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Abstract

Let G be a group with socle a group of Lie type defined over
the finite field with ¢ elements where ¢ is a power of the prime p.
Suppose that G acts transitively upon the lines of a linear space S.
We show that if p is significant then G acts flag-transitively on 8 and
all examples are known.

MSC(2000): 20B25, 05B05.

1 Background and statement of result

A linear space § is an incidence structure of points and lines such that any
two points are incident with exactly one line. Also 8 is non-trivial provided
any point is incident with at least two lines and any line is incident with at
least two points; all linear spaces considered in this paper will be presumed
to be non-trivial. A flag is a pair («, L) where « is a point incident with a
line L.

Let S be a finite linear space admitting an automorphism group G which
is transitive on lines. Then § is said to have parameters b (the number of
lines), v (the number of points), & (the number of points incident with a line)
and r (the number of lines incident with a point).

Camina, Neumann and Praeger [CNP03] have defined a prime p to be
significant for the space 8 if it divides into (b,v — 1). They then show that
if P is a Sylow p-subgroup of G and (G, is a point-stabilizer in G then
Go > Ng(P) [CNPO03, Lemma 6.1].

The finite linear spaces which admit a flag-transitive almost simple group
have been classified in [Kle90, Sax02]. As part of the program to extend
this classification to those linear spaces which admit a line-transitive almost
simple group we prove the following theorem:



Theorem 1. Suppose that a group G has socle a group of Lie type of char-
acteristic p. Suppose furthermore that G acts transitively upon the lines of
a linear space & with significant prime p. Then G acts transitively upon the
flags of & and we have one of the following examples:

e Us(q) <G < PTU(3,q) and § is a Hermitian unital.
e 2Gh(q) < G < Aut(*G(q)) and 8 is a Ree unital.

The remainder of this paper will be occupied with a proof of Theorem 1.
The suppositions given in Theorem 1 will be assumed from here on.

2 A reduction to simplicity

Observe that, by [CNP03, Lemma 6.1] mentioned above, a point-stabilizer
GG, must contain a parabolic subgroup of the socle of G. We can use this fact
along with the notion of ezceptionality to immediately simplify our task.

Let Go be a normal subgroup in a group G which acts upon a set P.
Then (G, Gy, P) is called exceptional if the only common orbital of Gy and
G in their action upon P is the diagonal (see [GMS03]). Then we have the
following result:

Lemma 2. [Gil, Lemma 26] Suppose a group G acts line-transitively on a
finite linear space 8; suppose furthermore that Gy is a normal subgroup which
is not line-transitive on 8; finally suppose that |G : Go| = t, a prime.

Then either § is a projective plane or (G, Gy, P) is exceptional where P
is the set of points in S.

Now consider a pair (G, §) satisfying the suppositions of Theorem 1. Then
S is not a projective plane since the finite projective planes are precisely the
finite linear spaces with no significant prime. Thus if G' contains a nor-
mal subgroup G, of index a prime ¢ which is not line-transitive on & then
(G, Gy, P) is exceptional.

However all of the exceptional triples of this form are enumerated in
[GMS03, Theorem 1.5]. In all cases a point-stabilizer does not contain a
parabolic subgroup of the socle of G. We can conclude from this that our
socle itself is transitive on the lines of 8.

In fact, referring to [CKS76], we see that if the socle of G has Lie rank
1 then it acts 2-transitively upon its parabolic subgroups. Thus the socle of
G is 2-transitive upon the points of 8 and hence is transitive on the flags of
8 (c.f. [BDD88]). Then, by [Sax02], the actions listed in Theorem 1 are the
only examples.



Thus for the remainder of this paper we add the following suppositions
to those mentioned in Theorem 1:

e We suppose that G is simple;

e We suppose that G has Lie rank greater than 1.

We will show that these suppositions lead to a contradiction. We will do this
by taking G, to be a parabolic subgroup of G and then examining potentional
line stabilizers, Gg.

2.1 Group theory notation

In our use of the theory of groups of Lie type we will use the notation of
Carter[Car89]. For G a Chevalley group we have the standard subgroups
B,U, H, N and the associated Weyl group W. We write ® and II be the set
of roots, and the set of fundamental roots respectively, associated with G.

For G a twisted simple group, consider G as a subgroup of G* the un-
twisted simple group. Let ® and II for the set of roots, and the set of
fundamental roots respectively, associated with G* and take p to be the non-
trivial symmetry of the Dynkin diagram. Take W! to be the Weyl group of
G, a subgroup of W, the Weyl group of G*. The subgroups U', V!, H! and
N! are defined as usual. Write 3 for the partition of IT into p-orbits.

We will sometimes precede the structure of a subgroup of a projective
group with ~ which means that we are giving the structure of the pre-image
in the corresponding universal group. An integer n denotes a cyclic group of
order n, while [n] denotes an arbitrary soluble group of order n.

3 The point stabilizer is non-maximal

Lemma 3. Suppose that G is a simple Chevalley group acting on a linear
space § with G a non-maximal parabolic subgroup of G. Then Gg is a
parabolic subgroup of G and p is not significant.

Proof. Let ®* be the set of positive roots associated with G so that
U= 1] x.
sedt

For r € Tl be a fundamental root define the group U, = Hseqﬁ\m X..

Now suppose that G, is the parabolic subgroup P; where J is a subset
of II the set of fundamental roots. Since (G, is non-maximal in G we know
that at least two fundamental roots, say s and ¢, do not lie in J.
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For s a fundamental root recall the standard homomorphism ¢, from
SL(2,q) into (X, X_s). Then

0 1
Uz 3:¢r( 1 0)

Now ny is an involution lying outside of GG, but which normalizes U, inside
of G,. Hence U, fixes at least two points and hence the line between them.
So G ¢ contains a G-conjugate of U,. Similarly G'¢ contains a G-conjugate of
U;. In fact G contains a G-conjugate of U, : H and U, : H.

Now consider a Sylow p-subgroup of G¢. For some choice of £ this lies
inside U. Now observe that, since G = BN B and since both U; and U are
normal in B,

U <U

blnbgUsbgln_lbl_l < U where g = bynby
nUn < U

nUn™ = U,.

Ll

Thus U only contains one G-conjugate of Us; and one G-conjugate of
U;, namely themselves. Furthermore they generate U. Thus G¢ contains
B =U : H as required.

Now p does not divide into b and so p is not significant. O

Lemma 4. Suppose that G is a twisted simple group acting on a linear space
S with G, a non-mazimal parabolic subgroup of G. Then Gg¢ is a parabolic
subgroup of G and p is not significant.

Proof. Let J be a p-orbit of II. Then observe that

v=( I x)ne

7“€<I>+,7“€<I>;r

is a subgroup of U; which is normalized by <X;>j’ X%).

Let w! be the element in W! which maps every positive root of ®; to
a negative root of ®;. Then, by [Car89, Proposition 13.5.2], there exists
nY € N' which maps onto w) in the natural way. Now w} can be thought
of as a reflection and (n})* € H'.

Now suppose that G, lies inside the parabolic subgroup Py (s,x} where
J and K are distinct p-orbits of II. Then n} and nk do not lie in G,. By
the same argument as above this means that G¢ contains a G-conjugate of
Uj:H' and Uy : H'.



As before consider a Sylow p-subgroup of G¢. For some choice of £ this
lies inside U'. Furthermore just as before U! only contains one G-conjugate
of U} and one G-conjugate of U}, and these generate U. Thus G¢ contains
B! =U!': H! and we have a contradiction. O

4 The point-stabilizer is maximal

In this section take G to be a Chevalley group. Our argument generally
translates in a straightforward way to the twisted groups and so we will not
repeat it; we will comment on any deviations as we proceed. For convenience
we note that, by trivial combinatorial arguments, G = ?F}(2)’ cannot act
line-transitively upon our linear space 8.

Take r € II and suppose that G, = P; where II = J U {r}. By the
argument in the previous section it is clear that G¢ > U, L\ g where Ly g is
the Levi complement of the parabolic group Pk and K = {r} U K’ where

K' = {fundamental roots which are not orthogonal to r}.

Observe first of all that, for the Chevalley groups, if G¢ contains any
p-element h from
(Up, X, Xp)\Usr

then Gg¢ > (h,U,H) = BY for some g € G. This is a contradiction.

For the twisted groups this argument does not work in all cases. We need
to show that U} : H is maximal in all conjugates of the Borel of which it
is a subgroup. It is sufficient to show that H acts transitively upon set of
the non-identity elements of Xj. We refer to [GLS94, Tables 2.4 and 2.4.7]
to see that this is only true when X} is of type I, II, III and VI as listed
there. The cases we have excluded are when G = ?4,(q), n even, with
G, = A[qn{#] : GLa(¢%); and when G = *Fy(q) with G, = [¢*] : GLa(¢%).

Now we will investigate the possibility that there exists g € G\ (Pmx N
G¢). Suppose that this is the case. Since we have a BN pair we can write
g = U1n,u where uy,u € U and n,, € N maps onto w € W under the natural
epimorphism. In fact, since G¢ > U, H we can assume that g = z,(¢)n,z,(u)
where t, u are elements of the finite field of order q.

Now suppose that w(r) # +r (and note that then w™'(r) # +r). We
seek to prove the following

97 Urg N Uy, Xp, X ) £ U, (1)

Clearly we can replace g by n,, since X, normalizes U, and (X,, X_,). So
we are required to prove



ng Uy N{U, X, X_,)) £ U,

Since w(r) # +r we know that, for some s € {r, —r},
anSn;1 < U,.
This implies (1) and so there exists a p-element in G¢ lying in
(Ur Xor, X o \Usr

This element will normalize U, and so G¢ > B. This is a contradiction.

Thus if there exists g € Ge\(Pix N Ge) then we can take g = uin,u
as before and w(r) = +r. In fact, just as before, we can without loss of
generality assume that g = x,(¢)n,x, (u).

Now suppose that for all s, adjacent fundamental roots of r, we have
w(s) in @ UPY, r. Since Gg > Lk we can assume that w(s) is positive for
all fundamental roots not equal to r. But then, by [Car89, Theorem 2.2.2],
w = w, or w = 1 (see also [Car89, Lemma 13.1.3] for the twisted case).
However G'¢ also contains n, and so we can assume that g = x4,y (u). In
this case though g € P\ g+ which is a contradiction.

Thus there exists s an adjacent fundamental root of r such that w(s)
is negative. Define h := gz,(v)g~'. As before we can suppose that h =
2 (V1) Ny T4 (02).

Now observe that g € (X, X_,.)Nn({X,, X_,)). Suppose that h also lies
in (X,, X . )Ny((X,, X ;)). Then this would imply that

25(v) € (Xy, X )Ny (X, X)),

This is clearly impossible, see [Car89, Corollary 8.4.4, Proposition 13.5.3].
Thus h & (X, X_,)Ny({X,, X_,)). This implies that w,(r) # £r. Fur-
thermore since w(s) ¢ &+ U (IJE\K, h & Pm k. Then we can apply the same
argument to h as we applied to g above. This will lead us to conclude that
G'¢ > B which is a contradiction.
This leads to the following result:

Lemma 5. Suppose that G is a Chevalley group with G, = Prp,. Then
UlLmg < Ge < Pk

Suppose alternatively that G is a twisted group with G, = Pyp\j. Suppose
Jurther that G # ?Fy(q)' and G # ?A,(q), n even. Then

UsLpx < Ge < Py
where K = JUK' and K' is the set of orbits of fundamental roots in B which

contain roots not orthogonal to some root in J.
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We record the following lemma of Saxl:

Lemma 6. [Saz02, Lemma 2.6] If X is a group of Lie type of characteristic
p acting on cosets of a maximal parabolic subgroup then there is a unique
subdegree which is a power of p except where X is one of PSL,(q), P2 (q)
(m odd) or Es(q).

For the moment let us exclude the exceptions listed in these two lemmas;
then Lemma 6 suggests that if G, = P, then G¢ contains some G-conjugate
of L,. This clearly contradicts Lemma 5. Note also that even in the listed
exceptions of Lemma 6 many of the maximal parabolic subgroups have a
unique subdegree which is a power of p.

4.1 The twisted exceptions

We consider the exceptional cases listed in Lemma 5. In fact we need

only consider when (G,G,) is one of (24,(q), “[q - +4n] GL=z(q%)), n even;
or (*Fu(q), [¢%] : GL2(¢%)), ¢* = 2" a > 1.

In both cases Lemma 6 still applies. Furthermore if G, = Pyp\; then
Ge > Uj and so b divides |X|v.

Consider the unitary case. Write G = Py 53 Where b is the missing root
zn\{b}

class. Now |Gg| is divisible by and we examine the maximal subgroups

of 24,,(q) (JKL90]) to find that, unless (n,q) € {(9,2),(11,2)}, Ge < Pp\q0y

for some £. The exceptions can be eliminated by trivial counting arguments.
By the work in Section 3,

U <U = U =1,

Thus if we choose £ such that there exists P € Syl,G¢ with P < U then
Uy < Gg < ULy 3. Now Gg contains a Levi complement of Py (51 so, in
particular, contains an element g := un,. Here v € U and n, is an element
of N which when mapped to the Weyl group is the reflection in root class
a where a is adjacent to b. Without loss of generality we can assume that
g = xp(t)n,. Then

g X9t = xb(t)naanglzL’b(t)_l = :L’b(t)Xwa(b)xb(t)_l < U,

Since U, < G this implies that X, < GGg which is a contradiction.

Now when G = ?F(q) it is clear that |Gg| is divisible by u;” Number the
root classes of G as corners of a 16-gon. Then the fundamental root classes
are 1 and 8; G, = Psy. Examining the subgroups of G ([Mal91]), G¢ < Psy
for some £.



By the work in Section 3
Ul <U = U{ =U,.

Thus if we choose £ such that there exists P € Syl,G¢ with P < U then
U < Ge¢ < UlLky. Now Gg contains a Levi complement of Ppgy so, in
particular, contains an element g := ung. Here v € U and ng is an element
of N which when mapped to the Weyl group is the reflection in root class 8.
Without loss of generality we can assume that g = z1(t)ng. Then

gXlg_l = xl(t)ngXlnglxl(t)_l = Il(t)X7ZE1(t)_1 < Ul.
Since U; < Gg this implies that X; < G¢ which is a contradiction.

Remark. We are left with the exceptional cases from Lemma 6. Thus from
now on G s a Chevalley group and note that Lemma 5 still applies. In what
follows we number the roots in the normal way and refer to parabolic sub-
groups by the number of the roots which are not included in their generating
set.

4.2 G =PSL,(q)

If G, = P, or P,_; then the action on points is 2-transitive, G is flag-
transitive in its action on 8 and the action is well understood. Thus we
exclude this possibility and observe that we may assume that n > 4.

Consider G in the standard projective modular representation. Let G, =
Py, k€ {2,...,n—2}. By Lemma 5,

UeLp -1 pp1H < Gg < Pyq gy

Now without loss of generality 2k < n (reorder the roots if necessary);
then conjugate G, by a permutation matrix ¢ € G corresponding to the
(1,k+1)(2,k+2)...(k,2k) permutation.

Then g € G, hence G, N GY < Ge. If n = 2k this means that "SLx(q) X
SLi(q) < Gg which is impossible since Gg < Py 11. If n > 2k then this
means that SLg(q) X Qr < G¢ where @y is isomorphic to a k-th parabolic
group in SL, r(q). If kK > 3 then this is clearly impossible.

Assume then that & = 2. We must have "SLs(q) X SLa(q) x SL,_4(q) <
Ge < A:((g—1)x SLs(q) x SL,_3(q)). Thus either n =5 or SLy(q) is not
quasi-simple, i.e. ¢ = 2 or 3.

Consider the case when n = 5. Then

=+ "+ + P +q+1), v—1=q(@P+q+ D (@ +q+1).

8



Furthermore b is divisible by ¢|G : Pi3| = q¢(¢* + ) (¢* + @+ +q+ 1) (> +
q+1).

Thus |P 3 : Gg| divides into ¢(¢* + ¢ + 1) and so divides into ¢(q — 1, 3).
In fact |P13 : Gel is also divisible by ¢ and G¢ > U,. No such subgroup
exists for ¢ > 7. When ¢ < 7 we must have k(k — 1) dividing into ¢*> + ¢+ 1.
Examining the numerical values of ¢> + ¢ + 1 for ¢ = 2,3,5 and 7 we find
that this is not possible.

We are left with the possibility that £ = 2,n > 6 and ¢ = 2 or 3. If
g = 2 then conditions on G¢ imply that S3 X SL,_4(2) < SL,_3(2). If ¢ =3
we have that SLo(3) x SL, 4(3) < SL, 3(3) x 2. In both cases this gives a
contradiction.

4.3 G = Dy(q), m >3 odd

If m = 3 then G = PSL4(q) and we are already done.

Suppose m > 5. If G, = P;,;i < m — 1 then Lemma 6 still applies (c.f.
[Sax02, Section 5]). The cases where G, = P, or G, = P, are analogous,
so we just consider G, = P,,,. Thus

v= (" + 1)@ ?+1)...(+1)(g+1).

Then Lemma 5 implies that Uy, : Ly, -1 < Gg¢ < Py,—9. Thus b is divisible
by

m—1 m—3 2 v
gl o) —
(g q+1)(q q )qul
If m = 1(4) then (¢" 3 + -+ ¢+ 1,v) > ¢>+ 1. f m = 3(4) then
(@ 4+ @+ 1,0) 2 ¢"F —¢"F +--—q+1. When (m,q) # (7,2)

this contradicts the fact that b divides into v(v — 1). A simple combinatoral
argument rules out the case when (m,¢q) = (7,2).

If Go = Pi,i =2 or 4 then Lemma 6 still applies (c.f [Sax02, Section 8]).

If G, = P then, by Lemma 5, U; : L1 3 < Gg < P5. This implies that
q* + 1 divides into b. However (g2 + 1, v(v — 1)) divides into 2. This yields a
contradiction.

If G, = P5 then, by Lemma 5, Us : Ly 34 < Gg¢ < Py 4. This implies that
(¢>+1)? divides into b. Now (v —1,¢*>+1) = 1 and (v/(¢>+1), (¢*+1)) < 2.
Once again we have a contradiction.



5 Concluding remarks

Theorem 1 has the following corollary:

Corollary 7. Suppose that G has socle T a simple group of Lie type and G
acts line-transitively on a linear space S. If the stabilizer in T of a point is
a parabolic subgroup of T' then the stabilizer in T of a line is also a parabolic
subgroup of T.

For particular families of low rank simple groups of Lie type Theorem 1
is implied by existing results in the literature. We have already mentioned
the case where G has Lie rank 1; in addition results exist covering the case
when G has socle PSL;(q) [Gil].
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