
Linear representations of semipartial geometries∗†

S. De Winter‡

Ghent University, Department of Pure Mathematics
and Computer Algebra, Galglaan 2, 9000 Gent, Belgium

e-mail: sgdwinte@cage.UGent.be

Abstract

Semipartial geometries (SPG) were introduced in 1978 by Debroey and
Thas [5]. As some of the examples they provided were embedded in affine
space it was a natural question to ask whether it was possible to classify all
SPG embedded in affine space. In AG(2, q) and AG(3, q) a complete classifi-
cation was obtained ([6]). Later on it was shown that if an SPG, with α > 1,
is embedded in affine space it is either a linear representation or TQ(4, 2h)
(see [8],[11]). In this paper we derive general restrictions on the parameters
of an SPG to have a linear representation and classify the linear representa-
tions of SPG in AG(4, q), hence yielding the complete classification of SPG in
AG(4, q), with α > 1.

1 Introduction

A semipartial geometry with parameters s, t, α and µ, denoted by spg(s, t, α, µ),
is a connected partial linear space S of order (s, t) satisfying the following ax-
ioms.

(i) If a point x and a line L are not incident, then there are either 0 or α
(α > 0) points which are collinear with x and incident with L.

(ii) If two points are not collinear, then there are µ (µ > 0) points collinear
with both.

Semipartial geometries where introduced by Debroey and Thas in [5]. Semi-
partial geometries have a strongly regular point graph. A semipartial ge-
ometry such that α = 1 is called a partial quadrangle, and were introduced
in [4] by Cameron. A semipartial geometry such that for each anti-flag, i.e.
non-incident point-line pair (x, L), there are exactly α points on L collinear
with x is called a partial geometry [1]. In that case, condition (ii) is trivially
satisfied with µ = α(t + 1) and, conversely, every semipartial geometry with
µ = α(t + 1) is a partial geometry pg(s, t, α). A pg(s, t, t) is also known as
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a (Bruck) net of order s + 1 and degree t + 1. A semipartial geometry that
is not a partial geometry will be called a proper semipartial geometry. Sev-
eral examples of partial and proper semipartial geometries are known; for an
overview on these geometries we refer to [7, 9]. In the rest of this section
however we shall restrict ourselves to those examples and constructions that
we will need in the rest of this paper.

Consider an affine space AG(n + 1, q) and a point set K in its hyperplane
Π := PG(n, q) at infinity. The geometry T ∗

n(K) with point set the points of
AG(n + 1, q) and as set of lines the the union of all parallel classes of lines of
AG(n + 1, q), whose points at infinity are the points of K is called the linear
representation of K (the incidence is the one inherited from AG(n + 1, q)).

A maximal arc K of degree d, with d > 0, in a projective plane Π of order
q is a non-empty set of points such that each line of Π that intersects K in
at least one point intersects it in exactly d points, i.e., it is a nonempty set
of qd− q + d points in Π such that every line of Π has either 0 or d points in
common with K.

A unital U in a projective plane Π = PG(2, q2) is a set of q3 + 1 points
such that each line of Π intersects U in either 1 or q + 1 points.

We can now give an overview of the known spg(s, t, α, µ) which have a
linear representation T ∗

n(K). We always suppose that K is not trivial, i.e. K
nor its complement is empty, a point or a subspace. If α = 1 then Calderbank
[2], and Tzanakis and Wolfskill [18] obtained an almost complete classification.

Theorem 1.1 If K is a non-trivial point set in PG(n, q) such that T ∗
n(K) is

an spg(q − 1, |K| , 1, µ), then only the following cases can occur:

• K is a hyperoval in PG(2, 2m);

• K is an ovoid in PG(3, q);

• K is an 11-cap in PG(4, 3);

• K is the unique 56-cap in PG(5, 3); or a 78-cap in PG(5, 4) such that
each external point is on 7 secants (at least one example is known);

• K is a 430-cap in PG(6, 4), however it is not known whether such a cap
exists.

If α > 1 the following examples are known:

• in AG(2, q) every linear representation is a Bruck net;

• K is a maximal arc in PG(2, q), and then T ∗
2 (K) is a partial geometry,

and was constructed by Thas [16];

• K is a unital U in PG(2, q2), and then T ∗
2 (U) is an spg(q2−1, q3, q, q2(q2−

1));

• K is a Baer-subgeometry B ∼= PG(n, q) of PG(n, q2), and then T ∗
n(B) is

an spg(q2 − 1, qn−1
q−1 − 1, q, q(q + 1)).

To end this introduction we mention some theorems which will be of use
in the following sections.

Theorem 1.2 ([15]) Let O be a set of points in PG(n, q), n ≥ 3, such that
each line intersects O in either α or β points. If O nor its complement is
empty, a point or a hyperplane, then q is an odd square and if α ≤ β then

α =
1
2
(q + 1−√

q(1− ε)),
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β =
1
2
(q + 1 +

√
q(1 + ε)) and

|O| = 1
2
(1 +

qn−1 − 1
q − 1

(q + ε
√

q) + δ
√

qn−1),

where ε = ±1 and δ = ±1.

Theorem 1.3 ([14]) If K is a set of points of PG(n, q), n ≥ 3, with the
property that every hyperplane of PG(n, q) intersects K in either 0 or m > 0
points, then K is either a unique point or the point set of the complement of
a hyperplane of PG(n, q).

Theorem 1.4 ([19]) If K is a point set in PG(n, q), n ≥ 3, with the prop-
erty that K spans PG(n, q) and such that each line of PG(n, q) intersects K
in either 0, 1 or α ≥ √

q + 1 points, then K is either a Baer-subgeometry, an
affine subspace of PG(n, q), or K equals the point set of PG(n, q).

2 General results

From now on let K be a non-trivial set of points in PG(n, q), n ≥ 3 (i.e. K
is not a subspace nor its complement). Embed PG(n, q) as a hyperplane Π
in PG(n + 1, q). We assume that the linear representation T ∗

n(K) of K is an
spg(q − 1, |K| − 1, α, µ). In this section we will derive some general results
for such a set K, which will enable us in the following sections to obtain a
classification when n = 3. We always suppose that α > 1.

Lemma 2.1 Every line of Π intersects K in either 0, 1 or α + 1 points, and
the set K consists of 1+xα, x ∈ N, points. There exists a constant θ such that
each point not belonging to K is incident with θ lines intersecting K in 1 point.
Furthermore K has two intersection numbers with respect to hyperplanes.

Proof. It is readily checked that the α-condition for SPG implies that a line
intersecting K in at least two points must intersect it in α + 1 points. Now
consider a fixed point of K. Then any line through this point contains either
0 or α other points of K. Hence |K| = 1 + xα, with x the number of lines
through a given point of K intersecting K in at least 2 points. The existence
of the constant θ is a consequence of the µ-condition for SPG. There holds
µ = (|K| − θ)α. Finally, since the point graph of T ∗

n(K) is strongly regular,
the last assertion of the lemma follows from a result by Delsarte, see [10] (see
also [3]). �

We will call a line intersecting K in 0, 1, respectively α + 1 points an
exterior line, a tangent, respectively an (α + 1)-secant.

Lemma 2.2 (i) There exist exterior lines of K.

(ii) Every hyperplane of Π has at least one point in common with K.

Proof.

(i) Suppose by way of contradiction that every line of Π would have at
least one point in common with K, then clearly each line intersects K
in either 1 or α + 1 points. From Theorem 1.2 there follows that 1 =
1
2(q + 1−√

q(1− ε)), with ε = ±1, clearly a contradiction.
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(ii) If there exist hyperplanes exterior to K, then Lemma 2.1 implies that a
hyperplane contains either 0 or m > 0 points of K. Hence Theorem 1.3
yields that K is either a point or the point set of the complement of a
hyperplane, in contradiction with our assumptions. �

Together with Lemma 2.1 the previous lemma implies that a hyperplane
contains either 1 + yα points or 1 + zα points, y, z ∈ N, with y < z ([3]).
We will call a hyperplane of the former (resp. latter ) type a y-hyperplane
(resp. z-hyperplane). From [3] it follows that K yields a two-weight code with
weights w1 = 1 + xα− (1 + zα) and w2 = 1 + xα− (1 + yα).

Lemma 2.3 If K is a set of points in Π := PG(n, q), n ≥ 3, q = pm, p
prime, with the property that T ∗

n(K) is an spg(q− 1, |K|− 1, α, µ) then α = pi,
0 ≤ i ≤ m.

Proof. By the previous lemma we can choose a subspace γ := PG(l, q) ⊂ Π
exterior to K, 0 < l < n − 1, such that no (l + 1)-dimensional subspace is
exterior to K. Now consider any Γ := PG(l + 2, q) ⊂ Π containing γ. Clearly
|Γ ∩ K| = 1 + cα, c ∈ N \ {0}. Every (l + 1)-dimensional subspace of Γ
containing γ will contain 1 + cjα, cj ∈ N, points of K. We obtain

q∑
j=0

(1 + cjα) = 1 + cα

and hence q + α
∑q

j=0 cj = cα. This proves the lemma. �

Lemma 2.4 There holds that z − y equals pk for some k > 0

Proof. From [3] it follows that w2 − w1 = pw, w ∈ N. Hence the previous
lemma implies that w2 − w1 = (z − y)pi = pw. Thus z − y = pk for some
k ∈ N. We will now show that k > 0. Consider an exterior line L and let δ be
the number of z-hyperplanes containing L. We count the pairs (u, η), where
u ∈ K, u ∈ η and η a hyperplane containing L, in two ways:

δ(1 + zα) + (
qn−1 − 1

q − 1
− δ)(1 + yα) = (1 + xα)

qn−2 − 1
q − 1

.

Now consider an (α + 1)-secant M and let δ′ be the number of z-hyperplanes
containing M . Here we count the pairs (v, ξ), where v ∈ K \M , v ∈ ξ and ξ
a hyperplane containing M ,

δ′(z − 1)α + (
qn−1 − 1

q − 1
− δ′)(y − 1)α = (x− 1)α

qn−2 − 1
q − 1

.

Subtracting the second equation from the first yields

(δ′ − δ)pk =
α + 1

α
qn−2.

Since α 6= q (because otherwise K would be the point set of a subspace) we
find that α+1

α qn−2 ≥ qn−2 +2qn−3. As δ, δ′ ∈ N, we see that if k = 0 it follows
that δ′ ≥ qn−2 + 2qn−3, a contradiction since δ′ ≤ (qn−1 − 1)/(q − 1). �
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Lemma 2.5 If K is a set of points in Π := PG(n, q), n ≥ 3, q = pm, p prime,
with the property that T ∗

n(K) is an spg(q − 1, |K| − 1, pi, µ) then the strongly
regular point graph of T ∗

n(K) has parameters

• µ = pi x(1+xpi)(pm−pi)
pmn+···+pm−xpi ;

• λ = q − 2 + xpi(pi − 1) and

• K = (xpi + 1)(pm − 1), with K the valency of the graph.

Proof. From the previous lemmas we know that µ = (xpi + 1− θ)pi. So we
should now determine θ. We count in two ways the pairs (u, v), where u /∈ K,
v ∈ K and uv a tangent. We obtain (1+xpi)( qn−1

q−1 −x)q = ( qn+1−1
q−1 −1−xpi)θ

from which θ follows. It now easily follows that µ = pi x(1+xpi)(pm−pi)
pmn+···+pm−xpi .

The values for λ and K follow trivially. �

Theorem 2.6 Let K be a set of points in Π := PG(n, q), n ≥ 3, q = pm, p
prime, with the property that T ∗

n(K) is an spg(q−1, |K|−1, pi, µ). If i ≥ m/2,
then T ∗

n(K) ∼= T ∗
n(B).

Proof. Theorem 1.4 immediately implies that K is a Baer subgeometry. �

From now on we may suppose that i < m/2. We will use the following
theorem from [3].

Theorem 2.7 ([3]) If K is a point set in PG(n, q) with the property that
T ∗

n(K) has a strongly regular point graph with parameters (v = qn+1,K =
|K| (q − 1), λ, µ), then

q(w2 − w1) = ((λ− µ)2 + 4(K − µ))1/2,

where w1 < w2 are the two intersection numbers of K with respect to hyper-
planes of PG(n, q).

Since the point graph of T ∗
n(K) is strongly regular Theorem 2.7 implies

that
p2mp2k+2i = (λ− µ)2 + 4(K − µ) (1)

with λ, µ and K as in Lemma 2.5.
Finally we show that from K we can construct a point set in PG(n− 1, q)

having two intersection numbers with respect to hyperplanes. Let u be any
point of K and consider a hyperplane ∆ of Π not containing u. As every
hyperplane through u contains either y or z (α+1)-secants through u, we see
that the projection of K from u on ∆ yields a point set L of cardinality x in
∆ with the property that every hyperplane of ∆ contains either y or z points
of L. Notice that both intersection numbers occur.

Lemma 2.8 There holds

x2(qn−2 − 1) + x(qn−2(q − 1)− (y + z)(qn−1 − 1)) + yz(qn − 1) = 0 (2)
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Proof. In [12] this is shown for n = 3 (not in the context of projections of
a set K). The proof we give for the general case is analogous. Let L and ∆
be as above. Denote by τy, respectively τz, the number of hyperplanes of ∆
containing y, respectively z, points of L. We obtain

τy + τz =
qn − 1
q − 1

τyy + τzz = x
qn−1 − 1

q − 1

τyy(y − 1) + τzz(z − 1) = x(x− 1)
qn−2 − 1

q − 1
Eliminating τy and τz from these equations yields equation (2). �

3 The case n = 3

In this section we suppose that the setup is as in the previous section with
n = 3, α = pi > 1 and i < m/2. Furthermore we use the same notations. We
start by handling some special cases.

We need the following theorem, which is due to Thas.

Theorem 3.1 ([17]) Suppose K is a point set in PG(n, q), n ≥ 3, with the
property that a hyperplane contains either 1 or m > 1 points of K and such
that there exists at least one hyperplane containing exactly 1 point of K. Then
K is the point set of a line of PG(n, q) or K is an ovoid of PG(3, q).

In our setup this immediately translates into the following.

Theorem 3.2 The case y = 0 cannot occur.

Next we exclude the other end of the spectrum.

Theorem 3.3 The case z = q + 1 cannot occur.

Proof. In a z-plane of Π every point of K is clearly contained in q+1 (α+1)-
secants. There follows that a z-plane contains no tangent lines and hence that
K induces a maximal arc in every z-plane. This implies that α = pl − 1 in
contradiction with Lemma 2.3. �

We will now start with an analysis of equation (1), but first we introduce
a new notation. We will denote by O(pf ) any polynomial in p of degree at
least pf with coefficients in N. The calculations in the rest of this section are
tedious, and can easily be carried out in MAPLE. That is the reason why in
most steps we only mention the terms we need and use shortened expressions.

If n = 3 equation (1) becomes, after multiplying both sides with (p3m +
p2m + pm − xpi)2,

p2m+4i+2k(p3m−i + p2m−i + pm−i − x)2 = U (3)

with
U = (x2 − 2x3 + x4)p4i +O(p4i+1)

Considering this equation modulo p4i+1 we find that p divides x2(x − 1)2.
There follows
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Lemma 3.4 Either p divides x, or p divides x− 1.

Lemma 3.5 There holds that x = y = z (mod p).

Proof. We first show that every plane contains exterior lines. Assume that a
z-plane π would contain no exterior lines. It then follows that K induces in π
either a line, a Baer subgeometry or a unital (see Chapter 12 of [12]) yielding
α ≥ pm/2, a contradiction. Now let L be an exterior line to K, and suppose
that there are δ z-planes containing L. We obtain

δ(1 + zα) + (q + 1− δ)(1 + yα) = 1 + xα

which yields
δpk + y + pm−i + ypm = x

Hence x = y (mod p). As z − y = pk, with k > 0 the result follows. �

The fact that δ 6= 0 will be of use later on.

3.1 The case p divides x

We write x = ap and substitute this in equation (3). We obtain

U = p4m − 2ap2m+2i+1 + a2p4i+2 +O(p4m+1) + aO(p3m+i+1)
+a2O(pm+3i+2) + a3O(p4i+3) + a4O(4i + 4).

Lemma 3.6 There holds that p2m−2i−1 divides a.

Proof. Suppose that pj divides a with 0 ≤ j < 2m−2i−1.We write a = a′pj .
As 4i+2+2j < 2m+2i+1+j and 4i+2+2j < 4m if j < 2m−2i−1, clearly
U = a′2p4i+2+2j +O(p4i+2j+3). There are two possibilities. If j < m− i, the
left hand side of equation 3 becomes

p2m+4i+2k+2j(p3m−i−j + p2m−i−j + pm−i−j − a′)2.

If j ≥ m− i we obtain

p4m+2i+2k(p2m + pm + 1− a′pj−m+i)2.

In either case there holds that the left hand side of equation (3) is 0 modulo
p4i+2j+3. This implies that a′2 is 0 modulo p and hence that pj+1 divides a.
The lemma follows. �

As an immediate consequence we can write from now on x = bp2m−2i. We
will now turn to the analysis of equation (2) which will allow us to exclude
the case p divides x.

Theorem 3.7 The case p divides x cannot occur.

Proof. Write y and z in p-ary representation: y = yfpf+· · · and z = zlp
l+· · ·

with yf 6= 0 (because of Theorem 3.2) and zl 6= 0. After division by q − 1
equation (2) becomes

x2 − x(q(y + z − 1) + y + z) + yz(q2 + q + 1) = 0 (4)
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with q = pm. Because of the previous lemma p4m−4i divides x2, the terms of
lowest degree in x(q(y + z − 1) + y + z) are

byfp2m−2i+f and bzlp
2m−2i+l

while the term of lowest degree in yz(q2 + q + 1) is

yfzlp
f+l

where uv denotes multiplication of u and v modulo p. Clearly f + l < 4m−4i,
as f and m are at most m (y and z are a number of lines through a point in a
plane) and i < m/2. Furthermore 2m− 2i+ f ≤ f + l would imply l ≥ m+1,
a contradiction. In an analogous way 2m−2i+ l ≤ f + l cannot occur. Hence
if we consider equation (4) modulo pf+l+1 we obtain that yfzl = 0, the final
contradiction. �

3.2 The case p divides x− 1

The basic ideas for handling this case are the same as in the previous subsec-
tion, but it will turn out that there are more subcases to deal with. We will
write x = ap + 1.

Lemma 3.8 There holds that pm−i−1 divides a.

Proof. Substituting x = ap + 1 in U we obtain

U = a2p4i+2 − 2apm+3i+1 + p2m+2i +O(p2m+3i) + aO(pm+4i+1)
+a2O(pm+3i+2) + a3O(p4i+3) + a4O(p4+4i).

Suppose that pj divides a with j < m − i − 1. We write a = a′pj . As
4i+2+2j < m+3i+1+ j and 4i+2+2j < 2m+2i whenever j < m− i−1,
clearly we obtain U = a′2p4i+2+2j+O(p4i+3+2j). The left hand side of equation
(3) becomes

p2m+4i+2k(p3m−i + p2m−i + pm−i − 1− a′pj)2

and is clearly 0 (mod p4i+3+2j). We find that p must divide a′2, that is, pj+1

divides a. The lemma follows. �

From now on we write x = bpm−i + 1.

Lemma 3.9 There holds that b = cp + 1 with c ∈ N \ {0}.

Proof. Substituting x = 1 + bpm−i in U we obtain

U = p2m+2i − 2bp2m+2i + b2p2m+2i +O(p2m+2i+1).

As the left hand side of equation (3) is 0 (mod p2m+2i+1) we see that p must
divide (b − 1)2. Hence b = cp + 1 with c ∈ N. If c = 0 we find x < 1 + pm,
a contradiction as any non-trivial two-weight set in ∆ must contain at least
2 + pm points, i.e. |L| = x ≥ 2 + pm. �

We obtain x = 1 + pm−i + cpm−i+1.

Lemma 3.10 There holds that pi−1 divides c.
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Proof. The lemma becomes of course trivial if i = 1, so we suppose that
i > 1. Again in the same spirit we obtain

U = 4p2m+4i − 4cp2m+3i+1 + c2p2m+2i+2 +O(p3m+2i) +
cO(p3m+i+1) + c2O(p3m+i+2) + c3O(p3m+3+i) +
c4O(p4m+4)

We suppose that c = c′pj with j < i− 1. There holds that 2m+2i+2+2j <
2m + 3i + 1 + j and 2m + 2i + 2 + 2j < 2m + 4i if j < i− 1. Furthermore the
left hand side of equation (3) is 0 (mod p2m+2i+3+2j), implying that p divides
c′ and hence that pj+1 divides c. The lemma follows. �

There follows that x = 1 + pm−i + dpm with d ∈ N \ {0}.

Lemma 3.11 If p 6= 2, then d = 2 (mod p). If p = 2, then d is even;
furthermore in this case there holds that if 2f , with f > 1 divides d, and
k > 1, then i = (m− 1)/2.

Proof. There holds that

U = (d2 − 4d + 4)p2m+4i + (−4 + 2d)p3m+2i + p4m +O(p3m+3i).

As the left hand side of equation (3) is 0 (mod p2m+4i+1), we see that (d−2)2

is divisible by p. The first two assertions follow. Suppose that p = 2, 2f , with
f > 1 divides d, and k > 1. Then

U = 22m+4i+2 + 24m +O(22m+4i+3)

(notice that 2m + 4i + 3 ≤ min(3m + 2i + 2, 3m + 3i), unless i = 1 and
m = 3, in which case we have the desired property i = (m − 1)/2). Since
k > 1 the left hand side of equation 3 is 0 (mod 22m+4i+3). This implies that
2m + 4i + 2 = 4m, i.e. i = (m− 1)/2. �

Lemma 3.12 The case y = 1 cannot occur.

Proof. Suppose that y = 1. Then the set L in ∆ must either be a line, a
Baer-subplane or a unital [12]. As z = pm +1 is impossible by Theorem 3.3 L
cannot be a line. If L is a Baer-subplane, respectively a unital, there follows
that x = 1+pm/2 +pm, respectively 1+p3m/2, both in contradiction with the
derived form of x. �

Lemma 3.13 There holds that pk divides y − 1.

Proof. First notice that, since y, z ≤ pm, there holds that k < m. Using the
equation obtained in the proof of Lemma 3.5 and the form of x we find

δpk + (y − 1) + pm + (y − 1)pm = dpm

with δ the number of z-planes through an exterior line of K. The lemma
follows immediately since δ 6= 0. �

There are three possibilities for y and z:

(I) y = 1 + upl and z = 1 + pk + upl, with u ∈ N, u not divisible by p and
l > k (notice that l < m);
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(II) y = 1+ykp
k +upk+1 and z = 1+(1+yk)pk +upk+1, with 0 < yk < p−1

and u ∈ N (notice that p 6= 2 in this case);

(III) y = 1 − pk + upl and z = 1 + upl, with u ∈ N, u not divisible by p and
l > k.

Lemma 3.14 There holds that k ≤ m− i.

Proof. Consider a tangent line L to K and let β be the number of y-planes
through L. We find

βy + (pm + 1− β)z = x

which yields
−βpk + zpm + (z − 1) = pm−i + dpm.

Since pk divides z − 1, we see that k ≤ m− i. �

Lemma 3.15 The following cases cannot occur: l < m− i in (I), k < m− i
in (II) and l < m− i in (III).

Proof. Assume by way of contradiction that l < m−i, respectively k < m−i.
Substituting the obtained values for x, y and z in equation (4) we find

upl+k +O(pl+k+1) = 0 in case (I);

yk(yk + 1)p2k +O(p2k+1) = 0 in case (II) and

upk+l +O(pk+l+1) = 0 in case (III).

In case (I) and (III) we obtain a contradiction modulo pk+l+1, since p does
not divide u. In case (II) we see that yk ∈ {0, p− 1}, also a contradiction. �

Lemma 3.16 In case (I) l > m− i cannot occur.

Proof. Assume by way of contradiction that l > m − i. First suppose that
k < m− i. Then equation (4) becomes

pm−i+k +O(pm−i+k+1) = 0

yielding a contradiction modulo pm−i+k+1.
If k = m− i we obtain

upm−i+l +O(pm−i+l+1) = 0

yielding a contradiction modulo pm−i+l+1 since p does not divide u. �

Lemma 3.17 Case (I) cannot occur.

Proof. We are left with showing that also l = m − i is impossible in this
case, so assume the contrary. Substituting the appropriate values for x, y and
z in equation (4) we obtain

upm−i+k − pm−i+k +O(pm−i+k+1) = 0

implying u = 1 + vp with v ∈ N. If v 6= 0 equation (4) becomes

−dpm+k + vpm−i+k+1 +O(p2m−i) + vO(p2m−i+1) + v2O(p2m−2i+2) = 0
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from which easily follows that pi−1 divides v. We find y ≥ 1 + pm−i(1 + pi) =
1 + pm−i + pm, a contradiction. Hence v = 0. Equation (4) becomes, modulo
p2m:

−dpm+k − p2m−i = 0

implying that pm−i−k > 1 divides d, which in view of Lemma 3.11 yields
that p = 2. Now first suppose that k = 1. It follows that the number of
(α + 1)-secants (with respect to K) in a y-plane equals

(1 + pi + pm)(1 + pm−i)
1 + pi

from which we deduce that 1 + pi divides 1 + pm−i. If we now count the
number of (α + 1)-secants in a z-plane we find

(1 + pi + pi+1 + pm)(1 + p + pm−i)
1 + pi

which implies (using the fact that 1+pi divides 1+pm−i and rewriting p+pm−i

as p − 1 + 1 + pm−i) that 1 + pi divides p − 1, clearly a contradiction. Now
suppose that k > 1 with m − i − k 6= 1. From Lemma 3.11 it follows that
i = (m− 1)/2, and hence the number of intersecting lines (with respect to K)
in a y-plane can never be an integer, a contradiction. Finally suppose that
k > 1 with m − i − k = 1. Here as well, 1 + pi divides 1 + pm−i and since
the number of intersecting lines in a z-plane must be an integer we find that
1+pi divides pi+k +pm = pi+k(1+p) and hence 1+pi divides 1+p, i.e. i = 1
and hence k = m − 2. Equation (4) becomes 22md2 − 5.22m−2(2m + 1)d +
22m−1(3.22m−2+2m+1+1) = 0. As this equation must have at least one integer
solution in d it follows that the square root of its discriminant D must be an
integer. We obtain D = 24m−4(22m− 7.2m+1− 7) and hence 22m− 7.2m+1− 7
has an integer square root. Rewriting this we see that (2m − 7)2 − 56 is a2

for some a ∈ N with a + β = 2m − 7. There follows that a = 56−β2

2β . We find
that β must divide 56 and must be even, so β ∈ {2, 4, 6, 8,−2,−4,−6,−8}.
We now easily see that β = 4, a = 5 and m = 4 is the only solution. The
unique solution for equation (4) is then given by x = 169, y = 9, z = 13 and
q = 16. As we supposed that K yields a semipartial geometry these values
should also satisfy equation (1). Plugging in these values in this equation we
obtain the final contradiction (an other way to obtain a contradiction here is
to check that µ /∈ N). �

Lemma 3.18 Case (II) cannot occur.

Proof. We are left with showing that also k = m − i is impossible in this
case, so assume the contrary. Equation (4) becomes

yk(yk − 1)p2m−2i +O(p2m−2i+1) = 0

from which we see that yk = 1. Assume that u 6= 0. We find

up2m−2i+1 − (d + 1)p2m−i +O(p2m) + uO(p2m−i+1) + u2O(p2m−2i+2) = 0

which enables us to deduce that pi−1 divides u. Hence y ≥ 1+ pm−i(1+ pi) >
1 + pm, a contradiction.
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Now suppose that u = 0. We count the number of intersecting lines (with
respect to K) in a y-plane:

(1 + pi + pm)(1 + pm−i)
1 + pi

which implies that 1 + pi divides 1 + pm−i. Now we count the number of
intersecting lines in a z-plane:

(1 + pi + 2pm)(1 + 2pm−i)
1 + pi

from which we deduce (using the fact that 1+ pi divides 1+ pm−i) that 1+ pi

divides 2p2m−i and hence that 2/(1 + pi) ∈ N, a contradiction. �

Lemma 3.19 In case (III) l > m− i cannot occur.

Proof. Suppose l > m− i. Since equation (4) becomes

pm−i+k + p2m−2i +O(p2m−2i+1) = 0

we see that k = m− i and p = 2. The equation now is of the form

22m−2i+1 + (3d− 1)22m−i − 3u2m−i+l + u222l +O(22m−i+1) = 0.

Recall that u 6= 0. If 2m − 2i + 1 = 2m − i, then i = 1 and z ≥ 1 + pm,
a contradiction. Hence l = m − i + 1 and u = 1 + 2v (since l < m − i + 1
or l > m − i + 1 would yield a contradiction modulo pm−i+l+1, respectively
modulo p2m−2i+2). If v 6= 0, we obtain

−v22m−2i+2−v22m−2i+3 +v(v+1)22m−2i+4 +(3d−1)22m−i +O(22m−i+1) = 0

and hence 2i−2 must divide v, yielding z ≥ 1 + 2m−i+1 + 2m, a contradiction.
Consequently v = 0, but then, as d is even, we find a contradiction modulo
p2m−i+1. �

Lemma 3.20 Case (III) cannot occur.

We may suppose that l = m− i. Just as in the previous lemmas we find that
u = 1 + vp, and see that v = 0 since otherwise z > 1 + pm. Equation (4)
becomes

dpm+k − p2m−i +O(p2m−i+1) = 0

from which we deduce that pm−i−k > 1 divides d. In view of Lemma 3.11
this implies that p = 2. This case now is handled very analogously as in
Lemma 3.17. If k > 1 and m − i − k > 1 then i = (m − 1)/2 and the
number of (α + 1)-secants in a z-plane can never be an integer. If k > 1 and
m − i − k = 1 we find that 1 + pi divides p − 1, a contradiction. Finally, if
k = 1, we see that 1 + pi divides 1 + p and hence i = 1. Like in Lemma 3.17
we obtain a quadratic equation in d which should have at least one integer
solution. But as its discriminant equals −25m +24m+1 +24m +23m+2 +22m+2,
which is always negative (unless m = 1 which cannot occur), we obtain the
final contradiction. �
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4 Summary

Theorem 4.1 If K is a non-trivial set of points in PG(3, q) such that T ∗
n(K)

is an spg(q − 1, |K| − 1, α, µ), then either α = 1 and K is an ovoid or q is a
square, α =

√
q and K is the point set of a Baer-subgeometry.

Proof. Let q = pm. If α = 1 or α ≥ pm/2 Theorems 1.1 and 2.6 imply the
result, so suppose that 1 < α < pm/2. In Lemma 3.4 it was shown that if x is
the number of intersecting lines through a point of K, then either p divides x
or x − 1. If p would divide x, then Theorem 3.7 implies that such K cannot
exist. If p would divide x−1 then Lemmas 3.12, 3.17, 3.18 and 3.20 yield that
such K cannot exist. Hence there follows that necessarily α = 1 or α ≥ pm/2.
The theorem is proved. �

For constructions and the embedding of the semipartial geometry TQ(4, q)
we refer the reader to [9, 13]. This semipartial geometry is due to R. Metz
(private communication).

Theorem 4.2 If S is a semipartial geometry with α > 1, embedded in
AG(4, q), then either S ∼= TQ(4, q), with q = 2h, or S ∼= T ∗

3 (B).

Proof. By Corrolary 3.7 of [8] and Corrolary 3.3 of [11] we know that such a
semipartial geometry is either TQ(4, 2h) or a linear representation. The result
now follows immediately from the previous theorem. �

Remark. If S is a partial quadrangle embedded in AG(4, q), and is of type
T ∗

3 (K), then S ∼= T ∗
3 (O), with O an ovoid in the hyperplane Π∞ at infinity

(see Theorem 1.1).

5 Some remarks on the case n > 3

The objective of this final section is to prove that the conclusions of Lemmas
3.4, 3.6, 3.8, 3.9, 3.10 and 3.11 remain valid in the higher dimensional case.
We use the same notations as before and we suppose that n ≥ 4.

Theorem 5.1 There holds that either p2m−2i divides x or that x = 1 +
pm−i + dpm with d ∈ N \ {0}. In the latter case d = 2 (mod p) if p 6= 2 and d
is even if p = 2; furthermore if 4 divides d and k > 1 then i = (m− 1)/2.

Proof. Denote by U the right hand side of equation 3, set D = p3m + p2m +
pm−xpi, D(n) = p4m + . . .+pnm and N = pix(1+xpi)(pm−pi); furthermore
let λ and µ be as in Lemma 2.5. We calculate the right hand side of equation
(1):

(λ− N
D+D(n))

2 + 4(K − N
D+D(n))

= 1
(D+D(n))2

[
λ2(D + D(n))2 − 2λ(D + D(n))N

+N2 + 4K(D + D(n))− 4N(D + D(n))
]

= 1
(D+D(n))2

[
U + D(n)

(
2Dλ2 + D(n)λ2 − 2λN + 4K − 4N

)]
Hence, after multiplication of both sides of equation (1) with (D + D(n))2,
we obtain

p2m+2k+2i(pnm + p(n−1)m + . . . + pm − xpi)2 = Un
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with
Un = U + D(n)

(
2Dλ2 + D(n)λ2 − 2λN + 4K − 4N

)
Since Un − U = 0 (mod p4m) we immediately see that the conclusions and
proofs of Lemmas 3.4, 3.6, 3.8, 3.9, 3.10 remain valid in the higher dimensional
case. In order to see that Lemma 3.11 remains valid it suffices to notice that
if p = 2 there holds that Un−U = 0 (mod p4m+1), and so also that proof can
be copied. �

Conjecture. If S is a semipartial geometry with α > 1, with the property
that S is the linear representation of a non-trivial point set in PG(n, q), n ≥ 4,
then S ∼= T ∗

n(B).

Although the techniques applied to proof this conjecture for n = 3 seem
suitable to attack the general case, the main problems when trying to do so
arise from the fact that k can be larger than m if n ≥ 4.
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