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AbstractGiven polar spaces (V; �) and (V;Q) where V is a vector space over a �eld K, �a re
exive sesquilinear form and Q a quadratic form, we have associated classicalisometry groups. Given a sub�eld F of K and an F -linear function L : K ! F wecan de�ne new spaces (V;L�) and (V;LQ) which are polar spaces over F .The construction so described gives an embedding of the isometry groups of(V; �) and (V;Q) into the isometry groups of (V;L�) and (V;LQ). In the �nite�eld case under certain added restrictions these subgroups are maximal and formthe so called �eld extension subgroups of Aschbacher's class C3 [1].We give precise descriptions of the polar spaces so de�ned and their associatedisometry group embeddings. In the �nite �eld case our results give extra detail tothe account of maximal �eld extension subgroups given by Kleidman and Liebeck[3, p112].MSC(2000): 11E57, 51A50.
1 Introduction
Let (V; �) and (V;Q) be polar spaces over a �eld K with � : V � V ! K a re
exive�-sesquilinear form where � is a K-automorphism and Q : V ! K a quadratic form withpolar form fQ : V � V ! K. Let F be a sub�eld of K and L : K ! F an F -linearfunction. We now compose functions to get L� : V �V ! F and LQ : V ! F regardingV as a vector space over F . In order for these forms to be well-de�ned it is necessary toimpose the condition �(F ) = F after which it is easily veri�ed that LQ is a quadraticform with polar form LfQ and L� is a sesquilinear form. In fact if F � Fix(�) then � isbilinear.We present three results on this situation: In Section 2, Theorem A gives conditionson the degeneracy of our composed forms, L� and LQ. In Section 3, Theorem B givesconditions on the type (alternating, symmetric or hermitian) of our composed forms.In sections 4 and 5 we consider the situation where our �elds are �nite. Theorem Csummarises these results and gives the isometry group embeddings which are induced bythese composed forms.�I would like to acknowledge the excellent advice and support of Associate Professor Tim Penttila.
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2 Results on degeneracy
We begin be presenting results on degeneracy. Our de�nition of degeneracy is consistentwith that of Taylor [5] and so is slightly more general than that of Kleidman and Liebeck[3]:
De�nition 1. A �-sesquilinear form � is non-degenerate if

�(u; v) = 0;8v 2 V =) u = 0:
A quadratic form Q is non-degenerate if its polar form fQ has the property that

fQ(u; v) = Q(u) = 0;8v 2 V =) u = 0:
The forms are called degenerate otherwise.

Our �rst result concerns sesquilinear forms and uses an adaptation of a proof givenby Lam [4]:
Lemma 2. L� is non-degenerate exactly when L 6= 0 and � is non-degenerate.
Proof. If either L = 0 or � is degenerate then it is clear that L� will be degenerate. Nowsuppose that L 6= 0, � is non-degenerate and L� is degenerate. Then there exists nonzerov 2 V such that L�(v; w) = 0 for all w 2 V . Note that there exists w 2 V such that�(v; w) 6= 0. Now consider, for any c 2 K,

�(v; �(c)�(�(v; w))w) = �( �(c)�(�(v; w)))�(v; w)= c
Then L�(v; �(c)�(�(v;w))w) = Lc = o for all c 2 K. This implies that L = 0 which is acontradiction.

We turn our attention to quadratic forms. To begin with we can apply the previouslemma directly to get the following:
Lemma 3. If L = 0 or Q is degenerate then LQ is degenerate. If fQ is non-degeneratethen LQ is non-degenerate.

Thus we are left with the question of what happens when Q is non-degenerate andfQ is degenerate. This can only occur in characteristic 2. We are able to present resultsonly for the case where V is �nite-dimensional and K is �nite, in which case we have thefollowing well-known result (see, for example [5, p. 143]):
Theorem 4. A non-degenerate quadratic form Q on a vector space V over GF (2h) hasa degenerate associated polar form if and only if dim V is odd, in which case the radicalof fQ, rad(V; fQ), is of dimension 1.
Corollary 5. Let K be a �nite �eld of characteristic 2. Suppose dimKV is odd, fQ isdegenerate and Q is non-degenerate. Then LQ is degenerate.
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Proof. Take x 2 rad(V; fQ). Then x 2 rad(V; LfQ). Hence rad(V; LfQ) � rad(V; fQ).But dimF (rad(V; LfQ)) � dimF (rad(V; fQ)) > 1: Hence LQ is degenerate.
We can summarise our main results in the following:

Theorem A. Let � : V � V ! K be a re
exive �-sesqulinear form. Let Q : V ! K bea quadratic form. let F be a sub�eld of K and L : K ! F be a F -linear function. Then:
� L� is non-degenerate if and only if � is non-degenerate and L 6= 0;
� If char K 6= 2, or K = GF (2h) for some integer h and dimKV is even, then LQis non-degenerate if and only if Q is non-degenerate and L 6= 0;
� If K = GF (2h) for some integer h and dimKV is odd then LQ is degenerate;

Unsolved. We have failed to ascertain the conditions under which LQ is degenerate inthe case where char K = 2, jKj + dimKV is in�nite, Q is non-degenerate and fQ isdegenerate.
3 A classi�cation of � into form
Taking re
exive sesquilinear form � : V � V ! K to be alternating, symmetric orhermition, L : K ! F , F -linear and not identically zero, we seek to classify L� intothese three categories or else as being `atypical', i.e. not of of this form.The conditions under which � is hermitian, char K = 2 and L� is alternating willprove to be the most di�cult and we discuss this case �rst. Observe that we must haveF � Fix(�).Let � be the �eld automorphism of order 2 associated with �. It is easily shown thatK=Fix(�) is a Galois extension and we may therefore de�ne a trace function:

TrK=Fix(�) : K ! Fix(�); x 7! x+ �(x):
Now any Fix(�)-function L : K ! Fix(�) can be written in the form, for some � 2 K,

L : K ! Fix(�); x 7! TrK=Fix(�)(�x):
Lemma 6. When char K = 2 and � is hermitian, L� is alternating if and only ifF � Fix(�) and L� = L.
Proof. Write L : K ! F; x 7! L1 � TrK=Fix(�)(�x) for some � 2 K and some L1 :Fix(�) ! F , F -linear and not identically zero. We suppose that TrK=Fix(�)(��) =TrK=Fix(�)(�) and it is enough to prove that TrK=Fix(�)(��) is alternating. Now forx 2 K;

TrK=Fix(�)(��(x)) = TrK=Fix(�)(�x) =) ��(x) + �(��(x)) = �x+ �(�x)=) ��(x) + �(�)x = �x+ �(�)�(x)=) (�(�) + �)(�(x) + x) = 0:
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Since �(x) + x 6= 0 for all x 62 Fix(�), we must have �(�) = �. Then
TrK=Fix(�)(��)(x; x) = ��(x; x) + �(��(x; x))= ��(x; x) + �(�)��(x; x)= (� + �(�))�(x; x) = 0:

We are now able to state our main result:
Theorem B. Let � : V � V ! K be a re
exive sesquilinear form. Let K=F be a �eldextension with L : K ! F a F -linear function which is not identically zero. Then weclassify � into type as follows:

� If � is alternating then L� is alternating;
� If � is symmetric then L� is symmetric;
� If char K = 2, K is �nite and � is symmetric not alternating then L� is symmetricnot alternating;
� If � is hermitian and F 6� Fix(�) then

1. L� is hermitian if and only if L� = �L;2. L� is atypical if and only if L� 6= �L;
� If � is hermitian and F � Fix(�) then

1. L� is symmetric if and only if L� = L;2. L� is alternating if and only if char K 6= 2 and L� = �L OR char K = 2and L� = L;3. L� is atypical if and only if L� 6= �L.
Proof. The �rst two statements are self-evident.We turn to the third statement. Given � symmetric not alternating, L� will bealternating if and only if f�(x; x)jx 2 V g � null(L). Since L 6= 0 it is enough to showthat f : V ! K; x! �(x; x) is onto. Take any x 2 V such that �(x; x) = a 2 K�. Takeany c 2 K. Then �(p cax;p cax) = c as required.For the remainder we assume that � is hermitian. First of all suppose that F 6� Fix(�)so L� is �-sesquilinear. Then L�(v1; v2) = L��(v2; v1) for any v1; v2 2 V and so L� ishermitian if and only if L�j=(�) = �Lj=(�). Since � is surjective we are done.Next suppose that F � Fix(�) in which case L�(v1; v2) = L��(v2; v1). This issymmetric if and only if L�j=(�) = Lj=(�) and so L� is symmetric exactly when L� = L.Now we examine when L� is alternating. When char K is odd this is equivalentto L� being skew-symmetric which, by an analagous argument to the symmetric case,occurs exactly when L� = �L. When char K = 2 the previous lemma gives us therequired result. The only other possibility is for L� to be atypical hence we have our�nal equivalence.
Unsolved. We have failed to ascertain the conditions under which L� is alternating inthe case where char K = 2, K is in�nite and � is symmetric not alternating.
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4 The isometry classes of (V; LQ) over �nite �elds
De�ne Q : V ! GF (qw) a non-degenerate quadratic form, L : GF (qw) ! GF (q) aGF (q)-linear function which is not the zero function and TrGF (qw)=GF (q) the trace function.We restrict V to be a �nite A-dimensional vector space over GF (qw). In order to classify(V;Q) into isometry classes we need to examine the situation when Aw is even anddistinguish between the O+ and O� cases.Our �rst lemma will be useful in distinguishing the isometry class of LQ as well asgiving an application of the classi�cation:
Lemma 7. The isometry group for Q, Isom(Q; V ), is a subgroup of the isometry groupfor LQ, Isom(LQ; V ).
Proof. Simply observe that if T : V ! V satis�es Q(Tu) = Q(u) for all u 2 V thenLQ(Tu) = LQ(u) for all u in V .

Consider �rst the situation when A is even:
Lemma 8. Let (V; q) have isometry class O+(A; qw). Then (V; LQ) has isometry classO+(Aw; q). Thus O+(A; qw) � O+(Aw; q).
Proof. LetW be a maximal totally singular subspace of (V; q). Then dimKW = 12dimKV .But W is also a totally singular subspace of (V; LQ) and dimFW = 12dimFV . Thus(V; LQ) is of type O+(Aw; q).
Lemma 9. Let (V; q) have isometry class O�(A; qw). Then (V; LQ) has isometry classO�(Aw; q). Thus O�(A; qw) � O�(Aw; q).
Proof. Suppose �rst of all that A = 2. Suppose in addition that (V; LQ) has isometryclass O+(2w; q). Then O+(2; qw) � O�(Aw; q) and so, by the theorem of Lagrange,

(qw + 1)��qw(w�1) w�1Yi=1 (q2i � 1):
If a primitive prime divisor of q2w � 1 exists then this is impossible hence we must dealwith the exceptions given by Zsigmondy. The �rst possibility is that w = 1, in whichcase L : GF (qw)! GF (qw) has form x 7! ax for some a 2 GF (qw)�. Clearly an elementof V is singular under Q exactly when it is singular under LQ. Then (V; q) and (V; LQ)have the same Witt index and hence share type which is a contradiction.The second possibility is that (q; w) = (2; 3) in which case we must consider whether ornot O�(2; 8) � O+(6; 2). Examining the atlas [2] we see that O�(2; 8) contains elementsof order 9 while O+(6; 2) does not, hence this possibility can be excluded.Now suppose that A = 2m+2 for some m � 1. Then V = U ? W under Q whereU is a direct sum of m hyperbolic lines and W is an anisotropic subspace of dimension 2.Then QjU is of type O+ and hence LQjU is of type O+. Similarly QjW is of type O� and,since dimGF (qw)W = 2, LQjW is of type O�. Then V = U ? W under LQ, U is a directsum of mw hyperbolic lines under LQ and W is a direct sum of w � 1 hyperbolic lineswith a 2-dimensional anisotropic subspace under LQ. Hence (V; LQ) is of type O�.
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We now consider the situation when A is odd. If the characteristic equals 2 thenTheorem A implies that LQ is degenerate so we exclude this situation. We will beinterested in the situation where w is even and the characteristic is odd. We will writeL : GF (qw)! GF (q) in the form, for some � 2 GF (qw)�,
L = TrGF (qw)=GF (q)(�) : GF (qw)! GF (q); x 7! w�1X

i=0 (�x)q
i :

We will need to work with the discriminant of our form LQ for which we will need twopreliminary results:
Lemma 10. Let q be odd, k 2 GF (q2)nGF (q) such that k2 2 GF (q). Then

TrGF (q2)=GF (q)(k) = 0:
Proof. Observe that GF (q2) = GF (q)(k) and k has minimum polynomial x2 � k2. NowGal(GF (q2)=GF (q)) acts on the set of roots of this minimum polynomial. Since the tracemap is the sum of the elements of Gal(GF (q2)=GF (q)), TrGF (q2)=GF (q)(k) = k�k = 0.
Theorem 11. A non-degenerate quadratic form, Q : V ! GF (q) where V is a 2n-dimensional vector space over GF (q) and q is odd, gives rise to an O+(2n; q) space ifand only if disc(Q) � (�1)n(mod GF (q)�2). Here GF (q)�2 is the subgroup of GF (q)�consisting of all square terms.

A proof of the previous theorem can be found, for instance, in [3, p.32]. We can nowproceed with our study of the type of LQ.
Lemma 12. Let (V;Q) be of type O and be one-dimensional over GF (q2), q odd. ThenQ has form Q(u) = 
u2, for some 
 2 GF (qw)�. Then LQ has type,

O+ () (�
)�2 2 GF (q)nGF (q)�2 or (�
)q+1 6� �1(mod GF (q)�2);O� () (�
)�2 62 GF (q)nGF (q)�2 and (�
)q+1 � �1(mod GF (q)�2):
Proof. Observe that LQ : V ! GF (q); u 7! �
u2+(�
u2)q has polar form LfQ : V �V !GF (q); (u; v) 7! uTMv where, over a basis for V over GF (q), f1; !g;

M = � 2TrGF (q2)=GF (q)(�
) 2TrGF (q2)=GF (q)(�
!)2TrGF (q2)=GF (q)(�
!) 2TrGF (q2)=GF (q)(�
!2)
� :

Now take f to be an element of GF (q) such that pf 62 GF (q). Then (�
)�2 2GF (q)nGF (q)�2 if and only if (�
)�1pf 2 GF (q).Suppose that (�
)�1pf 62 GF (q). Let ! = (�
)�1pf . Then
M = � 2TrGF (q2)=GF (q)(�
) 2TrGF (q2)=GF (q)(pf)2TrGF (q2)=GF (q)(pf) 2TrGF (q2)=GF (q)(��1
�1f)

� :
Then the discriminant of the form LQ is

4TrGF (q2)=GF (q)(�
)TrGF (q2)=GF (q)(��1
�1f)� 4(TrGF (q2)=GF (q)(pf))2= 4f(�
 + (�
)q)((�
)�1 + (�
)�q) (since TrGF (q2)=GF (q)(pf) = 0)
= f22(TrGF (q2)=GF (q)(�
))2(�
)q+1 :
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Referring to Theorem 11 we see that our result holds in this case.Suppose that (�
)�1pf 2 GF (q). Let ! = pf . Then �
 = f2pf for somef2 2 GF (q) and
M = � 2TrGF (q2)=GF (q)(f2pf) 2TrGF (q2)=GF (q)(f2f)2TrGF (q2)=GF (q)(f2f) 2TrGF (q2)=GF (q)(f2fpf)

� :
The discriminant of the form LQ is

4TrGF (q2)=GF (q)(f2pf)TrGF (q2)=GF (q)(f2fpf)� 4(TrGF (q2)=GF (q)(f2f))2= �4(TrGF (q2)=GF (q)(f2f))2 (since TrGF (q2)=GF (q)(pf) = 0):
Appealing to Theorem 11 we conclude that LQ is of isometry class O+ in all cases here.
Lemma 13. Let (V;Q) be A-dimensional of type O over �eld GF (qw) of odd character-istic. Let S be a non-dimensional anisotropic subspace (or germ) where Q��S has formQ(s) = 
s2 for some 
 2 GF (qw)�. Let w = 2n. Then LQ has type

O+ () (�
)�2 2 GF (qn)nGF (qn)�2 or (�
)q+1 6� �1(mod GF (qn)�2);O� () (�
)�2 62 GF (qn)nGF (qn)�2 and (�
)q+1 � �1(mod GF (qn)�2):
Proof. First take A odd and w = 2. Then (V;Q) = (R;Q��S) ? (S;Q��R) where Ris an orthogonal direct sum of orthogonal hyperbolic lines and S is a one-dimensionalanisotropic orthogonal space. Then LQ��R is of type O+ and LQ��S will be either oftype O+ or O� according to the conditions of the previous lemma. Since (V; LQ) =(R;LQ��R) ? (S; LQ��S) the type of LQ is determined according to the conditions given.Now take A odd, w any even number. Then L = TrGF (qn)=GF (q) � TrGF (qw)=GF (qn) �Kwhere K : GF (qw)! GF (qw); x 7! �x. By the previous paragraph the conditions of thetheorem are the conditions under which TrGF (qw)=GF (qn) � K � Q will be of type O+ orO�. By Lemmas 9 and 8 we know that further compositions with TrGF (qn)=GF (q) will notchange this type. The result follows.

We will summarise the results of this section and the next in Theorem C at the endof the paper.
5 The isometry classes of (V; L�) over �nite �elds
De�ne � : V � V ! GF (qw) to be a non-degenerate re
exive sesquilinear form of one ofthe three types, V A-dimensional over GF (qw). De�ne L : GF (qw) ! GF (q), GF (q)-linear and not the zero function.If we consider � symmetric over a �eld of odd characteristic then � shares isometryclass with the quadratic form Q(v) = 12�(v; v) and the results of the previous section givethe type of L�.Similarly if � is alternating or if the characteristic is 2 and � is symmetric not alter-nating, then Theorem B gives the type of L�. Note that over �nite �elds, symmetric notalternating forms result in polar spaces which are called pseudo-symplectic.
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In this section we need to consider the case where � is hermitian with automorphism�. Once again we will take L = TrGF (qw)=GF (q)(�) for some � in GF (q)�. Consider �rstthe case where GF (q) 6� Fix(�) which occurs exactly when w is odd:
Lemma 14. Let � be hermitian. When w is odd,

1. L� is hermitian () �(�) = �;
2. L� is atypical () �(�) 6= �.

When w is even,
1. L� is symmetric () �(�) = �;
2. L� is alternating () �(�) = ��;
3. L� is atypical () �(�) 6= ��.

Proof. Observe that L� is bilinear if and only if F (q) � Fix(�) if and only if w is even.Suppose �rst that w is odd; then it is enough to prove the �rst equivalence. ByTheorem B we know that L� is hermitian if and only if L� = �L. Now
L�(x) = �L(x) () �TrGF (qw)=GF (q)((�(�)� �)x) = 0:

The surjectivity of the trace function gives us our result.Now suppose that w is even. By Theorem B it is enough to prove that L� = �L ()�(�) = ��. Let the Galois group of the �eld extension GF (qw)=GF (q) = f�1; : : : ; �wg.Then
L� = �L () wX

i=1 �i(��(x)) = � wX
i=1 �i(�x)

() wX
i=1 �i�(��(x)) = � wX

i=1 �i(�x)
() wX

i=1 �i((�(�)� �)x) = 0:
Once again the surjectivity of the trace function gives us our result.

To complete the classi�cation we need to ascertain the isometry group of L� in thecase where it is symmetric.
Lemma 15. Suppose that � is hermitian, w is even, �(�) = � and V is A-dimensionalover GF (qw). Then the isometry class of L� is,

O+(Aw; q) () A is even; O�(Aw; q) () A is odd:
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Proof. If A is even then, with respect to the hermitian form �, V contains a totallyisotropic subspace of dimension A2 : This subspace is also totally isotropic with respect toL� and over GF (q) has dimension Aw2 . Hence (V; L�) is of type O+.Now take A to be odd. First suppose that A = 1 and w = 2 so that GF (q) = Fix(�).Then, given a basis for V over GF (q), f1; !g, we have �(x; y) = x�(y), L(x) = �x+�(�x)and the matrix of L� is� 2TrGF (qw)=GF (q)(�) 2TrGF (qw)=GF (q)(�!)2TrGF (qw)=GF (q)(�!) 2TrGF (qw)=GF (q)(�!�(!))
� :

Now put ! = pf where GF (q2) = GF (q)(pf) and the discriminant of L� is �4f�2.Since this is minus a non-square, L� is of type O�.Now let A be any odd integer, w = 2. Then (V; �) = (R; ���S) ? (S; ���R) where Ris an orthogonal direct sum of orthogonal hyperbolic lines and S is a one-dimensionalunitary space. Then L���R is of type O+ by the �rst part of this lemma, L���S is of typeO� by the previous argument and hence (V; L�) is of type O�.Finally suppose that w > 2, in which case L = TrGF (qw2 )=GF (q) � TrGF (qw)=GF (qw2 )(�).We know that TrGF (qw)=GF (qw2 )(��) is of type O�; then Lemma 9 implies that (V; L�) isof type O�.
We are now in a position to summarise the results of the last two sections.

Theorem C. Let V be an A-dimensional polar space over GF (qw). Take L : GF (qw)!GF (q); x 7! TrGF (qw)=GF (q)(�x) for some � 2 GF (qw)�.Suppose �rst of all that V is de�ned via a quadratic form Q : V ! GF (qw). If theform has a germ U then Q��U(x) = 
x2 for some 
 2 GF (qw)�. Then we classify LQ intotype, including the classical group embedding,as follows:
Type of Q Type of LQ Conditions EmbeddingO+ O+ always O+(A; qw) � O+(Aw; q)O� O� always O�(A; qw) � O�(Aw; q)O degenerate q even -O O w odd, q odd O(A; qw) � O(Aw; q)O O+ w even, q odd; O(A; qw) � O+(Aw; q)(�
)�2 2 GF (q w2 )nGF (q w2 )�2 or(�
)q+1 6� �1(mod GF (q w2 )�2)O O� w even, q odd; O(A; qw) � O�(Aw; q)(�
)�2 62 GF (q w2 )nGF (q w2 )�2 and(�
)q+1 � �1(mod GF (q w2 )�2)
Suppose next that V is de�ned via a re
exive �-sesquilinear form � : V �V ! GF (qw):If the characteristic is odd and � is symmetric then the type of L� and its associatedclassical group embedding is given in the previous table taking Q to be the quadratic formQ(v) = 12�(v; v).In all other cases the type of L�, with associated classical group embedding, is asfollows:
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Type of � Type of L� Conditions Embeddinghermitian hermitian w odd, �(�) = � U(A; qw) � U(Aw; q)hermitian atypical w odd, �(�) 6= � -hermitian alternating w even, q even, �(�) = � U(A; qw) � Sp(Aw; q)hermitian alternating w even, q odd, �(�) = �� U(A; qw) � Sp(Aw; q)hermitian atypical w even, �(�) 6= �� -hermitian O+ w even, q odd, A even, �(�) = � U(A; qw) � O+(Aw; q)hermitian O� w even, q odd, A odd, �(�) = � U(A; qw) � O�(Aw; q)alternating alternating always Sp(A; qw) � Sp(Aw; q)pseudo pseudo q even --symplectic -symplectic
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