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Abstract

In this note we characterize thick finite generalized quadrangles
constructed from a generalized hyperoval as those admitting an abelian
Singer group, i.e., an abelian group acting regularly on the points.

1 Introduction

One of the very fruitful theories of the past five decades in Finite Geometry,
Combinatorial Group Theory and Finite Field Theory, is that of difference
sets. We refer to [1] for a general reference. It can be shown that if G is a
finite group and D a (v, k, λ)-difference set in G, there can be constructed a
symmetric 2-(v, k, λ) design [1], on which G acts regularly, where the action
is considered on the points or on the lines. Conversely we have that each
symmetric 2-design with an automorphism group regular on the points de-
fines a difference set in a natural way. Such a group will be called a “Singer
group” throughout this note.

One of the most popular parts of difference set theory is that of planar
difference sets— these are the difference sets giving rise to 2-(n2+n+1, n+
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1, 1) designs, that is, projective planes of order n [6]. There, many of the
questions concerning Singer groups stand among the most fundamental ones
in the theory, the most notable being perhaps the classification of planes
admitting an abelian Singer group. Conjecturally, those should always be
Desarguesian.

Recall that projective planes are members of the family of generalized n-
gons [9]; they are precisely the generalized 3-gons. In the past 15 years,
the question has been posed several times whether there are fruitful Singer
group/difference set theories for other types of (building like) geometries,
especially for the other generalized n-gons. For generalized 4-gons, or also
“generalized quadrangles” (see the next section for a formal definition), such
a theory was initiated by D. Ghinelli in [5], where it was shown, amongst
other things, that a finite generalized quadrangle of order s (> 1) cannot
admit an abelian Singer group.

In the present note, we classify all finite thick generalized quadrangles ad-
mitting an abelian Singer group, by showing that they essentially arise as
generalizations of linear representations in projective spaces of even charac-
teristic. Along the way, some generalizations will turn up. As a corollary, we
also handle partial quadrangles and the other generalized n-gons, n > 4.

A generalized linear representation of a geometry Q = (P,B, I) in the affine
space AG(n, q) is a monomorphism θ of Q into the geometry of points and
subspaces of AG(n, q), in such a way that P θ is the set of all points of
AG(n, q), that Bθ is a union of parallel classes of subspaces (not necessarily
of the same dimension) of AG(n, q), and that each point of Lθ is the image of
some point of L for any line L in B. One usually identifies Q with its image
Qθ. If Q is a generalized quadrangle with generalized linear representation
in AG(n, q), then it can be shown that n = 3m for some natural m, that the
parallel classes of the lines define a setO of qm+2 disjoint (m−1)-dimensional
spaces at infinity with the property each m-dimensional space containing an
element of O intersects exactly one other element of O, and that q is even.
This object at infinity is then a special type of generalized hyperoval (see [3]).
Vice versa, each set O as above yields a generalized quadrangle in this way.

We can now formulate our main theorem.

Main Theorem 1.1 If Q is thick finite generalized quadrangle of order (s, t)
admitting a regular abelian automorphism group, then Q is isomorphic to a

generalized quadrangle arising from a generalized hyperoval.

Remark 1.2 In the paper [2] translation partial geometries are introduced,
and thoroughly studied. These are partial geometries with parameters (s, t, α)
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admitting a regular abelian automorphism group, so that each line orbit is a
normal spread and t = α(s+ 2). For α = 1, i.e. for generalized quadrangles,
this point of view is a special case of the problem under consideration. It
will appear that the second and third defining property for translation partial
geometries with α = 1 will be redundant.

Acknowledgement. The main ideas of the present note were developed
during the very nice conference “Incidence Geometry” (La Roche, Belgium,
23–29 May 2004), where a question of J. C. Fisher motivated us to do so.

2 Proof of the Main Theorem, Corollaries

We first recall some definitions.

A finite generalized quadrangle (GQ) of order (s, t) is a finite geometry Q =
(P,B, I) such that two distinct lines intersect in at most one point, such that
every line is incident with exactly s + 1 points and every point is incident
with exactly t+ 1 lines, and most importantly, with the property that given
any non-incident point-line pair (p, L), there is a unique line incident with p
and concurrent with L.
More generally, a finite (0, 1)-geometry of order (s, t) is a finite geometry
such that two distinct lines intersect in at most one point, such that every
line is incident with exactly s + 1 points and every point is incident with
exactly t + 1 lines, and most importantly, with the property that given any
non-incident point-line pair (p, L), there is at most one line incident with p
and concurrent with L.
If a (0, 1)-geometry of order (s, t) has a strongly regular point graph it is
called a partial quadrangle, denoted by PQ(s, t, µ) (here µ is the number of
points collinear with any pair of non-collinear points).
If s, t ≥ 2 the considered geometries are called thick.

In the rest of this paper, we use standard notation on GQ’s (and (0, 1)-
geometries) — see the monograph [7].

Lemma 2.1 Let Q be a finite (0, 1)-geometry with the property that every

line contains at least three points. Furthermore suppose that G ≤ Aut(Q)
is an abelian group of automorphisms acting regularly on the point set of Q.
Then the stabilizer in G of any line L of Q, StabG(L), is a group of order

|L|.
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Proof. Consider a line L of Q and choose any point x on L. Suppose that
|L| = s+ 1. Let S denote the unique set S = {g0 = id, g1, . . . , gs} ⊂ G with
the property that xgi ∈ L, i = 0, 1, . . . , s. It is our aim to show that S is a
subgroup of G stabilizing L. Consider any two distinct elements, gi and gj,
of S, with i 6= 0 6= j. From x ∼ xgi it follows that xgj ∼ xgigj . Analogously
we obtain from x ∼ xgj that xgi ∼ xgjgi = xgigj . Hence the point xgigj is
collinear with two distinct points, xgi and xgj , on L and consequently belongs
to L. From this it follows that Lgi = 〈x, xgj〉gi = 〈xgi , xgigj〉 = L, so that
S ⊂ StabG(L). Since |StabG(L)| ≤ s + 1 by the regularity of G, it follows
that S = StabG(L). ¤

The concept of spread of symmetry of a (0, 1)-geometry Q will be essential
for the rest of this paper. This is a partition T of the point set of Q into
lines for which there is an automorphism group of Q (called the “associated
group”) fixing T linewise and acting regularly on the points of any of its
lines.

Suppose that Q is a finite connected (0, 1)-geometry of order (s, t), with
s, t ≥ 2. Further let G be a regular abelian automorphism group of Q.
Choose any fixed point x of Q and denote the t + 1 lines through x by
L0, L1, . . . , Lt. By the previous lemma there exist t + 1 subgroups of order
s+1 of G, denoted by S0, S1, . . . , St, with the property that Si stabilizes the
line Li. It is easily seen that the orbit of Li under G, i = 0, 1, . . . , t, is a
spread of symmetry of Q.

Remark 2.2 Note that it follows already that no finite generalized n-gons
with n > 4 admit abelian Singer groups since the existence of a spread of
symmetry implies that the geometry has (ordinary) quadrangles.1

Every line of Q belongs to exactly one such spread of symmetry. This allows
us to reconstruct the geometry Q in terms of the group G. For, define the
geometry S(G) to be the geometry with point set the elements of G, with
line set the cosets Sig, g ∈ G, and with containment as incidence relation. It
is not difficult to see that the map

φ : S(G)→ Q, g 7→ xg

is an isomorphism. The partition of the line set of Q into spreads (of symme-
try) introduces in a natural way a parallelism on the lines of Q: two lines of

1The finiteness assumption is not essential here; Lemma 2.1 clearly has an infinite
analogue with similar proof.
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Q are parallel if they belong to the same spread of symmetry. The existence
of such a parallelism gives us a hint as to whether it might be possible to
embed Q as a (generalized) linear representation in an affine space. Under a
small restriction this is indeed possible. The basic ideas for the proof of this
observation are taken from De Winter [4], see also De Clerck, Gevaert and
Thas [2].

Before proceeding, let us note that from Lemma 2.1, it is possible to derive
a nice divisibility condition.

Theorem 2.3 Suppose Q is as in Lemma 2.1, and suppose that some point

of Q is incident with at least three lines. If every line has s + 1 points for
some constant s, then (s + 1)3 divides |G|. If in particular Q is a thick GQ

of order (s, t), then t = s+ 2.

Proof. Let L be a line of Q, and suppose M ∼ L 6=M . Denote by TL (TM)
the spread of symmetry containing L (M) as described prior to the lemma,
and by SL (SM) its associated group. Then there is an (s+ 1)× (s+ 1)-grid
Γ containing L and M which is fixed by SLSM = 〈SL, SM〉, so that SLSM

acts transitively on each regulus of Γ. Now consider a line N which meets
Γ in a unique point. Then SN ∩ SLSM = {id}, so the subgroup SLSMSN of
G has size (s + 1)3. If now Q is a GQ of order (s, t), then (s + 1)3 divides
|G| = (s+ 1)(st+ 1), so that s+ 1 divides t− 1, and whence

s+ 1 |
t− 1

s+ 1
− 1.

So either t−1

s+1
− 1 = 0, or s2 + 3s+ 3 ≤ t, contradicting Higman’s inequality

t ≤ s2 (cf. 1.2.3 of [7]). ¤

Now define K to be the set of all endomorphisms β of G with the property
that Sβ

i ⊂ Si, for all i ∈ {0, 1, . . . , t}. Then, since G is abelian, K,+, ., that
is, K endowed with the usual addition and multiplication of endomorphisms,
is a ring.

Theorem 2.4 Suppose that the setting and the notations are as in the above

paragraph. If for any two points y and z of Q that are at distance two from

each other in the collinearity graph of Q it holds that
∣

∣{y, z}⊥
∣

∣ > 2, then
K,+, . is a field.

Proof. It is sufficient to show that every element ofK\{0} is a bijection from
G to G, and hence by the finiteness of G we only need to show injectivity.
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Suppose that β ∈ K is such that sβ0 = id for some s0 ∈ S0 \ {id}; then
we must show that β = 0. (The choice of S0 is arbitrary. Further, if β
has a fixed point not in

⋃

i Si, then it has a fixed point in each Si \ {id} as
well.) Assume the contrary. Choose any element si ∈ Si \ {id}, with i 6= 0.
Then the point s0si is at distance two from id in the collinearity graph of
S(G). Because of our assumption there exist elements sl ∈ Sl \ {id} and
sk ∈ Sk \ {id}, l, k /∈ {0, i} and l 6= k, such that s0si = slsk. Note that
|{y, z}⊥|, y 6∼ z, must be even since G is abelian (if y ∼ yθ ∼ z, with yθγ = z,
then y ∼ yγ ∼ z, with θ, γ ∈ G). Letting β act yields sβi = sβl s

β
k . First

suppose that sβl = id; then sβi = sβk . Since Si ∩ Sk = {id} we obtain that

sβi = id. Analogously sβk = id implies that sβi = id. Next suppose that

neither sβl nor s
β
k equals id. In this case the line Sls

β
k (of S(G)) intersects

the line Sk in s
β
k 6= id and intersects the line Si in s

β
i 6= id. Hence we have

found a triangle in the (0, 1)-geometry S(G), a contradiction. We conclude
that sβi = id, and henceforth that Sβ

j = id, for all j ∈ {0, 1, . . . , t}. By the
connectedness of the geometry Q ∼= S(G) we know that G = 〈S0, S1, . . . , St〉,
and hence it follows that Gβ = id, that is, β = 0. ¤

Theorem 2.5 Let Q be a finite connected (0, 1)-geometry of order (s, t),
s, t ≥ 2, in which any two points at distance two in the collinearity graph of

Q have at least three common neighbours. Then Q has a generalized linear

representation if and only if Q admits a regular abelian group of automor-

phisms.

Proof. It is clear that if Q has a generalized linear representation, say in
AG(n, q), then the group G of all translations of AG(n, q) is (elementary)
abelian and acts as a regular group of automorphisms on Q.

Conversely, if every two points at distance two in the collinearity graph of Q
have at least three common neighbours, then the previous theorem implies
that K,+, . is a field. Consequently G can be seen as a K-vector space of
dimension log|K|(|G|), and the Si’s as vector subspaces of dimension log|K|(s+
1). It is clear that the line set of Q is exactly the set of all translates of these
vector subspaces, and hence Q has a generalized linear representation in the
affine space constructed from the K-vector space G. This generalized linear
representation is a linear representation if and only if log|K|(s+ 1) = 1. ¤

We are ready to obtain the Main Theorem. For the sake of convenience we
repeat its statement.

Main Theorem 2.6 A thick finite GQ of order (s, t) having a regular abelian
automorphism group, arises from a generalized hyperoval.
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Proof. Since t = s + 2 by Theorem 2.3 and every two points at distance
two have at least three common neighbours in a thick GQ this result is an
immediate consequence of Theorem 2.5. ¤

Note that since Q arises from a generalized hyperoval, q necessarily is even
[3].

Corollary 2.7 If Q is a thick partial quadrangle PQ(s, t, µ) admitting a reg-
ular abelian group G of automorphisms, then Q has a generalized linear rep-

resentation.

Proof. If µ > 2, then Theorem 2.5 immediately implies the result.

So suppose that µ = 2. (Notice that since G is abelian µ = 1 cannot occur.)
With the same notations as before, we need to show that K,+, . is a field.
First notice that for every point g of S(G) there exist i and j such that g can
be written as sisj for some si ∈ Si and sj ∈ Sj. Since µ = 2, it is easily seen
that the grid SiSj (in S(G) ∼= Q) determined by Si and Sj, and the grid SlSk

determined by Sl and Sk have trivial intersection unless {i, j} ∩ {l, k} 6= ∅.
Suppose that β ∈ K is such that sβ0 = id, with s0 ∈ S0 \ {id}. Consider any
si ∈ Si \ {id}, with i 6= 0. Further choose any sj ∈ Sj \ {j}, with j /∈ {0, i}.
Then the point s0sisj is at distance two from id and is only collinear with
the point s0si in the grid S0Si. Hence there must exist k and l, such that
{k, l} ∩ {0, i, j} = ∅ and such that s0sisj = slsk, for some sl ∈ Sl \ {id} and
some sk ∈ Sk \ {id}, if not there would arise triangles or the assumption
µ = 2 would be violated — recall that G is abelian! Letting β act yields
sβi s

β
j = sβl s

β
k . Since SiSj ∩SlSk = {id}, we obtain that s

β
i = id. It now easily

follows that β = 0 and hence K,+, . is a field. The proof can be finished as
before. ¤

Final Remark 2.8 It should be noticed that the classification of (GQ’s
arising from) generalized hyperovals is equivalent to the classification of the
so-called “translation generalized quadrangles” [7] of order s, s even, cf. Thas
and Thas [8] for a recent reference.
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