The valuations of the near octagon \mathbb{G}_{4}

B. De Bruyn*and P. Vandecasteele

Ghent University, Department of Pure Mathematics and Computer Algebra, Galglaan 2, B-9000 Gent, Belgium, E-mail: bdb@cage.ugent.be, pvdecast@cage.ugent.be

Abstract

In [4] it was shown that the dual polar space $D H(2 n-1,4), n \geq 2$, has a sub near- $2 n$-gon \mathbb{G}_{n} with a large automorphism group. In this paper, we classify the valuations of the near octagon \mathbb{G}_{4}. We show that each such valuation is either classical, the extension of a non-classical valuation of a \mathbb{G}_{3}-hex or is associated with a valuation of Fano-type of an \mathbb{H}_{3}-hex. In order to describe the latter type of valuation we must study the structure of \mathbb{G}_{4} with respect to an \mathbb{H}_{3}-hex. This study also allows us to construct new hyperplanes of \mathbb{G}_{4}. We also show that each valuation of \mathbb{G}_{4} is induced by a (classical) valuation of the dual polar space $D H(7,4)$.

Keywords: near polygon, dual polar space, valuation, hyperplane.
MSC2000: 51A50, 51E12, 05B25

1 Introduction

1.1 Basic definitions

Let \mathcal{S} be a dense near $2 n$-gon, i.e. \mathcal{S} is a partial linear space which satisfies the following properties:
(i) For every point p and every line L, there exists a unique point $\pi_{L}(p)$ on L nearest to p. Here, distances $\mathrm{d}(\cdot, \cdot)$ are measured in the point graph or collinearity graph of \mathcal{S}.
(ii) Every line of \mathcal{S} is incident with at least three points.

[^0](iii) Every two points of \mathcal{S} at distance 2 from each other have at least two common neighbours.
(iv) The maximal distance between two points of \mathcal{S} is equal to n.

A dense near 0 -gon is a point, a dense near 2 -gon is a line and a dense near quadrangle is a generalized quadrangle (Payne and Thas [10]).

For every point y of \mathcal{S} and every non-empty set X of points, we define $\mathrm{d}(y, X):=\min \{\mathrm{d}(x, y) \mid x \in X\}$. If X is a non-empty set of points of \mathcal{S}, then for every $i \in \mathbb{N}, \Gamma_{i}(X)$ denotes the set of points y of \mathcal{S} at distance i from X. If X is a singleton $\{x\}$, then we will also write $\Gamma_{i}(x)$ instead of $\Gamma_{i}(X)$.

One of the following two cases occurs for two lines K and L of \mathcal{S} (see e.g. [5, Theorem 1.3]): (i) there exist unique points $k^{*} \in K$ and $l^{*} \in L$ such that $\mathrm{d}(k, l)=\mathrm{d}\left(k, k^{*}\right)+\mathrm{d}\left(k^{*}, l^{*}\right)+\mathrm{d}\left(l^{*}, l\right)$ for all $k \in K$ and $l \in L$; (ii) the map $K \rightarrow L ; x \mapsto \pi_{L}(x)$ is a bijection and its inverse is equal to the map $L \rightarrow K ; y \mapsto \pi_{K}(y)$. If the latter possibility occurs, then K and L are called parallel.

By Theorem 4 of Brouwer and Wilbrink [2], every two points x and y of \mathcal{S} at distance $\delta \in\{0, \ldots, n\}$ from each other are contained in a unique convex subspace $\langle x, y\rangle$ of diameter δ. These convex subspaces are called quads, respectively hexes, if $\delta=2$, respectively $\delta=3$. The lines and quads through a given point x of \mathcal{S} define a linear space which is called the local space at x. If $X_{1}, X_{2}, \ldots, X_{k}$ are non-empty sets of points, then $\left\langle X_{1}, X_{2}, \ldots, X_{k}\right\rangle$ denotes the smallest convex subspace containing $X_{1} \cup X_{2} \cup \cdots \cup X_{k}$. A convex subspace F of \mathcal{S} is called classical in \mathcal{S} if for every point x of \mathcal{S}, there exists a necessarily unique point $\pi_{F}(x)$ in F such that $\mathrm{d}(x, y)=\mathrm{d}\left(x, \pi_{F}(x)\right)+\mathrm{d}\left(\pi_{F}(x), y\right)$ for every point y of F. If every quad of \mathcal{S} is classical in \mathcal{S}, then \mathcal{S} is a so-called dual polar space (Cameron [3]). The near polygon \mathcal{S} is then isomorphic to a geometry Δ whose points and lines are the maximal and next-to-maximal singular subspaces of a given polar space Π (natural incidence). A proper convex subspace F of \mathcal{S} is called big in \mathcal{S} if every point of \mathcal{S} has distance at most 1 from F. If F is big in \mathcal{S}, then F is also classical in \mathcal{S}. If F is big in \mathcal{S} and if every line of \mathcal{S} is incident with precisely 3 points, then we can define a reflection \mathcal{R}_{F} about F which is an automorphism of \mathcal{S}. If $x \in F$, then we define $\mathcal{R}_{F}(x):=x$. If $x \notin F$, then $\mathcal{R}_{F}(x)$ is the unique point on the line $x \pi_{F}(x)$ different from x and $\pi_{F}(x)$. Near polygons were introduced by Shult and Yanushka [11]. We refer to (Chapter 2 of) De Bruyn [5] for more background information on (dense) near polygons.

A function f from the point-set of \mathcal{S} to \mathbb{N} is called a valuation of \mathcal{S} if it satisfies the following properties:
(V1) $f^{-1}(0) \neq \emptyset$;
(V2) every line L of \mathcal{S} contains a unique point x_{L} such that $f(x)=f\left(x_{L}\right)+1$
for every point x of L different from x_{L};
(V3) every point x of \mathcal{S} is contained in a necessarily unique convex subspace F_{x} such that the following properties are satisfied for every $y \in F_{x}$:
(i) $f(y) \leq f(x)$;
(ii) if z is a point collinear with y such that $f(z)=f(y)-1$, then $z \in F_{x}$.

Valuations of dense near polygons were introduced in De Bruyn and Vandecasteele [6]. If f is a valuation of \mathcal{S}, then we denote by O_{f} the set of points with value 0 . A quad Q of \mathcal{S} is called special (with respect to f) if it contains two distinct points of O_{f}, or equivalently (see [6]), if it intersects O_{f} in an ovoid of Q. We denote by G_{f} the partial linear space with points the elements of O_{f} and with lines the special quads (natural incidence).

Proposition 1.1 (Proposition 2.12 of [6]) Let \mathcal{S} be a dense near polygon and let $F=\left(\mathcal{P}^{\prime}, \mathcal{L}^{\prime}, \mathrm{I}^{\prime}\right)$ be a (not necessarily convex) subpolygon of \mathcal{S} for which the following holds: (1) F is a dense near polygon; (2) F is a subspace of \mathcal{S}; (3) if x and y are two points of F, then $d_{F}(x, y)=d_{\mathcal{S}}(x, y)$. Let f denote a valuation of \mathcal{S} and put $m:=\min \left\{f(x) \mid x \in \mathcal{P}^{\prime}\right\}$. Then the map $f_{F}: \mathcal{P}^{\prime} \rightarrow \mathbb{N} ; x \mapsto f(x)-m$ is a valuation of F.

Definition. The valuation f_{F} of F defined in Proposition 1.1 is called the valuation of F induced by f.

Examples. Let $\mathcal{S}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ be a dense near $2 n$-gon.
(1) For every point x of \mathcal{S}, the map $f_{x}: \mathcal{P} \rightarrow \mathbb{N} ; y \mapsto \mathrm{~d}(x, y)$ is a valuation of \mathcal{S} which we call a classical valuation.
(2) Suppose O is an ovoid of \mathcal{S}, i.e. a set of points meeting each line in a unique point. For every point x of \mathcal{S}, we define $f_{O}(x)=0$ if $x \in O$ and $f_{O}(x)=1$ otherwise. Then f_{O} is a valuation of \mathcal{S} which we call an ovoidal valuation.
(3) Let x be a point of \mathcal{S} and let O be a set of points at distance n from x having a unique point in common with every line at distance $n-1$ from x. For every point y of \mathcal{S}, we define $f(y)=\mathrm{d}(x, y)$ if $\mathrm{d}(x, y) \leq n-1$, $f(y)=n-2$ if $y \in O$ and $f(y)=n-1$ otherwise. Then f is a valuation of \mathcal{S} which we call a semi-classical valuation.
(4) Suppose $F=\left(\mathcal{P}^{\prime}, \mathcal{L}^{\prime}, \mathrm{I}^{\prime}\right)$ is a convex subspace of \mathcal{S} which is classical in \mathcal{S}. Suppose that $f^{\prime}: \mathcal{P}^{\prime} \rightarrow \mathbb{N}$ is a valuation of F. Then the map $f: \mathcal{P} \rightarrow$ $\mathbb{N} ; x \mapsto f(x):=\mathrm{d}\left(x, \pi_{F}(x)\right)+f^{\prime}\left(\pi_{F}(x)\right)$ is a valuation of \mathcal{S}. We call f the extension of f^{\prime}.

In the literature, valuations have been used for the following important applications: (i) classification of dense near polygons; (ii) constructions of new hyperplanes of dense near polygons, in particular of dual polar spaces; (iii) classification of certain hyperplanes of dense near polygons, in particular of dual polar spaces; (iv) study of isometric full embeddings between dense near polygons.

We will now define two classes of dense near polygons which will be important throughout this paper.
(I) Let X be a set of size $2 n+2, n \geq 2$, and let $\mathbb{H}_{n}=(\mathcal{P}, \mathcal{L}$, I $)$ be the following incidence structure:
(i) \mathcal{P} is the set of all partitions of X in $n+1$ subsets of size 2 ;
(ii) \mathcal{L} is the set of all partitions of X in $n-1$ subsets of size 2 and one subset of size 4;
(iii) a point $p \in \mathcal{P}$ is incident with a line $L \in \mathcal{L}$ if and only if the partition determined by the point p is a refinement of the partition determined by L.

By Brouwer, Cohen, Hall and Wilbrink [1], see also De Bruyn [5, Section $6.2], \mathbb{H}_{n}$ is a dense near $2 n$-gon.
(II) Let $H(2 n-1,4), n \geq 2$, denote the hermitian variety $X_{0}^{3}+X_{1}^{3}+\cdots+$ $X_{2 n-1}^{3}=0$ of $\operatorname{PG}(2 n-1,4)$ (with respect to a given reference system). The number of nonzero coordinates (with respect to the same reference system) of a point p of $\mathrm{PG}(2 n-1,4)$ is called the weight of p. The maximal and next-tomaximal subspaces of $H(2 n-1,4)$ define a dual polar space $D H(2 n-1,4)$. Let $\mathbb{G}_{n}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ be the following substructure of $D H(2 n-1,4)$:
(i) \mathcal{P} is the set of all generators of $H(2 n-1,4)$ containing n points with weight 2;
(ii) \mathcal{L} is the set of all $(n-2)$-dimensional subspaces of $H(2 n-1,4)$ containing at least $n-2$ points of weight 2 ;
(iii) incidence is reverse containment.

By De Bruyn [4], see also De Bruyn [5, 6.3], \mathbb{G}_{n} is a dense near $2 n$-gon and its above-defined embedding in $D H(2 n-1,4)$ is isometric, i.e. preserves distances.

1.2 The main result

The near octagon \mathbb{G}_{4} has hexes isomorphic to \mathbb{G}_{3} and \mathbb{H}_{3}. Every \mathbb{G}_{3}-hex F is big in \mathbb{G}_{4} and hence every valuation f of F will give rise to a valuation of \mathbb{G}_{4}, namely the extension of f. No \mathbb{H}_{3}-hex is big in F. We will later show (Proposition 6.11) that if f is a valuation of an \mathbb{H}_{3}-hex F such that G_{f} is a

Fano-plane, then there exists a unique valuation \bar{f} of \mathbb{G}_{4} such that $O_{\bar{f}}=O_{f}$. We will call \bar{f} a valuation of Fano-type of \mathbb{G}_{4}. In this paper, we classify all valuations of \mathbb{G}_{4}. We will show the following.

Theorem 1.2 (Section 6) If f is a valuation of \mathbb{G}_{4}, then f is one of the following:
(1) f is a classical valuation of \mathbb{G}_{4};
(2) f is the extension of a non-classical valuation in a \mathbb{G}_{3}-hex of \mathbb{G}_{4};
(3) f is a valuation of Fano-type of \mathbb{G}_{4}.

Each of these valuations is induced by a unique (classical) valuation of $D H(7,4)$.
Notice that all valuations of $\operatorname{DH}(7,4)$ are classical by Theorem 6.8 of De Bruyn [5]. In order to describe the valuations of Fano-type of \mathbb{G}_{4} (see Section 5), we must study the structure of \mathbb{G}_{4} with respect to an \mathbb{H}_{3}-hex (Section 4). This study allows us to construct a class of hyperplanes of \mathbb{G}_{4} (Corollary 4.13).

2 The valuations of the near hexagons $\mathbb{G}_{3}, \mathbb{H}_{3}$, $Q(5,2) \times \mathbb{L}_{3}$ and $W(2) \times \mathbb{L}_{3}$

The valuations of the near hexagons $\mathbb{G}_{3}, \mathbb{H}_{3}, Q(5,2) \times \mathbb{L}_{3}$ and $W(2) \times \mathbb{L}_{3}$ were determined in De Bruyn and Vandecasteele [7].

There are two types of valuations in \mathbb{G}_{3} : the classical valuations and the nonclassical valuations. If f is a non-classical valuation of \mathbb{G}_{3}, then $G_{f} \cong \overline{W(2)}$, the linear space obtained from the generalized quadrangle $W(2)$ by adding its ovoids as extra lines. Moreover, every point with value 1 is contained in a unique special quad and every $Q(5,2)$-quad of \mathbb{G}_{3} contains a unique point with value 0 .

The near hexagon \mathbb{H}_{3} has $W(2)$-quads and grid-quads. Every $W(2)$-quad is big in \mathbb{H}_{3}. Every point is incident with precisely 6 lines and every local space is isomorphic to the Fano-plane in which a point has been removed. There are four types of valuations in the near hexagon \mathbb{H}_{3} : the classical valuations, the extensions of the ovoidal valuations in $W(2)$-quads (valuations of extended type), the valuations f for which G_{f} is a line of size 3 (valuations of grid-type) and the valuations f for which G_{f} is a Fano-plane (valuations of Fano-type). In the following lemma, we collect some known facts about valuations of grid-type and Fano-type.

Lemma 2.1 ([7]) (i) Let f be a valuation of grid-type of \mathbb{H}_{3}. Then O_{f} is an ovoid in a grid-quad Q of \mathbb{H}_{3}. If $d\left(x, O_{f}\right) \leq 2$, then $f(x)=d\left(x, O_{f}\right)$. If $d\left(x, O_{f}\right)=3$, then $f(x)=1$.
(ii) Let f be a valuation of Fano-type of \mathbb{H}_{3}. Then every $W(2)$-quad contains a unique point of O_{f} and every grid-quad intersects O_{f} in either the empty set or an ovoid of the grid-quad. If a grid-quad Q is disjoint from O_{f}, then Q intersects the set of points with value 1 in an ovoid of Q. The 3 special grid-quads through a point $x \in O_{f}$ partition the set of lines through x.

Lemma 2.2 Let f be a valuation of Fano-type of \mathbb{H}_{3}. Let Q be a $W(2)$-quad of \mathbb{H}_{3} and let G_{2} and G_{3} be two grid-quads of \mathbb{H}_{3} such that $(i) Q$, G_{2} and G_{3} are mutually disjoint, and (ii) $\mathcal{R}_{Q}\left(G_{2}\right)=G_{3}$. Put $G_{1}:=\pi_{Q}\left(G_{2}\right)=\pi_{Q}\left(G_{3}\right)$. Then one of the following cases occurs:
(1) There exists precisely one $i \in\{2,3\}$ such that $\left|G_{i} \cap O_{f}\right|=3$ and $\mid G_{5-i} \cap$ $O_{f} \mid=0$. Moreover, the unique point in $O_{f} \cap Q$ is not contained in G_{1}.
(2) $\left|G_{2} \cap O_{f}\right|=\left|G_{3} \cap O_{f}\right|=0$ and the unique point in $O_{f} \cap Q$ is contained in G_{1}.

Proof. We distinguish two cases.
(1) Suppose that the unique point x^{*} in $O_{f} \cap Q$ is not contained in G_{1}. Put $x^{* \perp} \cap G_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}$ and let $L_{i}, i \in\{1,2,3\}$, denote the unique line through x_{i} meeting G_{2} and G_{3}. Since $x^{*} \notin G_{1}, \mathrm{~d}\left(x^{*}, G_{2}\right)=\mathrm{d}\left(x^{*}, G_{3}\right)=2$. Hence, every quad through x^{*} meeting G_{2} and G_{3} is a grid. Hence, $\left\langle x^{*} x_{1}, L_{1}\right\rangle$, $\left\langle x^{*} x_{2}, L_{2}\right\rangle$ and $\left\langle x^{*} x_{3}, L_{3}\right\rangle$ are the only grid-quads through x^{*} meeting $G_{2}\left(G_{3}\right)$ in a point. These three grid-quads are special with respect to the valuation f. Hence, $\left|L_{1} \cap O_{f}\right|=1$. Choose $i \in\{2,3\}$ such that $G_{i} \cap L_{1} \cap O_{f} \neq \emptyset$. Then $\left|G_{i} \cap O_{f}\right|=3$. Since every point of $G_{1} \backslash\left\{x_{1}, x_{2}, x_{3}\right\}$ has value 2, $G_{i} \cap O_{f}=\left(G_{i} \cap L_{1}\right) \cup\left(G_{i} \cap L_{2}\right) \cup\left(G_{i} \cap L_{3}\right)$. Hence, none of the points $G_{5-i} \cap L_{1}$, $G_{5-i} \cap L_{2}, G_{5-i} \cap L_{3}$ belongs to O_{f}. Since every point of $G_{1} \backslash\left\{x_{1}, x_{2}, x_{3}\right\}$ has value 2 , no point of G_{5-i} has value 0 . So, we have case (1) of the lemma.
(2) Suppose that the unique point x^{*} in $O_{f} \cap Q$ is contained in G_{1}. Suppose y^{*} is a point of $O_{f} \cap G_{2}$. Then since $\mathrm{d}\left(x^{*}, y^{*}\right)=2, y^{*}$ is collinear with the unique point z^{*} of G_{2} collinear with x^{*}. It follows that $\left\langle x^{*}, y^{*}\right\rangle$ and G_{2} are two special grid-quads meeting in a line, a contradiction. Hence, $G_{2} \cap O_{f}=\emptyset$. In a similar way, one shows that $G_{3} \cap O_{f}=\emptyset$.

The near hexagon $Q(5,2) \times \mathbb{L}_{3}$ is obtained by taking three isomorphic copies of the generalized quadrangle $Q(5,2)$ and joining the corresponding points to
lines of size 3 . There are two types of valuations in $Q(5,2) \times \mathbb{L}_{3}$: the classical valuations and the extensions of the ovoidal valuations in grid-quads.

The near hexagon $W(2) \times \mathbb{L}_{3}$ is obtained by taking three isomorphic copies of the generalized quadrangle $W(2)$ and joining the corresponding points to lines of size 3 . There are four types of valuations in $W(2) \times \mathbb{L}_{3}$: the classical valuations, the extensions of the ovoidal valuations in grid-quads, the extensions of the ovoidal valuations in $W(2)$-quads and the semi-classical valuations.

3 Properties of the near octagon \mathbb{G}_{4}

We start with some properties of the near $2 n$-gon $\mathbb{G}_{n}, n \geq 3$. Let U denote the set of points of weight 1 and 2 of $\mathrm{PG}(n-1,4)$ (with respect to a certain reference system) and let \mathcal{L}_{U} denote the linear space induced on the set U by the lines of $\operatorname{PG}(n-1,4)$. Then every local space of \mathbb{G}_{n} is isomorphic to \mathcal{L}_{U}. Every quad of $\mathbb{G}_{n}, n \geq 3$, is isomorphic to either the (3×3)-grid, $W(2)$ or $Q(5,2)$. The near polygon $\mathbb{G}_{n}, n \geq 3$, has two types of lines:
(i) SPECIAL Lines: these are lines which are not contained in a $W(2)$ quad.
(ii) ORDINARY LINES: these are lines which are contained in at least one W (2)-quad.
There are two possible grid-quads in $\mathbb{G}_{n}, n \geq 3$.
(i) GRID-QUADS OF TYPE I: these grid-quads contain three ordinary and three special lines; the lines of each type partition the point set of the grid.
(ii) GRID-QUADS OF TYPE II: these grid-quads contain six ordinary lines. If $n=3$, then every grid-quad is of type I. If $n \geq 4$, then both types of grid-quads occur.

The automorphism group of $\mathbb{G}_{n}, n \geq 3$, acts transitively on the set of special lines, the set of ordinary lines, the set of $Q(5,2)$-quads, the set of $W(2)$-quads, the set of grid-quads of type I and the set of grid-quads of type II.

The above facts readily follow from De Bruyn [5, Section 6.3]. In the following lemma we collect some properties of the near octagon \mathbb{G}_{4}. The proof is straightforward and we leave it as an exercise to the reader.

Lemma 3.1 (1) The near octagon \mathbb{G}_{4} has 8505 points, each line of \mathbb{G}_{4} contains 3 points and each point of \mathbb{G}_{4} is contained in 22 lines.
(2) Every quad of \mathbb{G}_{4} is isomorphic to either the (3×3)-grid, $W(2)$ or $Q(5,2)$. Every $Q(5,2)$-quad is classical in \mathbb{G}_{4}.
(3) Every hex of \mathbb{G}_{4} is isomorphic to either $\mathbb{G}_{3}, \mathbb{H}_{3}, W(2) \times \mathbb{L}_{3}$ or $Q(5,2) \times$ \mathbb{L}_{3}. Every \mathbb{G}_{3}-hex is big in \mathbb{G}_{4}.
(4) Every point is contained in 4 special lines, 18 ordinary lines, 36 gridquads of type $I, 27$ grid-quads of type II, $36 \mathrm{~W}(2)$-quads, 6 Q(5, 2)-quads, 4 \mathbb{G}_{3}-hexes, $18 Q(5,2) \times \mathbb{L}_{3}$-hexes, $36 W(2) \times \mathbb{L}_{3}$-hexes and $27 \mathbb{H}_{3}$-hexes.
(5) Every special line is contained in 9 grid-quads of type I, 0 grid-quads of type II, $0 W(2)$-quads, $3 Q(5,2)$-quads, $0 \mathbb{H}_{3}$-hexes, $3 \mathbb{G}_{3}$-hexes, $9 Q(5,2) \times$ \mathbb{L}_{3}-hexes and $9 W(2) \times \mathbb{L}_{3}$-hexes.
(6) Every ordinary line is contained in 2 grid-quads of type I, 3 gridquads of type II, $6 \mathrm{~W}(2)$-quads, $1 Q(5,2)$-quad, $9 \mathbb{H}_{3}$-hexes, $2 \mathbb{G}_{3}$-hexes, 4 $Q(5,2) \times \mathbb{L}_{3}$-hexes and $6 \mathrm{~W}(2) \times \mathbb{L}_{3}$-hexes.
(7) Every $W(2)$-quad is contained in precisely $1 \mathbb{G}_{3}$-hex, $1 W(2) \times \mathbb{L}_{3}$-hex, $0 Q(5,2) \times \mathbb{L}_{3}$-hexes and $3 \mathbb{H}_{3}$-hexes.
(8) Every $Q(5,2)$-quad is contained in precisely $2 \mathbb{G}_{3}$-hexes, $3 Q(5,2) \times \mathbb{L}_{3}$ hexes, $0 W(2) \times \mathbb{L}_{3}$-hexes and $0 \mathbb{H}_{3}$-hexes.
(9) Every grid-quad of type I is contained in $1 \mathbb{G}_{3}$-hex, $0 \mathbb{H}_{3}$-hexes, 1 $Q(5,2) \times \mathbb{L}_{3}$-hex and $3 W(2) \times \mathbb{L}_{3}$-hexes.
(10) Every grid-quad of type II is contained in $0 \mathbb{G}_{3}$-hexes, $3 \mathbb{H}_{3}$-hexes, $2 Q(5,2) \times \mathbb{L}_{3}$-hexes and $0 W(2) \times \mathbb{L}_{3}$-hexes.

4 Structure of \mathbb{G}_{4} with respect to an \mathbb{H}_{3}-hex

In this section, H denotes a given \mathbb{H}_{3}-hex of \mathbb{G}_{4}.
Lemma 4.1 It holds that $|H|=105,\left|\Gamma_{1}(H)\right|=3360,\left|\Gamma_{2}(H)\right|=5040$ and $\left|\Gamma_{i}(H)\right|=0$ for every $i \geq 3$. If $x \in \Gamma_{2}(H)$, then there are two possibilities:
(a) $\Gamma_{2}(x) \cap H$ is an ovoid in a $W(2)$-quad of H;
(b) $\Gamma_{2}(x) \cap H$ is an ovoid in a grid-quad of H.

Proof. Obviously, $|H|=105,\left|\Gamma_{1}(H)\right|=|H| \cdot 2 \cdot(22-6)=3360$ and $\left|\Gamma_{i}(H)\right|=0$ for every $i \geq 4$. Since H does not have ovoids (see e.g. [7, Lemma 5.5]), $\Gamma_{3}(H)=\emptyset$. Hence, $\left|\Gamma_{2}(H)\right|=8505-|H|-\left|\Gamma_{1}(H)\right|=5040$. If $x \in \Gamma_{2}(H)$, then the map $g: H \rightarrow \mathbb{N} ; y \mapsto \mathrm{~d}(x, y)-2$ is a non-classical valuation of H. (Apply Proposition 1.1 to the classical valuation f of \mathbb{G}_{4} with $O_{f}=\{x\}$.) By Section 2, there are three possibilities:
(a) $O_{g}=\Gamma_{2}(x) \cap H$ is an ovoid in a $W(2)$-quad of H;
(b) $O_{g}=\Gamma_{2}(x) \cap H$ is an ovoid in a grid-quad of H;
(c) $O_{g}=\Gamma_{2}(x) \cap H$ is a set of 7 points and G_{g} is a Fano-plane.

We will now show that possibility (c) cannot occur. Suppose the contrary. Let u denote an arbitrary point of O_{g} and let Q_{1}, Q_{2} and Q_{3} denote the three grid-quads of H through u which are special with respect to g. Since $Q_{i}, i \in\{1,2,3\}$, is contained in an \mathbb{H}_{3}-hex, it is a grid-quad of type II by Lemma 3.1 (9). Now, $\left\langle x, Q_{i}\right\rangle$ is a hex containing a grid-quad Q_{i} which is not big. It follows that $\left\langle x, Q_{i}\right\rangle$ is isomorphic to either \mathbb{H}_{3} or \mathbb{G}_{3}. But the latter possibility cannot occur by Lemma 3.1 (10), since Q_{i} is a grid-quad of type II. Hence, $\left\langle x, Q_{i}\right\rangle \cong \mathbb{H}_{3}$ and $\langle x, u\rangle$ is a (3×3)-grid. Since $\langle x, u\rangle$ is contained in an \mathbb{H}_{3}-hex, $\langle x, u\rangle$ is a grid-quad of type II. Let L_{1} and L_{2} denote the two lines of $\langle x, u\rangle$ through u. Since $\langle x, u\rangle$ is a grid-quad of type II, L_{1} and L_{2} are ordinary lines. Let Q denote the unique $Q(5,2)$-quad through L_{1}. Then Q intersects H in a line. Take $i \in\{1,2,3\}$ such that $Q \cap H \subseteq Q_{i}$. Then the hex $\left\langle x, Q_{i}\right\rangle$ contains a $Q(5,2)$-quad, contradicting $\left\langle x, Q_{i}\right\rangle \cong \mathbb{H}_{3}$. Hence, either possibility (a) or (b) occurs.

Lemma 4.2 (a) Let $x \in \Gamma_{2}(H)$ such that $\Gamma_{2}(x) \cap H$ is an ovoid in a $W(2)$ quad Q of H. Then $\langle x, Q\rangle \cong \mathbb{G}_{3}$.
(b) Let $x \in \Gamma_{2}(H)$ such that $\Gamma_{2}(x) \cap H$ is an ovoid in a grid-quad Q of H. Then $\langle x, Q\rangle \cong \mathbb{H}_{3}$.

Proof. (a) The hex $\langle x, Q\rangle$ has a $W(2)$-quad Q which is not big. It follows that $\langle x, Q\rangle \cong \mathbb{G}_{3}$.
(b) Since the grid-quad Q is contained in an \mathbb{H}_{3}-hex, it is a grid-quad of type II. So, the hex $\langle x, Q\rangle$ has a grid-quad of type II which is not big. As in the proof of Lemma 4.1, it follows that $\langle x, Q\rangle \cong \mathbb{H}_{3}$.

Definition. A point x of $\Gamma_{2}(H)$ is said to be of type (a), respectively (b), if case (a), respectively case (b), of Lemma 4.1 (Lemma 4.2) occurs.

Lemma 4.3 In $\Gamma_{2}(H)$, there are 3360 points of type (a) and 1680 points of type (b).

Proof. In a given \mathbb{G}_{3}-hex, there are 120 points at distance 2 from a $W(2)$ quad. There are $28 W(2)$-quads in \mathbb{H}_{3} and each such quad is contained in a unique \mathbb{G}_{3}-hex. Hence, the number of points of type (a) in $\Gamma_{2}(H)$ is equal to $28 \cdot 1 \cdot 120=3360$.

In a given \mathbb{H}_{3}-hex, there are 24 points at distance 2 from a given gridquad. Now, there are 35 grid-quads (of type II) in H and each of these grid-quads is contained in precisely $2 \mathbb{H}_{3}$-hexes different from H. Hence, the number of points of type (b) in $\Gamma_{2}(H)$ is equal to $35 \cdot 2 \cdot 24=1680$.
(Check: The total number of points of $\Gamma_{2}(H)$ is indeed equal to $3360+$ $1680=5040$ as shown in Lemma 4.1).

Lemma 4.4 (Chapter 7 of [5]) Suppose one of the following cases occurs: (i) Q is a grid-quad of $\mathcal{S} \cong \mathbb{H}_{3}$; (ii) Q is a $W(2)$-quad of $\mathcal{S} \cong \mathbb{G}_{3}$. Let x be a point of \mathcal{S} at distance 2 from Q. Then every line of \mathcal{S} through x has a unique point in common with $\Gamma_{1}(Q)$.

Let S denote the set of lines of \mathbb{G}_{4} contained in $\Gamma_{2}(H)$.
Lemma 4.5 (a) Through every point x of type (a) of $\Gamma_{2}(H)$, there are precisely 10 lines contained in S.
(b) Through every point x of type (b) of $\Gamma_{2}(H)$, there are precisely 16 lines contained in S.

Proof. Let x be a point of $\Gamma_{2}(H)$ and let Q be the quad $\left\langle\Gamma_{2}(x) \cap H\right\rangle$. If x is a point of type (a), then $Q \cong W(2)$ and $\langle x, Q\rangle \cong \mathbb{G}_{3}$. If x is a point of type (b), then Q is a grid-quad and $\langle x, Q\rangle \cong \mathbb{H}_{3}$. By Lemma 4.4, every line through x contained in $\langle x, Q\rangle$ contains a unique point of $\Gamma_{1}(Q)$. Clearly, all remaining lines through x cannot contain points of $\Gamma_{1}(H)$ and are contained in $\Gamma_{2}(H)$. So, if x is a point of type (a), then x is contained in $22-12=10$ lines of S. If x is a point of type (b), then x is contained in $22-6=16$ lines of S.

From Lemmas 4.3 and 4.5, we readily obtain:
Corollary $4.6|S|=\frac{1}{3}[3360 \cdot 10+1680 \cdot 16]=20160$.
Lemma 4.7 Let $L=\left\{x_{1}, x_{2}, x_{3}\right\}$ be a line of S. For every $i \in\{1,2,3\}$, put $Q_{i}:=\left\langle\Gamma_{2}\left(x_{i}\right) \cap H\right\rangle$ and $H_{i}:=\left\langle x_{i}, Q_{i}\right\rangle$. Then H_{1}, H_{2} and H_{3} are mutually disjoint hexes.

Proof. By symmetry, it suffices to show that $H_{1} \cap H_{2}=\emptyset$. Suppose that u is a point of $H_{1} \cap H_{2}$. Every point on a shortest path between $u \in H_{1} \cap H_{2}$ and x_{1} belongs to H_{1}. If $x_{1} \notin H_{2}$, then x_{2} lies on such a shortest path. Hence, $x_{1} \in H_{2}$ or $x_{2} \in H_{1}$. So, the line $x_{1} x_{2}$ is contained in H_{1} or H_{2}. By Lemma 4.4, L contains a point of $\Gamma_{1}(H)$, contradicting the fact that $L \in S$.

Lemma 4.8 Let $L=\left\{x_{1}, x_{2}, x_{3}\right\}$ be a line of S, put $Q_{i}=\left\langle\Gamma_{2}\left(x_{i}\right) \cap H\right\rangle$ and $H_{i}=\left\langle x_{i}, Q_{i}\right\rangle$. If x_{1} is of type (a), then x_{2} and x_{3} have the same type and $\mathcal{R}_{H_{1}}\left(H_{2}\right)=H_{3}$.

Proof. By Lemma $4.2, Q_{1} \cong W(2)$ and $H_{1} \cong \mathbb{G}_{3}$. So, H_{1} is big in \mathbb{G}_{4}. By Lemma 4.7, H_{1} and H_{2} are mutually disjoint. Let H_{3}^{\prime} be the reflection of H_{2} about H_{1} (in the near octagon \mathbb{G}_{4}) and let Q_{3}^{\prime} denote the reflection of Q_{2} about Q_{1} (in the near hexagon H). Then $Q_{3}^{\prime} \cong Q_{2}, H_{3}^{\prime} \cong H_{2}$ and $Q_{3}^{\prime} \subset H_{3}$.

Since $x_{3} \in H_{3}^{\prime}$, we have that $Q_{3}=Q_{3}^{\prime}$ and $H_{3}=H_{3}^{\prime}$. Hence, x_{3} is of the same type as x_{2}.

Lemma 4.9 Every point x of type (a) of $\Gamma_{2}(H)$ is contained in precisely 6 lines of S which only contains points of type (a).

Proof. Put $Q:=\left\langle\Gamma_{2}(x) \cap H\right\rangle$.
Let $\left\{x, x_{1}, x_{2}\right\}$ be a line of S through x which only contains points of type (a) and let $Q_{i}=\left\langle\Gamma_{2}\left(x_{i}\right) \cap H\right\rangle, i \in\{1,2\}$. Then by Lemmas 4.7 and 4.8, the $W(2)$-quads Q, Q_{1} and Q_{2} are mutually disjoint and Q_{2} is the reflection of Q_{1} about Q (in the near hexagon H).

Now, there are $12 W(2)$-quads in H disjoint with Q. Let Q^{\prime} be such a $W(2)$-quad and let H^{\prime} denote the unique \mathbb{G}_{3}-hex through Q^{\prime}. Then the $\mathbb{G}_{3^{-}}$ hexes $\langle x, Q\rangle$ and H^{\prime} are disjoint. Hence, the line $x \pi_{H^{\prime}}(x)$ belongs to S. Since x and $\pi_{H^{\prime}}(x)$ are points of type (a), also the third point of $x \pi_{H^{\prime}}(x)$ has type (a) by Lemma 4.8. If we denote by $Q^{\prime \prime} \cong W(2)$ the reflection of Q^{\prime} about Q (in H) and by $H^{\prime \prime}$ the unique \mathbb{G}_{3}-hex through $Q^{\prime \prime}$, then $H^{\prime \prime}=\mathcal{R}_{H^{\prime}}(\langle x, Q\rangle)$ and $x \pi_{H^{\prime}}(x)=x \pi_{H^{\prime \prime}}(x)$. It follows that there are $\frac{12}{2}$ lines of S through x containing only points of type (a).

From Lemmas 4.3 and 4.9, we readily obtain:
Corollary 4.10 There are $\frac{3360 \cdot 6}{3}=6720$ lines of S containing precisely three points of type (a).

Lemma 4.11 There are 13440 lines of S containing one point of type (a) and two points of type (b).

Proof. Let x be one of the 3360 points of type (a). By Lemmas 4.5, 4.8 and $4.9, x$ is contained in 4 lines of S which contain a unique point of type (a). Hence, the required number is equal to $3360 \cdot 4=13440$.

By Corollary 4.6, Corollary 4.10 and Lemma 4.11, we obtain:
Corollary 4.12 There are two types of lines in S :
(1) Lines of S only containing points of type (a).
(2) Lines of S containing a unique point of type (a) and two points of type (b).

Corollary 4.13 Let X denote the set of points of \mathbb{G}_{4} consisting of the points of H, the points of $\Gamma_{1}(H)$ and the points of type (a) of $\Gamma_{2}(H)$. Then X is a hyperplane of \mathbb{G}_{4}.

5 A new class of valuations of \mathbb{G}_{4}

Let H denote a hex of \mathbb{G}_{4} isomorphic to \mathbb{H}_{3} and let f denote a valuation of Fano-type of H. For every point $x \in \Gamma_{1}(H)$, let $\pi_{H}(x)$ denote the unique point of H collinear with x. We define the following function \bar{f} from the point-set of \mathbb{G}_{4} to \mathbb{N} :
(i) If $x \in H$, then we define $\bar{f}(x):=f(x)$.
(ii) If $x \in \Gamma_{1}(H)$, then we define $\bar{f}(x):=1+f\left(\pi_{H}(x)\right)$.
(iii) If x is a point of type (a) of $\Gamma_{2}(H)$, then $\bar{f}(x):=\mathrm{d}\left(x, x^{*}\right)$, where x^{*} is the unique point of O_{f} contained in the $W(2)$-quad $\left\langle\Gamma_{2}(x) \cap H\right\rangle$.
(iv) Let x be a point of type (b) of $\Gamma_{2}(H)$ such that $\left|O_{f} \cap Q\right|=3$, where Q is the unique grid-quad of H containing $\Gamma_{2}(x) \cap H$. Then $\bar{f}(x):=2$ if $\Gamma_{2}(x) \cap\left(O_{f} \cap Q\right) \neq \emptyset$ and $\bar{f}(x):=1$ otherwise.
(v) Let x be a point of type (b) of $\Gamma_{2}(H)$ such that $\left|O_{f} \cap Q\right|=0$ where Q is the unique grid-quad of H containing $\Gamma_{2}(x) \cap H$. Let X denote the ovoid of Q consisting of all points with f-value 1 . We define $\bar{f}(x):=3$ if $\Gamma_{2}(x) \cap X \neq \emptyset$ and $\bar{f}(x):=2$ otherwise.

In Section 6 a proof will be given for the fact that \bar{f} is a valuation of \mathbb{G}_{4}. This proof is very indirect. It relies for instance on the classification of all valuations of \mathbb{G}_{4}. It is possible to give a direct proof, but this forces us to consider many cases. We will therefore only verify that property (V2) is satisfied and leave the verification of property (V3) as a (long) exercise to the interested reader. (Notice that property (V1) is trivially satisfied.)

Lemma 5.1 The map \bar{f} satisfies property (V2).
Proof. Let L be a line of \mathbb{G}_{4}. There are different possibilities:
(1) L is contained in H. Then L satisfies property (V2) with respect to \bar{f} since L satisfies property (V2) with respect to f.
(2) L intersects H in a unique point x_{L}. Then $\bar{f}(x)=f\left(x_{L}\right)+1=\bar{f}\left(x_{L}\right)+1$ for every point x of $L \backslash\left\{x_{L}\right\}$. So, L satisfies property (V2).
(3) $L \subseteq \Gamma_{1}(H)$. Then $\pi_{H}(L):=\left\{\pi_{H}(x) \mid x \in L\right\}$ is a line of H parallel with L. For every point x of $L, \bar{f}(x)=f\left(\pi_{H}(x)\right)+1$. Since $\pi_{H}(L)$ satisfies property (V2) with respect to f, L satisfies property (V2) with respect to \bar{f}.
(4) $\left|L \cap \Gamma_{1}(H)\right|=1$ and $L \backslash \Gamma_{1}(H) \subseteq \Gamma_{2}(H)$. Let x denote an arbitrary point of $L \cap \Gamma_{2}(H)$ and let Q denote the unique quad of H containing $\Gamma_{2}(x) \cap H$. Then $\langle x, Q\rangle$ is a hex. By the definition of \bar{f}, there exists a constant $\epsilon \in\{-1,0\}$ such that the map $u \mapsto \bar{f}(u)+\epsilon$ defines a valuation of $\langle x, Q\rangle$. It follows that L satisfies property (V2) with respect to \bar{f}.
(5) $L \subseteq \Gamma_{2}(H)$ and every point of L is of type (a). Put $L=\left\{x_{1}, x_{2}, x_{3}\right\}$ and let $Q_{i}, i \in\{1,2,3\}$, denote the unique $W(2)$-quad of H containing $O_{i}=\Gamma_{2}\left(x_{i}\right) \cap H$. The set O_{i} is an ovoid of Q_{i}. Put $H_{i}:=\left\langle x_{i}, Q_{i}\right\rangle, i \in\{1,2,3\}$. Then H_{1}, H_{2} and H_{3} are three \mathbb{G}_{3}-hexes and $\mathcal{R}_{H_{1}}\left(H_{2}\right)=H_{3}$. From this it follows that $\pi_{Q_{2}}\left(O_{1}\right)=O_{2}$ and $\pi_{Q_{3}}\left(O_{1}\right)=O_{3}$. Let $u_{i}^{*}, i \in\{1,2,3\}$, denote the unique point of Q_{i} with f-value 0 . Since $\mathrm{d}\left(u_{1}^{*}, u_{2}^{*}\right)=\mathrm{d}\left(u_{1}^{*}, u_{3}^{*}\right)=\mathrm{d}\left(u_{2}^{*}, u_{3}^{*}\right)=$ $2, u_{1}^{*}, u_{2}^{*}$ and u_{3}^{*} are contained in a special grid-quad which intersects Q_{1}, Q_{2} and Q_{3} in lines. It now follows that $O_{1} \cup O_{2} \cup O_{3}$ has a unique point u^{*} in common with $\left\{u_{1}^{*}, u_{2}^{*}, u_{3}^{*}\right\}$. If $i \in\{1,2,3\}$ such that $u^{*}=u_{i}^{*}$, then $\bar{f}\left(x_{i}\right)=2$ and $\bar{f}\left(x_{j}\right)=3$ for all $j \in\{1,2,3\} \backslash\{i\}$. This proves that L satisfies property (V2).
(6) $L \subseteq \Gamma_{2}(H), L$ contains a unique point x_{1} of type (a) and two points x_{2} and x_{3} of type (b). Let Q_{1} denote the unique $W(2)$-quad of H containing all points of $\Gamma_{2}\left(x_{1}\right) \cap H$ and put $H_{1}:=\left\langle x, Q_{1}\right\rangle$. Let $G_{i}, i \in\{2,3\}$, denote the grid-quad of H containing all points of $\Gamma_{2}\left(x_{i}\right) \cap H$ and put $H_{i}:=\left\langle x, G_{i}\right\rangle$. Then $H_{1} \cong \mathbb{G}_{3}$ and $H_{2} \cong H_{3} \cong \mathbb{H}_{3}$. Moreover, H_{1}, H_{2} and H_{3} are mutually disjoint and $\mathcal{R}_{H_{1}}\left(H_{2}\right)=H_{3}$. Put $G_{1}:=\pi_{Q_{1}}\left(G_{2}\right)=\pi_{Q_{1}}\left(G_{3}\right)$. For every $i \in\{2,3\}$, the map $H_{i} \rightarrow H_{1} ; x \mapsto \pi_{H_{1}}(x)$ preserves distances. Hence, $\pi_{Q_{1}}\left(\Gamma_{2}\left(x_{2}\right) \cap G_{2}\right)=\pi_{Q_{1}}\left(\Gamma_{2}\left(x_{3}\right) \cap G_{3}\right)=\Gamma_{2}\left(x_{1}\right) \cap G_{1}$. We distinguish four possibilities (cf. Lemma 2.2):
(i) $\left|G_{2} \cap O_{f}\right|=\left|G_{3} \cap O_{f}\right|=0$, the unique point x^{*} in $O_{f} \cap Q_{1}$ is contained in G_{1} and $\mathrm{d}\left(x^{*}, x_{1}\right)=2$. Then the unique line through x^{*} meeting G_{2} and G_{3} intersects G_{2} and G_{3} in points with f-value 1 belonging respectively to $\Gamma_{2}\left(x_{2}\right)$ and $\Gamma_{2}\left(x_{3}\right)$. It follows that $\bar{f}\left(x_{1}\right)=2$ and $\bar{f}\left(x_{2}\right)=\bar{f}\left(x_{3}\right)=3$. So, L satisfies property (V2).
(ii) $\left|G_{2} \cap O_{f}\right|=\left|G_{3} \cap O_{f}\right|=0$, the unique point x^{*} in $O_{f} \cap Q_{1}$ is contained in G_{1} and $\mathrm{d}\left(x^{*}, x_{1}\right)=3$. The ovoid $\Gamma_{2}\left(x_{1}\right) \cap G_{1}$ of G_{1} contains two points with f-value 1 and one point with f-value 2 and there exists an $i \in\{2,3\}$ such that (a) the ovoid $\Gamma_{2}\left(x_{i}\right) \cap G_{i}$ contains two points with f-value 2 and 1 point with f-value 1 , and (b) the ovoid $\Gamma_{2}\left(x_{5-i}\right) \cap G_{5-i}$ contains three points with f-value 2 . It follows that $\bar{f}\left(x_{1}\right)=3, \bar{f}\left(x_{i}\right)=3$ and $\bar{f}\left(x_{5-i}\right)=2$. So, L satisfies property (V2).
(iii) There exists an $i \in\{2,3\}$ such that $\left|G_{i} \cap O_{f}\right|=3$ and $\left|G_{5-i} \cap O_{f}\right|=0$. Moreover, we assume that $\mathrm{d}\left(x_{1}, x^{*}\right)=2$, where x^{*} is the unique point in $O_{f} \cap Q_{1}$. (Recall $x^{*} \notin G_{1}$.) Then $\Gamma_{2}\left(x_{1}\right) \cap G_{1}$ only contains points with f-value 2 since none of these points is collinear with x^{*}. Hence, $\Gamma_{2}\left(x_{i}\right) \cap G_{i}$ only contains points with f-value 1 and $\Gamma_{2}\left(x_{5-i}\right) \cap G_{5-i}$ only contains points with f-value 2. It follows that $\bar{f}\left(x_{1}\right)=2, \bar{f}\left(x_{i}\right)=1$ and $\bar{f}\left(x_{5-i}\right)=2$. This proves that L satisfies property (V 2) with respect to \bar{f}.
(iv) There exists an $i \in\{2,3\}$ such that $\left|G_{i} \cap O_{f}\right|=3$ and $\left|G_{5-i} \cap O_{f}\right|=0$.

Moreover, we assume that $\mathrm{d}\left(x_{1}, x^{*}\right)=3$ where x^{*} is the unique point in $O_{f} \cap Q_{1}$. (Recall $x^{*} \notin G_{1}$.) Then $\Gamma_{2}\left(x_{1}\right) \cap G_{1}$ contains at least one point with f-value 1 (collinear with x^{*}). Hence, $\Gamma_{2}\left(x_{i}\right) \cap G_{i}$ contains at least one point with f-value 0 and $\Gamma_{2}\left(x_{5-i}\right) \cap G_{5-i}$ contains at least one point with f-value 1. It follows that $\bar{f}\left(x_{1}\right)=3, \bar{f}\left(x_{i}\right)=2$ and $\bar{f}\left(x_{5-i}\right)=3$. This proves that L satisfies property (V2).

6 The classification of the valuations of \mathbb{G}_{4}

6.1 Some lemmas

During our classification of the valuations of \mathbb{G}_{4}, we will need three properties which hold for valuations of general near polygons:

Lemma 6.1 ([6]) Let f be a valuation of a dense near $2 n$-gon \mathcal{S}.
(i) If there exists a point with value n, then f is a classical valuation.
(ii) If $d\left(x, O_{f}\right) \leq 2$, then $f(x)=d\left(x, O_{f}\right)$.
(iii) No two distinct special quads intersect in a line.

Now, suppose that f is a valuation of \mathbb{G}_{4}.
Lemma 6.2 If $x, y \in O_{f}$, then $d(x, y)$ is even.
Proof. By Property $(\mathrm{V} 2), \mathrm{d}(x, y) \neq 1$. Suppose $\mathrm{d}(x, y)=3$. Let H denote the unique hex through x and y. If f^{\prime} denotes the valuation of H induced by f, then $O_{f^{\prime}}$ contains two points at distance 3 from each other. This is impossible since none of the near hexagons $\mathbb{G}_{3}, W(2) \times \mathbb{L}_{3}, Q(5,2) \times \mathbb{L}_{3}, \mathbb{H}_{3}$ has such valuations.

Lemma 6.3 If there exists a \mathbb{G}_{3}-hex H such that $\left|H \cap O_{f}\right|=15$, then $O_{f}=$ $H \cap O_{f}$.
Proof. Suppose $x \in O_{f} \backslash H$. Then $\pi_{H}(x)$ has value 1 and hence is contained in a unique quad Q of H which is special with respect to the non-classical valuation of H induced by f. If y is a point of $Q \cap O_{f}$ at distance 2 from $\pi_{H}(x)$, then $\mathrm{d}(x, y)=3$, contradicting Lemma 6.2.

Lemma 6.4 If x and y are two different points of O_{f}, then $d(x, y)=2$.
Proof. Suppose the contrary. Then $\mathrm{d}(x, y)=4$ by Lemma 6.2. Let H denote an arbitrary \mathbb{G}_{3}-hex through x. Since $y \in O_{f} \backslash H$, the valuation induced in H is classical by Lemma 6.3. Hence, $f\left(\pi_{H}(y)\right)=\mathrm{d}\left(x, \pi_{H}(y)\right)=3$. On the
other hand, since $\mathrm{d}\left(\pi_{H}(y), y\right)=1$ and $f(y)=0$, it holds that $f\left(\pi_{H}(y)\right)=1$, a contradiction.

Lemma 6.5 One of the following cases occurs:
(A) $\left|O_{f}\right|=1$;
(B) There exists a unique \mathbb{G}_{3}-hex H such that $O_{f} \subseteq H$ and $\left|H \cap O_{f}\right|=15$;
(C) $\left|O_{f}\right| \geq 2$ and every special quad is a grid of type II.

Proof. Suppose $\left|O_{f}\right| \geq 2$ and let x_{1} and x_{2} denote two distinct points of O_{f}. Then $\mathrm{d}\left(x_{1}, x_{2}\right)=2$ by Lemma 6.4. Let Q denote the unique special quad through x_{1} and x_{2}. Then Q is not isomorphic to $Q(5,2)$ since this generalized quadrangle has no ovoids (Payne and Thas [10]). If Q is a $W(2)$-quad or a grid-quad of type I , then Q is contained in a unique \mathbb{G}_{3}-hex H, see Lemma 3.1. Since $Q \cap O_{f} \subseteq H \cap O_{f},\left|H \cap O_{f}\right|=15$ and the valuation of H induced by f is non-classical. By Lemma 6.3, it then follows that $O_{f}=H \cap O_{f}$. The lemma is now clear.

6.2 Treatment of case (A) of Lemma 6.5

Proposition 6.6 If f is a valuation of \mathbb{G}_{4} such that $\left|O_{f}\right|=1$, then f is a classical valuation.

Proof. Put $O_{f}=\{x\}$. Let H denote an arbitrary \mathbb{G}_{3}-hex through x, let L denote the special line through x not contained in H, let x^{\prime} denote an arbitrary point of $L \backslash\{x\}$ and let H^{\prime} denote the unique \mathbb{G}_{3}-hex through x^{\prime} not containing L. We will show that the valuation f^{\prime} of H^{\prime} induced by f is classical. Suppose the contrary. Let Q denote a grid-quad of H^{\prime} through $x^{\prime} \in O_{f^{\prime}}$ which is special with respect to f^{\prime}. Then $\langle L, Q\rangle \cong Q(5,2) \times \mathbb{L}_{3}$. Now, $\langle L, Q\rangle$ contains a unique point with f-value 0 and a point with f-value 1 at distance 3 from it. But $Q(5,2) \times \mathbb{L}_{3}$ does not have valuations of this type. So, we have a contradiction. It follows that the valuation induced in H^{\prime} is classical. This implies that every point of H^{\prime} at distance 3 from x^{\prime} has value 4 . By Lemma 6.1 (i), it then follows that f is classical.

6.3 Treatment of case (B) of Lemma 6.5

Proposition 6.7 If f is a valuation of \mathbb{G}_{4} such that O_{f} is a set of 15 points in $a \mathbb{G}_{3}$-hex H of \mathbb{G}_{4}, then f is the extension of a non-classical valuation of \mathbb{G}_{3}.

Proof. Let f^{\prime} denote the valuation of H induced by f. Then f^{\prime} is a nonclassical valuation of H with $O_{f^{\prime}}=O_{f}$. Hence, $f(x)=f^{\prime}(x)$ for every point $x \in H$. Now, let x be an arbitrary point of \mathbb{G}_{4} not contained in H. Let Q denote an arbitrary $Q(5,2)$-quad of H through $\pi_{H}(x)$. Then the hex $\langle x, Q\rangle$ is isomorphic to \mathbb{G}_{3} or $Q(5,2) \times \mathbb{L}_{3}$ and contains a unique point of O_{f}, namely the unique point of O_{f} in Q. It follows that the valuation induced in $\langle x, Q\rangle$ is classical. Hence, $f(x)=\mathrm{d}\left(x, O_{f} \cap Q\right)=1+\mathrm{d}\left(\pi_{H}(x), O_{f} \cap Q\right)=1+f^{\prime}\left(\pi_{H}(x)\right)$. (The latter equation follows from the fact that the valuation induced in $Q \cong Q(5,2)$ is classical.) This proves that f is the extension of f^{\prime}.

6.4 Treatment of case (C) of Lemma 6.5

In this subsection, we suppose that f is a valuation of \mathbb{G}_{4} such that $\left|O_{f}\right| \geq 2$ and such that every special quad is a grid of type II. By Lemma 6.4, every two distinct points of O_{f} are contained in a unique special quad.

Lemma 6.8 It holds that $\left|O_{f}\right|>3$.
Proof. Suppose to the contrary that $\left|O_{f}\right|=3$. Let Q denote the unique special grid-quad of type II and put $\left\{x_{1}, x_{2}, x_{3}\right\}=Q \cap O_{f}$. Let L denote an arbitrary ordinary line through x_{1} such that $\langle L, Q\rangle \cong Q(5,2) \times \mathbb{L}_{3}$, let $y \in L \backslash\left\{x_{1}\right\}$, let H^{\prime} denote a \mathbb{G}_{3}-hex through y not containing the line L and let f^{\prime} denote the valuation of H^{\prime} induced by f. Since $\pi_{H^{\prime}}\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right) \subseteq O_{f^{\prime}}$, f^{\prime} is not classical. Let Q^{\prime} denote a $W(2)$-quad of H^{\prime} through y which is special with respect to f^{\prime}. Then $\left\langle L, Q^{\prime}\right\rangle$ is isomorphic to \mathbb{H}_{3} and does not contain Q since $\langle L, Q\rangle \cong Q(5,2) \times \mathbb{L}_{3}$. It follows that $\left\langle L, Q^{\prime}\right\rangle \cong \mathbb{H}_{3}$ contains a unique point with f-value 0 and a point with f-value 1 at distance 3 from it. This is impossible, since \mathbb{H}_{3} does not have such valuations.

Lemma 6.9 O_{f} is a set of 7 points in an \mathbb{H}_{3}-hex of \mathbb{G}_{4}.
Proof. Let x denote an arbitrary point of O_{f}. By Lemmas 6.4 and 6.8 , there are two distinct grid-quads G_{1} and G_{2} (of type II) through x. By Lemma 6.1 (iii), $G_{1} \cap G_{2}=\{x\}$. Since every point of $\left(O_{f} \cap G_{1}\right) \backslash\{x\}$ has distance 2 from every point of $\left(O_{f} \cap G_{2}\right) \backslash\{x\}, G_{1}$ and G_{2} are contained in a hex H. This hex is necessarily isomorphic to \mathbb{H}_{3} (see Lemma 3.1 (10)) and the valuation f_{H} of H induced by f must be of Fano-type. Hence, $\left|O_{f} \cap H\right|=7$.

We show that $\Gamma_{1}(H) \cap O_{f}=\emptyset$. Suppose $y \in \Gamma_{1}(H) \cap O_{f}$ and let $\pi_{H}(y)$ denote the unique point of H collinear with y. Then $f\left(\pi_{H}(y)\right)=1$ and hence $\pi_{H}(y)$ is contained in a unique quad Q of H which is special with respect to f_{H}. Any point of $Q \cap O_{f}$ at distance 2 from $\pi_{H}(y)$ lies at distance 3 from y, contradicting Lemma 6.4. Hence, $\Gamma_{1}(H) \cap O_{f}=\emptyset$.

We show that $f(y) \geq 2$ for every point y of type (a) of $\Gamma_{2}(H)$. Let Q denote the $W(2)$-quad of H containing all points of $\Gamma_{2}(y) \cap H$ and let H^{\prime} be the \mathbb{G}_{3}-hex $\langle y, Q\rangle$. Let u denote the unique point of $O_{f} \cap Q$ and let L be a line of Q through u. If the valuation $f_{H^{\prime}}$ of H^{\prime} induced by f is not classical, then there exists a quad of H^{\prime} through L which is special with respect to $f_{H^{\prime}}$. This implies that there is a point of $O_{f_{H^{\prime}}} \subseteq O_{f}$ contained in $\Gamma_{1}(H)$, a contradiction. Hence, $f_{H^{\prime}}$ is a classical valuation of H^{\prime}. It follows that $f(y)=f_{H^{\prime}}(y)=\mathrm{d}(y, u) \geq 2$.

We show that $f(y) \geq 1$ for every point y of type (b) of $\Gamma_{2}(H)$. Let L be a line of S through y. The unique point of type (a) on this line has value at least 2. It follows that $f(y) \geq 1$.

Let H denote the unique \mathbb{H}_{3}-hex of \mathbb{G}_{4} containing all points of O_{f} and let f^{\prime} be the valuation of H induced by f. By Lemma $6.9, f^{\prime}$ is a valuation of Fano-type of H.

Proposition 6.10 The valuation f is obtained from f^{\prime} in the way as described in Section 5.

Proof. Let x denote an arbitrary point of \mathbb{G}_{4}.
If $x \in H$, then $\mathrm{d}\left(x, O_{f}\right) \leq 2$ and hence $f(x)=\mathrm{d}\left(x, O_{f}\right)=\mathrm{d}\left(x, O_{f^{\prime}}\right)=f^{\prime}(x)$ by Lemma 6.1 (i).
If $x \in \Gamma_{1}(H)$ such that $\mathrm{d}\left(\pi_{H}(x), O_{f}\right) \leq 1$, then $\mathrm{d}\left(x, O_{f}\right) \leq 2$ and hence $f(x)=\mathrm{d}\left(x, O_{f}\right)=1+\mathrm{d}\left(\pi_{H}(x), O_{f}\right)=1+f^{\prime}\left(\pi_{H}(x)\right)$ by Lemma 6.1 (i).
Let $x \in \Gamma_{1}(H)$ such that $\mathrm{d}\left(\pi_{H}(x), O_{f}\right)=2$, or equivalently, such that $f^{\prime}\left(\pi_{H}(x)\right)=2$. Let H^{\prime} denote an arbitrary \mathbb{G}_{3}-hex through the line $x \pi_{H}(x)$. Then $H^{\prime} \cap H$ is a $W(2)$-quad Q. The hex H^{\prime} contains a unique point with f-value 0 , namely the unique point of O_{f} in Q. Hence, the valuation induced in H^{\prime} is classical. It follows that $f(x)=3=1+f^{\prime}\left(\pi_{H}(x)\right)$.
Let x denote a point of type (a) of $\Gamma_{2}(H)$. Let Q denote the $W(2)$-quad of H containing all points of $\Gamma_{2}(x) \cap H$ and let x^{*} denote the unique point of O_{f} in Q. The hex $\langle x, Q\rangle$ is isomorphic to \mathbb{G}_{3} and contains a unique point of O_{f}, namely x^{*}. Hence, the valuation induced in $\langle x, Q\rangle$ is classical. It follows that $f(x)=\mathrm{d}\left(x, x^{*}\right)$.

Let x denote a point of type (b) of $\Gamma_{2}(H)$ such that $\left|O_{f} \cap Q\right|=3$, where Q is the unique grid-quad of H containing $\Gamma_{2}(x) \cap H$. The hex $\langle x, Q\rangle$ is isomorphic to \mathbb{H}_{3} and the valuation of $\langle x, Q\rangle$ induced by f is of grid-type. It follows that $f(x)=2$ if $\Gamma_{2}(x) \cap O_{f} \cap Q \neq \emptyset$ and $f(x)=1$ otherwise.
Let x denote a point of type (b) of $\Gamma_{2}(H)$ such that $\left|O_{f} \cap Q\right|=0$, where Q is the unique grid-quad of H containing $\Gamma_{2}(x) \cap H$. The hex $\langle x, Q\rangle$ is isomorphic
to \mathbb{H}_{3} and the valuation f^{\prime} of $\langle x, Q\rangle$ induced by f is either of grid-type or of Fano-type. (Notice that Q is special with respect to f^{\prime}.) We will show that the latter possibility cannot occur. Suppose that f^{\prime} is a valuation of Fano-type. Let u denote a point of Q with f-value 1 , let v denote a point of O_{f} collinear with u and let $G \neq Q$ denote a grid-quad of $\langle x, Q\rangle$ through u which is special with respect to f^{\prime}. The hex $\langle v, G\rangle$ intersects H in the line $u v$ and hence contains a unique point of O_{f}. [Suppose that $\langle v, G\rangle$ intersects H in a quad Q^{\prime} and let w be a point of $G \cap \Gamma_{2}(u)$. Then $\Gamma_{2}(w) \cap Q^{\prime}$ is an ovoid of Q^{\prime} which necessarily coincides with $\Gamma_{2}(w) \cap H$. Similarly, since $\langle w, Q\rangle$ is a hex, $\Gamma_{2}(w) \cap Q=\Gamma_{2}(w) \cap H$ is an ovoid of Q. It follows that $Q=Q^{\prime}$, a contradiction.] Since the valuation induced in $\langle v, G\rangle$ contains a unique point with value 0 and a point with value 1 at distance 3 from it, the hex $\langle v, G\rangle$ is isomorphic to $W(2) \times \mathbb{L}_{3}$ and the valuation induced in $\langle v, G\rangle$ is semi-classical. But in a $W(2) \times \mathbb{L}_{3}$-hex, every grid-quad is of type I , while the grid-quad G has type II since it is contained in the \mathbb{H}_{3}-hex $\langle x, Q\rangle$ (see Lemma 3.1). So, we have a contradiction and the valuation f^{\prime} must be of grid-type. Hence, $f(x)=3$ if $\Gamma_{2}(x) \cap Q$ has a point with f^{\prime}-value 1 and $f(x)=2$ otherwise.

This proves the proposition.

6.5 The existence of valuations of Fano-type of \mathbb{G}_{4}

The existence of valuations of Fano-type of \mathbb{G}_{4} will be shown in the following proposition.

Proposition 6.11 Let F be a hex of \mathbb{G}_{4} and let f be a valuation of F. Suppose that one of the following cases occurs: (i) $F \cong \mathbb{H}_{3}$ and f is a valuation of Fano-type of F; (ii) $F \cong \mathbb{G}_{3}$ and f is a non-classical valuation of F. Suppose also that \mathbb{G}_{4} is isometrically embedded into the dual polar space $\operatorname{DH}(7,4)$. Then
(1) there exists a unique point $x \in D H(7,4) \backslash \mathbb{G}_{4}$ such that $O_{f} \subseteq \Gamma_{1}(x)$;
(2) there exists a unique valuation \bar{f} of \mathbb{G}_{4} such that $O_{f}=O_{\bar{f}}$.

If $F \cong \mathbb{G}_{3}$, then \bar{f} is the extension of f. If $F \cong \mathbb{H}_{3}$, then \bar{f} is obtained from f in the way as described in Section 5.

Proof. Let $\bar{F} \cong D H(5,4)$ denote the unique hex of $D H(7,4)$ containing F. Then $\bar{F} \cap \mathbb{G}_{4}=F$. Obviously, if $x \in D H(7,4) \backslash \mathbb{G}_{4}$ such that $O_{f} \subseteq \Gamma_{1}(x)$, then $x \in \bar{F} \backslash F$.

Now, let Q be a quad of F which is special with respect to the valuation f and let $y \in O_{f} \backslash Q$. The set O_{f} is a set of points at mutually distance 2 which is
completely determined by its subset $\{y\} \cup\left(Q \cap O_{f}\right)$. Since $\Gamma_{2}(y) \cap Q=Q \cap O_{f}$, $\mathrm{d}(y, Q)=2$. Let $\bar{Q} \cong Q(5,2)$ denote the unique quad of $D H(7,4)$ containing Q. Then $\bar{Q} \cap \mathbb{G}_{4}=Q$ and $\bar{Q} \subseteq \bar{F}$. If x is a point of $D H(7,4) \backslash \mathbb{G}_{4}$ such that $O_{f} \subseteq \Gamma_{1}(x)$, then $x \in \bar{Q}$ and hence x coincides with the unique point y^{*} of \bar{Q} collinear with y. Since $Q \cap O_{f} \subseteq \Gamma_{2}(y),\left(Q \cap O_{f}\right) \cup\{y\} \subseteq \Gamma_{1}\left(y^{*}\right)$. Now, let f_{1} denote the classical valuation of $D H(7,4)$ for which $O_{f_{1}}=\left\{y^{*}\right\}$ and let \bar{f}, respectively f_{2}, denote the valuation of \mathbb{G}_{4}, respectively H, induced by f_{1}. Then $\left(Q \cap O_{f}\right) \cup\left\{y^{*}\right\} \subseteq O_{f_{2}}$. Hence, $O_{f}=O_{f_{2}}$ and $f=f_{2}$. It follows that $O_{f} \subseteq \Gamma_{1}(x)$. Obviously, $O_{f} \subseteq O_{\bar{f}}$. By the above classification of the valuations of \mathbb{G}_{4}, we have $O_{f}=O_{\bar{f}}$. The remaining claims of the proposition follow from Propositions 6.7 and 6.10.

6.6 The valuations of \mathbb{G}_{4} are induced by valuations of DH $(7,4)$

Let the near octagon \mathbb{G}_{4} be isometrically embedded in $D H(7,4)$. For every point x of $\operatorname{DH}(7,4)$, the classical valuation g_{x} of $D H(7,4)$ with $O_{g_{x}}=\{x\}$ induces a valuation f_{x} of \mathbb{G}_{4}. It holds that $\max \left\{f_{x}(u) \mid u \in \mathbb{G}_{4}\right\}=4-\mathrm{d}\left(x, \mathbb{G}_{4}\right)$ in view of the following result which holds for general dense near polygons.

Lemma 6.12 (Proposition 2.2 of [8]) Let \mathcal{S} be a dense near $2 n$-gon and let $F=\left(\mathcal{P}^{\prime}, \mathcal{L}^{\prime}, \mathrm{I}^{\prime}\right)$ be a dense near $2 n$-gon which is fully and isometrically embedded in \mathcal{S}. Let x be a point of \mathcal{S} and let f_{x} denote the valuation of F induced by the classical valuation g_{x} of \mathcal{S} with $O_{g_{x}}=\{x\}$, then $d(x, F)=$ $n-M$, where M is the maximal value attained by f_{x}.

If $x \in \mathbb{G}_{4}$, then f_{x} is a classical valuation of \mathbb{G}_{4} and $O_{f_{x}}=\{x\}$. If $x \notin \mathbb{G}_{4}$, then f_{x} is not classical and hence is either the extension of a non-classical valuation of a \mathbb{G}_{3}-hex or is a valuation of Fano-type.

Proposition 6.13 Let f be a valuation of \mathbb{G}_{4}. Then there exists a unique point x of $D H(7,4)$ such that $f=f_{x}$.

Proof. Obviously, the proposition holds if f is classical. The required point x is then the unique point contained in O_{f}. Suppose now that f is nonclassical. Let H be the hex $\left\langle O_{f}\right\rangle$ of \mathbb{G}_{4} and let $\bar{H} \cong D H(5,4)$ denote the unique hex of $D H(7,4)$ containing H. For each of the two possibilities for the non-classical valuation f, the maximal value attained by f is equal to 3 . Hence, if x is a point of $\operatorname{DH}(7,4)$ such that $f_{x}=f$, then $\mathrm{d}\left(x, \mathbb{G}_{4}\right)=1$ and $O_{f}=\Gamma_{1}(x) \cap \mathbb{G}_{4}$. Now, by Proposition 6.11, there exists a unique point x in
$D H(7,4) \backslash \mathbb{G}_{4}$ such that $O_{f} \subseteq \Gamma_{1}(x)$. Then $O_{f} \subseteq O_{f_{x}}$. Hence $O_{f}=O_{f_{x}}$ and $f=f_{x}$ by the above classification of the valuations of \mathbb{G}_{4}.

By Proposition 6.13, the number of valuations of \mathbb{G}_{4} is equal to the number of points of $D H(7,4)$. The number of classical valuations of \mathbb{G}_{4} is equal to the number of points of \mathbb{G}_{4}, i.e., equal to 8505. The number of valuations of \mathbb{G}_{4} which are extensions of non-classical valuations in \mathbb{G}_{3}-hexes is equal to $\left(\# \mathbb{G}_{3}\right.$-hexes $) \times\left(\#\right.$ non-classical valuations in a \mathbb{G}_{3}-hex $)=84 \cdot 486=40824$. The number of valuations of Fano-type of \mathbb{G}_{4} is equal to ($\# \mathbb{H}_{3}$-hexes) $\times(\#$ valuations of Fano-type in an \mathbb{H}_{3}-hex $)=2178 \cdot 30=65610$. The number $8505+40824+65610=114939$ is indeed equal to the total number of points of DH(7, 4).

References

[1] A. E. Brouwer, A. M. Cohen, J. I. Hall and H. A. Wilbrink. Near polygons and Fischer spaces. Geom. Dedicata 49 (1994), 349-368.
[2] A. E. Brouwer and H. A. Wilbrink. The structure of near polygons with quads. Geom. Dedicata 14 (1983), 145-176.
[3] P. J. Cameron. Geom. Dedicata 12 (1982), 75-86.
[4] B. De Bruyn. New near polygons from Hermitian varieties. Bull. Belg. Math. Soc. Simon Stevin 10 (2003), 561-577.
[5] B. De Bruyn. Near polygons. Frontiers in Mathematics 6, Birkhäuser, Basel, 2006.
[6] B. De Bruyn and P. Vandecasteele. Valuations of near polygons. Glasgow Math. J. 47 (2005), 347-361.
[7] B. De Bruyn and P. Vandecasteele. The distance-2-sets of the slim dense near hexagons. Annals of Combinatorics, to appear.
[8] B. De Bruyn and P. Vandecasteele. The valuations of the near octagon \mathbb{I}_{4}. preprint 2005.
[9] B. De Bruyn and P. Vandecasteele. The valuations of the near octagon \mathbb{H}_{4}. preprint 2006.
[10] S. E. Payne and J. A. Thas. Finite Generalized Quadrangles. Research Notes in Mathematics 110. Pitman, Boston, 1984.
[11] E. E. Shult and A. Yanushka. Near n-gons and line systems. Geom. Dedicata 9 (1980), 1-72.

[^0]: *Postdoctoral Fellow of the Research Foundation - Flanders

