D ∪ {id}|+X1 +X2 = (s+ 1)(s2 + 2)/2 = v.

The lemma now easily follows. ¤

Lemma 6.5 Let the line L be as before. Then g3
i = id for all i.

Proof. First suppose that g3
i does not belong to D ∪ {id}. Since L2 is a

clique of size s+ 1 (and so g3
i is collinear with exactly two points of L2) the

previous lemma implies that either g3
i ∈ 〈g

2
i , g

2
k〉, or g3

i = 〈gi, g
2
i 〉 ∩ 〈gk, g

2
k〉,

k 6= i. In the first case we see that g2
k ∈ 〈g

2
i , g

3
i 〉 and hence g2

k = gfg
2
i for

certain f ∈ {1, 2, . . . , s}. Hence g2
k is collinear with id, gk and gf on L, which

implies that f = k. But then gk = g2
i , a contradiction. In the second case it

follows that g3
i = gigk, again yielding the contradiction gk = g2

i . We conclude
that g3

i ∈ D ∪ {id}.

Now suppose that g3
i 6= id. From g2

i ∼ g3
i and g3

i ∈ D it follows that g3
i = g2

k

for certain k 6= i, or that g3
i = gi. In the first case the point g3

i = g2
k would

be collinear with three distinct points, id, gi and gk on L, a contradiction.
The second case is absurd as well, as it would imply g2

i = id. The lemma is
proved. ¤

Corollary 6.6 For all g ∈ G it holds that g3 = id

Proof. This follows immediately as each g ∈ G can be written as g = fh,
with f, h ∈ D. ¤

Corollary 6.7 The group G is elementary abelian.

Corollary 6.8 The mapping β : G→ G : g 7→ g2 is an automorphism of G.

Proof. It is clear that β is an endomorphism of G (G is abelian!). We need
to show that β is bijective. Assume by way of contradiction that g2 = h2

for certain g 6= h in G. By the above we obtain id = g3 = h3 = g2h. This
implies that g3 = g2h, that is g = h, a contradiction. ¤
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Remark 6.9 Although β is an automorphism of G it does not induce an
automorphism of our geometry S. It has nevertheless an interesting geo-
metric interpretation. Let S be a partial geometry pg(5, 5, 2) admitting an
abelian Singer group. It is, using the above, easily seen that every two dis-
tinct collinear points (elements of G) g and h are contained in exactly two
cliques of size 6, namely the one defined by the line L := 〈g, h〉, and the one
defined by Mβ, where M = 〈g2, h2〉, which is a set of 6 points of S no three
of which are collinear (note that since D2 = D, g2 is indeed collinear with
h2). Define C to be the set of all cliques that arise as the ”squares” of lines
of S. Then the geometry with as point set the elements of G, with as line set
the elements of C and with as incidence relation containment is a pg(5, 5, 2)
S∗ and β is an isomorphism from S to S∗.

6.3 The uniqueness of S

Throughout this section S will be a pg(5, 5, 2) and G the elementary abelian
group of order 81 acting regularly on the points of S. We will show that S
is unique. We will again identify the points of S with elements of G. The
set D will again be the set of all elements distinct from id collinear with id.
Let L be any line through id. We denote the points of L by id, g1, g2, g3, g4

and g5. Further denote by Li, i = 1, . . . , 5 the line through id containing g2
i .

The unique point on Li \ {id} collinear with gj is the point gjg
2
i .

Lemma 6.10 There holds that g1g2g3g4g5 = id.

Proof. Consider the point g1g2. On L1 this point is collinear with g2
1 and

g2g
2
1 and there holds g1g2 = (g2

1)(g2g
2
1). Analoguesly the two points collinear

with g1g2 on L2 are uniquely determined (g2
2 and g1g

2
2). As g1g2 is yet collinear

with g2
1 and g2

2 it cannot be collinear with g2
i for i /∈ {1, 2}. Suppose that g1g2

would be collinear with g1g
2
3. Then, as g1g2 = (g1g

2
3)(g2g3), we would obtain

that g2g3 belongs to D, a contradiction. Hence, using analogues reasonings,
we obtain that the points collinear with g1g2 on L3, L4 and L5 are g4g

2
3, g5g

2
3,

g3g
2
4, g5g

2
4, g3g

2
5 and g4g

2
5. As g1g2 = (g4g

3
3)h, with h collinear with id and g1g2,

it follows that h must be one of the points collinear with g1g2 on L3, L4 or L5.
Clearly h 6= g4g

2
3. Suppose that h = g5g

2
3. Then g1g2 = g4g

2
3g5g

2
3 = g3g4g5,

from which we deduce that g5 = (g1g
2
3)(g2g

2
4). Hence g5 would be collinear

with g2g
2
4, a contradiction. Further, as g1g2 /∈ D∪{id}, h /∈ {g3g

2
4, g5g

2
4, g3g

2
5}.

It follows that h = g4g
2
5, that is, g1g2 = g2

3g
2
4g

2
5, that is, g1g2g3g4g5 = id. ¤

Theorem 6.11 The geometry S is unique.

12



Proof. Supposes S is a pg(5, 5, 2) with a regular abelian automorphism
group G. We need to show that S ∼= S. For the geometry S we will use the
same notations as above. In the geometry S we will identify the points with
the elements of G. Choose any line L of S through idG and denote its points
distinct from idG by gi, i = 1, 2, . . . , 5. We define a mapping γ from G to G as
follows: γ(idG) := idG, γ(gi) := gi, i = 1, 2, . . . , 5, and γ(

∏
i gi) :=

∏
i gi. We

will show that γ is well defined and is in fact an isomorphism between S and
S. In order to show that γ is well defined we should show that

∏
i gi =

∏
j gj

implies that
∏

i gi =
∏

j gj. By the previous lemma every point of S (element
of G) can be expressed in a unique way — as there are exactly 81 points —
as gi11 gi22 gi33 gi44 , with ik ∈ {0, 1, 2}, k = 1, . . . , 4. From this one easily sees
that γ is well defined. And from the definition of γ it is now also clear that
γ is an isomorphism between G and G. Further, as (with a little abuse of

notation) γ(L) = L, LG is the set of all lines of S, and L
G
is the set of all

lines of S, is is easily deduced that γ is an isomorphism between S and S.¤

Corollary 6.12 Let S be a partial geometry pg(s, t, 2) and let G be an
abelian group acting regularly on the points of S. If the pair (S, G) is rigid
then S is isomorphic to the partial geometry of van Lint and Schrijver.

Corollary 6.13 If S is a proper partial geometry pg(s, t, 2) with t 6≡ 2
(mod s + 1), admitting an abelian Singer group, then S is isomorphic to
the partial geometry of van Lint and Schrijver.

Proof. If t 6≡ 2 (mod s+ 1) the the pair (S, G) must be of rigid type. ¤

Remark 6.14 In the above proof we use the fact that there is a pg(5, 5, 2)
with an abelian Singer group known. This is however not necessary, as our
proof is implicitely constructive. It is namely easy to check the following.
Let G be the elementary abelian group of order 81. Let gi, i = 1, . . . , 5
be 5 distinct non-identity elements in G. Suppose that gi1

1 gi22 gi33 gi44 gi55 = id,
ik ∈ {0, 1, 2}, if and only if all ik are equal. Finaly define L := {id, g1, . . . , g5}.
Then the geometry with as point set the elements of G, as line set the set
{Lg | g ∈ G} and with as incidence relation containment is a pg(5, 5, 2).
Notice that the existence of such gi is well known. Consider G ∼= Z

4
3,+

for example as the set of all 4-tuples over Z3 and define L as the set L :=
{(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (−1,−1,−1,−1)}. This
also gives us an easy geometric interpretation of the van Lint-Schrijver partial
geometry: it is the geometry in AG(4, 3) of all translates of the set L.

13



7 Overview

We can now bring the results of the previous sections together in the following
theorem.

Theorem 7.1 Let S be a proper partial geometry pg(s, t, 2), and suppose
that there exists an abelian automorphism group G of S acting regularly on the
points of S. Then either S is a pg(3h(m+1) − 1, 2(3h(m+1) + 1), 2) constructed
from a PG-regulus in PG(3m + 2, 3h), or S is a pg(s, x(s + 1) + 2, 2) with
(S, G) of mixed type, or S is a pg(5, 5, 2) isomorphic to the partial geometry
of van Lint and Schrijver.
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