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AbstractWe present a partial classi�cation of those �nite linear spaces S on which analmost simple group G with socle PSL(3; q) acts line-transitively.
A linear space S is an incidence structure consisting of a set of points � and a set oflines � in the power set of � such that any two points are incident with exactly one line.The linear space is called non-trivial if every line contains at least three points and thereare at least two lines. Write v = j�j and b = j�j.The investigation of those �nite linear spaces which admit an almost simple groupthat is transitive upon lines is already underway [4, 7] motivated largely by the theoremof Camina and Praeger [5]. We continue this investigation by considering the situationwhen the socle of a line-transitive automorphism group is PSL(3; q). The statement ofour theorem is as follows:

Theorem A. Suppose that PSL(3; q)�G � AutPSL(3; q) and that G acts line-transitivelyon a �nite linear space S: Then one of the following holds:
� S = PG(2; q), the Desarguesian projective plane, and G acts 2-transitively onpoints;
� PSL(3; q) is point-transitive but not line-transitive on S. Furthermore, if G� isa point-stabilizer in G then G� \ PSL(3; q) �= PSL(3; q0) where q = qa0 for someinteger a.
The proof of Theorem A will depend heavily upon an unpublished result of Camina,Neumann and Praeger which classi�es the line-transitive actions of PSL(2; q) (a weakerversion of this result has appeared in the literature, see [16]):

Theorem 1. Let G = PSL(2; q); q � 4 and suppose that G acts line-transitively on alinear space S. Then one of the following holds:
� G = PSL(2; 2a); a � 3 acting transitively on S, a Witt-Bose-Shrikhande space.Here � is the set of dihedral subgroups of G of order 2(q + 1) and � is the set ofinvolutions t 2 G with the incidence relation being inclusion.�This paper contains results from the author's PhD thesis. I would like to thank my supervisor,Professor Jan Saxl.
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� S = PG(2; 2), G = PSL(2; 7) and the action is 2-transitive.
In the case where S is a projective plane Theorem A is implied by a more generalresult from the author's PhD thesis [10]; this result will be published separately from thecurrent paper. Furthermore where G is 
ag-transitive upon S Theorem A is implied by[18].Now observe that if a linear space S is line-transitive then every line has the samenumber, k, of points and every point lies on the same number,r, of lines. Such a linearspace is called regular and those line-transitive linear spaces for which k = 3 or k = 4have been completely classi�ed in [8, 13, 2, 6, 15].Hence in order to prove Theorem A we need to consider the situation when S is not aprojective plane, is not 
ag-transitive and k � 5. The rest of the paper will be occupiedwith this proof. The �rst two sections outline some background lemmas concerning linearspaces. Section 3 gives background information about PSL(3; q). In Section 4 we reducethe proof to the situation when PSL(3; q) is transitive upon the lines of the space S. Thisreduction makes use of the notion of exceptionality of permutation representations, therelevance of which was pointed out by Dr Peter Neumann. The remaining sections aredevoted to the situation when PSL(3; q) is line-transitive.The following notation will hold, unless stated otherwise, throughout this paper. Wewill take G to be a group acting on a regular linear space S with parameters b; v; k; r.We will write � to be a point of S with G� to be the stabilizer of � in the action of G.Similarly L is a line of S and GL is the corresponding line-stabilizer.

1 Known Lemmas
We list here some well-known lemmas which we will use later. The �rst lemma is provedeasily by counting.
Lemma 2. 1. b = v(v�1)k(k�1) � v (Fisher's inequality);

2. r = v�1k�1 � k;
Lemma 3. [4, Lemma 6.5] Let p be an odd prime divisor of v.

1. If b = 32v then p = 5 and 25 6 ��v, or p � 1; 2; 4 or 8(15);
2. If b = 2v then p � 1(4).
For the remainder of this section assume that G acts line-transitively on the linearspace S.

Theorem 4. [3, Theorem1] If k��v then G is 
ag-transitive.
Lemma 5. [6, Lemma 4] If g is an involution of G and g �xes no points, then k��v. Inparticular, G is 
ag-transitive.
Lemma 6. [6, Lemma 2] Let L be a line in S and let T � GL. Assume that T satis�esthe following two conditions:

1. jFix�(T ) \ Lj > 1;
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2. if U � GL and jFix�(U)\Lj > 1 and U is conjugate to T in G, then U is conjugateto T in GL:
Then either Fix�(T ) � L or the induced linear space on Fix�(T ) is regular and NG(T )acts line-transitively on the space.
Lemma 7. [7, Lemma 2.2] Let g be an involution in G and assume that there exists N ,N �G such that jG : N j = 2 with g 62 N . Then N acts line-transitively also.

Note that Lemma 7 allows us to conclude that if PGL(2; q) acts transitively on thelines of a linear space S then PSL(2; q) also acts transitively on the lines of S and so thatspace is known.Our next result provides the framework for our analysis of the line-transitive actionsof PSL(3; q). Since S is not a projective plane then, by Fisher's inequality b > v andsince b = v(v� 1)=(k(k� 1)), there must be some prime p that divides both v� 1 and b.We shall refer to such a prime as a signi�cant prime.
Lemma 8. [4, Lemma 6.1] Suppose that S is not a projective plane and let p be asigni�cant prime. Let P be a Sylow p-subgroup of G�. Then P is a Sylow p-subgroup ofG and G� contains the normalizer NG(P ).
Lemma 9. [4, Lemma 6.3] Let H;K be subgroups such that

G� � H < K � G
and let c = jK : Hj. Then r divides 12(c� 1)k and b divides 12(c� 1)v.
Corollary 10. [4, Corollary 6.4] Let H;K be as in Lemma 9.

1. Let c0 = gcdf(c� 1) j c = jK : Hj; where G� � H < K � Gg:
Then r divides 12c0k and b divides 12c0v.2. There cannot be groups H;K such that G� � H < K � G and jK : Hj = 2.

3. If there are groups H;K such that G� � H < K � G and jK : Hj = 3 then S is aprojective plane.
2 New Lemmas
We state a series of lemmas which will be used in our analysis of the actions of PSL(3; q).The �rst is a generalization of the Fisher inequality to non-regular linear spaces.
2.1 General linear spaces

Lemma 11. In any linear space S, not necessarily regular, Fisher's inequality holds:b � v.
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Proof. We need to prove the statement under the assumption that the number of pointsin a line is not a constant. Let c be the maximum number of points on a line of S. Sinceany two points lie on a unique line we know that
b � �v2��c2� =

v(v � 1)c(c� 1) :
Thus if c(c� 1) � v� 1 then we are �nished. Assume to the contrary from this point on.We split into two cases:

1. Suppose that (c � 1)2 � v. Then v+c�1c � c � 1. Let Lc be a line with c pointson it and choose � a point not on Lc. Then the average number of points in a linecontaining � and intersecting Lc is less than or equal to v�c�1c +2 = v+c�1c � c� 1:Call the number of lines intersecting Lc, b0, and observe that
b � b0 � (v � c)cc� 1 :

Now we know that v > c2 and so vc� c2 > vc� v, hence (v�c)cc�1 > v. Thus this caseis covered.
2. Suppose that (c � 1)2 < v � c(c � 1). Note that v > 2 implies that c > 2. Letr� be the number of lines incident with a point �. If r� � c for all � then, let f bethe number of 
ags: vc � f � bc:

Thus v � b as required. Assume then that there exists a point � such that r� � c�1.Observe that every line not passing through � must have be incident with at mostr� points. Remove � and any lines which are incident with only � and one otherpoint. Then v > c and we still have a linear space, S�. S� has v� 1 points, at mostb lines, and the maximum number of points on a line is c� 1. This implies that,
bS � bS� � �v�12 ��c�12 � =

(v � 1)(v � 2)(c� 1)(c� 2) :
Thus we are �nished so long as (c � 1)(c � 2) < v � 2. But (c � 1)2 < v gives usthis inequality since c � 3.

All cases are proved and the result stands.
2.2 Regular linear spaces

We return to our assumption that S is a regular linear space.
Lemma 12. Let g 2 G be an involution. Then g �xes at least (v � 1)=k lines.
Proof. If g has no �xed point then g �xes v=k � (v � 1)=k lines. If g has a �xed point,�, then let m be the number of �xed lines through �. By de�nition, g moves the rest ofthe lines through �. Apart from � these lines contain v �m(k � 1)� 1 points. None of
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these points is �xed hence every one of these points lies on a �xed line. Thus the numberof lines �xed by g is at least
m+ v �m(k � 1)� 1k = v +m� 1k � v � 1k

lines as required.
Lemma 13. Let g be an involution which is an automorphism of a linear space S. Supposethat S has a constant number of points on a line, k, and that g �xes dl lines and dp points.Then, either

� dl � dp; or
� v = k2.

Proof. We know that if S is a projective plane then the result holds since the permutationcharacter on points and lines is the same [9, 4.1.2]. Now suppose that S is not a projectiveplane and split into two cases:
1. Suppose that dp � k. Assume that dl < dp. We know, by Lemma 12, that g �xesat least v�1k lines. Then

dl < dp =) v � 1k < k
=) v � 1 < k2:

Then, since (k � 1)��(v � 1), we must have v�1k�1 � k + 1. If v�1k�1 � k then b � v andso b = v and S is a projective plane. If v�1k�1 = k + 1 then v = k2 as given.
2. Suppose that dp > k. Then the �xed points and lines of g form a linear space.We may appeal to Lemma 11.

Lemma 14. Suppose that b = cdv where (c; d) = 1. Then the signi�cant primes areexactly those which divide c.
Proof. By de�nition a prime is signi�cant if it divides b and v � 1. Then we just use thefact that cdv = b = v(v � 1)k(k � 1) = (v � 1)=(k � 1)k v:
Lemma 15. Let H < G�. If NG(H) 6� G� then H is in GL for some line L.
Proof. Simply take g 2 NG(H)nG�. Then Hg = H is contained in G� and G�g. HenceH �xes the line joining � and �g.
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2.3 Line-transitive linear spaces

Throughout this section we assume that G acts line-transitively on S.
Lemma 16. Let g be an involution of G and write ng = jgGj for the size of a conjugacyclass of involutions in G. Let rg = jgG \ GLj be the number of such involutions in aline-stabilizer GL. Then the following inequality holds:

ng(v � 1)brg � k � rgvng + 1:
Proof. Count pairs of the form (L; g) where L is a line and g is an involution �xing L, intwo di�erent ways. Then jf(L; g)gj = brg � ngcwhere c is the minimum number of lines �xed by an involution. Now, by the previouslemma, c � v�1k thus we have

rg � ngcb � ng(v � 1)bk = ng(k � 1)v :
This implies two inequalities:

k � 1 � rgvng ; k � ng(v � 1)brg
and the result follows.
Lemma 17. Suppose that jG�j = cd jGLj where (c; d) = 1. Then the signi�cant primesare exactly those which divide c.
Proof. Simply use the fact that v = jGj=jG�j, b = jGj=jGLj and refer to Lemma 14.
Lemma 18. Suppose that pa is a prime power dividing v � 1 and that p does not divideinto jGj. Then pa divides k(k � 1).
Proof. Since p does not divide jGj, p cannot divide into b. Since b = v(v�1)k(k�1) and pa dividesinto v � 1 we must have pa dividing into k(k � 1).

We will often repeatedly use Lemma 18, with di�erent primes, to exclude the possibil-ity of a particular group, G; acting line-transitively on a space with a particular numberof points, v. Our method for doing this usually involves showing that any line size k mustbe too large to satisfy Fisher's inequality (Lemma 2).
3 Background Information on PSL(3; q)

We will sometimes precede the structure of a subgroup of a projective group with ^ whichmeans that we are giving the structure of the pre-image in the corresponding linear group.We will also refer to elements of this linear group in terms of matrices under the standardmodular representation.
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3.1 Subgroup information

We need information about the subgroups of PSL(3; q), PSL(2; q) and GL(2; q). Hereq = pa for a prime p, positive integer a.
Theorem 19. [14, 17, 1, 12] The maximal subgroups of PSL(3; q) are among the follow-ing list. Conditions given are necessary for existence and maximality but not su�cient.The �rst three types are all maximal for q � 5.

Description Notes1 [̂q2] : GL(2; q) two PSL(3; q)-conjugacy classes2 (̂q � 1)2 : S3 one PSL(3; q)-conjugacy class3 (̂q2 + q + 1):3 one PSL(3; q)-conjugacy class4 PSL(3; q0):(q � 1; 3; b) q = qb0 where b is prime5 PSU(3; q0) q = q206 A6 q odd7 32:SL(2; 3) q odd8 32:Q8 q odd9 SO(3; q) q odd10 PSL(2; 7) q odd
We will refer to maximal subgroups of PSL(3; q) as being of type x, where x is anumber between 1 and 10 corresponding to the list above.Referring to [1, 14] we state the following lemma:

Lemma 20. Suppose that H is a subgroup of PSL(3; q) lying in a maximal subgroup oftype 4 or 5 and H does not lie in any other maximal subgroup of PSL(3; q). Then oneof the following holds:
� H has a cyclic normal subgroup of index less than or equal to 3.
� H contains PSL(3; q1) with index less than or equal to 3. Here q = qc1, c an integer.
� H contains PSU(3; q1) with index less than or equal to 3. Here q = qc1, c an integer.
� H is isomorphic to A6:2 or A7 and q = 5a; a even.
We state a result given by Suzuki [19, Theorem 6.25] which gives the structure of allthe subgroups of PSL(2; q):

Theorem 21. Let q be a power of the prime p. Let d = (q � 1; 2). Then a subgroup ofPSL(2; q) is isomorphic to one of the following groups.
1. The dihedral groups of order 2(q � 1)=d and their subgroups.
2. A parabolic group P1 of order q(q � 1)=d and its subgroups. A Sylow p-subgroup Pof P1 is elementary abelian, P � P1 and the factor group P1=P is a cyclic group oforder (q � 1)=d.
3. PSL(2; r) or PGL(2; r), where r is a power of p such that rm = q.

7



4. A4; S4 or A5.
Note that when p = 2, the above list is complete without the �nal entry. Furthermore,referring to [14], we see that there are unique PSL(2; q) conjugacy classes of the maximaldihedral subgroups of size 2(q � 1)=d as well as a unique PSL(2; q) conjugacy class ofparabolic subgroups P1.We will also need the subgroups of GL(2; q) which can be easily obtained from thesubgroups of PSL(2; q) (for the odd characteristic case see [1, Theorem 3.4].)

Theorem 22. H, a subgroup of GL(2; q), q = pa, is amongst the following up to conju-gacy in GL(2; q). Note that the last two cases may be omitted when p = 2.
1. H is cyclic;
2. H = AD where A � �� 1 0� 1

� : � 2 GF (q)�
and D � N(A), is a subgroup of the group of diagonal matrices;

3. H =< c; S > where cjq2 � 1, S2 is a scalar 2-element in c;
4. H =< D;S > where D is a subgroup of the group of diagonal matrices, S is ananti-diagonal 2-element and jH : Dj = 2;
5. H =< SL(2; q0); V > or contains < SL(2; q0); V > as a subgroup of index 2 andhere q = qc0, V is a scalar matrix. In the second case, q0 > 3;
6. H= < �I > is isomorphic to S4 � C, A4 � C, or (with p 6= 5) A5 � C, where C isa scalar subgroup of GL(2; q)= < �I >;
7. H= < �I > contains A4 � C as a subgroup of index 2 and A4 as a subgroup withcyclic quotient group, C is a scalar subgroup of GL(2; q)= < �I >.
We will refer to maximal subgroups of GL(2; q) as being of type x, where x is a numberbetween 1 and 7 corresponding to the list above.Finally observe that PSL(3; q) contains a single conjugacy class of involutions. Thisclass is of size q2(q2 + q + 1) for q odd and of size (q2 � 1)(q2 + q + 1) for q even. Inaddition note that we will write � for (q � 1; 3).

3.2 The subgroup D

We de�ne D to be the centre of a Levi complement of a particular parabolic subgroup.Typically D is the projective image of8<
:
0
@ 1a2 0 00 a 00 0 a

1
A : a 2 F�q

9=
; :
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Suppose that G = PSL(3; q) acts line-transitively on a linear space. Since D normal-izes a Sylow t-subgroup of PSL(3; q) for many di�erent t, D often lies inside a point-stabilizer G�. Furthermore, since D has a large normalizer, ^GL(2; q), by Lemma 15, Doften lies inside a line-stabilizer, GL.We exploit this fact using Lemma 6 since if D satis�es the conditions given in thelemma and the �xed points of D are not collinear then we induce a line-transitive actionof PGL(2; q) on a linear space. All such actions on a non-trivial linear space are known.In the event that the �xed set is a trivial linear space (that is, k = 2) line-transitivity isequivalent to 2-homogeneity on points and these actions are also all well-known.We need information about the occurrence of D in various subgroups and about howG-conjugates of D intersect. We state the relevant facts below; proofs are omitted as theresults are easily derived from matrix calculations.
Lemma 23. The PSL(3; q) conjugates of D intersect trivially.
Lemma 24. Let U : ^GL(2; q) be a parabolic subgroup of PSL(3; q), q > 7, U an ele-mentary abelian p-group. We can choose ^GL(2; q) conjugate to

CG(D) = ^
8<
:
0
@ 1DET 0 00 e f0 g h

1
A : � e fg h

� 2 GL(2; q); DET = eh� fg
9=
; :

Let H be a maximal subgroup of ^GL(2; q) in PSL(3; q). Write a for a primitiveelement of GF (q).
1. If H is of type 2 in ^GL(2; q) then some ^GL(2; q) conjugate of H contains one in-dividual conjugate, and two families of conjugates, of D, generated by the projectiveimages of the following matrices, for f 2 GF (q):0

@ 1a2 0 00 a 00 0 a
1
A ;

0
@ a 0 00 1a2 00 f a

1
A ;

0
@ a 0 00 a 00 f 1a2

1
A :

2. If H is of type 3 in ^GL(2; q) then H contains only D.
3. If H is of type 4 in ^GL(2; q) then some ^GL(2; q)-conjugate of H contains threeconjugates of D, generated by the projective images of the following matrices:0

@ 1a2 0 00 a 00 0 a
1
A ;

0
@ a 0 00 1a2 00 0 a

1
A ;

0
@ a 0 00 a 00 0 1a2

1
A :

4. If H is of type 5 in ^GL(2; q) then one of the following holds:
� H contains only D;� H � SL(2; q);� H � SL(2; q0) where q = q20 and q0 = 3; 4 or 7.
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5. If H is of type 6 or 7 in ^GL(2; q) then one of the following holds:
� H contains only the central copy of D;� q = 13; 16 or 19.

Corollary 25. A subgroup of PSL(3; q) of type 3 contains only the 3 diagonal conjugatesof D as listed above for H of type 4 in ^GL(2; q).
4 Reducing to the Simple Case
Let B be a normal subgroup in a group G which acts upon a set �. Then (G;B;�) iscalled exceptional if the only common orbital of B and G in their action upon � is thediagonal (see [11]).
Lemma 26. Suppose a group G acts line-transitively on a linear space S; suppose further-more that B is a normal subgroup in G which is not line-transitive on S; �nally supposethat jG : Bj = t, a prime.Then either S is a projective plane or (G;B;�) is exceptional.
Proof. The suppositions mean that, for a line L of S, GL = BL. We have two possibilities:

� Suppose that B is point-transitive on S. Then let � and � be members of �,the set of points of S. Let L be the line connecting them. Then, since G�;� � GLand B�;� � BL, we know that G�;� = B�;�.We know furthermore that jG� : B�j = t, hence we may conclude that, for allpairs of points � and �, jB� : B�;�j < jG� : G�;�j. In other words (G;B;�) isexceptional.
� Suppose that B is not point-transitive on S. Then, by the Frattini argument,G = NG(P )B for all P 2 SylpB where p is any prime dividing into jBj. If G� �NG(P ) then B is point-transitive which is a contradiction. Thus, by Lemma 15, ifa Sylow p-subgroup of B stabilizes a point then it also stabilizes a line.Now let bB = jB : BLj, vB = jB : B�j. Then primes dividing into bB are asubset of the primes dividing into vB. Furthermore b = tbB and v = tvB. Thusprimes dividing into b are a subset of the primes dividing into v. Thus there are nosigni�cant primes and S is a projective plane.
Now suppose that PSL(3; q) � G � AutPSL(3; q) and G acts line-transitively ona space S which is not a projective plane. Suppose furthermore that PSL(3; q) is notline-transitive on S. Then there exist groups G1; G2 such that PSL(3; q) � G1 � G2 �G � AutPSL(3; q) where jG2 : G1j is a prime, G1 is not line-transitive on S while G2is. By the above argument, (G2; G1;�) is an exceptional triple and [11, Theorem 1.5]implies that, for q > 2, G� only lies inside maximal subgroups of type PSL(3; q0) whereq = qa0 ; a > 3.
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Appealing to Lemma 20 we have only four possibilities for G�. The last two on thelist lie inside PSU(3; q0) with q = q20 and so can be excluded. The �rst can be excludedsimilarly. Hence Theorem A holds in this situation for q > 2.When q = 2, PSL(3; 2) �= PSL(2; 7). Since AutPSL(2; 7) = PGL(2; 7), Lemma7 implies, under the given suppositions, that PSL(2; 7) is line-transitive on S. ThenTheorem 1 implies that Theorem A holds in this situation.In order to prove Theorem A it is now su�cient to proceed under the assumptions ofthe following hypothesis. Our aim is to show that this hypothesis leads to a contradiction.We will need to consider di�erent possibilities for a linear space S having a signi�cantprime dividing jPSL(3; q)j = q3(q � 1)2(q + 1)(q2 + q + 1)=� where � = (q � 1; 3).
Hypothesis. Suppose that G = PSL(3; q) acts line-transitively but not 
ag-transitivelyon a linear space S which is not a projective plane. Let b; v; k; r be the parameters of thespace. Let D be the subgroup of PSL(3; q) as de�ned in the previous section. We suppose,by Lemma 5, that every involution of PSL(3; q) �xes a point. Finally we assume thatq > 2.
5 Preliminary Cases
5.1 Signi�cant prime: tjq2 + q + 1; t 6= 3
Suppose �rst that some tjq2 + q + 1; t 6= 3 is a signi�cant prime. Lemma 8 implies thatG� � (̂q2 + q + 1):3 which is the normalizer of a Sylow t-subgroup of PSL(3; q). Now(̂q2+ q+1):3 is maximal in PSL(3; q) for q 6= 4 and so, in this case, G� = (̂q2+ q+1):3This is a contradiction since then G� doesn't contain any involution, contradicting ourHypothesis.When q = 4 the only other possibility is that G� = PSL(2; 7) and v = 120. Then17jv � 1 and by Lemma 18, k � 17 which contradicts Fisher's inequality (Lemma 2).
5.2 Signi�cant prime: t = p

Suppose now that p is signi�cant. Lemma 8 implies that G� � [̂q3] : (q � 1)2; a Borelsubgroup, which is the normalizer of a Sylow p-subgroup of PSL(3; q). Then G� is eithera Borel subgroup or a parabolic subgroup of PSL(3; q).In the latter case the action of G is 2-transitive on points and hence 
ag-transitive.Thus this case is already covered.When G� is a Borel subgroup v = (q2 + q + 1)(q + 1) and, by Corollary 10, b dividesinto 12q(q + 1)(q2 + q + 1). This implies that r > k > q + 1. Then r = v�1k�1 < q2 + q + 1.Consider the set of lines through the point �. These lines contain all points of S andso the points of Snf�g can be thought of as making up a rectangle with dimensions rby k � 1. The area of this rectangle (that is, the number of points in the rectangle) isv � 1 = r(k � 1) = q3 + 2q2 + 2q.Now G� has �ve orbits on Snf�g of size q; q; q2; q2 and q3. Each of these orbits formsa rectangle of points in Snf�g. Thus we have a rectangle of area q3 + 2q2 + 2q madeout of rectangles of area q; q; q2; q2 and q3 with integer dimensions. We investigate thissituation.
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Write [qa]l and [qa]w for the length and width of the rectangles of area qa. De�ne thelength of the rectangle of area qa to be the dimension in the direction of the side of lengthr in the big rectangle. Observe �rst that q � k � 1 < [q3]w � [q3]l < r < q2:Now if, for a = 1; 2; there exists a rectangle such that [qa]w > [q3]w or [qa]l > [q3]lthen v � 1 � pq6 which is a contradiction.Suppose that there is a rectangle of area qa such that [qa]w < [q3]w: This rectanglemust combine with others to make the total width k � 1. It either combines with arectangle of width at least [q3]w or it combines with several of width less than [q3]w.Given that there are only �ve rectangles in total the latter possibility can only occur forp = 2; 3. In fact a cursory examination can rule out the case where p = 3. A similarargument works if we consider lengths instead widths.Thus, for p > 2, we are reduced to factorising q2+2q+2 in Z[x]. But this polynomialis clearly irreducible by Eisenstein's criterion.If p = 2 then a slight modi�cation of the above argument reduces to the factorisationproblem once again and the possibility that G� is a Borel subgroup is excluded.Remark. Note that we have excluded the possibility that G� is a parabolic or a Borelsubgroup, no matter what prime is signi�cant.
5.3 Remaining Cases

We wish to enumerate the remaining cases that we need to examine. First of all note thatwhen q is small applications of Lemmas 18 and 2 can be used to exclude all possibilities.We will assume from here on therefore that q � 8.In addition one case in particular is worth mentioning now: When q is odd and whenboth 2 and 3j(q � 1) are signi�cant primes.The only maximal subgroups which have index not divisible by 2 and 3 in this caseare those of type 2 and 4. Suppose that G� lies in a subgroup M of type 2, Withoutloss of generality the diagonal subgroup normalized by the group of permutation matricesisomorphic to S3. Now D normalizes a Sylow 2-subgroup ofM . In addition Q 2 Syl3G isconjugate to H : C3 where H is a diagonal subgroup, C3 a group of permutation matrices.Q does not normalize D hence G� contains at least two conjugates of D. Since theseintersect trivially, by Lemma 23, these generate a subgroup of index dividing � in thediagonal subgroup. Our group G� must therefore be the full subgroup of type 2.If G� is contained in a subgroup, M , of type 4 then in order to contain an element oforder q�1� , M = PSL(3; q0); q = (q0)2: But then the index of M in G is even which is acontradiction.Thus the cases which we need to examine are, for q � 8:Signi�cant primes t Possible stabilizersI 9t��(q + 1); t 6= 2 (̂q2 � 1):2 � G� < q2 : ^GL(2; q)II 9t��(q � 1); t 6= 2; 3 OR G� = (̂q � 1)2 : S32; 3��(q � 1) both signi�cantIII 3��(q � 1) is uniquely G� is a subgroup of asigni�cant maximal subgroup of type 2, 4, 5 or 8IV 2��(q � 1) is uniquely G� is a subgroup of asigni�cant maximal subgroup of types 1, 2 or 4
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6 Case I: 9tj(q + 1); t 6= 2 signi�cant
In this case G� contains a subgroup H of order 2(q2 � 1)=� which itself has a cyclicsubgroup of size (q2 � 1)=� and G� lies inside a parabolic subgroup of G.Now observe that H lies inside a copy of ^GL(2; q) and that ^GL(2; q) normalizes anelementary abelian subgroup, U , of PSL(3; q), of order q2. In its conjugation action onthe non-identity elements of U , ^GL(2; q) has stabilizers of order q(q�1). Thus our groupH must, if it normalizes any subgroup of U , normalize a subgroup of order 1 + x(q + 1)for some integer x. Now for such a value to divide q2, as required, x must be 0 or q � 1.Thus G� = ^A:B where A is trivial or of size q2 and H � B � GL(2; q). Now, inthe characteristic 2 case, GL(2; q) = PSL(2; q) � (q � 1) and H = D2(q+1) � (q � 1).Since D2(q+1) is maximal in PSL(2; q) for all even q � 8, we know that B = H orB = GL(2; q). In the odd characteristic case, GL(2; q) =< �I > :(PSL(2; q) � ( q�12 )):2and H =< �I > :(H � ( q�12 )):2. Now, for all odd q > 9, D2(q+1) is maximal in GL(2; q)and, once again we conclude that B = H or B = GL(2; q).We need to consider the case where q = 9 and H < B < GL(2; q). In fact thiscase cannot occur since the only proper subgroup of PSL(2; 9) containing D10 is A5,but < �I > :(A5 � ( q�12 )) is not normalized by any element of GL(2; q) of non-squaredeterminant.Thus we can summarize the cases that we need to examine:

1. G� = U:̂ (q2 � 1):2 where U = [q2];
2. G� = ^GL(2; q);
3. G� = (̂(q2 � 1):2).
Note that we exclude the case where G� = ^U : GL(2; q), as then G� is maximalparabolic and this case is already excluded. We will consider the remaining cases in turn.

Remark. These cases also arise when 2��(q+1) is the only signi�cant prime (see Section9). The arguments given below are general and apply in that situation as well.
6.1 Case 1: G� = U:( (̂q2 � 1):2).
Now we know that v = 12(q2+q+1)q(q�1) and, since G� lies inside a parabolic subgroup,we can appeal to Corollary 10 to observe that

b��18(q2 + q + 1)q(q � 1)(q + 1)(q � 2) and b��14(q2 + q + 1)q(q � 1)(q + 1)q:
Thus b�� 14(2;q�1)(q2 + q + 1)q(q � 1)(q + 1) and so 4(2; q � 1)q2(q � 1)=� divides jGLj.For q > 7 this means that GL lies in a parabolic subgroup. Observe that we can presumethat U : D lies in GL for some L since U : D lies in G� and is normalized by the fullparabolic subgroup (Lemma 15).Suppose that U is non-normal in GL = ^A:B where A is an elementary abelian p-groupand B � GL(2; q). Then GL must lie in a parabolic subgroup which is not conjugate toNG(U) and jU\Aj = q. If AnU is non-empty then U acts by conjugation on these elementswith an orbit, 
, of size q. Then U \ A and 
 lie inside A and generate q2 elements.
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Hence we must have A of size q or q2. The latter would make jGLj � 4q3(q� 1)=� whichis larger than jG�j which is a contradiction. Hence we conclude that jAj = q.Since A is normal in GL we must have GL a subgroup of a Borel subgroup. Howeverin this case U is normal in GL. This is a contradiction.Hence we have U normal in GL. Furthermore there are no other G-conjugates of Uin GL, since U \ U g is trivial for all g in GnNG(U). Hence we may appeal to Lemma6. Then either U : ^GL(2; q) acts line-transitively on the �xed set of U , which is itselfa linear space, or this �xed set lies completely in one line. In the �rst case, such anaction of U : ^GL(2; q) has a kernel U : ^D and corresponds to a line-transitive action ofPGL(2; q) with stabilizer a dihedral group D2(q+1).Examining the results of line-transitive and 2-transitive actions of PGL(2; q) we �ndthat there is one such action to consider. We have q even and PGL(2; q) acts line-transitively upon a Witt-Bose-Shrikhande space with line-stabilizer an elementary abeliangroup of order q. In PSL(3; q) this corresponds to GL having order q3(q�1)� and b =(q � 1)(q + 1)(q2 + q + 1). Then we must have,
k(k � 1) = v(v � 1)b = 14q(q3 � q2 + q � 2)

=) 2k(2k � 2) = q4 � q3 + q2 � 2q:
Now observe that,

(q2 � 12q + 1)(q2 � 12q � 1) < q4 � q3 + q2 � 2q < (q2 � 12q + 2)(q2 � 12q):Thus this case is excluded.We can assume therefore that the set of �xed points of U lies completely in one line.This �xed set has size 12q(q � 1) and thus k is at least this large. Now the subgroupsconjugate to U intersect trivially. Thus U lying in GL has orbits on the points of L ofsize 1 (12q(q � 1) such) or q2 (for q odd) or q22 (for q even.)If k � q2+ 12q(q� 1) then k(k� 1) > v which is a contradiction. If k = 12q(q� 1) thenk � 1 = 12(q + 1)(q � 2) divides into v � 1 = 12(q + 1)(q3 � q2 + q � 2). This is possibleonly for q � 4 which is a contradiction. Thus we are left with the possibility that q iseven and k = 12q(q � 2). Once again k � 1 dividing into v � 1 implies that q � 4.
6.2 Case 2: G� = ^GL(2; q)
Since v = q2(q2 + q + 1) and G� lies inside a parabolic subgroup, we can appeal toCorollary 10 to observe that

b��12q2(q2 + q + 1)(q � 1)(q + 1) and b��12q2(q2 + q + 1)(q + 1)q:
Thus b��12q2(q2 + q + 1)(q + 1) and so 2q(q � 1)2=� divides jGLj.This implies that, for q > 7, GL lies in a parabolic subgroup or q = 16. When q = 16we �nd that the prime 4111 divides into v-1=69888 which, using Lemma 18, contradictsLemma 2.Thus GL lies in a parabolic subgroup and we write GL = ^A:B as usual. If A = f1gthen we must have GL = ^B � ^GL(2; q): Examining the subgroups of GL(2; q) given in
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Theorem 22 we �nd that jGLj is divisible by jGL(2;q)j2� . Now if � = 3 and 3 is signi�cantthen G� does not lie in a parabolic subgroup. Hence we must have jGLj = 12 jG�j with 2uniquely signi�cant. But then Lemma 3 implies that any prime dividing into v must beequivalent to 1(4). Now in our current situation any signi�cant prime divides into q+12thus 2 is not a signi�cant prime; this is a contradiction.Now if 1 6= g 2 A then jCPSL(3;q)(g)j = q3(q�1)=�. Thus B must act on the non-trivialelements of A with orbits of size divisible by q � 1. Thus jAj = q or q2.If jAj = q2 then jGLj � 2q2(q � 1)2=� > jG�j which cannot happen. If jAj = q thenp = 2 (since, if p is odd, B must act on the non-trivial elements of A with orbits of sizedivisible by 2(q � 1).) For q > 4 we must have B either maximal in GL(2; q) of type 4or a subgroup of the Borel subgroup of GL(2; q). In the �rst case ^B has orbits of size atleast 2(q � 1) on the non-identity elements of A, thus this case can be excluded.If B lies inside a Borel subgroup of GL(2; q) then B = B1:B2 where 2 < B1 andB2 = (q � 1)2. In fact we must have jBj = q(q�1)2� since B2 acts by conjugation onthe non-identity elements of B1 with orbits of size q � 1. Hence jGLj = q2(q�1)2� andb = q(q + 1)(q2 + q + 1). Hence we must have
k(k � 1) = q4 + q2 � q:

Now observe that, q2(q2 � 1) < q4 + q2 � q < (q2 + 1)q2:
Thus this case is excluded.
6.3 Case 3: G� = ^(q2 � 1):2
Since v = 12q3(q2 + q + 1)(q � 1) and G� lies inside a parabolic subgroup, we can appealto Corollary 10 to observe that b divides into both
14q3(q2 + q + 1)(q � 1)(q + 1)q and 18q3(q2 + q + 1)(q � 1)(q + 1)(q3 � 2q2 + 2q � 2):

Thus b�� 14(2;q�1)q3(q2 + q + 1)(q � 1)(q + 1) and so 4(2; q � 1)(q � 1)=� divides jGLj.To begin with note that all cases where 11 < q � 16 and q = 9; 19; 25; 31; 37; 64 canbe ruled out using Lemma 18. When q = 11, Lemma 18 leaves one possibility, namelythat k = 444. But then b is not an integer and so this situation can be excluded. Whenq = 8, Lemma 18 leaves one possibility, namely that k = 171. But then k � 1 does notdivide into v � 1 and so this situation too can be excluded.Using these facts, and recalling that 4(2; q � 1)(q � 1)=� divides jGLj < jG�j; we canexclude the possibility that GL lies in a subgroup of PSL(3; q) of type 3-10. Hence weassume that q � 17 and GL lies inside a subgroup of type 1 or 2 for the rest of thissection.Now D < G� and, by Lemma 15, D lies in GL for some line L. We refer to Lemma 6to split our investigation into three cases:
� Case 3.A: All G-conjugates of D in GL are GL-conjugate and the �xed set of D isa linear-space acted on line-transitively by ^GL(2; q), the normalizer of D.
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� Case 3.B: All G-conjugates of D in GL are GL-conjugate and the �xed points ofD, of which there are 12q(q � 1), lie on one line;
� Case 3.C: GL contains at least two GL-conjugacy classes of G-conjugates of D.

6.3.1 Case 3.A
This situation corresponds to a line-transitive action of PGL(2; q) with stabilizer D2(q+1).Then Theorem 1 implies that p = 2 and the �xed set of D is a Witt-Bose-Shrikhandespace. The corresponding line-stabilizer in PGL(2; q) has size q and so jGLj is divisibleby q(q�1)� in PSL(3; q). Suppose that jGLj = q(q�1)� and so

k(k � 1) = v(v � 1)b = 14(q6 � q5 + q4 � 2q3 + 2q2 � 2q)
=) (2k)(2k � 2) = q6 � q5 + q4 � 2q3 + 2q2 � 2q:

But now observe that
(q3 � 12q2 + 38q + 2)(q3 � 12q2 + 38q) < 2k(2k � 2) < (q3 � 12q2 + 38q)(q3 � 12q2 + 38q � 2):
For q > 16 this gives a contradiction.The only other possibility is that jGLj = 2q(q�1)� and [q] � q�1� = GL \ CG(D). Thisimplies that GL lies inside a parabolic subgroup of PSL(3; q).Now [q] � q�1� is normal in GL and so [q] is normal in GL and GL lies inside a Borelsubgroup of PSL(3; q). Then D acts on the normal subgroup of GL of order 2q. Fur-thermore D centralizes at most q of these elements and has orbits on the rest of size atleast q�1� . These orbits intersect cosets of [q]�CG(D)\GL with a size of at most 1. Thisgives a contradiction.
6.3.2 Case 3.B
Observe that all PSL(3; q)-conjugates of D intersect trivially. Observe too that all ele-ments of G� are of form TS where T 2 (̂q2 � 1) and S2 lies in D. Then (TS)2 lies inD and hence if E is some other conjugate of D then E \G� is of size at most (2; q � 1).Thus the orbits of D on L, a line which it �xes, are either of size q�1(2;q�1)� or of size 1 andthere are 12q(q � 1) of these. We conclude that k is a multiple of q�1(2;q�1)� .Now we �nd that (v� 1; jGj) = q+1(2;q�1) . Since q�1(2;q�1)� ��k and b = v(v�1)k(k�1) divides into jGjthen b���2 (q2 + q + 1)q3(q + 1).Thus, for q 6� 1(3), jGLj = 2(q� 1)2 � 512. If q � 1(3) then jGLj = 29(q� 1)2:a wherea = 1; 2 or 3.Suppose �rst that p is odd. Consider the possibility that GL lies inside a subgroupof type 2 and not in a parabolic subgroup. So GL is a subgroup of (̂q � 1)2 : S3 andmust have either 3 or S3 on top. The former case is impossible as then b does not divideinto �2 (q2 + q + 1)q3(q + 1). Now GL = (̂A � A) : S3 or (A� � A� ) : S3. Then, since GLmust contain a subgroup conjugate to D, we �nd that GL = ( q�1� � q�1� ) : S3, � = 3 orGL = (̂q � 1)2 : S3. The latter case violates Fisher's inequality and can be excluded.
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In the former case GL contains at most q + 2 involutions. Appealing to Lemma 16, weobserve that k � rgvng + 1 = 12q(q + 2)(q � 1) + 1:
This means that b = v(v�1)k(k�1) > q5(q � 3) which is a contradiction.Thus GL lies inside a parabolic subgroup; in fact GL is isomorphic to a subgroup of^GL(2; q). In order for Fisher's inequality to hold, we must have one of the followingcases:

� b = 12q3(q2+ q+1)(q+1) and jGLj = 2(q�1)2� . Thus GL is isomorphic to a subgroupof ^GL(2; q) of type 4 (in which case GL contains more than one GL-conjugacy classof G-conjugates of D which is a contradiction) or GL is isomorphic to a subgroupof type 6 or 7. This latter case requires that 2(q � 1) divides into 24 or 60. Thesepossibilities have already been excluded.
� b = 34q3(q2 + q + 1)(q + 1). Hence jGLj = 49(q � 1)2 and q � 7(12). Thus GL isisomorphic to a subgroup of type 6 or 7 in ^GL(2; q) and 4(q�1)3 must divide 24 or60. This is impossible.
� b = 32q3(q2 + q + 1)(q + 1). Then jGLj = 29(q � 1)2 and q � 1(3). Thus GL isisomorphic to a subgroup of ^GL(2; q) of type 4, 6 or 7.If GL is isomorphic to a subgroup of ^GL(2; q) of type 4 then rg � q+83 . UsingLemma 16 we see that k � ng(v � 1)brg > q2(q � 9):
Since (k � 1)2 < v this implies that

q4(q � 9)2 < 12q3(q2 + q + 1)(q � 1)
which means that q < 31. Then q = 25; but this possibility has already beenexcluded using Lemma 18.If GL is isomorphic to a subgroup of ^GL(2; q) of type 6 or 7 then we require that2(q�1)3 divides into 24 or 60. Hence q = 31 or 37. These possibilities have alreadybeen excluded.

If p = 2 then, in order for Fisher's inequality to hold and so that 4(q � 1)=� dividesinto jGLj, we have jGLj = 49(q � 1)2 and q � 1(3). Thus GL lies inside a parabolicsubgroup of PSL(3; q) and GL = ^A:B as usual.If A is trivial then GL is a subgroup of type 2 in ^GL(2; q). Then GL has a normal2-group and, by Schur-Zassenhaus, GL also contains a subgroup of size (q�1)29 . Thissubgroup has orbits in its conjugation action on 2-elements of GL of size at least q�13 .This implies that jGLj is divisible by q(q�1)29 which is a contradiction.If A is non-trivial then GL must have orbits in its conjugation action on non-identityelements of A of size at least q�13 . Once again this implies that jGLj is divisible by q(q�1)29which is a contradiction.
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6.3.3 Case 3.C
Now consider the possibility that GL contains at least two GL-conjugacy classes of G-conjugates of D.Suppose �rst that GL is a subgroup of (̂q � 1)2 : S3 and does not lie in a parabolicsubgroup. We know that q is odd since 4(2; q � 1)(q � 1)=� divides into jGLj. Since GLis not in a parabolic subgroup we must have a non-trivial part of S3 on top, of order 3 or6. Thus all G-conjugates of D in GL are GL-conjugate which is a contradiction.Thus we may conclude that GL is in a parabolic subgroup. Write GL = ^A:B asusual. If A is trivial then, referring to Lemma 24, we conclude that GL is a subgroup of^GL(2; q) of type 2,4 or 5. If GL is of type 5 then q = 49 and this can be ruled out usingLemma 18.If GL is of type 2 and not of type 4 then it must contain non-trivial p-elements. Someconjugate of D in GL must have orbits in its conjugation action on these elements of sizeq�1� . Thus A1 : q�1� � jGLj where A1 is a p-group of size divisible by q. We will considerthis possibility together with the case when A is non-trivial.So suppose that A is non-trivial. Now either all G-conjugates of D in GL lie in CG(A)or else jAj � q. Consider the �rst possibility. In this case A : D and A : E lie insideCG(A) where E is a G-conjugate of D. Now CG(A) � CG(g) for g an element or orderp. Since CG(g) �= [q3] : q�1� , we know that D and E are conjugate in CG(A) \ GL bySchur-Zassenhaus. This is a contradiction and so we assume that jAj � q; thus, in bothcases that we have considered so far, Q : D � GL where Q is a p-group of order divisibleby q.Now let E be a G-conjugate of D in GL which is not GL-conjugate to D. SupposeE \ (Q : D) is non-trivial and 1 6= h 2 E \ (Q : D). Then h lies inside a Q : D-conjugateof D by applying Sylow theorems to Q : D. But this is impossible since Lemma 23implies that either E = D or E \D is trivial. Hence jGLj � q(q�1)2�2 > jG�j which is alsoimpossible.Finally we must consider the possibility that GL is of type 2 in ^GL(2; q); that is, GLis a subgroup of (̂q � 1)2 : 2. We must have q odd since 4(2; q � 1)(q � 1)=� divides intojGLj. Furthermore the G-conjugates of D in (̂q � 1)2 : 2 normalize each other and so(q�1)2�2 divides into jGLj. There are three possibilities to consider:

� GL � (̂q�1)2. In this case GL contains at most 3 involutions. Appealing to Lemma16, we observe that k � rgvng + 1 = 32q(q � 1) + 1:
This is too small to satisfy b = v(v�1)k(k�1) hence we have a contradiction.

� GL = ( q�1� � q�1� ) : 2. Then GL contains q+83 involutions. Once again using Lemma16, we observe that
k � rgvng + 1 = 16q(q + 8)(q � 1) + 1:

But this is too small to satisfy b = v(v�1)k(k�1) hence we have a contradiction.
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� GL = (̂(q� 1)� (q� 1)) : 2. Then GL contains q+2 involutions and we have that,
k � rgvng + 1 = 12q(q + 2)(q � 1) + 1:

Once again this is too small to satisfy b = v(v�1)k(k�1) .Hence we may conclude that no line-transitive actions exist with primes dividing q+1signi�cant.
7 G� = ^(q � 1)2 : S3
In this case v = 16q3(q+1)(q2+ q+1) and any signi�cant prime t must divide into q� 1.Note �rst that, by using Lemma 18, we can assume that q > 25 and that q 6= 31, 37,43, 49, 64, 109 or 271. Furthermore a conjugate of D lies in G� and D is normalizedby ^GL(2; q). Thus, by Lemma 15, a conjugate of D lies inside GL. We split into threecases:

� Case A: AG-conjugate ofD is normal inGL andGL contains no otherG-conjugatesof D;
� Case B: A G-conjugate of D is normal in GL and GL contains other G-conjugatesof D. Thus jGLj is divisible by ( q�1� )2 and so b divides into 6�v;
� Case C: All G-conjugates of D in GL are non-normal in GL.
We examine these possibilities in turn.

7.1 Case A

In this case we know, by Lemma 6, that either ^GL(2; q) acts line-transitively on thelinear-space which is the �xed set of D or all �xed points of D lie on a single line.The �rst possibility cannot occur however as this would correspond to PGL(2; q) actingline-transitively on a linear-space (possibly having k = 2 and so being a 2-homogeneousaction) with line-stabilizer a dihedral group of size 2(q � 1) which is impossible. Hencewe may assume that all �xed points of D lie on a single line. There are 12q(q+1) of these.If E is some other conjugate of D then E \G� is of size at most 2. We conclude thatk = 12q(q+1)+n q�12� for some integer n. This implies that k� 1 is divisible by q�12� . Now,since v � 1 = q�12 q5+3q4+5q3+6q2+6q+63 , we observe that b��(q5 + 3q4 + 5q3 + 6q2 + 6q + 6)v.Now, for p odd, (jGj; q5 + 3q4 + 5q3 + 6q2 + 6q + 6) is a power of 3, hence 3 is the onlysigni�cant prime and 3jq � 1. For p = 2, (jGj; q5 + 3q4 + 5q3 + 6q2 + 6q + 6) is divisible,at most, by the primes 2 and 3. However we know that 2 is not a signi�cant prime herethus, again, 3 is the only signi�cant prime. Note that q5 + 3q4 + 5q3 + 6q2 + 6q + 6 isdivisible by 27 if and only if q � 28(81). Thus, if 3a is the highest power of 3 in q � 1then a 6= 3 implies that bj27v. If a = 3 then we know already that bj81v.This case will be completed below.
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7.2 Case A and B

Now we examine the remaining possibilities of Case A along with Case B. Thus GL <^GL(2; q) and one of the following holds:
� q � 28(81), 2(q�1)281 divides into jGLj and GL contains precisely one G-conjugate ofD;
� q � 1(3), 2(q�1)227 divides into jGLj and GL contains precisely one G-conjugate of D;
� (q�1)2�2 divides into jGLj and GL contains more than one G-conjugate of D.
Observe also that k(k � 1) = v(v�1)b is even and that

jv(v � 1)j2 = (q; 2)4 jq3(q + 1)(q � 1)j2:
Thus if p is odd then we need jGLj divisible by 8(q � 1)=�.Suppose that GL is a subgroup of ^GL(2; q) of type 6 or 7. Since q > 25; Lemma24 implies that GL contains at most one conjugate of D. Thus 2(q�1)9 must divide 24 or60 or 2(q�1)27 divides 24 or 60 and q � 28(81). The prime powers we need to check are,therefore, 13, 19, 31, 37, 109 and 271. These cases are already all excluded.If GL lies inside a group of type 3 then GL contains at most one conjugate of D andeither q �= 28(81) and 2(q�1)27 divides into 4 or 2(q�1)9 divides into 4. Both yield values forq which are less than 25 and so can be excluded.Suppose that GL is a subgroup of ^GL(2; q) of type 5, GL �= ^< SL(2; q0); V >. Then(q�1)281 divides into 2q0(q20 � 1) q0�13 and so q � 1 divides into 54(q20 � 1). For q � q30 we�nd that this is impossible for q0 > 2. If q0 = 2 then q < 32 and so all cases have beenexcluded. For q = q0, jGLj < jG�j implies a contradiction. For q = q20, jGLj < jG�jimplies that pq � 5 and all possibilities have been excluded.Suppose that GL lies inside a parabolic subgroup of ^GL(2; q) and not of type 4. ThenjGLj is divisible by p for q = pa, integer a. If jGLj is divisible by (q�1)2�2 then GL has orbitson the non-identity elements of its normal p-Sylow subgroup divisible by q�1� . Thus GLcontains the entire Sylow p-subgroup of ^GL(2; q) and jGLj � q (q�1)2�2 ; this implies thatq < 6� which is impossible. So assume that 3��(q � 1) is the only signi�cant prime. If2(q�1)281 divides into jGLj we must have p = 2 and GL = ^A : B where A is a non-trivial2-group. Then q � 2a and q� 1 has a primitive prime divisor s greater than 3 and s(q�1)3divides into jBj. Then B acts on the non-identity elements of A by conjugation withorbits of size divisible by s and so jAj = q. Thus jGLj is divisible by q(q�1)s3 which meanss must be 5 and so q = 16. This is already excluded.We are left with the possibility that GL is a subgroup of ^GL(2; q) of type 4. If 2 issigni�cant then p is odd and GL contains at most 3 involutions since GL � (̂q � 1)2. ByLemma 16 we know that k � 3vn + 1 = 12q(q + 1) + 1. This is inconsistent with our valuefor b. If 2 is not signi�cant then jGLj = 2jDje where e is a constant dividing q� 1. Thenthe number of involutions in GL is at most e + 3. We appeal to Lemma 16 to concludethat, k � rgvng + 1 = (e+ 3)(q + 1)q6 + 1:
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Thus, 3(q � 1)e = bv = v � 1k(k � 1) � 6(q6 + 2q5 + 2q4 + q3 � 6)(e+ 3)2q2(q2 + 3q + 2) > 6q2(e+ 3)2 :
This implies that (e+3)2e > 2q and so e+15 > 2q. Since e < q this must mean that q < 15which is a contradiction.
7.3 Case C

Finally we consider the possibility that no conjugate of D is normal in GL. We must haveat least two conjugates of D in GL and so jGLj > (q�1)2�2 .Suppose �rst that GL lies in a parabolic subgroup. Then GL = ^A:B where A is anelementary abelian p-group, B � GL(2; q).Suppose that A is trivial and refer to Lemma 24. Then GL lies in a subgroup of^GL(2; q) of types 2, 4 or 5. If GL lies in a subgroup of type 5 then GL � SL(2; q) inwhich case jGLj > jG�j which is a contradiction.If GL lies in a subgroup of ^GL(2; q) of type 4 then conjugates of D in GL normalizeeach other and so (q�1)2�2 divides into jGLj. In this case some conjugate of D must benormal in GL which is a contradiction.If GL lies in a subgroup of ^GL(2; q) of type 2 then we must have p dividing jGLjotherwise all conjugates of D are normal in GL. But then some conjugate of D acts byconjugation on the non-trivial elements of the normal p-subgroup with orbits of size q�1� .Thus q divides jGLj and GL has a normal subgroup Q of size q. We will deal with thissituation at the end of the section.Thus A is non-trivial. Suppose that all conjugates of D in GL centralize all elementsof A. Then these conjugates lie in a subgroup of order q3(q � 1)=�. Now if GL \ CG(A)only contains p-elements centralized by D then GL \CG(A) contains only one conjugateof D. By our supposition this means that GL contains only one conjugate of D which isa contradiction. Thus GL \ CG(A) contains p-elements not centralized by D. Then thenormal p-subgroup of GL \ CG(A) has size jAj+ n q�1� for some n. Thus GL � Q : D fora p-group Q of size at least q.If a conjugate of D in GL does not act trivially in its action on elements of A then Amust be of order divisible by q. Once again GL � Q : D where jQj � q. We deal withthis situation at the end of the section.Now suppose that GL lies inside a subgroup of PSL(3; q) of type 2. In order for thereto be two conjugates, D and E; of D in GL we must have D;E in (̂q � 1)2. Hence(q�1)2�2 ��jGLj. For D;E to be non-normal, we must have GL � ( q�1� � q�1� ) : 3. If 2 issigni�cant then p is odd and GL � (̂q � 1)2 : 3 and GL contains at most 3 involutions.By Lemma 16, we know that k � 3vn + 1 = 12q(q + 1) + 1. This is inconsistent with ourvalue for b. If 2 is not signi�cant then GL = ( q�13 � q�13 ) : S3 and b = 3v.When p is odd, GL contains at most q+2 involutions and, by Lemma 16, this impliesthat k � (q+2)vq2(q2+q+1) + 1. We therefore conclude that
k(k � 1) � q(q + 1)(q + 2)(q + 3)(q2 + 2)36 :

However this implies that bv = v�1k(k�1) > 4 which is a contradiction.
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When p = 2; GL contains at most q � 1 involutions and we �nd that k(k � 1) �136q3(q3 + 6). Once again bv = v�1k(k�1) > 4 which is a contradiction.If GL lies inside a subgroup of PSL(3; q) of type 4 or 5 then we have two possibilities.If GL = A6:2 or A7 then, in order to satisfy jGLj > (q�1)2�2 , we must have q = 25. Thishas already been excluded. If GL contains a subgroup of index less than or equal to 3isomorphic to PSU(3; q0) or PSL(3; q0) where q = qa0 then we require that q30(q20�1)(q30�1) < 6(q � 1)2. Thus we need q � q40. This implies that either q�1� does not divide intojGLj or that q = 64. Both cases give contradictions.If GL lies inside a subgroup of PSL(3; q) of type 6,7,8 or 10 then (q�1)2�2 < 360. Thisimplies that q � 19 or q � 1(3) and q � 49. All of these cases have been excluded already.If GL is in a group of type 9 then jGLj < jG�j implies that GL is a proper subgroup.Since jGLj > (q�1)2�2 we must have GL � [q] : (q � 1). Thus GL = A : B where A � [q],B � (q � 1). All conjugates of B in GL are GL-conjugate and B contains a conjugate ofD. Thus q�1� divides into jBj: Since B acts semi-regularly on the non-trivial elements ofA this means that jAj = q. Once more we conclude that GL has a normal subgroup oforder q.We have reduced all cases to the situation where GL � Q : D where Q is a p-groupof order divisible by q. Observe that all conjugates of D in Q : D are GL conjugate. IfGL contains E, another G-conjugate of D which is not GL-conjugate, then E \ (Q : D)is trivial; hence jGLj � q(q�1)2�2 which is too large. Thus all G-conjugates of D in GL areGL-conjugate and we can apply Lemma 6 as in Case A. As in Case A this implies that 3is uniquely signi�cant and either 2 (q�1)281 ��jGLj; q � 28(81) or 2 (q�1)227 ��jGLj; q � 1(3). If p isodd then this means that either q < 81 and q � 28(81) or q < 27 and q � 1(3). If p = 2then this means that either q < 162 and q � 28(81) or q < 54 and q � 1(3). All suchpossibilities have already been excluded.Hence we may conclude that no new line-transitive action of PSL(3; q) exists whereG� = (̂q � 1)2 : S3.
Remark. The argument in this section deals with Case II in our analysis of signi�cantprimes.
8 Case III: 3jq � 1 is uniquely signi�cant
In this case G� lies inside a subgroup of PSL(3; q) of type 2, 4, 5 or 8.
8.1 Case 1: G� is a proper subgroup of a group of type 2

Then G� = A:B where B = C3 or S3 and A = (̂u� u) (this structure for A follows sinceit is normalized by C3.) We can conclude, using Corollary 10, that B = S3. Now observethat A:2 lies inside a copy of ^GL(2; q); hence is centralized by Z (̂ GL(2; q)). Thus, byLemma 15, A:2 lies in GL. Thus jGLj = 2jAj or jGLj = 4jAj while b��3v. When p = 2 weknow that v�1 is odd. Since k(k�1) is even and bv = v�1k(k�1) , this means that jGLj = 4jAjand b = 32v.
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Consider �rst the case where b = 32v. Then bv = 32 = v�1k(k�1) and so
k(k � 1) = 23(v � 1) = 19u2 [q8 � q6 � q5 + q3 � 6u2]:

Now observe that, for q > 8,
[ 13u(q � 1)(q3 + q2 + 12q) + 12][ 13u(q � 1)(q3 + q2 + 12q)� 12] > 23(v � 1);
[ 13u(q � 1)(q3 + q2 + 12q)13][ 13u(q � 1)(q3 + q2 + 12q)� 23] < 23(v � 1):

Since 13u(q � 1)(q3 + q2 + 12q) = 16a for some integer a, this is a contradiction. Thus pis odd and b = 3v.Now suppose that 4 does not divide into u. Then jG�j2 � 8 while jGj2 � 16; hencev � 1 is odd. This implies that jbj2 < jvj2 which is a contradiction. Hence 12ju.Now GL = (̂u � u):2 < (̂q � 1)2 : 2 < ^GL(2; q) and so contains at most u + 3involutions. We appeal to Lemma 16 to observe that,
k � (u+ 3)q(q + 1)(q � 1)26u2 + 1:

We can conclude therefore that, for u � 12,
k(k � 1) � q2(q + 1)2(q � 1)4(u+ 3)(u+ 4)36u4 :

This is strictly smaller than v�13 which is a contradiction.
8.2 Case 2: G� is a subgroup of type 4 or 5

We refer to Lemma 20. Consider �rst the possibility that G� is isomorphic to A6:2 or A7and p = 5. We exclude q = 25 using Lemma 18.Observe that, since 3 divides q � 1, there is a group of order 3 normal in a groupisomorphic to (̂q � 1)2. Hence a line-stabilizer contains a subgroup of order 3 or elsecontains the group (̂q� 1)2 (by Lemma 15). The latter possibility is not possible, hencewe may assume that 3��jGLj. We may therefore conclude that b = 3v or b = 32v.Now suppose that m is an integer dividing v and b = 3xv where x is 1 or 2. We havethat v � 1k(k � 1) = 3x=) 3k(k � 1) + x � 0 (mod m)=) 36k2 � 36k + 12x � 0 (mod m)=) 9(2k � 1)2 � 9� 12x (mod m)
Thus 9 � 12x is a square modulo m and m is not divisible by 3. If G� = A6:2 then weknow that 25 divides v. For both values of x we �nd that 9� 12x is not a square modulo25.
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Thus we assume that either G� = PSL(3; q0); q = qa0 ; 3��q0 � 1; a 6� 0(mod 3); orG� = PSU(3; q0); q = qa0 ; 3��q0 + 1; a 6� 0(mod 6):Then in the �rst instance we have a subgroup of G�, (̂q0�1)2; in the second instancewe have a subgroup of G�, (̂q0 + 1)2. Such subgroups are normal in the subgroup ofPSL(3; q), (̂q � 1)2. Thus these subgroups of G� lie in GL and we may conclude thatb��3v. Once again when p = 2 we know that v � 1 is odd and so b = 32v.We know that q30��jGLj, hence GL is not a subgroup of a group of type 2,3,6,7,8 or 10.If GL is a subgroup of a group of type 9 then (q30�1)3 ��(q2 � 1). Since q = qa0 ; a 6� 0(3) wemust have q0 = 2 and G� = PSU(3; 2). But then jG�j = 72 which is the same size as inCase 1 with u = 6. The arguments given there exclude both b = 3v and b = 32v.If GL is only a subgroup of a group of type 4 or 5 then either GL = A6:2 or A7 (and 25divides into v which is a contradiction), or GL is one of PSL(3; q1) or PSU(3; q1). Sincebj3v we must have q0 = q1 and q30+1q30�1 equal to 3 or 32 . This is impossible.Thus GL is a subgroup of a parabolic subgroup. Then we require that (q30 � 1)��(q2 �1)(q� 1). This implies that q0 = 2 which can be excluded as in Case 1 setting u to be 6.
8.3 Case 3: G� is a maximal subgroup of type 8

Note that p is odd here and, using Lemma 18, q � 43. Here G� �= 32:Q8 and jq� 1j3 = 3.Observe that, since 3 divides q�1; there is a group of order 3 normal in a group isomorphicto (̂q � 1)2 and so, by Lemma 15, 3 � GL. Thus b��3v. Now G� has the same size as G�in Case 1 with u = 6. The arguments given there exclude both b = 3v and b = 32v andwe are done.Thus we have ruled out all possible actions of line-transitive actions of PSL(3; q)where 3 is the unique signi�cant prime.
9 Case IV: 2jq � 1 is uniquely signi�cant
In this case G� either lies in a parabolic subgroup or in a subgroup of PSL(3; q) of type2 or 4. Since D normalizes a Sylow 2-subgroup of PSL(3; q), we know that G� containsD for some �. Furthermore, by Lemma 15, either G� � ^GL(2; q) or D < GL.
9.1 Case 1: G� is a subgroup of a group of type 4 only

In this case G� = PSL(3; q0) or PSL(3; q0):3 for some q0 where q = qa0 ; a odd. ThenD < GL and so q�1� divides into 3jPSL(3; q0)j. We must have q = q30. But then PSL(3; q0)does not contain an element of order q30�1� and so D 6< PSL(3; q0) and this case is alsoexcluded.
9.2 Case 2: G� lies inside a group of type 2

Here G� is non-maximal, q � 1(4) and G� contains a cyclic subgroup of order q � 1=�.We have two possibilities:
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1. G� = A : 2 where A � (̂q � 1)2 and jAj = a q�1� . Then A is proper normal in(̂q � 1)2 for a < q � 1 and proper normal in (̂q � 1)2 : S3 for a = q � 1. Thus wemay conclude, by Lemma 15, that GL = A. We can conclude that GL contains atmost 3 involutions.
2. We suppose that 3j(q � 1) and G� = ( q�13 � q�13 ) : S3. In this case, ( q�13 � q�13 ) isnormal in (̂q� 1)2 and hence lies in GL. We can conclude that jGLj = 3( q�13 )2 andGL contains at most 9 involutions.
Consider the �rst case. Since GL contains at most 3 involutions, we may appeal toLemma 16 to give, k � rgvng + 1 = 3q(q + 1)(q � 1)2a + 1:

This implies that, k(k � 1) < 94a2 q3(q + 1)2(q � 1):
Now we know that k(k � 1) = v�12 . Thus

v � 12 = q3(q2 + q + 1)(q + 1)(q � 1)� 2a4a < 94a2 q3(q + 1)2(q � 1):
Hence q < 9a which is impossible.We move on to the next possibility: H = ( q�13 � q�13 ) lies inside GL with index 3. NowH contains 3 involutions, hence GL must contain at most 9 involutions. Once again weappeal to Lemma 16 to give,

k � rgvng + 1 = 9q(q + 1)2 + 1:
This gives, v � 12 = k(k � 1) < 41q2(q + 1)22 :
Given our value for v we may conclude that,

q3(q2 + q + 1)(q + 1)� 2 < 41q2(q + 1)2:
This is only true for q � 7 which is impossible.
9.3 Case 3: G� lies in a parabolic subgroup

Now, for P a parabolic subgroup, jG : P j = q2+ q+1. By Lemma 9 this means that anysigni�cant prime must divide 12q(q + 1). Since 2 is uniquely signi�cant, we may concludethat q � 3(4) and b��12(q + 1)v. We write G� = A:B where A is an elementary abelianp-group and B � ^GL(2; q).Suppose q � 3(8). Then, by Lemma 9, b = 2v. Then, by Lemma 3, any prime mdividing into v must be equivalent to 1(4). Since p � 3(4) we have q3 dividing into jG�j.Thus A = [q2] and B � ^SL(2; q). However this means that A:B is normal in the full
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parabolic subgroup. Hence, by Lemma 15, either GL � G� (which is impossible) or G�is the full parabolic subgroup. This case has already been excluded.Thus q � 7(8) and B is a subgroup of ^GL(2; q) of type 3 or 5. Consider the casewhere B is a subgroup of ^GL(2; q) of type 3. We examine the possible situations here:
1. Suppose that B is maximal in ^GL(2; q), i.e. jBj = 2(q2 � 1)=�. Then B acts byconjugation on the non-trivial elements of A with orbits divisible by q + 1. ThusjAj = q2 or 1. Since 2 is uniquely signi�cant, A < GL. This is the same situation asin Subsections 6.1 and 6.3; precisely the same arguments as in those sections allowus to exclude the situation here.
2. Suppose that B is non-maximal in ^GL(2; q). Then B contains a cyclic groupC which is normal in (̂q2 � 1), hence lies in GL. Furthermore jAj��jGLj since 2is uniquely signi�cant. Thus jGLj = jAj:jCj and G� = 2jAj:jCj and so b = 2v.However in this case, by Lemma 3, any prime m dividing into v must be equivalentto 1(4). Here though p � 3(4) and p divides into v. This is a contradiction.
Now consider the possibility that B is of type 5. Since q � 7(8), we must have q = pawhere a is odd and so B = ^< SL(2; q0); V >.Suppose �rst that q = q0 and so B � ^SL(2; q) and either A is trivial or A = [q2].If A is trivial then either B � ^GL(2; q) or B = ^GL(2; q). The �rst option impliesthat GL � G� (which is impossible). The latter option is the same as in Subsection 6.2;precisely the same arguments as in that section allow us to exclude the situation here.If on the other hand A is non-trivial then A = [q2] and so G� is either the fullparabolic subgroup (this possibility is already excluded) or G� is normal in the fullparabolic subgroup and GL � G� (which is impossible). Thus both possibilities areexcluded when q = q0. We assume that q = qa0 ; a is odd, a � 3; p � 7(8) and D < GL.Now observe that A: < V > is a split extension by Schur-Zassenhaus. So we can takeV to be in G�. Furthermore G� must contain a conjugate of D. Then, since q � q30,< V >�= q�1� is G-conjugate to D. The G-conjugates of D split into two conjugacyclasses inside the parabolic subgroup with centralizers isomorphic to [̂q] : (q � 1)2 and^GL(2; q): If we factor out the unipotent subgroup of the maximal parabolic then we seethat, in G�=A, < V > A is centralized by SL(2; q0) and so < V > must be centralizedin the maximal parabolic by ^GL(2; q): This means that < V > acts by conjugation onthe non-identity elements of A with orbits of size q�1� . In fact B has orbits of length amultiple of (q0+1)(q�1)� on the non-trivial elements of A. Thus jAj = q2 or jAj = 1.Now note that, since b��12v(q+1)q, we know that 2q0(q0�1)(q�1)� ��jGLj. Thus GL lies insidea subgroup of PSL(3; q) of type 1 or 4.If GL lies in a subgroup of PSL(3; q) of type 9 then GL = SO(3; q): If A is trivialthen jGLj > jG�j which is a contradiction. If A is non-trivial then q2 divides into jGLjwhich is a contradiction.If GL lies in a subgroup of PSL(3; q) of type 4 then GL = PSL(3; q1) or PSL(3; q1):3.Since D < GL we must have q � q21. But q = pa where a is odd which is a contradiction.Thus GL lies inside a parabolic subgroup of PSL(3; q). So GL = A1:B1 where A1 iselementary abelian and B1 � ^GL(2; q). Then 2(q0�1)(q�1)� divides into jB1j and B1 is oftype 4, 5, 6 or 7.
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If B1 is of type 5 then we must have B1 � SL(2; q0). Since D < A1:B1 we requirethat B1 contains a cycle of length q�12� and so B1 �< SL(2; q0); q�12� > : If A is trivial thenjB1j � 12 jG�j which is a contradiction. If A = [q2] then A1 must be non-trivial and B1 hasorbits on the non-trivial elements of A1 of size a multiple of (q0+1)(q�1)� . Thus jA1j = q2and jGLj � 12 jG�j. By Lemma 3, p � 1(4) which is a contradiction.If B1 is of type 4, 6 or 7 then q0 divides into jA1j and GL = A1:B1 is a split extension.Furthermore A is trivial since q2q0 cannot divide into jGLj.In the case of types 6 and 7, B1 must centralize EA1 in GL=A1 where E is a conjugateof D. Thus E has an orbit on the non-trivial elements of A1 of size a multiple of (q�1)� .Thus jA1j � q. But jG�j < q30 q�1� and jGLj > q q�1� which is impossible.We are left with the possibility that B1 is of type 4 and take D to be in GL. Suppose�rst that DA1 is central in B1 = GL=A1. Since q + 1 does not divide into b, jB1j2 �2j(q � 1)2j2. This implies that D is centralized in the full parabolic by ^GL(2; q) and Dhas orbits on A1 of size a multiple of (q�1)� . If, on the other hand, DA1 is not central inB1 = GL=A1 then it is not normal either and jB1j is divisible by 2( q�1� )2 Then GL hasorbits on the non-trivial elements of A1 of size a multiple of (q�1)� . Thus in either casejA1j � q. But jG�j < q30 q�1� and jGLj > q q�1� which is impossible.This deals with all the cases where 2 is a uniquely signi�cant prime. We concludethat PSL(3; q) has no line-transitive actions in this case.We have now dealt with all possibilities for line-transitive actions of PSL(3; q) on�nite linear spaces. Our proof of Theorem A is complete.
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