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AbstractA long-standing conjecture is that any transitive �nite projective planeis Desarguesian. We make a contribution towards a proof of this conjec-ture by showing that a group acting transitively on the the points of a non-Desarguesian projective plane must not contain any components.
1 Background de�nitions and main results
A �nite projective plane is a set of points � and a set of lines � in the power setof � such that any two points lie on exactly one line and any two lines intersect inexactly one point. The standard example of a projective plane is the Desarguesianplane of order q constructed from a 3-dimensional vector space over a �nite �eld Fq.We say that a projective plane is transitive (resp. primitive) if it admits an auto-morphism group which is transitive (resp. primitive) on points. Kantor[Kan87] hasproved that a projective plane P of order x admitting a point-primitive collineationgroup G is Desarguesian and G � PSL(3; x), or else x2 + x+ 1 is a prime and G isa regular or Frobenius group of order dividing (x2 + x+ 1)(x+ 1) or (x2 + x+ 1)x.Kantor's result, which depends upon the Classi�cation of Finite Simple Groups,represents the strongest success in the pursuit of a proof to the conjecture mentionedin the abstract. A corollary of Kantor's result is that a group acts primitively onthe points of a projective plane P if and only if it acts primitively on the lines of P.We also know, by a combinatorial argument of Block, that a group acts transitivelyon the points of a projective plane P if and only if it acts transitively on the linesof P[Blo67a].Our primary result is the following:
Theorem A. Suppose that G acts transitively on a projective plane P of order x.Then one of the following cases holds:

� P is Desarguesian, G � PSL(3; x) and the action is 2-transitive on points;
� G does not contain a component.�This paper contains results from the author's PhD thesis. I would like to thank my supervisor,Professor Jan Saxl. 1



In particular this theorem implies that if an almost simple, or almost quasi-simple, group G acts on a projective plane P of order x then P is Desarguesian andG has socle PSL(3; x):We prove the theorem by an exhaustive case by case analysis of the di�erentpossible unique components given by the classi�cation of �nite simple groups. Werecord the following corollary to the theorem:
Corollary 1. Suppose that G acts transitively on a non-Desarguesian projectiveplane P. Then F (G) = F �(G), i.e. the generalized Fitting group of G is equal tothe Fitting group of G. Let t be a prime dividing into jF (G)j and Nt the Sylowt-subgroup of F (G). Then Nt acts semi-regularly on the points of P for all t exceptpossibly one. Furthermore one of the following holds:

� x2 + x+ 1 is a prime and G is a Frobenius group of odd order dividing (x2 +x+ 1)x or (x2 + x+ 1)(x+ 1);
� All minimal normal subgroups of G are elementary abelian, semi-regular andintransitive.

Proof. The statement F (G) = F �(G) is a direct consequence of the fact that G hasno components. We may then apply [CP93, Theorem 3] to give the result about theSylow t-subgroups of F (G) (see also Proposition 5 in this paper.)We know that all minimal normal subgroups are elementary abelian. By [CP93,Corollary 1], any elementary abelian minimal normal group N is semi-regular.IfN is intransitive then we have the second case above. IfN is transitive then it isregular and [Kan87, Lemma 6.5] implies that the �rst case covers all possibilities.
It is worth noting that Theorem A includes as special cases two other results thatalready exist in the literature. The �rst is Kantor's result on primitive projectiveplanes [Kan87] which has already been mentioned and which is used in the proofof Theorem A. The second is Ho's result that a �nite projective plane admittingmore than one abelian Singer group is Desarguesian [Ho98, Theorem 1]; this resultis implied by Theorem A and [Ho98, Lemma 4.3 and Theorem 2].

2 Overview of Proof
To prove Theorem A we need to analyse many di�erent possible transitive groupactions on �nite projective planes. The framework for our analysis of the transitiveprojective planes will be given by results in [CP93] and [Cam04]. The key theoremis the following:
Theorem 2. [Cam04, Theorem 2] Let G act transitively on a projective plane Pand let M be a minimal normal subgroup of G. Then M is either abelian or simple.

In fact we are able to state our results more strongly by rewriting this result interms of components; here a component of a group G is de�ned to be a subnormalquasisimple subgroup of G. Hence the theorem which will provide the frameworkfor our analysis is the following: 2



Theorem 3. Suppose that G acts transitively on a projective plane P. Then Gcontains at most one component.
The proof of this theorem, which involves rewriting proofs of similar theoremsfrom [CP93] and [Cam04], is given in Section 3. In Section 4 we give the basiclemmas and notation which will be used throughout the remainder of the paper.In the remaining sections we use Theorem 3 to examine the possible uniquecomponents of a group G acting transitively on a projective plane. Existing resultsin the literature are generally limited to the case where the component is simple andG is almost simple.

3 Framework results
We prove Theorem 3 which states that if a group G acts transitively upon a projec-tive plane then G contains at most one component. Our proof of Theorem 3 startswith some preliminary results.Note �rst that if C is a component of G then C� := < Cg : g 2 G > �=C �Cg1 � � � � �Cgm is a normal subgroup of G where g1; : : : ; gm 2 G; furthermore, ifC and D are components of G with C not G-conjugate to D then [C;D] = 1 andso [C�; D�] = 1.We need some information about the �xed points of automorphisms of a projec-tive plane P of order x: If a collineation g �xes at least x points then g is calledquasicentral and g �xes x + 1, x + 2 or x + px + 1 points[Dem97, 4.1.7]. In the�rst two cases g �xes a fan, namely a line L and a point � and all the points on Land all the lines incident with �. The distinction between the two cases depends onwhether or not � lies on L. In the third case g �xes a subplane of P of order px.In addition we have the following lemma:
Lemma 4. [Dem97, 3.1.2 and 4.1.6] Let P be a projective plane of order x. If H isa group of collineations of P which does not �x a subplane of P then the �xed set ofH lies inside a fan. If, on the other hand, H �xes a subplane of order y then eithery2 = x or y(y + 1) � x� 2.

We are now ready to prove our �rst result which is very similar to [CP93, The-orem 3]:
Proposition 5. Let G be a transitive automorphism group of a projective plane Pof order greater than 4. Let G have normal subgroups M and N such that M� 6= 1and N� 6= 1 for some point �. Then [N;M ] 6= 1.
Proof. Let M and N be two normal subgroups of G such that there is a point � sothat M� 6= 1 and N� 6= 1 and [M;N ] = 1.Consider the point � 2 �N and let n 2 N be such that � = �n. If m 2 M�;then �m = �nm = �mn = �. Thus �N is �xed point-wise by M�. If � 2 �Nnf�gand L is the line through � and �, then M� �xes L set-wise. Thus there is a line Lthrough � which is �xed by M� and M� �xes at least two points. A similar resultapplies with N replacing M . 3



Next we show that every line through � is �xed either by M� or N�. Assumethat this is false and let L be a line through � which is �xed by neither. Since G isline-transitive, there is some point � such that M� �xes L. Now, since [M;N ] = 1,N� acts on the set of �xed lines ofM�. Thus each image of L under the action of N�is a line through � �xed by M�. Since N� does not �x L, it follows that M� �xes �.However, this means that M� =M� and hence M� �xes L which is a contradictionto our assumption.Thus for one of M� and N�, the number of lines through � which are �xedmust be at least k=2. Without loss of generality, this is true for N�. We now showthat the �xed set of N� is a subplane of P. By the lemma above it is su�cient toprove that NG(N�) acts transitively on the set of lines �xed by N�; to show this wedemonstrate that NL = N� for any line L �xed by N�.Let L be any line through � which is �xed by N�. Letm 2M such that Lm 6= L.Then, since [M;N ] = 1, it follows that LmNL = LNLm = Lm, that is NL �xes Lmand so NL �xes Lm\L = f�g, say. Then N� � NL � N�, and since N� is conjugateto N�, we obtain N� = NL.Since N is normal in G, NG(NL) is transitive on the lines �xed by NL = N�.Thus the �xed set of N� is a subplane of P with line size at least k=2. This is acontradiction of the lemma above.
Corollary 6. Suppose that G acts transitively on a projective plane P. Then allcomponents of G are conjugate in G.
Proof. If P is Desarguesian then G contains at most one component and the state-ment holds.By [Dem97, 3.2.15] a non-Desarguesian projective plane has order at least 9.Thus by the previous theorem any two normal subgroups M and N of G withM� 6= 1 and N� 6= 1 for some point � satisfy [N;M ] 6= 1.Now suppose that C and D are components of G which are not conjugate in G.Then C� and D� are distinct normal subgroups of G. Note that any componentcontains an involution and, since the number of points in P is odd, each involutionmust �x a point. The theorem implies that [C�; D�] 6= 1. This is a contradiction.

We can now prove Theorem 3. Our method of proof is very similar to that ofCamina [Cam04, Theorem 1]. First we state some preliminary results:
Lemma 7. [CP93, Theorem 1] Let P be a �nite linear space and let G be a line-transitive automorphism group of P. Let N be a normal subgroup of G. Then Nacts faithfully on each of its point orbits.
Lemma 8. [HP73, XIII.13.1] Let A be an abelian collineation group of a projectiveplane of order x then jAj � x2 + x+ 1:
Theorem 3. Suppose that G acts transitively on a projective plane P. Then Gcontains at most one component.
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Proof. We may assume that P is non-Desarguesian of order x and that all compo-nents are conjugate in G. Let C be a component of G and write C� = C1 � � � � �Cm;m � 2; normal in P with each Ci isomorphic to C.Let D be a Sylow 2-subgroup of C�. Since P has an odd number of points thereis a point � so that D �xes �. Thus (Ci)� 6= 1 for 1 � i � m. Since G actstransitively on P this is true for all points �. Choose � so that (C1)� has maximalorder. Observe that [C2; (C1)�] = 1 so �C2 consists of points �xed by (C1)�.Now C� is faithful on all its point orbits by Lemma 7. This implies that �C2contains at least 5 points as C2 is quasisimple and normal in C�. The �xed set of(C1)� is either a subplane or lies inside a fan. But, since C2 does not �x any point,we conclude that (C1)� �xes a subplane whose order is at most px.We now show that for any line L incident with � there is a j so that (Cj)� �xesL: Choose a line L incident with �. If (C1)� �xes L there is nothing to prove. Weknow that there exists a line, L1; which is incident with � and is �xed by (C1)�. ButG is transitive on lines so there is g 2 G with L1g = L. Then � = �g is incidentwith L and ((C1)�)g �xes L. But there exists j so that ((C1)�)g = (Cj)� since gpermutes the factors Ci. Let i 6= j. Then (Ci)� commutes with (Cj)� and so actson the set of lines �xed by (Cj)�. If (Ci)� �xes L then we have proved our claim.If not we see that (Cj)� �xes at least two lines through � and so �xes �. However((C1)�)g = (Cj)� so by the maximality of (C1)� we have (Cj)� = (Cj)� and theclaim is proved.Let y be the order of the subplane �xed by (Ci)�: Then m(y + 1) � x + 1. Ify = px then this implies that m � px. If y 6= px then Lemma 4 implies thaty(y + 1) � x� 2. Thus m � y + 1 and so m � px+ 1 > px.Since C� has an abelian subgroup of order at least 5m it follows from Lemma 8that x2 + x+ 1 � 5m � 5px. This has no solutions.
4 Basic Results and Notation
The notation outlined in this section will hold throughout the rest of the paper. Wealso state here a number of basic results which will be used repeatedly throughoutthe paper.
Projective Plane Results
Consider a projective plane P of order x with v = x2 + x+ 1 points and lines.
Lemma 9. [Kan87, p.33] Let G act transitively on a projective plane with G� apoint-stabilizer. Then if p1 is a prime � 2(3) then G� contains some Sylow p1-subgroup of G. Moreover, G� contains a subgroup of index at most 3 in a Sylow3-subgroup of G.

For g an element of G we write ng for the size of the G-conjugacy class of g inG and rg for the number of these conjugates lying in a point-stabilizer G�, for some�xed point � in P. Furthermore, dg is the number of �xed points of g. We will5



sometimes also write rg(B) for the number of G-conjugates of g lying in a subgroupB of G, so rg = rg(G�).We know already that if a collineation g �xes at least x points then g is calledquasicentral and g �xes x+1, x+2 or x+px+1 points[Dem97, 4.1.7]. Furthermore,if a collineation has x + 1 or x + 2 �xed points then it is known as a perspectivityand Wagner has proved that if G contains a nontrivial perspectivity and G actstransitively on P then P is Desarguesian and G � PSL(3; x)[Wag59].Now any involution is quasicentral ([Dem97, 3.1.6]) and so all the groups Gthat we consider contain quasicentral collineations. By Wagner's result we will beinterested in the situation when x is a square, say x = u2, and all quasicentralcollineations, in particular all involutions, have u2 + u+ 1 �xed points.We will be particularly interested in properties of integers of the form u2+u+1where u is an integer.Lemma 10. If x = u2 then x2 + x+ 1 = (u2 + u+ 1)(u2 � u+ 1), where (u2 + u+1; u2 � u+ 1) = 1.Lemma 11. [Lju43, p.11] If u2+u+1 = pa1 where p1 is a prime, then either pa1 = p1or pa1 = 73.Lemma 12. [Kan87, p.33] If x = u2 and x2 + x + 1 = pam for a prime p witha > 1, then either m > 8pa or pa = u2 � u+ 1 = 73:Lemma 13. Let x = u2 and let g be an involution acting on projective plane P withu2 + u+ 1 �xed points. Then� ngrg = u2 � u+ 1;
� dg = u2 + u+ 1;
� v = ngrg dg and (ngrg ; dg) = 1:

Proof. Count pairs of the form (�; g), where � is a point and g is an involution �xing�, in two di�erent ways. Then
jf(�; g) : �g = �gj = vrg = ngdgWe know already that dg = u2 + u+ 1 thus we must have ngrg = u2 � u+ 1 and theresult follows.Lemma 14. Suppose that g is an involution acting on projective plane P with u2+u+ 1 �xed points. If ng = 2cpam where (m; 2p) = 1 then the largest power of p in vis less than or equal to max(pa;m+ 2pm+ 2).Proof. If pjngrg then clearly the highest power of p dividing v divides pa. If not, thenu2� u+ 1 = ngrg divides into m. Then the highest power of p dividing v divides intodg = u2 + u+ 1 < (u2 � u+ 1) + 2pu2 � u+ 1 + 2.

It is in our exploitation of the last two results that our treatment will di�ersubstantially from that of Kantor in the primitive case. We will make use of theequalities outlined in Lemma 13, taking g to be a member of a small conjugacy classof involutions. 6



Group Theory Results and Notation
We begin with a general lemma which will be useful throughout the chapter.
Lemma 15. Let C < A� B. Suppose jAj < jB : N j where N is the largest propernormal subgroup of B. Then either:

� C � A�B1 for B1 < B; or
� C = A1 �B for A1 � A.

Proof. Suppose C 6� A�B1 for B1 < B. Then de�ne B1 = f(1; b) : (a; b) 2 Cg �= Band observe that the projection C ! A; (a; b) 7! a has kernel K = f(1; b) 2 Cg�B1.But jB1 : Kj � jAj < jB : N j where N is the largest proper normal subgroup of B.Thus K = B1 and C = A1 �B for some A1 � A as required.
Now we want to show that a group G with unique component L cannot acttransitively on a projective plane P unless it contains a non-trivial perspectivity.Put L� = G� \ L, the stabilizer of a point � in the action of L on P. In general,we will set M to be a maximal subgroup of the component L which contains L�.De�ne Ly := L=Z(L) and M y :=M=(Z(L) \M).Write G = (L � CG(L)):N where N is a subgroup of OutL. Then G=CG(L) isan almost simple group and we use results about the maximal subgroups of suchgroups:When Ly is a classical simple group we use the results of Aschbacher[Asc84] asdescribed in Kleidman and Liebeck [KL90]. These results give information aboutthe maximal subgroups of a group Ly:N with simple socle Ly a classical group. Insmall dimensions we will refer to the results given by Kleidman[Kle87] who usesidentical notation.We will sometimes precede the structure of a subgroup of a projective group with^which means that we are giving the structure of the pre-image in the correspondinguniversal group. For a given element g 2 L we will often write g� for an element inthe corresponding universal group which projects onto g. The symbol � will also beused in a di�erent way, with groups, e.g. P �1 , to signal that a group is a subgroupof a section of L or Ly.We can exclude several atypical situations by observing that, except when L =P
+(8; q), we may assume that G=CG(L) � �L; the full semilinear classical groupassociated with L. The cases we have excluded here are when Ly = PSL(n; q) whileG=CG(L) contains an inverse-transpose automorphism of L and when L = Sp(4; 2f )while G=CG(L) contains a graph automorphism of L. In both cases G contains anormal subgroup H of index 2 such that H=CH(L) � �L. Since we are acting on aset of odd order, any transitive action of G induces a transitive action of H. Thus,except when Ly = P
+(8; q), we assume that G=CG(L) � �L.We will write M 2 Ci to mean that M y is in the i-th family of natural maximalsubgroups of Ly given by Kleidman and Liebeck[KL90]. When M is parabolic wewill writeM = Pm to mean thatM is a maximal parabolic subgroup �xing a totallysingular subspace W of dimension m inside the natural classical geometry V ofdimension n. 7



When Ly is an exceptional simple group we use di�erent sources to �nd in-formation about maximal subgroups M of L. When M is parabolic we refer to[Car89, GLS94, GL83]. In some other cases, the maximal subgroups are completelyenumerated; in particular for Ly = 2B2(q)[Suz62], for Ly = 2G2(q)[Kle88a, War66],for Ly = G2(q)[Kle88a, Coo81], for Ly = 2F 04(q)[Mal91, CCN+85] and for Ly =3D4(q)[Kle88b].In both classical and exceptional cases, we appeal to a result of Liebeck andSaxl [LS85] and Kantor[Kan87] which gives the maximal subgroups of odd indexin an almost simple group. In particular, when the socle is a �nite simple classicalgroup acting on a classical geometry V , such a maximal subgroup either lies in C1(stabilizers of totally singular or non-singular subspaces) for characteristic 2 or, whenthe characteristic is odd, lies in C1, C2 (stabilizers of decompositions into subspacesof �xed dimension, V = �ti=1Vi) or C5 (stabilizers of sub�elds) or is in a small setof listed exceptions.Finally, when Ly is a sporadic simple group we refer to [Asc86] which, amongstmany other things, lists the maximal subgroups of odd index.Our analysis becomes slightly simpler by using the following result of Caminaand Praeger which is a corollary of Lemma 7:
Lemma 16. [CP93, Corollary 1] Let N be an abelian normal subgroup of a groupG: Suppose that G acts line-transitively on a �nite linear space P. Then N actssemiregularly on the points of P.

In the case where P is a projective plane we can apply Lemma 9. Thus if L is aunique component of G then Z(L) is normal in G and must have order only divisibleby primes congruent to 1(3) or by 3 to the �rst power. In the case where L is agroup of Lie type, for instance, this implies that L is simple unless it is isomorphicto E6(q), 2E6(q), U(n; q) or PSL(n; q) for certain n.
Hypothesis
Finally, we may state our hypothesis for the rest of the paper:
Hypothesis. Assume that G is a group with a unique component L. Assume thatG acts transitively on a projective plane P of order x = u2 such that all involutions�x u2+ u+1 points of P. Assume that L� �M where M is a maximal subgroup ofL of odd index. Furthermore assume that v > jL :M j.

Throughout the rest of the chapter we will set Ly to be in a particular familyof simple groups of Lie type and will demonstrate that our hypothesis leads to acontradiction.
5 Ly is alternating or sporadic
In this section we prove the following proposition:
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Proposition 17. Suppose G has a unique component L such that Ly is isomorphicto an alternating group, An with n � 5, or a sporadic simple group. Then G doesnot act transitively on a projective plane.
When Ly is a sporadic simple group, the maximal subgroups of Ly of odd indexare given by Aschbacher[Asc86]. Aschbacher's list implies that any maximal sub-group M of odd index in L has index divisible by 9 or by a prime congruent to 2(3).Since L� must lie in such a maximal subgroup this contradicts Lemma 9.Suppose that Ly �= An, the alternating group on n letters. If n 6= 6; 7 thenZ(L) � 2 [Sch11]; thus, by Lemma 16, L = Ly = An. If n = 6; 7 then Z(L) � 6 andso, by Lemma 16, L = An or L = 3:An.Assume for the moment that n > 7 and so L = An. Let g 2 L = An be a doubletransposition. Then ng = n(n�1)(n�2)(n�3)8 . Now An contains an abelian subgroup,H; of size 2bn2 c�1 which contains at least bn2 c(bn2 c � 1) L-conjugates of g.Since H lies inside a Sylow 2-subgroup of L; we know that H lies in L� for somepoint �. We conclude that

ngrg � n(n� 1)(n� 2)(n� 3)8bn2 c(bn2 c � 1) :
Next we refer to Lemma 8 and observe that jHj � v. Furthermore, for u > 2,v < 2(ngrg )2. Hence

2bn2 c�1 � 2n2(n� 1)2(n� 2)2(n� 3)226bn2 c2(bn2 c � 1)2=) 2bn2 c < n4=) n � 43:
If u = 2 then v = 21 and again we can conclude that n � 43. Now to examine thecases where 7 < n � 43 we use a method similar to that in [CNP03, Section 5].Consider the usual permutation action of L = An as Alt(
), acting on a set 
of size n. Then L� contains a Sylow p-subgroup of L for every prime p � 2(3) anda subgroup of index 3 in a Sylow 3-subgroup of L.Let � be the longest orbit of L� in 
. If 8 � n � 10 then, since L� containsa Sylow 2-group and a Sylow 5-group of L, L�� must be primitive; if 11 � n � 21then the same conclusion comes from the primes 2 and 11; if 22 � n � 33 then thesame conclusion comes from the primes 2 and 17; and if 34 � n � 43 then the sameconclusion comes from the primes 2 and 29. Now L�� has odd index in Alt(�) and 5does not divide the index. By [LS85] this means that L�� contains Alt(�).For n � 11; n 6= 39, we claim that j�j � n � 2. This is proved using Lemma9 for each individual value of n. We do not reproduce this here but consider, forinstance, when n = 16: Then L� contains elements with cycle type (11) and (8; 8)and so j�j = 16 � n� 2.Let us examine this case, where n � 11; n 6= 39. Consider again, g; a doubletransposition with ng = n(n�1)(n�2)(n�3)8 : Then rg � (n�2)(n�3)(n�4)(n�5)8 and so ngrg �n(n�1)(n�4)(n�5) < 3 for n � 11. This is impossible.9



For n = 39 it turns out, using Lemma 9, that j�j � 34. Then ngrg < 3 and thiscase is excluded.For n = 8 or 10, the same argument gives j�j = n and no action exists. Forn = 9, j�j � 5 and, referring to [LS85], L� lies in an intransitive subgroup of L andthis contradicts Lemma 9.Now suppose n � 7. If n = 5 or 6 then Lemma 9 implies that jL : L�j � 3. Thisis impossible since no subgroup of such small index exists in L. We are left withn = 7.When n = 7 we know that L� contains an element of order 5. Examining[CCN+85] this means that M y = S5 or A6. In fact we must have L� = S5 or A6. Inboth cases ngrg is not an integer. Thus all cases are excluded.Remark. It is worth noting that we could immediately conclude, from the transi-tivity of G and by appealing to [GH00, Theorem 1], that n � 21 . However this is alarge result and so we have given a more elementary and direct proof above.
6 Ly = PSL(n; q)
In this section we prove the following proposition:Proposition 18. Suppose G has a unique component such that Ly is isomorphic toPSL(n; q) with n > 3. Then G does not act transitively on a projective plane.Note that, by the result of Wagner[Wag59] cited above, it is su�cient to provethat our hypothesis, with Ly = PSL(n; q), leads to a contradiction. Recall that, forn 6= 8, we assume that G=CG(L) � �L(n; q). We also suppose that n > 3 for theremainder of this section.Now consider SL(n; q) acting naturally on a vector space V . Then recall that atransvection, g� say, in SL(n; q) is a collineation of V such that g� � I has rank 1and square 0. We now state the following preliminary result:Lemma 19. Let C be a conjugacy classes of involutions in L corresponding to either,� diagonalizable involutions in the natural modular representation of SL(n; q)with q odd; or to

� the projective image of transvections in SL(n; q), where q = 2a for some integera.Then C is invariant under �L.Proof. Consider the diagonalizable case �rst. We need to consider the actions byconjugation of automorphisms of SL(n; q) on a diagonal matrix,

g� =
0
BBBBBBB@

�1 . . . �1 1 . . . 1

1
CCCCCCCA
:
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Clearly a �eld automorphism will preserve g�. Similarly an automorphism lying inGL(n; q) of form, 0
BBB@

1 . . . 1 a

1
CCCA

where a 2 GF (q)�, also preserves g�. These generate the full outer automorphismgroup of SL(n; q) in �L(n; q) and we are done. In the case where we have a transvec-tion then we consider the actions by conjugation of automorphisms of SL(n; q) ona matrix,
g� =

0
BBB@

1 1 0 : : : 01 . . . .... . . 01

1
CCCA :

Clearly both �eld automorphisms and the automorphism inGL(n; q) exhibited abovepreserve g� and we are done.
Much of the ensuing treatment will involve counting involutions g. We will takecare to ensure that g is always of one of the two types in this lemma thus ensuringthat ng = rg(L) = jL : CL(g)j and rg = rg(L�). Also, observe that we may excludePSL(4; 2) �= A8. We begin by restricting the family within which M , a maximalsubgroup of L containing L�, may lie:

6.1 L� must lie in a parabolic subgroup
By Liebeck and Saxl [LS85], we know that L� lies inside a maximal subgroup Mwhere

� for q odd, M 2 C1;C2 or C5; or n = 4;
� for q even, M 2 C1.Lemma 20. L� cannot lie inside a maximal subgroup from families Ci; i > 1.

Proof. We may assume that q is odd. In SL(n; q), de�ne

g� =
0
BBBBB@
�1 �1 1 . . . 1

1
CCCCCA :

Then g� is centralized in SL(n; q) by (SL(2; q) � SL(n � 2; q)):(q � 1) Then theprojective image,g , of g� is an involution in L and ng divides into
q2(n�2)(qn�1 + � � �+ q + 1)(qn�2 + � � �+ q + 1)q + 1 :11



Examining the order of subgroups M in C2 of C5 we �nd that jM jp � q 14 (n�1)nand hence jL : M jp � q 14 (n�1)n. Since n > 3, we know that q2 divides the indexof any maximal subgroup in C2 or C5. In the case where n = 4, the only maximalsubgroups of odd index which do not lie in families C1, C2 or C5 also have indexdivisible by q2. Hence p � 7 by Lemma 9. Then, by Lemma 14, the largest powerof p in v is q2(n�2).Thus, for n > 4, q 12n(n�1)�2(n�2) = q 12 (n2�5n+8) divides the order of L�. Wetherefore need to have 12(n2 � 5n+ 8) � 14(n� 1)n and so n < 7.If n is 5 or 6 then the only possibility that �ts this inequality is when M =NL(L(n; q0)) for q = q20. But then jL :M j is even and so this case can be excluded.This possibility can also be excluded when n = 4. However when n = 4 we alsoneed to consider the following further possibilities (note that when n = 4 we canassume that L = PSL(4; q)):
� M = (̂SL(2; q) � SL(2; q)):(q � 1):2. In this case jL : M j = ng = 12q4(q2 +1)(q2 + q + 1). Then we know that the maximum power of p in v is q4 henceL� contains Sylow p-subgroups of M . However the index of a parabolic sub-group in SL(2; q) is even, hence we must have (̂SL(2; q) � SL(2; q)):2 < L�.Then we know that for some �, L� > ^� SL(2; q) SL(2; q)

� : Since L� also
contains a Sylow 2-subgroup of PSL(4; q), this implies that L� must contain
the projective image of

0
BB@

1 �1 1 �1

1
CCA which is L-conjugate to g and so

rg � q2(q + 1)2: Thus ngrg � 12q2(q2 + 1) and v � q4(q2 + 1)(q2 + q + 1) and sov = 12q4(q2 + 1)(q2 + q + 1) contradicting Lemma 12.
� M = L(4; q0):[ c(q�1;4)(q0 � 1; 4)] where c = (q � 1)=(q0 � 1; q�1(q�1;4))) and q = q30.Then jL :M j = (q120 (q80 + q40 + 1)(q60 + q30 + 1)(q40 + q20 + 1))=( c(q�1;4)(q0 � 1; 4)).Now we know that p � 1(3) and so the highest power of 3 in c is 3. Then wehave 9��jL :M j which is impossible.
� M is of odd index but does not lie in families C1;C2 or C5. Examining thetables of Kleidman[Kle87], we �nd that there are two possibilities: EitherM 2 C6 and M �= 24:A6 or M 2 C8 and M �= PGSp(4; q). In the former case,q6 divides jL : M j which is a contradiction. In the latter case, since p � 1(3),we �nd that 9 divides jL :M j which, again, is a contradiction.
Thus we assume from here on that L� lies inside M 2 C1. This means that L�must always lie inside a parabolic subgroup, Pm, which stabilizes a subspace W ofdimension m in the natural vector space for G. We now seek to bound m.

12



6.2 L� lies in Pm, m small
We begin by noting some preliminary facts which we will use to establish whichparabolic groups Pm are possible candidates to contain L�. In particular we willshow that m is small.Lemma 21. Suppose L� lies inside Pm. For rj�nm�, r prime, there exists an integera such that (1 + qa + � � �+ qa(r�1)) divides into jL : Pmj which, in turn, divides intov:Corollary 22. Suppose L� lies inside Pm.� If p � 1(3) then for all primes r dividing �nm�, we must have r � 1(3) or r = 3and 9 6 j�nm�.� If p is odd then �nm� must be odd and so either

{ n is odd; or{ n is even and m is even.
� If p = 2 then �nm� 6� 0(4).Proof. We need only prove the �nal statement. Suppose 4j�nm�. Then either (q2+1)jvor (q + 1)2jv. This means that either v is divisible by a prime equivalent to 2(3) orthat 9��v. Both of these are impossible.
Note that, since (n; q) 6= (4; 2), the smallest index of a parabolic subgroup inPSL(n; q), n � 4 is 31 ([KL90, table 5.2A]). Since x is a square we know thatv � 91 and so dg < 2ngrg .

6.2.1 Case: n odd, p odd
In this case L contains the projective image, g, of

g� =
0
BBB@
�1 . . . �1 1

1
CCCA :

Then ng = qn�1(qn�1 + � � � + q + 1). Furthermore, since n � 4, g is conjugate inG to the projective image, h, of at least one other diagonal matrix. Then g andh commute and lie in an elementary abelian 2-group. Since L� contains a Sylow2-subgroup of L, we must have rg � 2.Thus ngrg � 12qn�1(qn�1 + � � � + q + 1), dg � qn�1(qn�1 + � � � + q + 1) and v �12q2n�2(qn�1 + � � �+ q + 1)2. Now observe that,12(qn�1 + � � �+ q + 1)2 � q2n�1 =) (qn � 1)2 � 2q2n�1(q � 1)2
=) q2n � 2q2n�1(q � 1)2=) q � 2(q � 1)2=) q < 3:13



We know that q � 3 hence 12(qn�1 + � � � + q + 1)2 < q2n�1 and v < q4n�3. ButjL : Pmj > qm(n�m) hence, for n � 23, we have m � 4. We use Corollary 22 tonarrow down the possibilities:
1. For p � 1(3) we �nd, by explicit calculation using Corollary 22, that m � 4for all n. In fact, checking small n we �nd that if m = 1; 2 then n � 7; ifm = 3 then n � 39; if m = 4 then n > 70.
2. For p 6� 1(3) then ngrg j3(qn�1 + � � � + q + 1). Hence dg < 3:qn and so v < 9q2n.For n � 11 this implies that m � 2.Checking the cases where n < 11 we �nd that m � 2 or (n;m) = (7; 3). This�nal case will be dealt with along with other exceptional cases at the end ofSection 6.3.9.

6.2.2 Case: n even, p odd
Note that in this case we must have m even and L contains the projective image, g,of

g� =
0
BBBBB@
�1 . . . �1 1 1

1
CCCCCA :

Now ng = q2(n�2)(qn�2 + � � � + q2 + 1)(qn�2 + � � � + q + 1): Again rg � 2 and songrg � 12q2(n�2)(qn�2+ � � �+ q2+1)(qn�2+ � � �+ q+1). This gives dg � q2(n�2)(qn�2+� � �+q2+1)(qn�2+� � �+q+1) and so v � 12q4(n�2)(qn�2+� � �+q2+1)2(qn�2+� � �+q+1)2.In a similar fashion to before we know that, for q � 3 and n � 4,
12(qn�2 + � � �+ q2 + 1)2(qn�2 + � � �+ q + 1)2 < q4n�7

and so v < q8n�15. But jPSL(n; q) : Pmj > qm(n�m) hence, for n � 70, we havem � 8. Once again we use Corollary 22 to narrow down the possibilities:
1. For p � 1(3), we �nd that n < 70 implies that m = 2. In fact (n;m) =(14; 2); (38; 2) or (62; 2).
2. For p 6� 1(3), ngrg j3(qn�2 + � � � + q2 + 1)(qn�2 + � � � + q + 1) < 3q2n�3. Thusv < 9q4n�5. But jG : Pmj > qm(n�m). Thus for n � 18 we must have m � 4.For n < 18, m � 4 or (n;m) = (14; 6). This �nal case will be dealt with alongwith other exceptional cases in Section 6.3.9.
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6.2.3 Case: p = 2
In this case G contains the projective image, g, of

g� =
0
BBBBB@

1 0 � � � 0 11 0. . . ...1 01

1
CCCCCA :

Here g� is a transvection and ng = (qn�1 � 1)(qn�1 + � � � + q + 1). Examininga Sylow-2 subgroup of PSL(n; q) we see that it contains at least 2(qn�1 � 1) L-conjugates of g. Since L� must contain one such Sylow 2-subgroup, we concludethat rg � 2(qn�1 � 1) and so ngrg < 12(qn�1 + � � � + q + 1). Since dg < 2ngrg , v <12(qn�1 + � � � + q + 1)2. Also, since L� < Pm and jPSL(n; q) : Pmj > qm(n�m), weconclude that, for n � 10, m � 2.For n < 10, the fact that 4 6 j�nm� implies that (n;m) = (7; 3); (8; 4) or (9; 4) ifm > 2. We rule these three possibilities out in turn:
� (9; 4): This gives q4(9�4) > q2n which is a contradiction.
� (8; 4): In this case, (q4 + 1)��jG : P4j which is impossible.
� (7; 3): In this case, jG : P3j = (q2� q+ 1)(q4 + � � �+ q+ 1)(q6 + � � �+ q+ 1) >12(q6 + � � �+ q + 1)2 > v which is a contradiction.
Note that if m = 2 and n � 0; 1(4) then (q2 + 1)��v which is impossible. Hencewhen m = 2 we assume that n � 2; 3(4).

6.2.4 Cases to be examined
We now state those values ofm for which L� < Pm gives a potential transitive actionof G on P:

1. p = 2: m = 1 (n � 5) or 2 (n � 6);
2. p 6� 1(3), p odd:

� n odd: m = 1 (n � 5), m = 2 (n � 7) or (n;m) = (7; 3);� n even: m = 2 (n � 6), m = 4(n � 12) or (n;m) = (14; 6);
3. p � 1(3):

� n even: m = 2 (n = 14 or n � 38), m = 4; 6; 8 (n > 70);� n odd: m = 1; 2 (n � 7), m = 3 (n � 39), m = 4 (n > 70).
Remark. Note that n = 4 is now done. We will assume that n � 5 from now on.15



All that remains is to go through the listed cases one at a time assuming thatL� lies inside the given Pm and so jL : Pmj divides v. We seek a contradiction. Webegin with a preliminary lemma and corollary which will be useful for counting thenumber of involutions in L�:
Lemma 23. Suppose that q is an odd prime power. Assume that the following twomatrices are involutions in SL(n; q), then they are conjugate in SL(n; q):� V X10 W

� ; � V 00 W
�

where V 2 GL(m; q), W 2 GL(n �m; q) and X1 2 M(m � (n �m); q), the set ofm by n�m matrices over the �eld of q elements.
Proof. Since these matrices are involutions we must have

V X1 +X1W = 0:
Take X such that 2X = �X1W . Then AX = X1 +XW and we �nd that:� I X0 I

�� V X10 W
� = � V 00 W

�� I X0 I
� :

Corollary 24. Let q be odd and suppose that L� lies inside a parabolic subgroup,Pm, of L where Pm = ^A : (B : C) with C = q � 1 and
A = � I M(m� (n�m); q)I

� ; B = � SL(m; q) SL(n�m; q)
� :

De�ne �(L�) to be equal to the following set:�� Y1 Y2
� ��� Y1 ZY2

� 2 A : (B : C); for some Z 2M(m� (n�m); q)� ;
the projection of Pm onto the Levi quotient restricted to L�. Now assume that L�contains an involution g which is the projective image of an involution in SL(n; q),
g� = � X1 YX2

�.
Then rg is greater than or equal to the number of �(L�)-conjugates of the block

diagonal matrix � X1 X2
� in �(L�):

Note that in what follows we will assume that L� lies in a parabolic subgroupwhich is L-conjugate to one of the above form. In fact, in PSL(n; q) where n � 3,there are two conjugacy classes of parabolic subgroups. However, since these twoclasses are fused by a graph automorphism, our method extends trivially to coverthe other class. 16



6.3 Remaining Cases
6.3.1 Case: p = 2;m = 1
Take g� a transvection as before, with ng = (qn�1�1)(qn�1+ � � �+q+1). Recall thatrg � 2(qn�1� 1) and so ngrg � 12(qn�1+ � � �+ q+1) and so v < 12(qn�1+ � � �+ q+1)2:Then we suppose that L� = ^A:B:C � P1 = [̂qn�1] : (SL(n�1; q):(q�1)). SinceL� contains a Sylow 2-subgroup of L, A = [qn�1] with B � SL(n�1; q), C � (q�1).Now jL : P1j = qn�1+ � � �+ q+1 and thus jSL(n� 1; q) : Bj < 12(qn�1+ � � �+ q+1).We know that B contains a Sylow 2-subgroup of SL(n� 1; q) and so we are in oneof the following situations:

� B � P �m1 , a parabolic subgroup of SL(n � 1; q). For n � 5 and m1 � 2observe that jSL(n � 1; q) : P �m1 j > q2(n�3) > 12(qn�1 + � � � + q + 1) whichis impossible. Thus m1 = 1 and B < [qn�2] : GL(n � 2; q). In this case(qn�1+� � �+q+1)(qn�2+� � �+q+1)��v and B = [qn�2] : B�1 where jGL(n�2; q) :B�1 j < q. Thus B > B�1 > SL(n� 2; q).
� B = SL(n� 1; q).
Consider the second situation �rst. We know that, for some �, �(L�) contains� 1 SL(n� 1; q)

� :We also know that projective images of the following matrices
are conjugate in L:

g� =
0
BBBBB@

1 0 � � � 0 11 0. . . ...1 01

1
CCCCCA ; h� =

0
BBBBBBB@

1 1 0 � � � 0 11 0. . . ...1 01

1
CCCCCCCA
:

Thus, by Corollary 24, rg � rg (̂ SL(n� 1; q)) � (qn�2� 1)(qn�2+ � � �+ q+1). Thisimplies that ngrg < q(q + 1) and v � q4 + q2 + 1. This is a contradiction for n � 5.Thus we assume that we are in the �rst situation. The same argument thoughimplies that rg � rg (̂ SL(n�2; q)) � (qn�3�1)(qn�3+ � � �+q+1). This implies thatngrg < (q2+1)2 and so ngrg � q4+ q2+1. This means that v � q8+4q6+7q4+6q2+3.We know that (qn�1 + � � �+ q + 1)(qn�2 + � � �+ q + 1)jv which gives a contradictionfor n � 6.For n = 5 we �nd that (q3 + q2 + q + 1)jv hence (q2 + 1)jv which implies that aprime p1 � 2(3) divides into v which is a contradiction.
6.3.2 Case: p = 2;m = 2
We assume here that n � 6 and L� � P2 �= [̂q2(n�2)] : (SL(2; q)�SL(n�2; q)):(q�1).Now P2 has index (qn�1+ � � �+q+1)(qn�2+ � � �+q+1)=(q+1). We know, as before,that v < 12(qn�1+� � �+q+1)2 hence jP2 : L�j < q(q+1). Now observe that SL(n�2; q)17



does not have a subgroup of index less than q(q + 1) hence L� > SL(n � 2; q). Asfor m = 1, this implies that v � q8+4q6+7q4+6q2+3. This must be greater thanthe index of P2 and so we must have n = 6.In fact when we examine n = 6 we �nd that, to satisfy the bound, we must haveq = 2. Explicit calculation of ng, rg and jL : P2j excludes this possibility.
Remark. From here on we assume that p is odd and n � 5.
6.3.3 Case: p odd, p 6� 1(3), n odd, m=1
For the next two cases take g as before for p odd and n odd with ng = qn�1(qn�1 +� � �+ q + 1). We suppose that L� = ^A:B:C < P1 = [̂qn�1] : (SL(n� 1; q):(q � 1)).Here A � [qn�1], B � SL(n� 1; q) and C � q� 1. Note that jL : P1j = qn�1+ � � �+q + 1.Suppose �rst that p 6= 3. Then ngrg jqn�1+� � �+q+1 and so v < 2(qn�1+� � �+q+1)2.Then jP1 : L�j < 2(qn�1 + � � � + q + 1). Now L� contains a Sylow-p subgroup of Lsince p � 2(3). Hence B either lies in a parabolic subgroup, P �m1 , of SL(n� 1; q) orB = SL(n� 1; q).Observe that if m1 is odd then jSL(n�1; q) : P �m1j is even. Thus we must assumethat m1 is even, in which case jSL(n� 1; q) : P �m1j > q2(n�3) > 2(qn�1 + � � �+ q + 1)for n � 6. This is a contradiction. For n = 5, P �2 also has even index in SL(4; q)so can be excluded. Hence we assume that B = SL(n � 1; q) and jCj is even. We
know that, for some �, �(L�) contains � �1 SL(n� 1; q):2

� : Thus, appealing
to Corollary 24, we conclude that rg � rg (̂ SL(n�1; q):2) � qn�2(qn�2+ � � �+ q+1)and so ngrg < q(q + 1). This means that v � q4 + q2 + 1 which is a contradiction forn � 5.We are left with the case where p = 3. Now L� contains a group of index 3 ina Sylow-3 subgroup of L and jL : L�j is odd. Hence B either lies in a parabolicsubgroup, P �m1 of SL(n�1; q) or B = SL(n�1; q). The case where B = SL(n�1; q)is ruled out exactly as for p 6= 3.Consider B � P �m1 < SL(n�1; q) and suppose that n � 8. Then v > q7+� � �+q+1 > 1333 and ngrg > 31. This, combined with the fact that ngrg � 3(qn�1+ � � �+ q+1),means that v < 12(qn�1 + � � �+ q + 1)2.Now B lies in P �m1 and som1 must be even. Then jSL(n�1; q) : P �m1j > q2(n�3) >12(qn�1 + � � �+ q + 1) for n � 8 which is a contradiction. We are left with n = 5 or7. If n = 5 then we exclude it as for p 6= 3.For n = 7, we know that dg < 2ngrg � 6(q6+ � � �+ q+1) and so v < 18(q6+ � � �+q + 1)2. Thus we require that q2(7�3) < jSL(n� 1; q) : P �m1j < 18(q6 + � � � + q + 1).This is impossible for q � 9.When q = 3 we �nd that ngrg j3(q6 + � � �+ q+ 1) = 3279. Now ngrg = u2� u+ 1 forsome integer u and so ngrg � q6 + � � �+ q + 1 and we refer to the case where p 6= 3.
Remark. Note that we have now covered all possible cases where n = 5 and weassume that n � 6 from here on. 18



6.3.4 Case: p odd, p 6� 1(3), n odd, m = 2
In this case L� = ^A:B:C � P2 �= [̂q2(n�2)] : (SL(2; q) � SL(n � 2; q)):(q � 1)where A � [qn�1], B � SL(2; q) � SL(n � 2; q) and C � q � 1. Now jL : P2j =(qn�3 + � � �+ q2 + 1)(qn�1 + � � �+ q + 1).Now we know that ngrg j3(qn�1 + � � � + q + 1). Thus v < 12(qn�1 + � � � + q + 1)2and hence jP2 : L�j < 12(q+ 1)2. If (n; q) 6= (7; 3) then no subgroup of SL(n� 2; q)has index less than 12(q + 1)2 unless (n; q) = (7; 3). If (n; q) = (7; 3) then the onlysubgroups of SL(5; q) with indices less than 12(3+ 1)2 are the parabolic subgroups.These have indices in SL(5; q) divisible by 11 and so can be excluded. This impliesthat in all cases B = B� � SL(n� 2; q) for B� some subgroup of SL(2; q).Now B = B� � SL(n � 2; q) implies that �(L�) � SL(n � 2; q):2 and so, byCorollary 24, rg > rg (̂ SL(n� 2; q)) > qn�3(qn�3 + � � �+ q + 1) and ngrg < q2(q2 + 1)and so v < q8 + q4 + 1. This gives a contradiction for n � 7.
6.3.5 Case: p odd, p 6� 1(3), n even, m = 2
For the next two cases, take g as earlier for p odd and n even. Then ng =q2(n�2)(qn�2 + � � � + q + 1)(qn�2 + � � � + q2 + 1). As in the previous case, L� =^A:B:C � P2 �= [̂q2(n�2)] : (SL(2; q) � SL(n � 2; q)):(q � 1) where A � [q2(n�2)],B � (SL(2; q)� SL(n� 2; q)), C � q � 1 and �(L�) = ^B:C. Now P2 has index inL, (qn�2 + � � �+ q2 + 1)(qn�2 + � � �+ q + 1).We know, by Lemma 15, that one of the following must hold:

� B � (SL(2; q)�B1) for some B1 < SL(n� 2; q);
� B = (B2 � SL(n� 2; q)) for some B2 � SL(2; q).
Consider the second possibility. As previously Corollary 24 implies that rg �rg (̂ SL(n�2; q)) � q2(n�4)(qn�4+� � �+q+1)(qn�4+� � �+q2+1). Then ngrg � q4(q2+1)2and v � q18 which is a contradiction for n > 11. We will need to consider n = 6; 8; 10.We turn to the �rst possibility above. We know that ngrg j3(qn�2+� � �+q+1)(qn�2+� � �+ q2 + 1). This implies that v < 9(qn�2 + � � �+ q + 1)3(qn�2 + � � �+ q2 + 1) andso jP2 : L�j < 9(qn�2+ � � �+ q+1)2. Thus we must have B1 lying inside a parabolicsubgroup, P �m1 , in SL(n�2; q) with jSL(n�2; q) : P �m1j < 9(qn�2+ � � �+ q+1)2. Weknow that m1 must be even. If m1 � 4 then we know that jSL(n � 2; q) : P �m1j >q4(n�2�4) which is a contradiction for n � 12. Thus n�2 � 8 in which case m1 = 4 isnot allowed and so this can also be excluded. Thus we must have m1 = 2. Howeverwe know that �n2� is odd and so n � 2(4), hence n � 2 � 0(4), hence �n�22 � is evenand jSL(n� 2; q) : P �2 j is even by Lemma 21. We may exclude this possibility.We are left with the possibility that n = 6; 8 or 10 and B = B2 � SL(n � 2; q)for some B2 � SL(2; q).Observe �rst that A:B:C=A acts on the non-identity elements of A by conjuga-tion. Since B = B2�SL(n�2; q), this action has orbits of size divisible by qn�2�1.When p = 3, qn�2 � 1 does not divide into q2(n�2)3 � 1 hence in all cases we mayassume that A = [q2(n�2)]. 19



Then, for some �, A : B (or its transpose) has the following form and containsthe following conjugate of g�:

h� =
0
BBBBB@

I2�2 �I2�2 1 . . . 1

1
CCCCCA 2 � B2 ASL(n� 2; q)

� :

Observe that jA : CA(h�)j = q4. Thus rg � q4rg (̂ SL(n � 2; q)) � q2n�4(qn�4 +� � �+ q + 1)(qn�4 + � � �+ q2 + 1). Thus ngrg � (q2 + 1)2. In fact we may assume thatngrg � q4 + q2 + 1 and so dg � q4 + 3q2 + 3 and v � (q4 + q2 + 1)(q4 + 3q2 + 3):Now jL : P2j = (qn�2+ � � �+q2+1)(qn�2+ � � �+q+1) > (q4+q2+1)(q4+3q2+3)for n � 6; q � 3. This is a contradiction.
Remark. Observe that we have now completed the case where n = 6. We assumethat n � 7 from now on.
6.3.6 Case: p odd, p 6� 1(3), n even, m = 4
We assume, for this case, that n � 12. Similarly to the previous case, L� =^A:B:C � P4 �= [̂q4(n�4)] : (SL(4; q) � SL(n � 4; q)):(q � 1) where A � [q4(n�4)],B � (SL(4; q)� SL(n� 4; q)), C � q � 1 and �(L�) = ^B:C.As before, ng = q2(n�2)(qn�2+� � �+q+1)(qn�2+� � �+q2+1) and so ngrg j3(qn�2+� � �+q+1)(qn�2+� � �+q2+1). This implies that v < 9(qn�2+� � �+q+1)3(qn�2+� � �+q2+1).Then we have

jL : P4jjP4 : L�j < 9(qn�2 + � � �+ q + 1)3(qn�2 + � � �+ q2 + 1)
Since 9(qn�2+ � � �+ q+1)3(qn�2+ � � �+ q2+1) < q4n�4 we must have jP4 : L�j < q12.We know, by Lemma 15, that one of the following must hold:

� B � (SL(2; q)� B1) for some B1 < SL(n� 4; q). In this case jSL(n� 4; q) :B1j < q12. For n � 12 this implies that B1 lies in the parabolic subgroup P �1of SL(n� 4; q). But this has even index and so can be excluded.
� B = (B2 � SL(n� 4; q)) for some B2 � SL(4; q).
Thus the second possibility must hold. As before Corollary 24 implies thatrg � rg (̂ SL(n � 4; q)) � q2(n�6)(qn�6 + � � � + q + 1)(qn�6 + � � � + q2 + 1). Thenngrg < q8(q4 + 1)2 and

dg < ngrg + 2rngrg + 2 < (q8 + q4 + 3)q4(q4 + 1)
giving v � q12(q4 + 1)3(q8 + q4 + 3) which is a contradiction for n � 12.20



6.3.7 Case: p odd, p � 1(3), n even, m = 2; 4; 6 or 8
We will take g to be the projective image of,

g� =
0
BBBBB@
�1 . . . �1 1 1

1
CCCCCA :

Then ng = q2(n�2)(qn�2+� � �+q2+1)(qn�2+� � �+q+1) and we know that v < q8n�15.Recall that when m = 2 we may assume that n = 14 or n � 38, otherwise n > 70.Let L� = ^A:B:C � Pm �= [̂q2(n�m)] : (SL(m; q) � SL(n �m; q)):(q � 1) whereA � [qm(n�m)], B � (SL(m; q)�SL(n�m; q)), C � q� 1 and �(L�) = ^B:C. Notethat jL : Pmj > qm(n�m) and so jPm : L�j < q8n�15�mn+m2 .There are two possibilities for B, by Lemma 15:
� B = (B2� SL(n�m; q)) for some B2 � SL(m; q). Then Corollary 24 impliesthat rg � rg (̂ SL(n�m; q)) � q2(n�m�2)(qn�m�2+� � �+q+1)(qn�m�2+� � �+q2+1). Then ngrg � q2m(qm+1)2 and v � q8m+3 Thus we need m(n�m) < 8m+3which implies that m > n�82 which is a contradiction.
� B � (SL(m; q) � B1) for some B1 < SL(n � m; q). By Liebeck and Saxl[LS85], the projective image of B1 in PSL(n�m; q) must lie in families C1;C2or C5. The latter two possibilities imply that,

14n(n� 1) < 8n� 15�mn+m2
=) n2 � (33�m)n+ (60�m2) < 0=) n < 33�m=) n = 14;m = 2:

We examine the remaining situation with n = 14;m = 2. Then one sub-group in C2 has index less than q8n�15�mn+m2 = q6n�11, namely the projec-tive image of Q2 �= (SL(6; q) � SL(6; q)):(q � 1):2 which has even index inPSL(12; q). Similarly the only subgroup in C5 with index less than q6n�11 isNPSL(12;q)(PSL(12; q0)) where q = q20. This also has even index in PSL(12; q)and so can be excluded.Thus B1 lies in a parabolic subgroup P �m1 of SL(n � m; q). Since n � m iseven, we must have m1 even to have i := jSL(n �m; q) : P �m1j odd. Observethat qm1(n�m�m1) < i < q8n�15�mn+m2 . Suppose �rst that m +m1 � 10. Theupper and lower bounds for i imply that
(10�m)(n� 10) < 8n� 15�mn+m2

=) 2n < m2 � 10m+ 85=) n < 35;m = 2:21



We examine the remaining situation with n < 35;m = 2. Referring to Corol-lary 22 the only value of n less than 35 for which P2 has admissible indexis n = 14. But in this case m1 = 8 is too large to de�ne a parabolic groupin SL(12; q). This case is excluded. Thus we assume that m + m1 � 8 andm � 6. We split into cases:
{ Suppose that m = 6 and so m1 = 2. Then jL : P6j odd implies that �n6�is odd and hence n � 2(4). However this implies that �n�62 � is even andso i is even which is impossible.{ Suppose that m = 4 and so m1 � 4. Recall that, by Corollary 22, 5 doesnot divide into �n4� hence n � 4(5). However this implies that 5 dividesinto �n�4m1 � which implies, by Lemma 21, that i is divisible by a primep1 � 2(3) which is impossible.{ Suppose that m = 2 and so m1 � 6. We exclude m1 = 2 or 6 in the sameway as we excluded m1 = 2 for m = 6. We exclude m1 = 4 in the sameway as we excluded m1 = 4 for m = 4. Hence we are done.

6.3.8 Case: p odd, p � 1(3), n odd, m = 1; 2; 3 or 4
We will take g to be the projective image of,

g� =
0
BBB@
�1 . . . �1 1

1
CCCA :

Then ng = qn�1(qn�1 + � � � + q + 1) and we know that v < q4n�3. Furthermore, byLemma 14, we know that jvjp � qn�1. Recall that, for m = 1 or 2, we have n = 7or n � 13, for m = 3 we have n � 39 and for m = 4 we have n > 70.Then, in this case, L� = ^A:B:C � Pm = [̂qn�m] : (SL(n � m; q):(q � 1))where A � [qn�m], B � SL(n � m; q), C � q � 1 and �(L�) = ^B:C. Note thatjL : Pmj > qm(n�m) and so jSL(n�m; q) : Bj < q4n�3�mn+m2 .There are two possibilities for B, by Lemma 15:
� B = (B2 � SL(n�m; q)) for some B2 � SL(m; q). We know that 2 � C andso, by Corollary 24, rg � rg (̂ SL(n�m; q):2) � qn�m�1(qn�m�1 + � � �+ q+ 1).Hence ngrg < qm(qm + 1) and v � q4m + q2m + 1. Thus we must have

m(n�m) < 4m+ 1=) m2 + (4� n)m+ 1 > 0=) m > n� 5:
This is a contradiction.

� B � (SL(m; q) � B1) for some B1 < SL(n � m; q). By Liebeck and Saxl[LS85], the projective image of B1 in PSL(n �m; q) must lie in a subgroup22



M of PSL(m; q) from families C1;C2 or C5. The latter two possibilities implythat,
14n(n� 1) < 4n� 3�mn+m2

=) n2 � (17� 4m)n+ (12� 4m2) < 0=) n < 17� 2m:
This implies that either m = 2 and n = 7 or m = 1 and n = 7; 13. Infact, when m = 1 and n = 13 the initial inequality is not satis�ed and thispossibility can be excluded. When m = 2 and n = 7, the only possibility is ifB1 � M = NL5(q)(L5(q0)) where q = q20. But jSL(n � 2; q) : M j is even hereand can be excluded. When m = 1 and n = 7 we must have M a subgroup ofSL(6; q) in C2 or C5 and jSL(6; q) : M j < q19. The only such subgroups areM = (̂SL(3; q))2:(q � 1):2 and M = NL(6;q)(L(6; q0)) where q = q20. Both ofthese subgroups have even index in SL(6; q) and hence B1 does not lie insidesuch an M .Thus B1 lies in a parabolic subgroup, P �m1 of SL(n�m; q). Write i := jSL(n�m; q) : P �m1j and observe that qm1(n�m�m1) < i < q4n�3�mn+m2 . Suppose �rstthat m+m1 � 5. The upper and lower bounds for i imply that

(5�m)(n� 5) < 4n� 3�mn+m2
=) n < m2 � 5m+ 28:

This implies that n < 24 and either m = 1 or m = 2. These cases imply thatm1 � 3. Now for i to be divisible only by primes equivalent to 1(3) or by 3but not 9, we must have �n�mm1 � divisible only by primes equivalent to 1(3) orby 3 but not 9 and hence n�m � 39 which is a contradiction.Thus m +m1 � 4 and m � 3. Note that if m is odd then m1 must be evensince i is odd implies that �n�mm1 � is odd. This excludes m = 3 and ensuresthat, for m = 1, m1 = 2.Observe some facts about the remaining cases:
{ Suppose that m = 1 and m1 = 2. We must have n � 39 to ensure that nand �n�12 � are divisible only by primes equivalent to 1(3) or by 3 but not9. Then we have B1 � P �2 �= [q2(n�3)] : (SL(2; q) � SL(n � 3; q)):(q � 1)and, since jSL(n� 1; q) : P �2 j > q2(n�3), then jP �2 : B1j < qn+4.{ Suppose that m = 2. If n = 7 then B1 lies inside a parabolic subgroup ofSL(5; q). But 5 divides into �5j� for j = 1; 2 which is not allowed. Thusn � 39 as this is the next smallest number with allowable divisors of�n2�. Consider m1 = 2. Since �n2� is odd we must have n � 3(4) and so�n�22 � is even which is a contradiction. Hence m1 = 1 and B1 � P �1 �=[qn�3] : SL(n � 3; q):(q � 1). Now jSL(n � 2; q) : P �1 j � qn�3 and sojP �1 : B1j < qn+4. 23



Now the only subgroup of SL(n � 3; q) in C1;C2 or C5 with index less thanqn+4 is a parabolic subgroup P �1 which has even index. Thus, for m = 1 andm = 2, B1 � SL(n�3; q):2 and so, by Corollary 24, rg � rg (̂ SL(n�3; q):2) �qn�4(qn�4 + � � �+ q + 1). Hence ngrg < q3(q3 + 1) and v � q12 + q6 + 1 which isa contradiction.
6.3.9 Exceptional cases
We have deferred two cases in the process of our proof. Firstly we need to considerthe possibility that n = 7; p 6� 1(3) is odd and L� � P3, a parabolic subgroupstabilizing a 3-dimensional subspace in the vector space for G. We exclude thispossibility as follows:Refer to Section 6.2.1 when np is odd and suppose that L� < P3. In this casengrg j3(q6 + � � �+ q + 1) and jL : P3j = (q6 + � � �+ q + 1)(q6 + q4 + q3 + q2 + 1). Thusv > q12 and ngrg > q5 � 243.Suppose �rst that ngrg < q6+ � � �+q+1. Then u2�u+1 = ngrg � 35(q6+ � � �+q+1)and u2 + u+ 1 = dg < q6 + q4 + q3 + q2 + 1 since ngrg > 243. Thus v < jL : P3j whichis a contradiction.Then consider the case where ngrg � q6 + � � � + q + 1. We must have v � 3(q6 +� � �+ q+1)(q6+ q4+ q3+ q2+1): Suppose that ngrg = q6+ � � �+ q+1. Then our lowerbound on v implies that dg � 3(q6 + q4 + q3 + q2 + 1) > 2ngrg which is impossible.The only other possibility is that ngrg = 3(q6 + � � � + q + 1) = u2 � u + 1. But thenu2 + u+ 1 = dg < 7(q6 + q4 + q3 + q2 + 1) which again is impossible for q � 7. Forq = 3; 5 we �nd that 3(q6+ � � �+ q+1) 6= u2� u+1 for integer u and so these casescan be excluded.The second possibility that we need to consider is when n = 14; p 6� 1(3) isodd and L� � P6, a parabolic subgroup stabilizing a 6-dimensional subspace in thevector space for G. We exclude this possibility as follows:Refer to Section 6.2.2 when n is even and p is odd and observe that v < 9q51and ng < q49. Furthermore

L� � P6 = [̂q48] : (SL(6; q)� SL(8; q)):(q � 1)
which has index greater than q48. Thus jP6 : L�j < 9q3. Now SL(6; q) and SL(8; q)do not have any subgroups with index this small, hence L� > ^A:(SL(6; q)�SL(8; q))where A = [q48]\L�. Observe that j[q48] : Aj � 3. In fact, A:(SL(6; q)�SL(8; q))=Aacts by conjugation on the non-identity elements of A with orbits of size divisibleby q5 + � � �+ q + 1, hence A = [q48]. Then, for some �, A : (SL(6; q)� SL(8; q)) (orits transpose) has the following form and contains the following conjugate of g�:

h� =
0
BB@
�1 I5�5 �1 I7�7

1
CCA 2 � SL(6; q) ASL(8; q)

� :
24



Let h be the projective image of h�. Then rg > rh(̂ (SL(6; q)�SL(8; q))) > q10:q14 =q24. Then h is certainly centralized by a subgroup of A of size no more than q36.Hence rg > q36. This implies that ngrg < q13 and v < q27 which is a contradiction.Our proof of Proposition 18 is complete.
7 L = PSL(2; q) or Ly = PSL(3; q)
In this section we prove the following proposition:
Proposition 25. Suppose that G contains a minimal normal subgroup L isomorphicto PSL(2; q) with q � 4 or that G has a unique component L such that Ly isisomorphic to PSL(3; q) with q � 2. If G acts transitively on a projective plane Pof order x then P is Desarguesian and G � PSL(3; x).

Again we seek to demonstrate that our hypothesis leads to a contradiction. Notethat the result for n = 2 is known to have been proven for the case where G =PSL(2; q) by Camina, Neumann and Praeger but has not been published. Notealso that the reason that our statement distinguishes between a component in thePSL(3; q) case and a minimal normal subgroup in the PSL(2; q) case is given byLemma 16.
7.1 Preliminary facts
We will need some preliminary facts about PSL(2; q) and PSL(3; q). As beforewe assume that (G=CG(L))=Z(L) � P�L(n; q) since jAutL : P�L(n; q)j � 2; n =2; 3. Observe that both PSL(2; q) and PSL(3; q) have a single conjugacy class ofinvolutions of size, in odd characteristic, 12q(q � 1) and q2(q2 + q + 1) respectivelyand, in even characteristic, q2�1 and (q2�1)(q2+q+1) respectively. Both also havethe property that a Sylow 2-subgroup contains at least 2 such involutions. Sincea point-stabilizer must contain such a Sylow 2-subgroup we conclude that rg � 2.Note also that PSL(3; q) has a single conjugacy class of transvections and this classdoes not fuse with any other in P�L(n; q).Kleidman [Kle87] lists explicitly the maximal subgroups of PSL(3; q) and Liebeckand Saxl[LS85] assert that the maximal subgroups of odd degree lie, as before, infamilies C1;C2 and C5 for q > 2. Note that PSL(3; 2) �= PSL(2; 7) and so we willdeal with this group in the PSL(2; q) case. We state a result from Suzuki[Suz82]which gives the structure of all the subgroups of PSL(2; q):
Theorem 26. Let q be a power of the prime p. Let d = (q� 1; 2). Then a subgroupof PSL(2; q) is isomorphic to one of the following groups.

1. The dihedral groups of order 2(q � 1)=d and their subgroups.
2. A parabolic group P1 of order q(q�1)=d and its subgroups. A Sylow p-subgroupP of P1 is elementary abelian, P � P1 and the factor group P1=P is a cyclicgroup of order (q � 1)=d. 25



3. PSL(2; r) or PGL(2; r), where r is a power of p such that rm = q.
4. A4; S4 or A5.

Proof. See [Suz82, Theorem 6.25].
Note that when p = 2, the above list is complete without the �nal entry. Fur-thermore, referring to [Kle87], we see that there are unique PSL(2; q) conjugacyclasses of the maximal dihedral subgroups of size 2(q � 1)=d as well as a uniquePSL(2; q) conjugacy class of parabolic subgroups P1.The result of Liebeck and Saxl[LS85] asserts that all of the families of maximalsubgroups can, for some q, contain a subgroup of odd index in PSL(2; q) thus wewill simply go through the possibilities given by Suzuki in the PSL(2; q) case. Wewill use the results of Kleidman [Kle87] to examine conjugacy classes of subgroupsof PSL(2; q).In the PSL(3; q) case we will also need the subgroups of GL(2; q) which can beeasily obtained from the subgroups of PSL(2; q).

Theorem 27. H, a subgroup of GL(2; q), q = pa, is amongst the following up toconjugacy in GL(2; q). Note that the last two cases may be omitted when p = 2.
1. H is cyclic;
2. H = AD where A � �� 1 0� 1

� : � 2 GF (q)�
and D � N(A), is a subgroup of the group of diagonal matrices;

3. H =< c; S > where cjq2 � 1, S2 is a scalar 2-element in c;
4. H =< D;S > where D is a subgroup of the group of diagonal matrices, S isan anti-diagonal 2-element and jH : Dj = 2;
5. H =< SL(2; pb); V > or contains < SL(2; pb); V > as a subgroup of index 2and here bja, V is a scalar matrix. In the second case, pb > 3;
6. H= < �I > is isomorphic to S4 � C, A4 � C, or (with p 6= 5) A5 � C, whereC is a scalar subgroup of GL(2; q)= < �I >;
7. H= < �I > contains A4 � C as a subgroup of index 2 and A4 as a subgroupwith cyclic quotient group, C is a scalar subgroup of GL(2; q)= < �I >.

Proof. In this proof and subsequently, we will refer to subgroups of GL(2; q) as beingof type y, where y is a number between 1 and 7 corresponding to the list above.When the characteristic is odd, the proof of this result is given in [Blo67b,Theorem 3.4]. When the characteristic is even we know that GL(2; q) �= PSL(2; q)�(q� 1). Then, for H < GL(2; q) either H � SL(2; q) and we are in type 5 above, orwe have H � H1 � (q � 1) where H1 is maximal in PSL(2; q).
26



If H1 = D2(q�1) then H of types 1 and 4 accounts for all H � H1� (q�1). Sincethere is only one conjugacy class of D2(q�1) in PSL(2; q) all H � H1 � (q� 1) mustbe of type 1 or 4 in GL(2; q).Similarly H1 = D2(q+1) is accounted for by H of types 1 and 3 in GL(2; q), whileH1 = P1 is accounted for by H of type 2 in GL(2; q).Finally consider H � PSL(2; q0)�(q�1). Any maximal subgroup of PSL(2; q0)must be an intersection with D2(q�1) or P1 (since these intersections exist and thereis only one conjugacy class of such maximal subgroups) or is of type PSL(2; q1)where qo = qm1 ;m prime. Thus any subgroup of PSL(2; q0) lies inside D2(q�1) or P1and so is already accounted for, or else equals PSL(2; q1) where q = qb1.Thus we must consider H � PSL(2; q1) � (q � 1) and H 6� B � (q � 1) forB < PSL(2; q1). Then fa : (a; 1) 2 Hg is normal in fa : (a; b) 2 Hg �= PSL(2; q1).Provided q1 > 2 this implies that fa : (a; 1) 2 Hg = 1 and H is cyclic or fa : (a; 1) 2Hg �= PSL(2; q1) and H is a subgroup of GL(2; q) of type 5.If q1 = 2 then PSL(2; q1) � D2(q�1) and the case is already accounted for.
Note that a subgroup of type 1 in GL(2; q) is never maximal in GL(2; q). Fur-thermore type 5 includes GL(2; q) itself. We now proceed with our analysis.

7.2 L = PSL(2; q)
Assume that L = PSL(2; q); q � 4. We exclude the case where G=CG(L) containsPGL(2; q) since then G has a normal subgroup N of index 2. Then N=CN(L) con-tains only �eld automorphisms and N acts transitively on P (since the number ofpoints in P is odd.) Hence we assume that G=CG(L) contains only �eld automor-phisms and jG=CG(L)j � jPSL(2; q)j: logp q.For q = 4; 5 or 9, L is isomorphic to an alternating group. This case has alreadybeen examined [CNP03] and so these values of q can be excluded. Observe that P1,a parabolic subgroup of PSL(2; q), has odd index if and only if p = 2. Furthermoreif p = 2 then L� � P1 since L� must contain a Sylow 2-subgroup of PSL(2; q). Thisimplies that ng = q2�1, rg = q�1 and u2�u+1 = ngrg = q+1. But then u2�u = qwhich is impossible. Hence we assume L� does not lie in a parabolic subgroup ofPSL(2; q) and that p is odd.Now the only maximal subgroups of PSL(2; q) which contain a Sylow p-subgroupof PSL(2; q) are the parabolic subgroups. Also, for q = 3a with a � 3, the onlymaximal subgroups containing a subgroup of index p in a Sylow p-subgroup ofPSL(2; q) are the parabolic subgroups. Thus Lemma 9 implies that p � 1(3) and weassume this from here on. Note that, for an involution g 2 PSL(2; q), ng = 12q(q�1).We examine the non-parabolic subgroups of L as candidates to be L�, usingTheorem 26.If L� = A4 then rg = 3 and, since rg��ng and p � 1(3), we must have ng = 12q(q�1)and q � 3(4). Similarly if L� = A5 then rg = 15 and q � 3(4). But then q+14 dividesinto jL : L�j. Since q+14 � 2(3) this contradicts Lemma 9.If L� = S4 then rg = 9 and once more q � 3(4). In fact ngrg = q(q�1)18 . Then inPSL(2; q) there is a unique conjugacy class of elements of order 4. Let h be such27



an element and observe that rh = 6. Now the �xed set of h lies inside the �xed setof g = h2 and dh = 23dg = 23(u2+u+1). But g �xes a Baer subplane and so Fixh isthe �xed set of a quasicentral collineation of Fixg (see Section 4) and jFixhj dividesjFixgj. Thus 13(u2 + u + 1) = u + pu + 1 and u = 4. But then q(q�1)18 = ngrg = 13which is impossible.Now suppose that L� � Dq�1 so q�1 � 0(4). Then ngrg = 12 q(q�1)12 jL�j+1 . Now jngrg jp 6= 1and so jngrg jp = jvjp = q. Thus jL�j+ 2 divides into q � 1.De�ne m := q�1jL�j and assume �rst that m > 1. Observe that v = q q�1jL�j q�12 a forsome integer a and dg = jL�j+22 q�1jL�ja. If jL�j = 4 then ngrg = q(q�1)6 and, in fact,since q � 1(3), ngrg = q(q�1)6 . But then dg = 3(q+1)4 and, since q+14 � 2(3); this is acontradiction. Thus jL�j > 4.Now observe that m(jL�j+ 2) > q � 1; furthermore if (m� 1)(jL�j+ 2) = q � 1then q�1�jL�j+2m�2 = q�1. Reducing modulo 4, this equation gives 2m � 0(4)which is a contradiction since m��v. Thus (m � 2)(jL�j + 2) � q � 1. This impliesthat m � jL�j+ 1 and so jL�j2 + jL�j � q � 1.Since ngrg < dg we have
q(q � 1)jL�j+ 2 < jL�j+ 22 q � 1jL�j a=) 2jL�jq(q � 1) < (jL�j2 + 4jL�j+ 4)(q � 1)a

=) jL�j < q + 1q a:
The �nal inequality follows by using the fact that jL�j > 4 and jL�j2+ jL�j � q� 1.It then implies that a > 3.Take h of maximal order in L�. Since jL�j > 4 we know that h is not aninvolution and nh = q(q � 1) and so nhrh = q(q�1)2 : Thus dh = q�1jL�ja which means thatdh < dg and h acts as an automorphism on the Baer subplane, Fixg. This impliesthat d2h < 3dg and so (q�1)2jL�j2 a2 < 3 jL�j+22 q�1jL�ja. This implies that q�1 < 12 jL�j2+ jL�jwhich is a contradiction.Hence m = 1 and jL�j = q � 1. We have two situations. If q � 3(4) thenng = 12q(q� 1) and rg = 12(q+1)+ 1. This means that ngrg is a not an integer, which
is impossible. If q � 1(4) then ngrg = 12 q(q+1)12 (q�1)+1 = q. Since jL : L�j = 12q(q + 1) we
must have dg a multiple of q+12 . The only possibility is that dg = 3(q+1)2 which meansthat q = 13 and v = 273.In this case an involution �xes a Baer subplane with 21 points. Within this Baersubplane a Sylow 2-subgroup of PSL(2; q) �xes 9 points. But the �xed set of acollineation group is a closed set and so can have at most 7 points [Dem97, 3.1.2and 3.2.18].Now suppose that L� = PGL(2; r) and q = ra where a � 2(4). Thus q � 1(4)and ngrg = 12 q(q+1)r2 . Now qr2 = jngrg jp 6= jvjp � qr and so jngrg jp = 1 and r = pq. Thenu2 � u + 1 = ngrg = 12(q + 1). Then u = c+12 where c = p2q � 1. This implies28



that u2 + u + 1 = q+3+2c2 . Now jL : L�j = 12(q + 1)pq and so pq divides intou2 + u + 1. Now observe that pq(pq+52 ) > q+3+2c2 . Furthermore pq(pq�12 ) < ngrg .Thus dg = pq(pq+e2 ) where e = 1 or 3.Now 2u = dg � ngrg = epq�12 . We also know that u = c+12 and so we must haveepq � 3 = 2p2q � 1. Since e = 1 or 3 we must have e = 3. Then
2p2q � 1 = 3pq � 3 =) 2p2q > 3pq � 3

=) q < ( 33� 2p2)2 < 182:
This implies that q = 72 or 132. But neither of these satisfy the equality 2p2q � 1 =3pq � 3 and so can be excluded.Now suppose that L� = PSL(2; r) and q = ra where a is odd. Then ngrg = 12 q(q�1)12 r(r�1)where q � 1 � 0(4). Now let h be an element of order r�12 . Then nhrh = q(q�1)r(r�1) : Ifr � 3(4) thenngrg = ra�1(ra�1 + ra�1 + � � �+ r + 1) > ra�1(ra�1 � ra�1 + � � � � r + 1) = nhrh :
Hence dg < dh which is impossible.Now if r � 1(4) then u2 � u + 1 = ngrg = ra�1(ra�1 � ra�2 + � � � � r + 1) and sora�1 � ra�2 < u < ra�1. This means that

r2a�2 � r2a�3 + � � � � ra + 3ra�1 � 2ra�2 < dg = ngrg + 2u;
dg = ngrg + 2u < r2a�2 � r2a�3 + � � � � ra + 3ra�1:

Now ra�1 + ra�2 + � � �+ r + 1 divides into dg. But observe that
(ra�1 + ra�2 + � � �+ r + 1)(ra�1 � 2ra�2 + 2ra�3 � � � � 2r + 3)< r2a�2 � r2a�3 + � � � � ra + 3ra�1 � 2ra�2;
(ra�1 + ra�2 + � � �+ r + 1)(ra�1 � 2ra�2 + 2ra�3 � � � � 2r + 4)> r2a�2 � r2a�3 + � � � � ra + 3ra�1:

This gives a contradiction and all possibilities are excluded.
7.3 Ly = PSL(3; q)
Once again we seek to show that our hypothesis leads to a contradiction; the usualaction of PSL(3; q) on a Desarguesian projective plane PG(2; q) will not arise dueto our restriction that all involutions �x a Baer subplane.Recall that, for g an involution, ng = q2(q2 + q + 1) for q odd and ng = (q2 �1)(q2 + q + 1) for q even. We assume here that q > 2 and we know that L� � M29



where M is a member of C1;C2 or C5. We consider the latter two possibilities �rst.Observe that, in both cases, p � 1(3) since p2 divides jPSL(3; q) :M j.Suppose that M 2 C2. Then v is divisible by q3(q+1)(q2+q+1)6 . Now the highestpower of q in ngrg is q2. Since v = ngrg dg and (ngrg ; dg) = 1 we must have q3 dividinginto dg and q2 dividing into rg. But then u2 � u+ 1 = ngrg � q2 + q + 1. This meansthat v � (q2 + q + 1)(q2 + 3q + 3) which is a contradiction.Suppose that M = NPSL(3;q)(PSL(3; r)) 2 C5 where q = ra and a � 3 is an oddinteger. Then jvjp = q3r3 . Suppose �rst that jvjp = jngrg jp � q2 and so q � r3. Thenwe must have a = 3, rgj(q2 + q + 1) and r3 dividing jL�j. Since rgj(q2 + q + 1) wecannot have L� = PSL(3; r) or PSL(3; r):3. But since r3 divides into jL�j we musthave L� inside a parabolic subgroup P of PSL(3; r):3. But observe that then v isdivisible by
jPSL(3; q) : P j = q3(q3 � 1)(q2 � 1)3r3(r � 1)(r2 � 1)which is divisible by 9, a contradiction. The only other possibility is that p 6 ��ngrgand ngrg � q2 + q + 1. But then q2 � rg � r2(r2 + r + 1). This is impossible.Hence we conclude that M 2 C1. Thus L� = ^A:B where A is a subgroup of anelementary abelian unipotent subgroup, U , of order q2 and B is a subgroup of oddindex in GL(2; q). We will write B\SL(2; q) = (2; q�1):B1 where B1 � PSL(2; q).We will take � to be such that L� � P1 where

P1 = ^�� 1detY a b0 Y
� : Y 2 GL2(q); a; b 2 GF (q)� :

Case: p 6� 1(3)
In this case jU : Aj � 3 and jP : B1\P j � 3 for some P 2 SylpPSL(2; q). If B1 is asubgroup of P �1 ; a parabolic subgroup of PSL(2; q), then q + 1 divides the index ofB in GL(2; q) and p = 2. Then L� is a subgroup of the Borel subgroup of PSL(3; q)and contains a normal Sylow 2-subgroup P . Thus rg = rg(P ) = 2q2 � q � 1 and sorg 6 ��ng which is a contradiction.If B1 = PSL(2; q) then B � SL(2; q). In fact, in odd characteristic, B mustcontain all matrices of determinant �1 since jGL(2; q) : Bj is odd. Furthermore inits action by conjugation on the non-identity elements of U , SL(2; q) is transitive.Hence A = U . Thus, in both odd and even characteristic, L� contains all involutionsof the parabolic group: q2(q+2) of them in the odd case, (q2� 1)(q+1) of them inthe even case. In both cases rg 6 ��ng which is a contradiction.For the remaining cases pjv and so p = 3: If B1 � Dq�1 then qjv and we musthave q = 3. In this case ng = 3213 and so u2 � u + 1 = ngrg = 3 or 13. If ngrg = 3then v = 21. This contradicts the fact that jL :M j = 13 and this divides into v. Songrg = 13; rg = 9; dg = 21 and, since B1 � Dq�1 we must have L� = [32] : (8:2). Butthen L� contains more than 9 involutions and this case is excluded.If B1 is a proper subgroup of PSL(2; q) isomorphic to A4; S4 or A5 then q = 3or 9. Now PSL(2; 3) �= A4 and so q = 3 is already excluded. If q = 9 then 5 dividesPSL(2; q) and so B1 �= A5, but jPSL(2; 9) : A5j is even which is impossible.30



If B1 �= PSL(2; r) or B1 �= PGL(2; r) for q = ra; a > 1 then qr jv. Hence q = 9and r = 3. but then 5 divides jPSL(2; 9) : B1j which is a contradiction.
Case: p � 1(3)
In this case 3 divides jPSL(3; q) :M j and thus we assume that B contains both theSylow 2 and Sylow 3-subgroups of GL(2; q). In fact L = PSL(3; q) since Z(L) issemiregular (see Lemma 16.) Then B is a subgroup of GL(2; q) of type 4, 5, 6 or 7in the list given earlier. Note that B contains the scalar subgroup of order 3 and sojGL(2; q) : Bj = ĵ GL(2; q) : ^Bj.Observe �rst that there are two P1-conjugacy classes of involutions in P1. Onlyone of these is centralized by a whole Sylow 2-subgroup, P , of P1. Call this conjugacyclass A.In the case where L� = A : B, that is we have a split extension, we know thatB contains a Sylow 2-subgroup of P1 and so the involution in the centre of B mustlie in A. This implies that we can conjugate by elements of P1 (i.e. choose �) suchthat this involution g is the projective image of

g� =
0
@ 1 0 00 �1 00 0 �1

1
A :

We conclude that B � �� 1detY Y
� : Y 2 GL(2; q)� :

We begin with two preliminary lemmas:
Lemma 28. Let p be odd and L� = ^A : B � P1. Suppose that jAj = q2 and that(jBj; p) = 1. Then jBj > jGL(2;q)jq2+q+1 .Proof. Let h be an element of order p. Then

v = nhrh dh = (q2 � 1)(q2 + q + 1)q2 � 1 dh = (q2 + q + 1)dh:
We have two possibilities:

1. Suppose that h is quasi-central. We must have dh = u2 + u + 1 where v =u4 + u2 + 1. Then u2 � u + 1 = nhrh = q2 + q + 1 and so dh = q2 + 3q + 3.Thus jBj = jGL(2;q)jq2+3q+3a for some integer a. If a = 1 then jBj is not an integer forq > 1. If a � 2 then jBj > jGL(2;q)jq2+q+1 as required.
2. Suppose that h is not quasi-central. Then d2h < v and so,� vq2 + q + 1

�2 < v =) v < (q2 + q + 1)2:
This implies that jBj > jGL(2;q)jq2+q+1 as required.31



Lemma 29. Let p be odd and L� = A : B � P1. Suppose that (jBj; p) = 1. ThenjAj 6= q.
Proof. Let h be an element of order p and suppose that jAj = q. Then

v = nhrh dh = (q2 � 1)(q2 + q + 1)q � 1 dh = (q + 1)(q2 + q + 1)dh:
But, since v is odd and q + 1 is even, this implies that dh is not an integer. This isa contradiction.

We now begin our analysis of the di�erent possibilities for B. In the case whereB < GL(2; q) is of type 4, 6 or 7 then Schur-Zassenhaus implies that A:B is a splitextension.Suppose �rst that B is a subgroup of type 4 in GL(2; q). Let � be such thatB �< D;S > whereD is the subgroup of diagonal matrices and S is an anti-diagonal2-element. Note that we must have q dividing into jAj.Now observe that, since B contains a Sylow 2-subgroup of D, we can choose �such that 0
@ 1 e f0 1 00 0 1

1
A 2 A =)

0
@ �1 e f0 �1 00 0 1

1
A2

2 A
=)

0
@ 1 �2e 00 1 00 0 1

1
A 2 A

=)
0
@ 1 e 00 1 00 0 1

1
A 2 A:

We conclude that A = A1 � A2 where
A1 �

8<
:
0
@ 1 e 00 1 00 0 1

1
A : e 2 GF (q)

9=
; ; A2 �

8<
:
0
@ 1 0 f0 1 00 0 1

1
A : f 2 GF (q)

9=
; :

Now consider an element, as given, of A1. Then,
X =

0
@ �1 0 00 0 a0 a�1 0

1
A 2 B =) ^

0
@ �1 e 00 0 a0 a�1 0

1
A2

2 L�
=) ^

0
@ 1 e 00 1 00 0 1

1
A
0
@ 1 �e �ae0 1 00 0 1

1
A 2 L�

=)
0
@ 1 0 ae0 1 00 0 1

1
A 2 A2:32



Thus, for �xed X, we have an injection from A1 into A2. There is a similar injectionfrom A2 into A1 and so jA1j = jA2j =pjAj. Now let
E = B \

8<
:
0
@ �1 0 00 0 a0 a�1 0

1
A : a 2 GF (q)

9=
;

and observe that0
@ 1 e 00 1 00 0 1

1
A 2 A1;

0
@ �1 0 00 0 a0 a�1 0

1
A 2 E; =) ^

0
@ 1 e 00 0 a0 a�1 0

1
A2

2 L�
=) ^

0
@ �1 e ae0 0 a0 a�1 0

1
A 2 L�

and this last element is an involution. We now count all the involutions in L� asfollows:Pre-image of involution g in SL(3; q) Number of such involutions in L�
0
@ 1 c d�1 �1

1
A jAj

0
@ �1 0 d�1 1

1
A pjAj

0
@ �1 c 01 �1

1
A pjAj

0
@ �1 c daa�1

1
A jEjpjAj

Thus rg =pjAj(pjAj+ jEj+2) and note that rg � q(2q+1) since jEj � q� 1.Suppose that (ngrg ; p) = 1. Then rg � q2 and we must have jAj = q2. Alternativelysuppose that (ngrg ; p) 6= 1. Then
jngrg jp = jvjp � q3jAj =) q2pjAj � jngrg jp � q3jAj=) jAj � q2:

Thus, in either case, jAj = q2. Then, by Lemma 28, jBj > jGL(2;q)jq2+q+1 . But 2(q�1)27 <33



jGL(2;q)jq2+q+1 = q(q�1)2(q+1)q2+q+1 for q > 1. Hence jBj = 2(q � 1)2 and jEj = q � 1. Thenrg = q(2q + 1) which makes ngrg a non-integer unless q = 1. This is a contradiction.Next assume that B is of type 6 or 7. To ensure that B has odd index in GL(2; q)we assume that B �= 2:(S4 � C) or B �= 2:(A4 � C):2 where C � Z(GL(2; q))= <�I >.Then we must have q dividing into jAj since jvjp � q2. We write jAj = qpa where
a � 1 by Lemma 29. Since

0
@ 1 �1 �1

1
A 2 B this means that rg > jAj.

Suppose �rst that q = pa and jAj = q2. By Lemma 28,
jGL(2; q)jq2 + q + 1 < jBj � 24(q � 1)

=) 24(q2 + q + 1) > q3 � q=) q < 30:
Then q = 7; 13 or 19. Note that in GL(2; 7) subgroups of type 6 or 7 have even indexand in GL(2; 19) subgroups of type 6 and 7 have index divisible by 3. Hence we areleft with q = 13. In this case ng = 32:13:61 and v is divisible by jL :M j = 3:7:13:61.Now since u2 � u + 1 = ngrg divides into ng we must have u = 2; 4; 14 or 23. But inall of these case u2+ u+1 is not divisible by both 7 and 61. Thus v is not divisibleby both 7 and 61 which is a contradiction.Thus assume now that q > pa and jAj < q2. Then,

ngrg < q2(q2 + q + 1)jAj =) dg < q2(q2 + q + 1)jAj + 2q2 + q + 1pjAj + 2
=) dg < (q2 + 2q + 1)(q2 + q + 1)jAj
=) v < (q + 1)2q2(q2 + q + 1)2jAj2 :

This implies that,
(q2 + q + 1)q3(q � 1)2(q + 1)jAjjBj � v < q2(q2 + q + 1)2(q + 1)2jAj2

=) jAj < (q + 1)(q2 + q + 1)q(q � 1)2 jBj
which implies that jAj < 2:jBj for q � 7.Now elements from 2̂:C do not centralize any element of ^A. Thus letm = (q�1)=2jCjand observe that q�13m = ĵ 2:Cj divides into jAj � 1 = qpa � 1. This in turn means
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that q�13m divides into pa � 1. Since q > pa this means that 3m > p. Then
jBj > jAj2 =) 48jCj > q:pa2=) 48q � 1m > q:pa

=) pa+1 < 144:
Since p � 7, a � 1 we must have p = 7, a = 1. But when p = 7, 2:(A4 � C):2 and2:(S4 � C) have even index in GL(2; q) which is a contradiction.Thus we are left with the possibility that B is of type 5 in GL(2; q). We wantto show that L� = ^A:B is a split extension and we can choose � such that

B � �� 1detY Y
� : Y 2 B�� �= B� � GL(2; q):

Observe �rst that each Sylow 2-subgroup of L� contains a unique element of A. thusA\L� is a L� conjugacy class. Furthermore there exist at least two non-conjugatemaximal subgroups, M1, M2, of B which are of order not divisible by p and index inB not divisible by 2. Then, by Schur-Zassenhaus, A :M1 and A :M2 are subgroupsof L�. But M1;M2 must both have centres which are conjugate in L�, in fact mustlie in A. This implies that there exist conjugates of M1, M2 which both lie in�� 1detY Y
� : Y 2 B�� �= B� � GL(2; q):

These conjugates must generate a complement to A as required.Now note �rst that SL(2; r) � GL(2; q) implies that SL(2; r) � SL(2; q). In factif we examine the maximal subgroups of PSL(2; q) given by Suzuki[Suz82] then, forf = p1 : : : pn where pi is prime,
SL(2; r) < SL(2; rp1) < � � � < SL(2; rp1���pn�1) < SL(2; q):

We assume that at most one of these primes is equal to 2 since otherwise B haseven index in GL(2; q). If we assume that p2; : : : pn are all odd then the chain ofsubgroups given here is maximal except for the �rst inclusion when p1 = 2. NowSL(2; r) maximal in SL(2; q) has a unique conjugacy class hence, stepping downthe chain of inclusion, we assume that SL(2; rp1) has a unique conjugacy class inSL(2; q). If p1 = 2 then two conjugacy classes of SL(2; r) exist in SL(2; rp1) andhence in SL(2; q), otherwise SL(2; r) has a unique conjugacy class in SL(2; q).By examining [KL90, Action Table 3.5G]) we �nd that, when f is even, the two
conjugacy classes are fused in GL(2; r2) through conjugation by � � 00 1

� where �
generates the group GF (r2)�. Thus, in GL(2; q) there is a unique conjugacy classof SL(2; r) and we take � such that B� contains the copy of SL(2; r) consisting ofmatrices of determinant 1 with entries in GF (r).
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Observe that B� 3 � 1 00 �1
� and so

0
@ 1 e f0 1 00 0 1

1
A 2 A =)

0
@ �1 e f0 �1 00 0 1

1
A2

2 A
=)

0
@ 1 e 00 1 00 0 1

1
A 2 A

Once again we conclude that A = A1 � A2 where
A1 �

8<
:
0
@ 1 e 00 1 00 0 1

1
A : e 2 GF (q)

9=
; ; A2 �

8<
:
0
@ 1 0 f0 1 00 0 1

1
A : f 2 GF (q)

9=
; :

In the same way as earlier we also know that jA1j = jA2j = pjAj. We countinvolutions in L�:Pre-image of involution g in SL(3; q) Number of such involutions in L�0
@ 1 c d�1 �1

1
A jAj

0
@ �1 c d�1 �1

1
A 2pjAj

0
@ �1 c d�1 x�1

1
A ; x 6= 0 2(r � 1)pjAj

0
@ �1 c dv wx �v

1
A ; x 6= 0 r(r � 1)pjAj

Thus rg =pjAj(pjAj+r2+r). Now SL(2; r) has orbits of size r2�1 in its actionby conjugation on non-identity elements of A. Hence either jAj = 1 or pjAj � r.If jAj = 1 then, since q divides into jL�j, we must have r = q and so ngrg = q2. Thiscontradicts Lemma 11. Hence pjAj � r and so jngrg jp = q2pjAjr .Then either jngrg jp = 1, r = q and pjAj = q or jngrg jp = jvjp � q3jAjrpa wherepa = jGj=jLjjG�j=jL�j . In the latter case this means that
q2pjAjr � q3jAjrpa36



and so jAj � q2:p2a: This implies that jAj = q2 and a = 0. In both cases we �ndthat jAj = q2 and so rg = qr( qr + 1 + r). In order for this to divide into ng we �ndthat we must have r4+2r3� r+1 divisible by qr +1+ r. For q � r6 this is clearly acontradiction. Examining cases individually for q � r5 we �nd only contradictions.Thus Proposition 25 is proved.
8 Ly = U(n; q)
In this section we prove the following proposition:
Proposition 30. Suppose G contains a unique component L such that Ly is iso-morphic to U(n; q). Then G does not act transitively on a projective plane.

We may assume that n � 3 and (n; q) 6= (3; 2). Once again, we seek to show thatour hypothesis leads to a contradiction. We know ([KL90, Proposition 2.3.2]) thatour unitary geometry (V; �) has a hyperbolic basis. Unless stated otherwise, we willwrite all matrix representations of elements of SU(n; q) according to this basis:� fe1; f1; : : : ; em; fmg; if n = 2m;fe1; f1; : : : ; em; fm; xg; if n = 2m+ 1:
where �(ei; ej) = �(fi; fj) = 0, �(ei; fj) = �ij, �(ei; x) = �(fi; x) = 0 for all i; j and�(x; x) = 1.We will also need to make use of an orthonormal basis for (V; �). Let vi; wiwith i = 1; : : : ;m be orthonormal vectors such that < vi; wi >=< ei; fi > forall i = 1; : : : ;m: Our orthonormal basis B will consist of these vectors vi; wi withi = 1; : : : ;m, as well as the vector x in the case where n is odd.Now the result of Liebeck and Saxl [LS85] implies that L� lies inside a maximalsubgroup M where

� for q odd, M 2 C1;M 2 C2, M y = NU(n;q)(U(n; q0)) where q = qa0 and a isodd, or M y =M10 and (n; q) = (3; 5), or n = 4;
� for q even, M 2 C1.
We show next that, in all cases, M must lie in C1:

Lemma 31. L� lies inside M , where M maximal in L lies inside C1.
Proof. We may assume that p is odd. De�ne g to be the projective image of

g� =
0
BBBBB@
�1 �1 1 . . . 1

1
CCCCCA :
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For n 6= 4, g lies in the centre of a maximal subgroup (̂SU(2; q)�SU(n�2; q)):(q+1).For n = 4, g lies in the centre of a maximal subgroup (̂SU(2; q)�SU(2; q)):(q+1):2.Furthermore, g has the same form under our orthonormal basis B and, under thisbasis, P�U(n; q) = U(n; q): < �; � > where � is a �eld automorphism and � isconjugation by
^
0
BBB@

a 1 . . . 1

1
CCCA

for some a 2 GF (q2)�, a primitive (q + 1)-th root of unity. Then g is centralised by< �; � > hence ngjq2(n�2)b where (q; b) = 1 and b < q2(n�2). Then, by Lemma 14,jvjp � q2(n�2).Suppose that L� � M where M 2 C2, or M y = NU(n;q)(U(n; q0)) where q = qa0and a is odd, or M y = M10 and (n; q) = (3; 5), or n = 4. Observe that jU(n; q)jp =q 12n(n�1) while, for n 6= 4, jM jp � q 14n(n�1). Thus we must have 12n(n�1)�2(n�2) =12(n2� 5n+8) � 14n(n� 1). This implies that n � 6. We assume this from here on.Note that we may also assume that p � 1(3) since, in all given cases, jU(n; q) :M yj odd implies that p2 divides into jU(n; q) : M yj. We may immediately rule outthe possibility that M y =M10.Consider �rst the case where n 6= 4. If M 2 C2 then jU(n; q) : M yjp > q2(n�2)for n = 3; 5 and 6 which is a contradiction. If M = NU(n;q)(U(n; q0)) then q = qa0where a is an odd prime. Then jM jp � q 12an(n�1) hence we must have 12(n2 �5n + 8) � 12an(n � 1) which implies that n = 3 and q = q30. Now, when n = 3,ng = q2(q2 � q + 1) and L� contains a Sylow p-subgroup of M . If L� � U(3; q0)then rg = q20(q20 � q0 + 1) but then rg 6 jng which is a contradiction. The only otherpossibility is that L� \U(3; q0) � P �1 , where P �1 is a parabolic subgroup of U(3; q0).But this has even index in U(3; q0) which is a contradiction.Now suppose that n = 4; p � 1(3). Note that here L = U(4; q) and thatng = 12q4(q2 � q + 1)(q2 + 1). We need to consider the cases where M is a maximalsubgroup of odd index not lying in C1. Furthermore we need jU(4; q) : M jp � q4.We go through the possibilities in turn.
� Suppose that M 2 C2. There exist two subgroups M 2 C2 such that jU(4; q) :M jp � q4 but only one has odd index. We need to rule out this possibility,when M �= (̂SU(2; q) � SU(2; q)):(q + 1):2 and jU(4; q) : M jp = q4. ThenL� must contain a Sylow p-subgroup of M . But the parabolic subgroup ofSU(2; q) has even index hence we may conclude that, for some �,

L� > ^� SU(2; q) SU(2; q)
� :

Then L� contains,
h = ^

0
BB@

11 11

1
CCA :
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Now h is a U(4; q)-conjugate of g, thus rg � 12(q2 � q)2. Hence ngrg < q2(q +1)(q + 2). If q4��ngrg then we must have ngrg = q4 which is a contradiction ofLemma 11. The only other possibility is that ngrg � 12(q2� q+1)(q2+1) < 12q4.But then dg < q4 and so v < 12q4(q2�q+1)(q2+1) which contradicts L� �M .
� Suppose that M 2 C6 or M 2 S. The only odd index subgroup is M = 24:A6where q � 3(8). But then jU(4; q) :M jp > q4 which is a contradiction.
� Suppose that M 2 C5. If M = NU(4;q)(U(4; q0)) then q = qa0 where a is an oddprime. Then jM jP � q 6a hence we must have 12(n2 � 5n + 8) = 2 � 6a whichimplies that q = q30. However this implies that 9 divides into jU(n; q) : M jwhich is a contradiction.The only other odd index subgroup in C5 is M = PGSp(4; q) when q � 1(4).Now, given our original basis fe1; f1; e2; f2g and our original hermitian form�, de�ne the form �] = ��1� over the GF (q)-vector space V] spanned byf�e1; f1; �e2; f2g. Here � is an element of GF (q2) such that �q = ��. Then �]is a symplectic form over V].Clearly if g� is an isometry for (�]; V]) then g� is an isometry for (�; V ) andwe have an embedding Sp(4; q) < SU(4; q). This embedding corresponds toa maximal subgroup PSp(4; q) < U(4; q) when q 6� 1(4) and PGSp(4; q) <U(4; q) when q � 1(4). In the latter case, there are two conjugacy classes ofPGSp(4; q) in U(4; q); it is this case which concerns us.Under the orthonormal basis fv1; w1; v2; w2g, the two conjugacy classes ofPGSp(4; q) in U(4; q) are fused by x, the projective image of0

BB@
� 1 1 1

1
CCA

where � 2 GF (q2) is a (q + 1)-primitive element. Thus rg is the same nomatter which of the two conjugacy classes we lie in. Assume from here on thatL� �M = PGSp(4; q) preserving (�]; V]).Then jU(4; q) : M jp = q2, thus jM : L�jp � q2. The only maximal subgroup,M1, of PSp(4; q) such that jPSp(4; q) :M1j is odd and jPSp(4; q) :M1jp � q2is (Sp(2; q) � Sp(2; q)):2. Thus either
{ L� =M with v divisible by 12q2(q + 1)(q2 � q + 1); or{ L� \ PSp(4; q) � B = (Sp(2; q) � Sp(2; q)):2. Note that j(U(4; q) : Bjp =q4. Since the parabolic subgroups of Sp(2; q) are of even index we musthave L� \ PSp(4; q) = B and so L� = B:2 with v divisible by 14q4(q +1)(q2 � q + 1)(q2 + 1).
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Under our original basis this implies that, for some �,
L� > ^� SU(2; q) SU(2; q)

� :
Now PSp(4; q) is normalized in U(4; q) by,

h = ^
0
BB@

11 11

1
CCA :

Thus h lies in L� and, as before, we know that h is a U(n; q)-conjugate of g. Wemay conclude that rg � 12(q2� q)2 and so ngrg < q2(q+1)(q+2). As in the casewhere M 2 C2 this contradicts L� = B:2. We conclude that M = PGSp(4; q).Now observe that CPSp(4;q)(h) �= ^GL(2; q):2 thus rg � 12q3(q + 1)(q2 + 1) andngrg < q2. This implies that v < q2(q + 1)(q + 2) which is a contradiction forq > 4.
Thus L� lies inside a maximal subgroupM 2 C1. There are two types ofM 2 C1[KL90, Table 3.5B]:
� The parabolic subgroups, Pm; 1 � m � bn2 c. Observe that (q + 1)m dividesjL : Pmj. This implies that p = 2. If q � 1(3) then (q + 1) � 2(3) and q + 1divides into v. If m > 1 and q � 2(3) then 9jv. Neither of these situations areallowed. Hence m = 1 and we must have q = 2a, a odd.
� The subgroups Bm of type GU(m; q) ? GU(n � m; q) with 1 � m < n=2.In this case qm(n�m) divides jL : Bmj and we must have p � 1(3). Observethat qm(n�m) > q2(n�2) for n2 > m > 2. But we know, by the argument in theprevious lemma, that jvjp � q2(n�2) hence m � 2.
We now examine these two situations in turn and seek a contradiction.

8.1 Case: p = 2, q = 2a, a odd, L� � P1Set ne to be the even element of fn; n � 1g while no is the odd element. Theni := jU(n; q) : P1j = (qne�1)(qno+1)q2�1 . We know that 3j(q+1)��i. In addition, qne�2+� � �+q2+1ji and so for all rjne2 ; q2r�2+� � �+q2+1ji which means that for all rjne2 ; r � 1(3).A similar argument allows us to conclude from the fact that (qno�1�� � �+q2�q+1)jithat for all rjno; r � 1(3). We may conclude from this that n is even and n � 2(12).Thus n � 14.Now L� = [q2n�3] : B � P1 where B � (̂(q2 � 1)� SU(n� 2; q)) . We considerthe two possibilities given by Lemma 15:
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� B � (̂(q2 � 1)� B1) for some B1 < SU(n� 2; q). We know that B1 must liein a parabolic subgroup of SU(n� 2; q) by Liebeck, Saxl [LS85]. However anyparabolic subgroup of SU(n � 2; q) has index divisible by q + 1 which wouldresult in 9jv which is a contradiction.
� B = (̂A1 � SU(n� 2; q)) for some A1 � (q2 � 1). For some �

L� � ^
0
@ SU(n� 2; q) 1 1

1
A :

Now consider transvections in SU(n; q). All transvections are conjugate to
g� : V ! V; v 7! v + s�(v; e1)e1for some s 2 GF (q2); s+ sq = 0[Tay92, p119]. For W =< e1 >, de�ne XW;W?to be the subgroup of SU(n; q) consisting of all transvections of this form.Now suppose that h 2 SU(n; q) preserves W . Then, for v 2 V ,

v(h�1g�h) = (vh�1 + s�(vh�1; e1)e1)h= v + s�(vh�1; e1hh�1)e1h= v + s�(v; e1h)e1h= v + sttq�(v; e1)e1where t 2 GF (q)� is de�ned via e1h = te1. Then (sttq)q + sttq = ttq(s+ sq) =0. Thus XW;W? is normal in the parabolic subgroup of SU(n; q) stabiliz-ing W . Since jXW;W?j = q[Tay92, p114], we may conclude that, for g theprojective image of g�, jP1jq�1 divides into CL(g). Then, since the only maxi-mal subgroup of U(n; q) whose order is divisible by jP1jq�1 is P1, we �nd thatng � jU(n;q)j(q�1)(n;q+1)2 log2 qjP1j .
Furthermore, g 2 L� and, by the same argument, rg � jSU(n�2;q)jjP �1 j where P �1 isa parabolic subgroup of SU(n� 2; q). Thus,ngrg � jU(n; q)j(q � 1)(n; q + 1)2 log2 qjP1j jP �1 jjSU(n� 2; q)j < q8:
Then v < q17 which is a contradiction.

8.2 Case: p � 1(3); L� � Bm;m � 2
Observe that jL : Bmj = qm(n�m) (qn�(�1)n):::(qn�m+1�(�1)n�m+1)(q+1):::(qm�(�1)m) : Consider two situa-tions:� Suppose n is odd. Then L contains the projective image, g, of

g� =
0
BBB@
�1 . . . �1 1

1
CCCA :
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Then g is centralized in U(n; q) by ^GU(n� 1; q). Furthermore, as in Lemma31, g has the same form, under the basis B, as above and so is centralised by< �; � >. Hence ngj(qn�1)(qn�1 � � � � � q + 1). Thus jvjp � qn�1. Supposethat m � 2, in which case jL : Bmj is divisible by q2(n�2). Thus we need2(n � 2) � n � 1 which gives n � 3. For n = 3 we know that m = 1.Thus, in general, L� � B1 = ^GU(n� 1; q). Furthermore L� contains a Sylowp-subgroup of ^GU(n� 1; q).Thus either L� � ^SU(n� 1; q) or L� lies in a parabolic subgroup of ^GU(n�1; q). But (q + 1) divides ĵ GU(n � 1; q) : P j for P a parabolic subgroup of^GU(n� 1; q) which is impossible. Thus L� � ^SU(n� 1; q) and L� containsall the involutions of ^GU(n� 1; q).Now, for n > 3, consider a di�erent involution g as in Lemma 31. Thenng = q2(n�2) (qn+1)(qn�1�1)(q+1)(q2�1) and rg � rg (̂ GU(n� 1; q)) = q2(n�3) (qn�1�1)(qn�2+1)(q+1)(q2�1) .This implies that ngrg � q4 and so ngrg � q4 � q2 + 1 and v < q8 + q4 + 1. ButjL : B1j = qn�1(qn�1� � � � � q+1) which is greater than q8 + q4 +1 for n � 7.For n = 5, 2jU(5; q) : B1j > q8 + q4 + 1 and so have L = U(5; q), L� = B1 andv = q4(q4 � q3 + q2 � q + 1). But, since q4 > pv, this implies that dg = q4which contradicts Lemma 11.For n = 3 there is a unique conjugacy class of involutions of size q2(q2�q+1).Since ^SU(2; q) � L� � ^GU(2; q), L� must contain precisely the involutionslying in ^GU(2; q) of which there are q2�q+1. Then ngrg = q2 which contradictsLemma 11.
� Suppose n is even and let g be as in the proof of Lemma 31. Now jU(n; q) : B1jis even and thus L� < B2 �= (̂SU(n � 2; q) � SU(2; q)):(q + 1) and, sincejvjp � q2(n�2), L� contains a Sylow p-subgroup of (̂SU(n � 2; q) � SU(2; q)).Note that, since B2 is non-maximal in L = U(4; q), we may assume that n � 6.
Now the index of the parabolic subgroups of SU(n � 2; q) in SU(n � 2; q) iseven. Hence we must have L� > ^SU(n � 2; q). For some �, we may assumethat

L� � ^
0
@ SU(n� 2; q) 1 1

1
A :

Now g is centralized in L by some conjugate of B2. This implies that
ng = q2(n�2) (qn � 1)(qn�1 + 1)(q + 1)(q2 � 1) and rg � q2(n�4) (qn�2 � 1)(qn�3 + 1)(q + 1)(q2 � 1) :

Thus ngrg � q6(q2+1) and v � q16+q15 and, for n � 8, this contradicts L� � B2.We are left with the possibility that n = 6. But 2jU(6; q) : B2j > q16 + q15,thus L� = B2 and v = q8(q4+ q2+1)(q4� q3+ q2� q+1). But then q8 � pvand so dg = q8 which contradicts Lemma 11.
Thus Proposition 30 is proven. 42



9 L = PSp(n; q)
In this section we prove the following proposition:
Proposition 32. Suppose G contains a minimal normal subgroup isomorphic toPSp(n; q) with n � 4. Then G does not act transitively on a projective plane.

We know [KL90, Proposition 2.4.1] that our symplectic geometry (V; �) has asymplectic basis. Unless stated otherwise, we will write all matrix representations ofSp(n; q) according to this basis, fe1; f1; : : : ; em; fmg, where n = 2m. Here �(ei; ej) =�(fi; fj) = 0 and �(ei; fj) = �ij.By Liebeck and Saxl [LS85], we know that L� lies inside a maximal subgroup Mwhere
� for q odd, M 2 C1;C2 or M = NPSp(n;q)(PSp(n; q0)) or n = 4;
� for q even, M 2 C1.

Note that when n = 4 we can assume that q > 3 since PSp(4; 3) �= U(4; 2) whichhas already been covered.
Lemma 33. L� lies inside a maximal subgroup from family C1.
Proof. Assume that q is odd and that L� � M where M is a maximal subgroup ofPSp(n; q) that does not lie in C1. Observe that in PSp(n; q) there exists a subgroupB �= Sp(2; q) � Sp(n� 2; q).For n 6= 4, by [KL90, Lemma 3.2.1 and Table 3.5.c], B is normal in a P�Sp(n; q)-maximal subgroup B� such that jP�Sp(n; q) : B�j = jL : Bj. Thus, for n 6= 4, theinvolution g 2 Z(B) has ng = jL : Bj = qn�2(qn�2 + � � �+ q2 + 1).When n = 4 the same argument applies to B �= (Sp(2; q) � Sp(2; q)):2 and theinvolution g 2 Z(B) has ng = 12q2(q2 + 1).Therefore the highest value of p in v is at most qn�2. The lowest index of pamong maximal subgroups M 2 C2 or M = NPSp(n;q)(PSp(n; q0)) is q 18n2 . Thisimplies that n� 2 � 18n2 which is a contradiction for n > 4.Now suppose that M is maximal in PSp(4; q), M 62 C1, jPSp(4; q) : M j is oddand jPSp(4; q) :M jp � q2. We must haveM = (Sp(2; q)�Sp(2; q)):2. Then L� �Mand L� � P for some P a Sylow p-subgroup of M . Since the parabolic subgroupsof Sp(2; q) have even index in Sp(2; q) we must have L� = (Sp(2; q) � Sp(2; q)):2.Now we can choose � such that

L� = ^�� Sp(2; q) Sp(2; q)
� ; h := � I2�2I2�2

�� :
Observe that h is conjugate to g in PSp(4,q). Now h has at least 12q2(q2 � 1)L�-conjugates in L�, thus ngrg � 12 q2(q2+1)12 q(q2�1) � 2q. Then v � 8q2. But v > jL : L�j =12q2(q2 + 1) which is a contradiction for q > 3.Hence in all cases M 2 C1. 43



In C1 we have subgroups of two types:
� Parabolic subgroups, Pm �= [qa]:( q�1(q�1;2)):(PGL(m; q)�PSp(n� 2m; q)) where1 � m � n2 ; a = m2 � 3m22 + mn: If L� � Pm then (q + 1)��jPSp(n; q) : Pmjdivides into v. Hence we must have p = 2.
� Subgroups, Bm, of type Spm ? Spn�m isomorphic to Sp(m; q) � Sp(n�m; q)where 2 � m < n2 and m is even. In this case q2 divides into jPSp(n; q) : Bmjwhich in turn divides into v: Hence we must have p � 1(3).

9.1 Case: p = 2; L� � PmThe index of Pm in Sp(n; q) is divisible by q2 + 1 for all m > 1 which is impossibleand so m = 1. Then P1 �= [qn�1] : ((q � 1) � Sp(n � 2; q)) and jSp(n; q) : P1j =(q + 1)(qn�2 + � � � + q2 + 1): We conclude that q � 2(3) and that every primedividing into n2 is equivalent to 1(3). Hence n � 14 and n � 2(4). This implies thatn � 2 � 0(4) and every parabolic subgroup of Sp(n � 2; q) has index divisible byq2 + 1. Thus L� = [qn�1] : (A� Sp(n� 2; q)) for some A � q � 1.Now consider Sp(n; q) acting on a vector space V preserving a symplectic form�. For u 2 V; a 2 GF (q) we have transvections in Sp(n; q) de�ned by,
ga;u : V ! V; v 7! v + a�(v; u)u

Fix u, setW =< u > and let XW;W? = fga;u : a 2 GF (q)g. Then XW;W? < Sp(n; q)is of size q. The parabolic subgroup of Sp(n; q) which preserves W normalizesXW;W? .Now let g = g1;u. Then, since the only maximal subgroup whose order is divisibleby jP1jq�1 is P1, we have
ng � jSp(n; q)jjP1j (q � 1) log2 q:

Similarly rg � jSp(n�2;q)jjP �1 j where P �1 is a parabolic subgroup of Sp(n� 2; q). Then
ngrg � jSp(n; q)jjP �1 j(q � 1) log2 qjSp(n� 2; q)jjP1j � q4:

Thus v � q9 which contradicts n � 14 and this case is excluded.
9.2 Case: p � 1(3); L� < BmWe know that the maximum power of p in v is at most qn�2. Now jPSp(n; q) :Bmjp = q 14n2q 14m2q 14 (n�m)2 . Thus we need,

n� 2 � 14(n2 �m2 � (n�m)2) = 12m(n�m):
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This implies that m = 2 and so L� � Sp(2; q) � Sp(n � 2; q). If n = 4 then B2 isnot maximal and so we assume that n > 4. Furthermore we know that L� mustcontain a Sylow p-subgroup of Sp(2; q) �Sp(n� 2; q). But the indices of a parabolicsubgroup of Sp(2; q) in Sp(2; q) and of a parabolic subgroup of Sp(n � 2; q) inSp(n � 2; q) are both divisible by q + 1, hence are even. Thus we conclude thatL� = Sp(2; q) � Sp(n� 2; q).Now rg � 12qn�4(qn�4 + : : : q2 + 1) and so ngrg � 2q2(q2 + 1) and v � 8q4(q2 + 1)2.But v > jL : L�j = qn�2(qn�2 + : : : q2 + 1) which is a contradiction for n > 6.Thus we must assume that n = 6 and jL : L�j = q4(q4 + q2 + 1) and ngrg �2q2(q2 + 1). If jngrg jp = jvjp � q4 then ngrg = q4 which contradicts Lemma 11. Thusjngrg jp = 1 and so ngrg ��q4 + q2 + 1. If ngrg = q4 + q2 + 1 then dg is not divisible by q4which contradicts the fact that jL : L�j divides into v. If ngrg < 12(q4 + q2 + 1) thenv < jL : L�j which is also a contradiction.Our proof of Proposition 32 is complete.
10 L = 
(n; q), nq odd
Throughout the next two sections, Greek letters such as �; � and � will stand foreither +;� or �. We will write polynomials such as x� � to mean x� �1. We write
�(n; q) to mean 
(n; q) when n is odd.In this section we assume that n � 7 and q is odd and we prove the followingproposition:
Proposition 34. Suppose that n is odd, n � 7 and G has a minimal normal sub-group isomorphic to 
(n; q). Then G does not act transitively on a projective plane.

Observe that L contains 
�(n � 1; q):2 for � = � and � = +. One of thesegroups contains a central involution and hence L contains an involution g such thatrg(L) = 12q n�12 (q n�12 + �). Examining [KL90, Table 3.5.D] for fusion of conjugacyclasses, we see that ng = rg(L) and thus jvjp � q n�12 .We begin by proving that L� must lie in a maximal subgroup M 2 C1:Lemma 35. L� does not lie inside a subgroup M 2 Ci; i > 1.
Proof. We examine the list of odd index maximal subgroups in G as given by Liebeckand Saxl[LS85]. The following possibilities are available for a maximal subgroup Mof odd index. We exclude them in turn.

� L = 
(7; q) and M = 
(7; 2). We know that jvjp � q3 and so jL�j must bedivisible by q6. This is impossible for L� �M .
� M 2 C2 or M = N
(n;q)(
(n; q0)) where q = qc0 for c an odd prime. In bothcases jM jp �pj
�(n; q)jp. Now j
�(n; q)jp = q 14 (n�1)2 and so we must have,

18(n� 1)2 + 12(n� 1) � 14(n� 1)2:
This is impossible for n � 7. 45



Thus L� lies inside a parabolic subgroup or a subgroup Bm of type O(m; q) ?O�(n �m; q) for some odd m < n. In fact parabolic subgroups have even index inP
(n; q) hence we may assume that L� � Bm for some m.Since jvjp � q n�12 we know that L� � B1 = 
�(n� 1; q):2 and that L� containsa Sylow p-subgroup of 
�(n � 1; q). Now the parabolic subgroups of 
�(n � 1; q)have even index. Hence we must have L� = 
�(n � 1; q) and v is divisible byj
(n; q) : 
�(n� 1; q):2j = 12q n�12 (q n�12 + �).Now consider the involution h centralized in L by (
�(2; q) � 
(n � 2; q)):[4]:Then nh = qn�2(qn�1�1)2(q��) . Now 
�(n � 1; q) contains a conjugate of h centralized by,
at most, (
�(2; q)� 
��(n� 3; q)):[4]. then rh � qn�3(q n�32 +��)(q n�12 ��)2(q��) . This impliesthat nhrh � q(q + 1) and so v � 2q2(q + 1)2. But then v < jL : L�j which is acontradiction.Hence we have proved Proposition 34.
11 L = P
�(n; q), n even
In this section we assume that n � 8 and we prove the following proposition:
Proposition 36. Suppose that n is even, n � 8 and G has a minimal normalsubgroup isomorphic to P
�(n; q). Then G does not act transitively on a projectiveplane.

First we examine what happens when p = 2:
Lemma 37. Suppose n � 8 is even and G has a minimal normal subgroup isomor-phic to P
�(n; 2a). Then G does not act transitively on a projective plane.
Proof. Write q = 2a. We know that L� � Pm for some integer m. If m > 1 thenqb+1 divides jP
�(n; q) : Pmj where b is some even integer. Since qb+1 � 2(3) thisis impossible. Thus L� lies inside some parabolic subgroup P1. Now

jP
�(n; q) : P1j = (q n2 � �)(q n�22 + �)q � 1 :
If q � 2(3) then q n�22 +1 � q n2 +1 � 2(3). Since one of these divides jP
�(n; q) :Pmj, this is impossible. Hence q � 1(3). Now let ne be the even one of n2 and n�22 ,no the odd one. Then one of the following holds:
� j
�(n; q) : P1j = qne�1q�1 (qn0 + 1) and 9 divides j
�(n; q) : P1j; or
� j
�(n; q) : P1j = qno�1q�1 (qne + 1) and qne + 1 � 2(3):

Both of these cases are impossible.
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Throughout the rest of the section p is odd. Now L contains maximal subgroupsin C1 of type O�(2; q) ? O�(n � 2; q) for �� = �. One of these groups contains acentral involution and hence L contains an involution g such that jL : CL(g)j =qn�2(q n�22 +�)(q n2 ��)2(q��) . Examining for fusion of conjugacy classes in [KL90, Tables 3.5.Eand 3.5.F] we see that, except when (n; �) = (8;+), ng = jL : CL(g)j. When(n; �) = (8;+), we know that ng � 3jL : CL(g)j and so, in all cases, jvjp � qn�2.We begin by proving that L� must lie in a maximal subgroup M 2 C1:
Lemma 38. L� does not lie inside a subgroup M 2 Ci; i > 1.
Proof. We examine the list of odd index maximal subgroups in G as given by Liebeckand Saxl[LS85]. The following possibilities are available for a maximal subgroup ofodd index M 62 C1. We exclude them in turn.

� L = P
+(8; q) and either M = 
+(8; 2) or M = 23:26:PSL(3; 2). We knowthat jvjp � q6 and so jL�jp � q6. This is impossible for L� �M in both cases.
� M 2 C2 or M = NP
�(n;q)(P
�(n; q0)) where q = qc0 for c an odd prime. Inboth cases jM jp �pjP
�(n; q)jp. Now jP
�(n; q)jp = q 14n(n�2) and so we musthave 18n(n� 2) + n� 2 � 14n(n� 2):
This is impossible for n > 8. When n = 8, no subgroup M of odd index hasjM jp � 6 so the result stands.

Thus L� lies inside a parabolic subgroup Pm or a subgroupBm of typeO(m; q)�1 ?O�1(n � m; q) for some m < n2 . In fact parabolic subgroups have even index inP
�(n; q) for p odd. Hence we assume that L� � Bm for some integer m. We knowthat jvjp � qn�2 and so jP
�(n; q) : Bmjp � qn�2. This implies that m = 1 or m = 2.Note also that p � 1(3).Suppose �rst that L� � B2 where B2 is of type O�1(2; q) ? O�1(n � 2; q) for�1�1 = �. Then jP
�(n; q) : B2j = qn�2(q n�22 +�1)(q n2 ��)2(q��1) and so L� must contain aSylow p-subgroup of B2. Since the parabolic subgroups of P
�1(n� 2; q) have evenindex we must have L� > 
�1(n� 2; q).In the case where L� � B1 then L� � 
(n � 1; q):c1 where c1 2 f1; 2g. NowjP
�(n; q) : B1jp = q n�22 hence jB1 : L�jp � q n�22 . Examining the proof of Lemma35 this means that L� \
(n� 1; q) lies inside a maximal subgroup of 
(n� 1; q) infamily C1.Since the parabolic subgroups of 
(n� 1; q) have even index in 
(n� 1; q) thismeans that L�\
(n�1; q) � B�m1 ; here B�m1 is a maximal subgroup of 
(n�1; q) oftype Om1(q) ? O
(n�1�m1; q) for some odd m1 < n�1. In fact jB1 : L�jp � q n�22implies thatm1 = 1 and that L� contains a Sylow p-subgroup of B�1 = 
�1(n�2; q):c2where c2 2 f1; 2g. Once again, since the parabolic subgroups of 
�1(n � 2; q) haveeven index we must have L� > 
�1(n� 2; q).47



Thus in both cases, when m = 1 and when m = 2, we see that L� > 
�1(n�2; q)is a subgroup of P
�(n; q) which preserves a decomposition of the associated vectorspace V into subspaces, V = W2 ? Wn�2, where dimWi = i and the Wi are non-degenerate subspaces of V .Then H = 
�1(n� 2; q) contains h a conjugate of g, and CH(h) is isomorphic toeither (

1(2; q)�

2(n� 4; q)):2 or 2:(P

1(2; q)�P

2(n� 4; q)):[4] (see [KL90,Proposition 4.1.6]). In either case rg � qn�4(q n�42 +
2)(q n�22 ��1)2(q�
1) .If n > 8 this means that ngrg � q2(q+1)3(q�1)2 and so v � 2q4(q+1)4. Since jL : L�j < vwe must have n = 10; q = 7 and L� = B1. But then jL : B1j is divisible by1274(75 � 1). This is impossible since then jL : B1j is divisible by a prime s � 2(3).If n = 8 then ngrg < 4q2(q+1)2. Then v < 28q4(q+1)4 which is less than jL : B2j.Thus L� = B1. But then jL : L�j is even which is a contradiction.Proposition 36 is now proven.
12 L is an exceptional group of Lie type in odd

characteristic
In this section we prove the following proposition:
Proposition 39. Suppose that G has a minimal normal subgroup L where L is anexceptional group of Lie type in odd characteristic or that G has a unique componentL such that Ly is isomorphic to a simple group E6(q) or 2E6(q) where q is odd. ThenG does not act transitively on a projective plane.

We introduce some extra notation for this section and the following one. We willwrite E�6 for 2E6, E+6 for E6. Similarly SL� will stand for SU , SL+ for SL. We willuse � to denote either �1 or � depending on the context. Generally our notationrefers to the adjoint version of the exceptional group, any variation on this will bespeci�ed. For a group G, we will write 12G to mean a subgroup in G of index 2. Wede�ne P (G) := minfjG : Hj : H < Gg. Finally, for a group H we write Op0H tomean the unique smallest normal subgroup N of H such that jH=N jp = 1.We have eight possibilities for L which we will examine in turn. As usual we willexamine odd-index maximal subgroups of L, treating these as candidates to containa stabilizer L�, and seek to show a contradiction.We immediately exclude the case where L = 2G2(q), q > 3; by examining the listof maximal subgroups of 2G2(q) given in [Kle88a, Theorem C] (see also [War66]).We see that any maximal subgroup of odd index must have index divisible by 9 andhence cannot contain a point-stabilizer. Hence this case is excluded. Note that thelist given by Kleidman [Kle88a] contains a maximal subgroup of odd index (withstructure (22�D 12 (q+1)) : 3) which has been omitted by Liebeck and Saxl[LS85] andby Kantor[Kan87].For the remaining cases we will refer to the results of Liebeck and Saxl giving themaximal subgroupsM y of odd index in Ly.[LS85] These maximal subgroupsM y take48



one of two forms: Either M y = NLy(Ly(q0)), where q = qa0 for a an odd prime andthe subgroup Ly(q0) of Ly(q) corresponds to the centralizer of a �eld automorphismof Ly(q) (see [Kan87, Theorem C]), or M y is enumerated in [LS85, Table 1].Note that, by [KL90, Table 5.1.B], OutL, the outer automorphism group of L,has order strictly less than q provided L 6= 3D4(3); 2E6(5). We also use the followinglemma:
Lemma 40. Let � be a �eld automorphism of L(q) of prime order a. Let L(q0) =Op0CL(q)(�) where q = qa0 . Then NL(q)(L(q0)) . Inndiag(L(q0)) and, furthermore,Inndiag(L(q0)) = L(q0):d where

d =
8<
:

(3; q0 � �) L = E�6(2; q0 � 1) L = E71 otherwise
Proof. Our notation is consistent with that in [GLS94]. Write L(q) = Op0CL(�)where L is a simple adjoint Fp-algebraic group, Fp is the algebraic closure of GF (q)and � is a Steinberg automorphism [GLS94, De�nition 2.2.1].By [GLS94, Proposition 2.5.17], there exists a Steinberg automorphism � of Lsuch that �a = � and � induces � on L. Then L(qo) = Op0CL(�) and, by [GLS94,Proposition 2.5.9], NL(L(q0)) = CL(�):Thus NL(q)(L(q0)) = CL(q)(�) � CL(q)(�) . Inndiag(L(q0)) by [GLS94, Propo-sition 4.9.1]. The structure of Inndiag(L(q0)) is given in [GLS94, Theorem 2.5.12].
12.1 Case: L = E8(q)Referring to [GLS94, Table 4.5.1], we see that E8(q) contains an involution g suchthat CL(g) � 2:(PSL(2; q) � E7(q)). There is one such E8(q) conjugacy class ofinvolutions in L and so ng divides into

2q56(q10 + 1)(q12 + 1)(q6 + 1)(q30 � 1)q2 � 1 :
Using Lemma 14 this implies that jvjp � q56 and hence that jL�jp � q64. Thelist in [LS85, Table 1] contains no maximal subgroups M such that jM jp � q64.Similarly Lemma 40 implies that jNL(E8(q0))jp = jE8(q0)jp = q1200 . Since q = qa0where a is an odd prime, q1200 � q40 and so this possibility is excluded.

12.2 Case: L = E7(q)Referring to [GLS94, Table 4.5.1], we see that E7(q) contains an involution g suchthat CL(g) contains SL�(8; q)=(4; q � �) for � either + or �. There is one suchInndiag(E7(q)) conjugacy class of involutions in L and so ng divides into
(4; q � 1)q35(q7 + �)(q5 + �)(q3 + �)(q8 + q4 + 1)(q12 + q6 + 1):49



This implies that jvjp � q35 and hence that jL�jp � q28. The list in [LS85,Table 1] contains one maximal subgroup such that jM jp � q28, namely M =NL(2:(PSL(2; q) � P
+(12; q)). Then jL : M jp = q32 and so p � 1(3). But thisimplies that 9 divides into jL :M j and so it is not possible that L� �M .Similarly Lemma 40 implies that jNL(E7(q0))jp � jE7(q0):2jp = q630 . Since q = qa0where a is an odd prime, q630 � q21 and so this possibility is excluded.
12.3 Case: Ly = E�6(q)Referring to [GLS94, Table 4.5.1], we see that L contains an involution g such thatCL(g) contains Spin�10(q). Here Spin�10(q) �= (4; q� �):P
�(10; q). There is only onesuch Inndiag(E�6(q)) conjugacy class of involutions in L and so,

ng = q16(q6 + �q3 + 1)(q2 + �q + 1)(q8 + q4 + 1):
This implies that jvjp � q16 and hence that jL�jp � q20. Then Lemma 40 impliesthat jNLy(Ly(q0))jp � jLy(q0):(3; q� �)jp which divides into 3q360 . Since q = qa0 wherea is an odd prime, q360 � q12 and so this possibility is excluded.

12.3.1 Subcase: � = +
In this case the list in [LS85, Table 1] contains two maximal subgroups M y suchthat jM yjp � q20: M y = NLy((4; q � 1):P
+(10; q)) or M y is parabolic of type D5.If p � 1(3) in either case then 9 divides jL : M j which is a contradiction. Hencep 6� 1(3), the universal and adjoint versions coincide and L is simple.In the non-parabolic case, jL :M jp > p2 which is impossible for p 6� 1(3). HenceM is a parabolic subgroup of E+6 (q) of type D5 and jL :M j = (q6+ q3+1)(q2+ q+1)(q8 + q4 + 1).Now M �= [q16] : (Spin+10(q)H) where H is a Cartan subgroup of E6(q) and Hnormalizes Spin+10(q). Here Spin+10(q) �= (4; q � 1):P
+(10; q) and P
+(10; q) hasparabolic subgroups of even index. This implies that L� � [q16] : (Spin+10(q):2) forp 6= 3.Furthermore, for p = 3, every non-parabolic subgroup of P
+(10; q) has indexdivisible by 9[Kle87]. This means that L� � [ q163 ]:(Spin+10(q):2). Now E, the com-mutator subgroup of the Levi complement in M; is isomorphic to Spin+10(q) andjE : L� \Ej is at most 32(q � 1). But P (Spin+10(q)) > 32(q � 1) [KL90, Table 5.2.A].Thus L� > E.Now if q = 3a then jEj is divisible by 38a � 1; in particular, jEj is divisibleby the primitive prime divisors of 38a � 1: This implies that if � : E ! GL(m; 3)is a non-trivial representation of E over GF (3) then m � 8a. Now consider theaction of E on the unipotent radical of the full parabolic group, [q16]; considered asa module over GF (3). We know that E does not act trivially on any submoduleof the unipotent radical (otherwise Z(E) would have too large a centralizer; see
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[GLS94, Table 4.5.1]). Thus the action must be either irreducible or split into twomodules both of size q8. In either case we must have L� � [q16] : (Spin+10(q):2).We return to the general case where p 6� 1(3) and assume that M containsCL(g) = Spin+10(q)H. Furthermore we know that L acts on the cosets of M as arank 3 permutation group with subdegrees 1; q(q3 + 1)(q8 � 1)=(q � 1) and q8(q4 +1)(q5 � 1)=(q � 1)([Kan87]). Then we have two possibilities:
� Suppose CM(h) � Spin+10(q) for all h in L� where h is L-conjugate to g. Now ifM = [q16] : CL(g) thenM contains q16 M -conjugates of CL(g) each containinga unique copy of Spin+10(q). Any other L-conjugate of CL(g) lies inside anon-trivial conjugate of M . But these intersect M with non-trivial indices asabove. These intersections cannot contain Spin+10(q). Hence M contains onlyM -conjugates of g and, in fact, all these must lie in L�. Thus rg = q16 andngrg = (q8 + q4 + 1)(q6 + q3 + 1)(q2 + q + 1). Set

u = q8 + 12q7 + 38q6 + 516q5 99128q4 + 127256q3 + 4231024q2 + 7492048q + 3958732768 :
Then u2�u+1 > ngrg for q � 47. If we set u1 = u� 132768 then u21�u1+1 < ngrgfor q > 1. Thus we need to check q < 47 but no such q satis�es u2�u+1 = ngrgfor integer u.

� Suppose there exists h in L� which is L-conjugate to g and CM(h) does notcontain a copy of Spin+10(q). Then CL(h) lies inside a non-trivial conjugate ofM . Hence jM : CM(h)j is a multiple of q(q3 + 1)(q8 � 1)=(q � 1) or q8(q4 +1)(q5 � 1)=(q � 1). Furthermore we know that q16 divides jM : CM(h)j sincejM jp = q16jCL(g)jp. Hence jM : CM(h)j � q16(q4 + 1)(q5 � 1)=(q � 1).Now, if L� � [q16] : (Spin+10(q):2) then rg = rg(M) since L��M and jM : L�jis odd. Thus rg � q16(q4 + 1)(q5 � 1)=(q � 1) and ngrg < q8 + q4 + 1. Thendg � q8 + q4 + 1 < (q6 + q3 + 1)(q2 + q + 1). Thus v < jL : M j which is acontradiction.
12.3.2 Subcase: � = �
In this case the list in [LS85, Table 1] contains one maximal subgroupM y in Ly suchthat jM yjp � q20, namely M y = NLy((4; q + 1):P
�(10; q)). In fact jM jp = q20 andso p � 1(3) and the universal and adjoint versions of E�6 coincide and L is simple.Then M = NL(Spin�10(q)) �= Spin�10(q):(q + 1) ([GLS94, Table 4.5.2]). FurthermoreL� must contain a Sylow p-subgroup of M . But the parabolic subgroups of P
�10(q)have even index, hence Spin�10(q):2 � L� � Spin�10(q):(q + 1).Now, using [GLS94, Table 4.5.2], we see that E�6 (q) contains two conjugacyclasses of involutions: those conjugate to g, centralized by Spin�10(q), and thoseconjugate to g1 say, centralized by SL(2; q) � SU(6; q). Then ng = q16(q2 � q +1)(q6 � q3 + 1)(q8 + q4 + 1) and Ng1 = q20(q4 + 1)(q2 + 1)(q6 � q3 + 1)(q8 + q4 + 1).We examine the involutions lying in Spin�10(q) using [GLS94, Table 4.5.2]. Apartfrom the central involution, Spin�10(q) contains two conjugacy classes of involutions.51



Let h be an involution in Spin�10(q) centralized by Spin+4 (q) � Spin�6 (q). Then L�contains at least 14q12(q4 + q3 + q2 + q + 1)(q2 � q + 1)(q4 + 1)(q2 + 1) conjugates ofh. If h is L-conjugate to g, then ngrg < 4q8 which is a contradiction. Thus assumethat h is L-conjugate to g1.In this case ngrg � 4q16 + 4q12 + 4q8. Then
dg < ngrg + 2rngrg + 2 < 4q16 + 4q12 + 6q8 + 2q4 + 2:

This implies that v < 19jL :M j for q � 7.Now suppose that q16 does not divide into ngrg . Then ngrg divides into (q2 � q +1)(q6 � q3 + 1)(q8 + q4 + 1) and so dg < 3q16 and v = jL : M j. This contradictsLemma 12. Thus v = 7jL :M j or v = 13jL :M j and q16��ngrg :If ngrg � 7q16 then v > 49q32 > 13jL : M j which is a contradiction. Thus, byLemma 11, ngrg = 3q16. This implies that 3q16 < dg < 3q16 + 2p3q8 + 2 and so9q32 < v < 9q32 + 12q24 + 6q16. But then 7jL : M j < v < 13jL : M j which is acontradiction.
12.4 Case: L = 3D4(q)We know that 3D4(q) has a single conjugacy class of involutions[GLS94] which iscentralized by a maximal subgroup isomorphic to (SL(2; q3) � SL(2; q)):2 [Kle88b].Hence, for g an involution in L, ng = q8(q8+ q4+1) and so jvjp � q8 and jL�jp � q4.If L� < M = NL(3D4(q0))) then this condition implies that q = q30. No suchsub�eld subgroup exists.There are two other odd index maximal subgroupsM such that jM jp � q4.[LS85]The �rst possibility is that M = G2(q) and jL : M jp = q6. But then odd indexsubgroups of G2(q) have p-index strictly greater than q2.[LS85] Thus L� = G2(q).Now rg(G2(q)) = q4(q4 + q2 + 1) and so ngrg = q4(q4 � q2 + 1). But this implies thatjvjp � q4 which is impossible.The second possibility is that L� � M = 2:(PSL(2; q) � PSL(2; q3)):2. ThenjL : M j = q8(q8 + q4 + 1) and so p � 1(3) and L� contains a Sylow p-subgroup ofM . But the parabolic subgroups of PSL(2; q) have even index, hence we concludethat L� =M .Now rg(2:(PSL(2; q) � PSL(2; q3))) � 1 + 12q3(q3 � 1)12q(q � 1). This impliesthat ngrg < 7q8. Suppose that jngrg jp = 1 and hence ngrg � q8 + q4 + 1. Then dg < 3q8and so dg = q8. This contradicts Lemma 12.Thus jngrg jp > 1 and so we must have either ngrg = q8 (contradicting Lemma 11) orngrg = 3q8. If ngrg = 3q8 then dg < 133 (q8 + q4 + 1) which is the smallest possibility fordg that is larger than ngrg . Thus we have a contradiction.
12.5 Case: L = G2(q)Referring to [GLS94, Table 4.5.1], we see that G2(q) contains an involution g suchthat CL(g) contains SL(2; q) � SL(2; q). There is one such conjugacy class of invo-52



lutions in L and, examining [Kle88a], we see that CL(g) �= (SL(2; q) � SL(2; q)):2:Hence ng = q4(q4 + q2 + 1): Using Lemma 14, we may conclude that jvjp � q4 andhence that jL�jp > q2.Examining the odd-index maximal subgroups [KL90], we �nd that all have p-index divisible by p2 and so p � 1(3). We have a number of possibilities for M anodd-index maximal subgroup, jM jp � q2, M containing L�:
� Suppose M = NL(G2(q0)). Then using Lemma 40 we �nd that q = q30. Butthis means that 9 divides jL :M j which is impossible.
� Suppose M = (SL(2; q) � SL(2; q)):2: Then L� � 2:P:2 where P is a Sylow p-subgroup of PSL(2; q)�PSL(2; q). Since the parabolic subgroup of PSL(2; q)have even index we must have L� = M and v = q4(q4 + q2 + 1)a for someinteger a. Then Lemma 12 implies that a 6= 1 and so a � 7.Now PSL(2; q) � PSL(2; q) has at least 14q2(q � 1)2 involutions and thus sodoes SL(2; q) � SL(2; q). Then

ngrg < 4q2 q4 + q2 + 1q2 � 2q + 1 < 7q4
for q � 7. Thus either ngrg = q4 (contradicting Lemma 11) or ngrg = 3q4 or ngrgdivides into q4 + q2 + 1.If u2�u+1 = ngrg = 3q4 then u2+u+1 = dg < 3q4+2p3q4+2 < 4q4+4q2+4.This implies that v < 12q4(q4+q2+1) and so a = 7. But then dg = 73(q4+q2+1)which is less than ngrg for q � 7. This is impossible.
If u2 � u + 1 = ngrg = q4 + q2 + 1 then u = q2 + 1 and dg = q4 + 3q2 + 3. Butthen (v; p) = 1 which is impossible. If ngrg < q4 + q2 + 1 then u � q2 whichimplies that ngrg � q4� q2+1 and dg � q4+ q2+1. Then ngrg dg < jL :M j whichis a contradiction.

� Suppose M = SL�(3; q):2 and so p � 1(3). Consider �rst the situation whereL� =M . When � = +,M =< SL(3; q); � > where � is a graph automorphism[Cha68, (2.6)]. When � = �; M � P�U(3; q) [Kle88a, Proposition 2.2]. Inboth cases M is equal to a universal version of A�2(q) extended by a graphautomorphism [GLS94, De�nition 2.5.13].Examining [GLS94, Table 4.5.2] we see that M has 2 conjugacy classes ofinvolutions. These have size q2(q2+�q+1) and q2(q2+�q+1)(q��):When � = +this gives rg = q3(q2 + q + 1) and ngrg = q(q2 � q + 1). This is impossible sinceeither jngrg jp = 1 or jngrg jp � q3. When � = � we have rg = q2(q2 � q + 1)(q + 2)and ngrg = q2(q2+q+1)q+2 . This is not an integer for q > 1 hence can be excluded.
Thus we must have L� < M and we know that jM : L�jp � q. Examining thesubgroups of SL�(3; q) we �nd that L� \SL�(3; q) � P1; a parabolic subgroupof SL�(3; q). 53



When � = �, jSL�(3; q) : P1j is even hence this possibility can be excluded.When � = +, M =< SL(3; q);m > where m is a graph automorphism ofSL(3; q). Since L� has odd index in G2(q), L� must contain a graph automor-phism. Examining [KL90, Table 3.5.A] we �nd that L� \ SL(3; q) lies insidea subgroup M1 of SL(3; q) of type GL(2; q)�GL(1; q) or of type P1;2. In theformer case we �nd that jvjp � q5. Since jngjp = q4 we must have jngrg jp = 1which implies that ngrg � q4 + q2 + 1 and jdgjp � q5 which contradicts Lemma13. In the latter case, we �nd that jSL(3; q) : M1j is even and this case canbe excluded.
We have covered all possible odd-index maximal subgroups in G2(q).

12.6 Case: L = F4(q)Referring to [GLS94, Table 4.5.1], we see that F4(q) contains an involution g suchthat CL(g) contains Spin(9; q). There is one such conjugacy class of involutions inL and so ng = q8(q8 + q4 + 1):This implies that jvjp � q8 and hence that jL�jp � q16. Then Lemma 40 impliesthat jNL(F4(q0))jp � jF4(q0)jp = q240 . Since q = qa0 where a is an odd prime, q240 � q8and so L� does not lie in jNL(F4(q0)).The list in [LS85, Table 1] contains one maximal subgroup M such that jM jp �q16. Then M �= 2:
(9; q), L� must contain a Sylow p-subgroup of M since jL :M jp = q16. Furthermore, p � 1(3). Now the parabolic subgroups of 
(9; q) haveeven index, hence we may conclude that L� =M and v = q8(q8 + q4 + 1)a for someinteger a. Lemma 12 implies that a 6= 1 and hence a � 7.Now suppose rg � 12q4(q4 � 1). Then ngrg � 2q4(q4 + 3) < 73q8. Then dg < 143 q8and v < 7q16 which is a contradiction. Also rg is clearly greater than 1. Thus thereis an involution g 2 2:
(9; q) such that
1 < j2:
(9; q) : C2:
(9;q)(g)j < 12q4(q4 � 1):

Now let B be the central subgroup of L� of order 2, so that L�=B �= P
(9; q).Let h = Bg an involution in P
(9; q). Then we must have
j
(9; q) : C
(9;q)(h)j < 12q4(q4 � 1):

Examining [GLS94, Table 4.5.1] we see that all involution centralizers in 
(9; q)have index at least 12q4(q4 � 1). Hence we have a contradiction.Proposition 39 is now proven.
13 L is an exceptional group of Lie type in char-

acteristic 2
In this section we prove the following proposition:54



Proposition 41. Suppose G has a minimal normal subgroup L where L is an ex-ceptional group of Lie type in characteristic 2 or that G has a unique component Lsuch that Ly is isomorphic to E6(q) or 2E6(q) where q = 2a. Then G does not acttransitively on a projective plane.
We have nine possibilities for L and, by Tits' Lemma [Sei73, 1.6], we know thatL� must lie in a parabolic subgroupM of L. We demonstrate that this is impossible,generally by showing a contradiction with Lemma 9.

13.1 Case: L = 3D4(q); G2(q); q > 2
In each case, for any parabolic subgroupM , jL :M j is divisible by (q4+q2+1)(q+1).If q � 1(3) then jL :M j is divisible by q+1 � 2(3), while if q � 2(3) then 9 dividesjL :M j. Thus M cannot contain L� (Lemma 9) and we are done.
13.2 Case: L = 2B2(q); q > 2; 2F4(q)0; F4(q); E7(q); E8(q)Examining the indices of the parabolic subgroups M in L in these cases, we �ndthat they are nearly always divisible by qm + 1 for some even integer m. Sinceqm + 1 � 2(3) these cases are excluded. We deal with the exceptions which are asfollows:

1. L = E7(q) and M is of type E6. Then jL :M j is divisible by (q5 + 1)(q9 + 1).If q � 1(3) then q5 + 1 � 2(3) and if q � 2(3) then 9 divides jL :M j. Both ofthese are impossible hence M cannot contain L�.
2. L = E7(q) andM is of type D6. Then jL :M j is divisible by (q8+q4+1)(q12+q6 + 1) which is in turn divisible by 9. Hence M cannot contain L�.
3. L = E7(q) andM is of type D5�A1. Then jL :M j is divisible by (q5+1)(q8+q4 + 1). If q � 1(3) then q5 + 1 � 2(3) and if q � 2(3) then 9 divides jL :M j.Both of these are impossible hence M cannot contain L�.Note that Kantor's argument to exclude the last two cases (L = E7(q) and Mof type D6 or D5 � A1) when the action is primitive is incorrect[Kan87].

13.3 Case: Ly = E�6(q)We proceed as in Subsection 13.2; we need only examine the parabolic subgroupsM in L which are not divisible by qm + 1 for some even integer m. There are twosuch possibilities:
1. Ly = E+6 (q) and M is of type D5. Then jL : M j = (q6 + q3 + 1)(q8 + q4 +1)(q2 + q + 1). For q � 1(3), jL :M j is divisible by 9 hence M cannot containL�. Thus we assume that q � 2(3) and so L is simple.Now we know that M 0 := [q16]:
+10(q) � L� �M �= [q16] : (
+10(q)H) where His the Cartan subgroup of L. This is because all parabolic subgroups of 
+10(q)have index divisible by q4 + 1 � 2(3).55



By [AS76, (15.1),(15.5)], L contains an involution g such that CL(g) = [q21] :SL(6; q) and so ng = (q6 + q3 + 1)(q8 + q4 + 1)(q8 � 1): Now if rg � (q6 + q3 +1)(q8�1) then ngrg � (q4+1)2� (q4+1)+1 and so dg � (q4+1)2+(q4+1)+1.But then ngrg dg < jL : M j which is a contradiction. Thus, for all h 2 L�conjugate in G to g, jK : CK(h)j < (q6 + q3 + 1)(q8 � 1).Now 
+10(q) 6� CL(g). Furthermore the only maximal subgroups of 
+10(q) withindex less than (q6 + q3 + 1)(q8 � 1) are the parabolic subgroups and Sp8(q).All but one type of parabolic subgroups have index divisible by q3 + 1. Sinceq3 + 1 does not divide into ng, there must be h 2 L� conjugate in G to g suchthat CK(h) lies in either [q16]:([q8] : 12((q � 1)� SO+8 (q))) or [q16]:Sp8(q).Consider the �rst possibility. Now SO+8 (q) 6� CL(g) and so
rg � P (SO+8 (q)) j
+10(q)jj[q8] : 12((q � 1)� SO+8 (q))j :

Using the value for P (SO+8 (q)) given in [KL90, Table 5.2.A] we conclude thatrg > (q6 + q3 + 1)(q8 � 1) which is impossible.Similarly Sp+8 (q) 6� CL(g) and so
rg � P (Sp+8 (q)) j
+10(q)jjSp+8 (q))j :

Once again we �nd that rg > (q6 + q3 + 1)(q8 � 1) which is impossible.
2. Ly = E�6 (q) andM is of type 2D4(q). Then jL :M j is divisible by (q5+1)(q9+1); we exclude this possibility in the same way as in Subsection 13.2, whenL = E7(q) and M is of type E6.
This concludes the proof of Proposition 41. Theorem A is now also proven.

References
[AS76] Michael Aschbacher and Gary M. Seitz, Involutions in chevalley groupsover �elds of even order, Nagoya Math. J. 63 (1976), 1{91.
[Asc84] M. Aschbacher, On the maximal subgroups of the �nite classical groups,Invent. Math. 76 (1984), no. 3, 469{514.
[Asc86] , Overgroups of Sylow subgroups in sporadic groups, Mem. Amer.Math. Soc. 60 (1986), no. 343, 1{235.
[Blo67a] R.E. Block, On the orbits of collineation groups, Math. Zeitschrift 96(1967), 33{49.
[Blo67b] David M. Bloom, The subgroups of PSL(3; q) for odd q, Trans. Amer.Math. Soc. 127 (1967), 150{178.56



[Cam04] Alan Camina, Projective planes with a transitive automorphism group,Preprint, 2004.
[Car89] Roger Carter, Simple groups of Lie type, John Wiley and Sons, 1989.
[CCN+85] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, and R.A. Wilson,Atlas of �nite groups, Oxford University Press, 1985.
[Cha68] Bomshik Chang, The conjugate classes of Chevalley groups of type (G2),Journal of Algebra 9 (1968), 190{211.
[CNP03] A. Camina, P. Neumann, and C. Praeger, Alternating groups acting onlinear spaces, Proc. London Math. Soc.(3) 87 (2003), no. 1, 29{53.
[Coo81] Bruce N. Cooperstein, Maximal subgroups of G2(qn), J. Algebra 70(1981), 23{36.
[CP93] Alan R. Camina and Cheryl E. Praeger, Line-transitive automorphismgroups of linear spaces, Bull. London Math. Soc. 25 (1993), 309{315.
[Dem97] P. Dembowski, Finite geometries, Springer-Verlag, 1997.
[GH00] Adilson Gon�calves and Chat Yin Ho, Alternating groups as collineationgroups, J. Algebra 225 (2000), 581{601.
[GL83] Daniel Gorenstein and Richard Lyons, The local structure of �nite groupsof characteristic 2 type, Mem. Amer. Math. Soc. 42 (1983), no. 276, 1{731.
[GLS94] Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classi�ca-tion of the �nite simple groups, number 3, Mathematical Surveys andMonographs, vol. 40, American Mathematical Society, 1994.
[Ho98] Chat Yin Ho, Finite projective planes with abelian transitive collineationgroups, J. Algebra 208 (1998), no. 2, 533{550. MR MR1655465(2000c:51004)
[HP73] Daniel R. Hughes and Fred C. Piper, Projective planes, Graduate Textsin Mathematics, vol. 6, Springer-Verlag, New York, 1973.
[Kan87] W. Kantor, Primitive permutation groups of odd degree, and an applica-tion to �nite projective planes, J. Algebra 106 (1987), 15{45.
[KL90] P. Kleidman and M. Liebeck, The subgroup structure of the �nite sim-ple groups, London Mathematical Society Lecture Note Series, vol. 129,Cambridge University Press, Cambridge, 1990.
[Kle87] P. B. Kleidman, The subgroup structure of some �nite simple groups,PhD thesis, University of Cambridge, 1987.

57



[Kle88a] Peter B. Kleidman, The maximal subgroups of the Chevalley groups G2(q)with q odd, the Ree groups 2G2(q), and their automorphism groups, J.Algebra 117 (1988), 30{71.
[Kle88b] , The maximal subgroups of the Steinberg triality groups 3D4(q)and of their automorphism groups, J. Algebra 115 (1988), 182{199.
[Lju43] W. Ljunggren, Einige bemerkungen �uber die Darstellung ganzer Zahlendurch bin�are kubische Formen mit positiver Diskriminante, Acta. Math.74 (1943), 1{21.
[LS85] M. Liebeck and J. Saxl, The primitive permutation groups of odd degree,J. London Math. Soc. 31 (1985), no. 2, 250{264.
[Mal91] Gunter Malle, The maximal subgroups of 2F4(q2), J. Algebra 139 (1991),52{69.
[Sch11] I. Schur, �Uber die Darstellung der symmetrischen und der alternierendenGruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math.139 (1911), 155{250.
[Sei73] Gary M. Seitz, Flag-transitive subgroups of Chevalley groups, Ann. ofMath. (2) 97 (1973), 27{56.
[Suz62] M. Suzuki, On a class of doubly transitive groups, Ann. of Math. 75(1962), no. 1, 105{145.
[Suz82] , Group theory I, Springer-Verlag, 1982.
[Tay92] Donald E. Taylor, The geometry of the classical groups, Sigma Series inPure Mathematics, vol. 9, Heldermann Verlag, Berlin, 1992.
[Wag59] A. Wagner, On perspectivities of �nite projective planes, Math. Z. 71(1959), 113{123.
[War66] Harold N. Ward, On Ree's series of simple groups, Trans. Amer. Math.Soc. 121 (1966), 62{89.

58


