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Abstract

We present improved lower bounds on the sizes of small maximal
partial ovoids in the classical hermitian polar spaces, and improved
upper bounds on the sizes of large maximal partial spreads in the clas-
sical hermitian polar spaces. Of particular importance is the presented
upper bound on the size of a maximal partial spread of H(3,¢?). For
q = 2,3, the presented upper bound is sharp. For ¢ = 3, our results
confirm via theoretical arguments properties, deduced by computer
searches performed by Ebert and Hirschfeld, for the largest partial
spreads of H(3,9). An overview of the status regarding these results
is given in two summarizing tables. The similar results for the classical
symplectic and orthogonal polar spaces are presented in [7].

1 Introduction

This article is the second of two articles discussing partial ovoids and partial
spreads in finite classical polar spaces. Here, we discuss the hermitian polar
spaces. In [7], we discussed the symplectic and orthogonal polar spaces.

The classical finite polar spaces are the non-singular symplectic polar spaces
W(2n + 1, q), the non-singular parabolic quadrics Q(2n,q), n > 2, the non-
singular elliptic and hyperbolic quadrics Q= (2n+1,¢), n > 2, and Q*(2n +
1,q), n > 1, and the non-singular hermitian varieties H(d, ¢*), d > 3. For
q even, the parabolic polar spaces QQ(2n, q) are isomorphic to the symplectic
polar spaces W (2n — 1, q).



The generators of a classical polar space are the subspaces of maximal di-
mension contained in these polar spaces. If the generators are of dimension
r — 1, then the polar space is said to be of rank r.

The polar spaces of rank » = 2 coincide with the generalized quadrangles.

The finite classical generalized quadrangles are the non-singular parabolic
quadric (4, q), the non-singular elliptic quadric @~ (5, ¢), the non-singular
hyperbolic quadric @7 (3,¢), the non-singular hermitian varieties H (3, ¢?)
and H (4, ¢*), and the symplectic generalized quadrangle W (3, q) in PG(3, q).
The generalized quadrangles Q(4, ¢) and W (3, q) are dual to each other. The
generalized quadrangles Q(4,¢) and W (3, q) are self-dual if and only if ¢ is
even. Finally, H(3,¢?) and Q~(5,q) also are dual to each other.

An owoid of a classical polar space P is a set O of points of P such that every
generator contains exactly one point of O. A partial ovoid of a classical polar
space P is a set O of points of P such that every generator contains at most
one point of O. A spread of a classical polar space P is a set S of generators
of P partitioning the point set of P. A partial spread of a classical polar
space P is a set S of pairwise disjoint generators of P. A partial ovoid or
spread is called mazimal when it is not contained in a larger partial ovoid or
spread of the same polar space.

Let X := |P|/|I1|, where II is a generator of P. Then X is the size of an ovoid
or spread in P, in case P effectively contains an ovoid or spread. Assume
that O is a partial spread or partial ovoid of P, then X — || is called the
deficiency of O.

The first natural problem regarding ovoids and spreads in finite classical
polar spaces is that of the existence of these ovoids and spreads [12, 18, 19].

Then research was focused on the size of the largest partial ovoids and spreads
of finite classical polar spaces that do not have ovoids or spreads, and to the
problem of the extendability of partial ovoids and partial spreads to ovoids
and spreads when the finite classical polar spaces have ovoids and spreads
(11, 18].

Recently, attention was also paid to the problem of the cardinality of the
smallest maximal partial ovoids and the smallest maximal partial spreads in
finite classical generalized quadrangles and polar spaces [1, 2, 6, 8, 10, 15, 16].
In particular, [14, 16] addressed these problems for the classical generalized
quadrangles.



We now present a large number of results on the smallest maximal partial
ovoids, and on large maximal partial spreads, for the finite classical hermi-
tian polar spaces. For the analogous results for the classical orthogonal and
symplectic polar spaces, we refer to [7]. We conclude the article with two
tables presenting the present status on these problems.
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2 Small maximal partial ovoids

When working in a hermitian polar space H(d,q?), we denote by L the
related polarity of the ambient projective space PG(d,¢*). Two subspaces
7,7 with 7 C 7t are called perpendicular.

We now focus on small maximal partial ovoids of hermitian polar spaces.
The following results on the polar spaces H(3,¢*) and H(4,¢?) are known.

Result 2.1 (a) [2] If q is even, then a mazimal partial ovoid of H(3,q*) has
size at least ¢> + 1, and exzamples of that size exist.

(b) [15] If q is even, then there are no mazimal partial ovoids of H(3,q?)
having size in the interval [¢* + 2,¢* + 1 + 4q/9).

(c) [15] A mazimal partial ovoid of H(3,q?), q odd, has size at least ¢*> + 1 +
4q/9.
(d) [16] A maximal partial ovoid of H(4,q?) has size at least ¢* + q + 2.

We now focus on small maximal partial ovoids of H(2n,q¢*), n > 3, and of
H(2n + 1,¢%), n > 2. These are the hermitian polar spaces of rank at least
three.

We first discuss H(2n,q¢*), n > 3, and show that maximal partial ovoids of
H(2n,q*), n > 3, contain at least ¢*> + ¢ + 1 points.
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Theorem 2.2 A mazimal partial ovoid of H(2n,q*), n > 3, contains at
least ¢*> + q + 1 points.

Proof. Assume that O is a maximal partial ovoid of H(2n,q?), n > 3, of
size at most ¢* + q.

Let ™ be a free generator with respect to O, that is a generator missing
0. Then the tangent hyperplane P+ to a point P of O intersects 7 in
a hyperplane of 7. Since O is a maximal partial ovoid of H(2n,q?), the
hyperplanes PX N7, P € O, cover all points of 7; in other words, they form
a dual blocking set of 7, see [5].

The smallest dual blocking set of 7 consists of the ¢*> + 1 hyperplanes of 7
through a fixed (n — 3)-dimensional space of 7 [4]. The theory of blocking
sets learns us that the smallest dual blocking set of 7 not containing all
hyperplanes of 7 through a common (n — 3)-dimensional space is a dual Baer
subplane of size ¢ + q + 1, see [5].

So, since |O| < ¢* + ¢, there is an (n — 3)-dimensional space 7} of 7 lying in
a pencil of ¢? 4+ 1 hyperplane intersections P* N7, P € O.

Consider the polar space 7/t of 7] with respect to H(2n,¢?). This intersects
H(2n,¢*) in a cone with vertex 7} and base a 4-dimensional hermitian variety
H(4,¢%). The points of 7= N O are projected from 7} onto a partial ovoid
O of H(4,q%).

Since a maximal partial ovoid of H (4, ¢*) has at least ¢*+¢+2 points (Result
2.1 (d)), O is not maximal. So there exists a point R in H(4,¢?) extending
the partial ovoid O’. Then the points of (7}, R) \ 7} are not collinear with
a point of - N O. Since O is a maximal partial ovoid, they all must be
collinear with one of the, at most ¢ — 1, points of O \ mit.

Let S € O\ wit, then St intersects 7} in a hyperplane of 7}. So for such
a point S, S+ intersects (m}, R) in a hyperplane. These, at most ¢ — 1,
hyperplanes in (7], R) must cover all the points in (7], R) \ 7j. This is
impossible. O

Theorem 2.3 A maximal partial ovoid of H(2n +1,¢?), n > 2, contains at
least ¢*> + q + 1 points.

Proof. We repeat the beginning of the proof of the preceding theorem. Every
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free generator m contains an (n — 2)-dimensional space 7] lying in a pencil
of ¢*> + 1 hyperplanes P+ N, P € O, which cover all the points of 7.

The polar space (- of m} with respect to H(2n+1, ¢%) intersects H(2n+1, ¢°)
in a cone with vertex 7/ and base a hermitian variety H (3, ¢*). Since H (3, ¢*),
q even, has partial ovoids of size ¢> + 1 (Result 2.1 (b)), and only the lower
bound ¢?+1+4¢/9 is known on the size of maximal partial ovoids of H (3, ¢?),
q odd, (Result 2.1 (c)), a different approach has to be used than in the proof
of the preceding theorem.

Consider the points of O\ w{-. There are at most ¢ — 1 such points S. The
tangent hyperplane to S € O\ 7/ intersects 7/ in a hyperplane of 7;. These,
at most ¢ — 1, hyperplanes cannot cover all the points of 7]. Let P be a point
of 7} not collinear with a point of O \ %, then P* N O = 71 N O. Project
P+ N O from P onto its quotient geometry H(2n — 1,¢?). This gives a new
partial ovoid O of H(2n — 1, ¢?).

Suppose that @’ is not a maximal partial ovoid of H(2n —1,¢?). Then there
is a point R of H(2n — 1,¢*) extending O’ to a larger partial ovoid. Hence,
no point of the set PR\ { P} is collinear with a point of O N7+, The points
of O\ 7+ cover only one point on PR\ {P}. So at least ¢> — ¢ + 1 points
of PR\ {P} are not collinear with a point of the maximal partial ovoid O.
This is a contradiction.

So, O indeed is a maximal partial ovoid of H(2n — 1, ¢?). Proceeding in this
way, a maximal partial ovoid O” of H (5, ¢*) of size at most ¢ + ¢ is obtained.

Consider this maximal partial ovoid O” of H(5,¢*) of size at most ¢* + ¢.
The proof of the preceding theorem shows that every free generator 7 to
O" contains a point P lying on ¢*> + 1 lines S* N7, S € O”, covering all
the points of . As |0"] < ¢* + ¢, the point P is uniquely determined by
7. We call a point P € H(5,¢*) \ O a special point, if it is perpendicular
to at least ¢®> + 1 points of O. Then every free plane has a unique special
point. A special point lies on (¢ + 1)(¢® + 1) planes of H(5,q?) but at least
IPENO|(g+1) > (¢>+1)(g+ 1) contain a point of O. Thus the number of
free planes on a special point is at most (¢*> — ¢?)(q + 1). The total number
of free planes is (¢° +1 — |O])(q + 1)(¢® + 1). Hence the number of special
points is at least

("= —q+1)(g+1)(¢+1)

5 4 3 2
(®—q¢*)(q+1) SRR




As partial ovoids of H(5,¢?) have less than ¢° + 1 points (that is the size
of an ovoid), it follows that we find two special points P and () that are
perpendicular. As the line PQ lies on ¢+ 1 planes of H(5,4?%), at most ¢ + 1
points of O are perpendicular to P and ). As P and () are special, it follows
that |O| > 2(¢*+1)—(¢+1) = 2¢> —q+1. But |O| < ¢*+¢, a contradiction.
O

3 Large partial ovoids

It is known that every partial ovoid of H(3,¢*) with more than ¢*> + 1 — ¢
points can be extended to an ovoid. We will develop an analogous result for
H(5,¢%). Tt is known that H(4,¢*) has no ovoids [17]. An upper bound on
the size of partial ovoids in H(4,4?) is known [11]. We will improve on this
result. We first mention two results.

Result 3.1 (a) Every partial ovoid of H(3,¢*) of size larger than ¢* —q+ 1
is extendable in a unique way to an ovoid of H(3,¢?).

(b) A partial ovoid of H(4,q*) has size smaller than ¢° — (4g — 1)/3.

Proof. (a) This was proven by Klein and Metsch in the dual setting of
@~ (5,q) [14]. They proved that a partial spread of Q~(5,q) of size larger
than ¢> — ¢ + 1 is extendable to a spread of Q (5, q).

The uniqueness of this extension to a spread follows from the fact that S is
extended by less than ¢ + 1 lines to a spread.

(b) See [11]. O
Our next theorem improves Result 3.1 (b). We mention that no large partial

ovoids of H(4,q?) are known to us. The largest example we know about
exists in characteristic three, so for ¢ = 3", and has size ¢* + 1 [13].

Theorem 3.2 A partial ovoid of H(4,q*) has at most ¢° —q¢* +¢>+ 1 points.
Proof. Let O be a partial ovoid of H(4,¢?) with s = ¢° + 1 — § > 2 points.
Then there are §(¢® + 1) free generators, that is generators missing O. We

count the number of triples (P, P, g), where P, and P, are different points
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of O and g is a free generator, such that P, and P, are in H(4,q?) collinear
with the same point of g.

For a free generator g, every point of O has a unique neighbour on g. So on
the average, a point of g has A := s/(¢*+ 1) neighbours in O. It follows that
the number of pairs (Py, P») of different points of O with the same neighbour
on g is at least A(A—1)(¢*+1) =s(A—1).

Thus the total number of triples is at least §(¢® + 1)s(A — 1). It follows that
there exist two different points P, P» € O that occur in at least

S+ 1Ds(A-1) §(F+1)(A-1)

s(s—1) B s—1

of these triples. Let [ be the secant line on P; and P, of PG(4,¢*). Then
7 := [t is a plane meeting H(4,¢*) in a hermitian curve H(2,¢*). No point
of O lies in . Denote by k the number of points of O on [.

Next count the number of pairs (X,Y), with X in H(2,¢*) = H(4,¢*) N~
and Y a point of O but not on [. By first choosing X, we see that the number
of pairs is the number of non-free generators that meet 7, but not /N O. The
number of generators meeting 7 is (¢* + 1)(¢* + 1). Exactly (¢* + 1)k of
these generators meet O N [. The choice of P, and P, yields that at least
5(¢> + 1)(A — 1)/(s — 1) of these generators are free generators. Thus the
number of pairs (X,Y) we are counting is at most

S+ 1)(A— 1)‘

3 12_ 3 1k_
(" +1)"—(¢"+1) Py

Now we find a lower bound. For a point Y € O\ [, the line Y+ N7 is either
a tangent line of H(2,¢*) = m N H(4, ¢*) or a secant line. So such a point YV’
yields either one or ¢ + 1 pairs (X,Y).

The first case occurs if and only if Y lies on a generator that meets [ and 7.
There are (¢* 4+ 1)(q + 1) such generators but (¢* + 1)k of these meet O in a
point on . So the first case can occur at most (¢3 + 1)(¢ + 1 — k) times. It
follows that the total number of pairs is at least

(@+D)(g+1=k) -1+ (s—k—(+1)(g+1-k)(¢+1)
= (s—k)(qg+1)—(*+1)(qg+1—k)q.



Comparing the two bounds, we find
(s=k)g+1) = (@ +1(g+1-k)q
8¢+ 1)(A-1)
s—1 '
As k > 2, this remains true when k is replaced by two. Doing this and
replacing A = s/(¢> + 1) and s = ¢° + 1 — § gives
dg+ V0" + )@ +¢ ~0) _
(> +1)(¢°> = 9) -
Hence § > ¢* — ¢>. O

< @+ = (P + k-

Theorem 3.3 Every partial ovoid of H(5,q*) with ¢° + 1 — & points and
§ < (¢* — 1q+1)/V?2 is a subset of an ovoid.

Proof. Let O be a maximal partial ovoid with ¢° + 1 — § points and § > 0.
We shall show that & > —5(¢* — 1g+1).

We call a point P € H(5,¢%) \ O big when |P-NO| > ¢ + 1 — ¢; otherwise
it is called small. We call a plane of H(5,q?) free, if it misses O. A totally
isotropic line will be called free, if all totally isotropic planes on it are free
planes.

We first show that [P+ N O] > ¢® + 1 — § for every point P € H(5,¢%) \ O.
For this, we use that the maximality of O implies that P lies on a line [ of
H (5, ¢*) meeting O in a point Q. Then every point of O\ {Q} is connected
to exactly one point of I\ {Q} by a line of H(5,¢*). As each point of [ lies
on at most ¢® + 1 lines meeting the partial ovoid O (because in the quotient
geometry of such a point P we see a hermitian variety H(3,¢?) and partial
ovoids of a hermitian variety H(3,¢?) have at most ¢* + 1 points), it follows
that P is connected to at least |O] — (¢ — 1)¢* = ¢* + 1 — 4 points of O by
a line of H(5,q¢?%).

For the rest of the proof, consider a free plane w. We show for each point
P of m that the number of free planes on P that meet 7 in a line is at most
q+ 0 — 1. Each point of P+ N O lies in a unique totally isotropic plane
that meets 7 in a line, and this line contains P. Since the number of totally
isotropic planes on P that meet 7 in a line is (¢* + 1)g, it follows that at
most (¢> +1)g — (¢* +1—6) = ¢ — 1 + § of these are free planes.

We use the following notations:



e f, is the number of free planes that meet 7 in a line.

e ) is the number of big points of .

s is the number of small points of .

fi is the number of free lines in .

z is the smallest number of small points on a free line of 7.

A point is perpendicular to at most ¢® + 1 points of O with equality if and
only if every generator on P meets . Thus, the points of the free plane 7
are perpendicular to at most ¢® points of O, since they lie in a free plane;
also the s small points of 7 are perpendicular to at most g% — ¢ + 1 points of
O. As each point of O is perpendicular to ¢ + 1 points of 7, we conclude
that

01(*+1) <bg® +5(¢®>+1—q)=(¢"+¢+1)(*+1—q)+blg—1)
and this gives

¢ —q¢"+q—90(+1)
qg—1

< b (1)

Consider a big point P of . In the quotient geometry on P, we see a
hermitian variety H(3,¢?). Also P+ N O gives rise to a partial ovoid of this
H(3,¢%). As ¢*—q+1 < |PTNO| < ¢*+1, this partial ovoid can be extended
uniquely to an ovoid, see Result 3.1 (a). As 7 is a free plane on P, it follows
that a unique line of 7 on P has the property that every totally isotropic
plane on that line is missing (J. This shows that the free lines of 7 cover
every big point of 7 exactly once. As a free line of 7 has at most ¢ +1 — z
big points, we conclude that

b< fi(¢>+1-2). (2)

As each point of O is perpendicular to exactly one line of 7, then exactly |O|
of the planes that meet 7 in a line are not free. Hence, the number of free
planes that meet 7 in a line is

="+ +1)q—|0|=¢+q—1+56. (3)



As every free line of 7 lies in ¢ of these free planes, we have

fig < fp- (4)

We have seen above that every point of 7 lies on at most ¢ — 1+ 9 free planes
that meet 7 in a line. This implies that every point of 7 can lie on at most
(¢—1+0)/q free lines of w. Also, as we have seen above, a big point of 7 lies
on a unique free line. Consider a free line [ of 7 containing exactly z small
points. Then each of the f; — 1 other free lines contains one of these z small
points and hence

qg—14+9
q

_1) - flgw_ (5)

fz—léz(
q

Comparing the lower bound (2) for f; with the upper bound (4), using (3),
gives
b < GH+qg—1+0
¢?+1—z" q '

This gives

bq

z < 2= 2—|—1——
= @G+qg—1+06

(6)
Comparing the lower bound (2) for f; with the upper bound (5) gives
bg < (¢ +1—2)(g+2(6—1)) . (7)

We conclude that & # 1, since otherwise b < ¢* + 1 — 2 contradicting (1).
Hence § > 2.

CASE 1. Here we consider the case when ¢ > 5. We may assume that
6 < ¢*. Then (1) and (6) imply that zy < 2(¢* +1 — ¢). Since § > 2, the
right hand side of (7), considered as a function of z, is monotone increasing
for 2 < 2(¢* + 1 — ¢). Thus (7) remains true, if we replace z by zp. We do
this and estimate b in the formula of zy using (1). This results in

(¢® —q* +q—0¢* — 0)¢?

(¢ 1P (@ +q—1+07
(g0 =6 =30¢° +28°° = q8* + 8+ " = ' + ¢ + ¢ = °)
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Hence f(9) > 0 where
fle)=qr—x—3e¢® + 20 —q* + 2> + " =" + > + ¢ = &~

The left hand side is a polynomial of degree two in x with positive leading
coefficient. As f(0) < 0 and f((¢*> — 3¢ +1)/v2) < 0, it follows that § >

(¢* — ja+1)/v2.

CASE 2. Here we consider the case when ¢ € {2,3,4}. Each case can be
easily done by hand. We demonstrate the case ¢ = 2 and leave ¢ € {3,4}
to the reader. For ¢ = 2, we have to prove that 6 > 3. As we already know
that 0 > 2, we just have to exclude § = 2. Assume that § = 2. Then (1), (6)
and (7) read as follows

2b
8 <0, z§5—ﬁ, 20 < (5—2)(2+ 2).
Hence, 16 < (5 — 2)(2 + z) for some z < 3. This is clearly impossible. O

The bounds on H(4,¢*) and H(5,¢*) imply bounds on partial ovoids of
H(d,q?) for d > 6, at least in the case when d is even. For odd d, the
situation is more complicated as we explain below.

Lemma 3.4 Denote by o(H(d, q*)) the largest cardinality of a partial ovoid
of H(d,q?). Then for d > 5,

o(H(d,¢*) < ¢ - o(H(d — 2,4%)) — ¢ + L.

Proof. Consider a line | of H(d,q?) meeting O in a point P. Then every
point of O\ {P} is perpendicular to a unique point of [\ { P}. As the points
of O perpendicular to the point X € [\ {P} form a partial ovoid in the
hermitian polar space H(d — 2,¢*) seen in the quotient geometry at X, the
result follows. O

It is not known whether H(5,¢?) has an ovoid. If ever it can be proven that
ovoids do not exist, then the preceding lemma in conjunction with Theorem
3.3 gives an upper bound on the size of a maximal partial ovoid of H(2n +
1,¢%), n>2.
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By Theorem 3.2, a partial ovoid of H(4,q*) has at most ¢° — ¢* + ¢* + 1
points. Applying Lemma 3.4 thus shows that a partial ovoid of H(2n,¢?),
n > 2, has at most ¢*"*! +1— "2 (¢* — ¢*) points. However, the following
lemma gives a better recursive bound than Lemma 3.4.

Lemma 3.5

|H(2n —2,¢%)| - (o(H (2n — 2,¢°)) — 2)
> (o(H(2n,¢*) —2)|H(2n —3,¢°)| — (g —1) - o(H(2n — 2,¢%)) - ¢*" .

Proof. Suppose that O is a partial ovoid of H(2n,¢?*) of size o(H(2n,¢?)).
Consider a secant line [ meeting @ in k& > 2 points, and put = = [+.

We count the number of pairs (X,Y), with X in H(2n—2,¢*) = H(2n,¢*)Nw
and Y a point of O but not on [. By first choosing X, we find the upper
bound |H(2n — 2,¢%)| - (o(H(2n — 2,¢*)) — k), since each of the points of
H(2n — 2, ¢?) is perpendicular to at most o H(2n — 2,¢?)) points of O.

Now we first choose Y. If Y is not perpendicular to one of the points of
[N H(2n,q¢%), then (I,Y) meets H(2n,¢*) in a hermitian curve and thus
YL N7 meets H(2n,q¢?) in a hermitian polar space H(2n — 3,¢%). If Y is
perpendicular to one of the points of I N H(2n,¢?) (this must be one of the
q+ 1 — k points of I N H(2n,¢?) not in O), then Y+ N7 meets H(2n,¢?) in
a cone with a point vertex over a H(2n — 4, ¢*) as base. In the first case, YV’
occurs in |H(2n — 3, ¢*)| pairs (X,Y) but in the second case it occurs only in
1+ ¢?|H(2n — 4, ¢?)| such pairs; this is ¢**~3 less than in the first case. The
second case can occur for at most (¢ +1—k)o(H(2n —2,¢*)) points Y, since
each of the ¢+ 1 — k points of [N H(2n, ¢*) that are not in O is perpendicular
to at most o( H(2n — 2, ¢*)) points of O. Thus we find

(o(H(2n,q%) = k)[H(2n = 3,¢%)| = (¢ + 1 — k) - o(H(2n — 2,¢%)) - ¢*°

as a lower bound on the number of pairs. Comparing the upper and lower
bound, we find an inequality, which gets stronger for large k. For the smallest
possible value k = 2, we find the statement. O

Applying this with n = 3 using that partial ovoids of H (4, ¢?) have at most
¢® + 1 — dy points with dy = ¢* — ¢3, we find that partial ovoids of H (6, ¢?)
have at most ¢” +1—ds points with ds = ¢° —¢°+¢>—1 points. For n > 4, we
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find recursively upper bounds ¢***! +1—d,, for partial ovoids of H(2n+1, ¢*)
with d,, = ¢*d,_; + ¢3; we omit the technical calculations. This leads to the
following corollary.

Corollary 3.6 A partial ovoid of the hermitian polar space H(2n,q*), n > 3,
has at most

q2(n—2) -1

21 _q2(n—3)(q6_q5 —1) py po

POINts.

4 Partial spreads

In [18], Thas proved the upper bound ¢***! — ¢"*! 4 ¢" +1 for partial spreads

of H(2n+1,¢%*), n > 1 odd. In this section, we first improve this result and
then prove a similar result for H(2n + 1, ¢*), n > 2 even. To our knowledge,
a better bound is known only for H(5,¢?%), see [8], where the exact upper
bound ¢* + 1 was found by De Beule and Metsch for the size of partial
spreads of H(5,¢%). A main ingredient for our argument is the following
beautiful property of hermitian spaces proven by Thas [18].

Result 4.1 Let 7y, m and m be mutually skew generators of H(2n + 1,4?).
Then the points of m that lie on a line of H(2n + 1,¢*) meeting m and
form a hermitian variety H(n,q*) in .

Theorem 4.2 Let S be a partial spread of H(2n + 1,¢?).
(a) If n =1, then |S| < 3(¢* +q +2).
(b) If n >3 is odd, then |S| < ¢?*! — ¢Bn+4/2 4 Bnt3)/2,

Proof. For i € N, put T} := (¢**2 —1)/(¢?> — 1). Suppose that S is a partial
spread of H(2n + 1,4¢*) and put |S| = ¢***' + 1 — 4. Then the number of
points of H(2n + 1, ¢?) that are not covered by generators of S is h := §T,.
We call these points the holes.

Consider the triples (51,52, P), where S; and Sy are different elements of
S and P is a hole. We shall estimate how many of these triples have the
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property that the unique line of PG(2n + 1,¢?) on P that meets S; and S,
(that is, the line (P, S1) N (P, Sy)) belongs to H(2n + 1, ¢?).

To do so, we consider a hole P. Then P lies on |H(2n — 1,¢*)| lines of
H(2n + 1,4¢*). The number of points on these lines that are covered by an
element of S is |S|T;,_1. If z;, i = 1,...,|H(2n — 1,4¢?)|, is the number of
points on the i-th line on P that are covered by an element of S, then we
have > x; = |S|T,,—1 and hence

|S|Tn—1 |S|Tn—1 2
(o > _ _
2w =1 2 ey e \Hen -y ) 1HE 1)

’S|Tn71
510 (fi =y 1) )

Since the number of holes is 07}, we find a lower bound on the number of
triples considered above. Now we choose a pair (S7,5s) of distinct spread
elements such that the number « of considered triples (57, S2,p) is as large
as possible. We find that a > oy with g defined by

o |S|Tn—1
SI081 = Do = ST3ISTT (rrsm 2oy~
|S| _ q2n—1 —1
- ’S|6TnTn,1 . q2n—1 i 1 .

Consider all lines of H(2n + 1,¢%) that meet S; and Sy. There are T,,T,,_;
such lines. Thus the number of points outside of S; and S5 that lie on a line
of H(2n + 1,¢?) meeting S; and Sy is T,,T;,_1(¢*> — 1). Each S € S\ {51, S5}
contains |H(n,¢*)| of these points by Result 4.1. Also, at least aq of these
points are holes. Hence

(IS| = 2)|H(n,¢*)| + a0 < T,To1(g” — 1).

Hence
2n—1 __ 1

2 ‘S’ —q
(|SI=D)(US|=2)|H (n,q)|[+6T,Tn 1 P

As n is odd, we have |H(n,¢*)| = (¢" + 1)(¢"™ — 1)/(¢* — 1) and thus we
find

< T T (?—1)(|S|-1).

(@ =D +1) IS|— g -1
q2 -1 q2n—1 + 1

(IS =1D(S| =2) +¢
< (¢" = D@+ 18] - 1).
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Replace |S| — 2 by ¢***1 — 1 — ¢ to find

n __ n+1 _ 271,71_
D 1) 8¢ -1

o n+l _ n (q

For n = 1, we multiply this by (¢ + 1)? and find after simplification
(¢° =20 —q)(¢’* +¢* — 0)g < 0.

Hence for n = 1, we have § > 1(¢* — ¢), that is, |S| < 5(¢* +¢+2). For odd
n > 3, we multiply by (¢*> — 1)(¢*" ' +1)/¢* and find

" =D+ )+ 0 - )" " - " D)2 + g - 1)
> ¢ Hg—-1)( =D+ 1)

It can be verified that this implies that § > ¢ +4/2 — ¢@n+3)/2 4 1. O

Remark 4.3 The argument gives a slightly better bound for § but to avoid
presenting a complicated lower bound on d, we opted for this more elegant
bound on §.

Remark 4.4 An interesting feature of the upper bound (¢* + ¢ + 2)/2 on
the size of partial spreads of H(3,¢?) is that this bound is sharp for ¢ = 2
and ¢ = 3. For ¢ = 2, Dye [9] constructed a maximal partial spread of size 6
on H(3,4) by constructing a maximal partial ovoid of size 6 on Q~ (5, q).

For ¢ = 3, Ebert and Hirschfeld [10] proved by an exhaustive computer
search that a maximal partial spread on H(3,9) has size at most 16. Their
computer search showed many properties of this maximal partial spread S
of size 16. It is linked to the Kummer surface. Every line not in S intersects
either 4 or 10 lines in §. There are 16 lines not in S intersected by 10 lines
in §; these latter 16 lines form themselves a maximal partial spread of size
16 of H(3,9).

These properties which arose from the computer search can be proven the-
oretically by our arguments. We do this for general q. Suppose that S is a
partial spread of H(3,¢?) of size %(q?’ + ¢+ 2). Then there is equality in all
the calculations of the proof of Theorem 4.2. In particular, there is equality
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in (8),s0z; =[S|/(¢+1)=1(*—q+2),i=1,...,¢+1. We conclude that
if a line contains a hole, then it intersects %(q2 —q+2) lines of S.

Consider a point P on a line [ of §. Then P lies on ¢ further lines of
H(3,¢?). If such a line contains a hole, then it meets %(q2 — q) further lines
of S. Otherwise it meets ¢* further lines of S. As |S| — 1 = 3(¢* + ¢), it
readily follows that exactly one of the ¢ lines on P does not contain a hole.
Hence, if &’ denotes the set of all lines of H(3,¢*) which do not lie in S and
which do not contain a hole, the lines of &' are mutually skew and cover
the same points as the lines of S. Hence |S'| = |S| = L(¢* + ¢+ 2). In
other words, S’ is a second partial spread with the same number of lines and
covering the same points as S. Also SNS’ = ().

Consider two different lines l;,l, € S. Then H(3,¢*) has ¢* + 1 lines h;,
i =1,...,¢> + 1, meeting [; and Il and these lines are mutually skew. If
a line h; lies in &', then it meets ¢ + 1 lines of S, and otherwise it meets
%(q2 — ¢+ 2) lines of S. On the other hand, Result 4.1 says that every line
I3 € S\ {l1, 12} meets exactly ¢+ 1 of the lines h;. Hence, if A is the number
of lines h; that belong to &', then

2 +1) + (18]~ 2)(g + 1) = N>+ 1)+ (@ + 1= ) £(¢® — g +2).

Hence, A = 2q. Clearly, every line of one of the partial spreads S and &’
meets precisely ¢ + 1 lines of the other partial spread. Thus, the incidence
structure whose points are the lines of S and whose blocks are the lines of
S’ and incidence defined as having non-trivial intersection, is a symmetric
2-(v, k, \) design with v = %(qz)’ + q + 2) points, block size k = ¢*> + 1, and
A= 2q.

Corollary 4.5 If H(3,q?) possesses a partial spread of size 5(¢*+q+2), then
there exists a symmetric 2-(v, k, \) design with parameters v = %(q?’ +q+2),
k=q¢>+1, and \ = 2q.

Notice that k — A = (¢ — 1)? is a perfect square, so no non-existence results
on designs show that such a design might not exist. We mention also that
there exist designs for ¢ = 5 and ¢ = 7 with these parameters!

The following result proves a similar bound for even n. We recall that for
n = 2 much more is known. It was shown in [8] that a partial spread of
H(5,¢?) has at most ¢> + 1 planes, and this upper bound is sharp.
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Theorem 4.6 Let S be a partial spread of H(2n +1,¢%). If n > 4 is even,
then |S| = ¢ +1—§ with

6> —q"(q— 1)+ /¢ (g — 1) + ¢ (g — 1)%

Proof. For i € N, put T} := (¢**2 —1)/(¢?> — 1). Suppose that S is a partial
spread of H(2n + 1,4¢*) and put |S| = ¢***' + 1 — 4. Then the number of
points of H(2n + 1, ¢?) that are not covered by generators of S is h := §T,.
We call these points the holes.

Consider the triples (51,52, P), where S; and Sy are different elements of
S and P is a hole. We again estimate how many of these triples have the
property that the unique line of PG(2n + 1,¢?) on P that meets S; and S,
belongs to H(2n + 1, ¢?).

Consider all lines of H(2n + 1,¢*) that meet S; and S,. There are T, T},
such lines. Thus the number of points outside of S; and Sy that lie on a line
of H(2n + 1,¢?) meeting S; and Sy is T,,T;,_1(¢*> — 1). Each S € S\ {5}, S5}
contains |H(n, ¢*)| of these points by Result 4.1. Hence, if hq is the number
of holes on these lines, then

(IS = 2)H(n, ¢*)| + ho = T, Toa(q* = 1). (9)

In other words: for any two different elements S; and S, of S, there exist
exactly hg holes which lie on a line of H(2n + 1, ¢*) meeting S; and S,.

Now fix an element S; € §. We have seen that every second spread element
Sy gives rise to hy holes that lie on a line of H(2n + 1, ¢*) meeting S; and
Sy. Clearly every hole P can occur for at most ¢*" — 1 different elements Sy,
because the space (P, P+ N S;) has dimension n. Hence

h(g™ —1) > ho(|S] = 1).
Replacing hg, using (9), and replacing h by 07, results in
0T To1(q® = 1) > [T T0a(* = 1) = (IS] = 2) - [H(n, ¢*)[] (IS] — 1).

This is divisible by |H (n, ¢*)|. Dividing this term out and using |S| = ¢***+
1 — 4, the resulting expression simplifies to

5% + 20¢"(qg—1)—6 > q3”+1(q —1).

This implies that
52 4 25qn(q o 1) > q3n+1<q o 1)

Solving this quadratic inequality for ¢ gives the desired bound on 9. a
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5 Tables

To present an overview of the current results on small or large maximal
partial ovoids and maximal partial spreads in hermitian polar spaces, we
collect the results in two tables. The similar results for the orthogonal and
symplectic polar spaces are presented in [7].

’ polar space H lower bounds ‘ upper bounds ‘
H(3,¢%), q even @ +1 ¢ +1
H(3,¢%), q odd q2+1+%q @ +1
H(4,¢%) ¢*+q+2 -+ +1
2n+1 _ 2(n=3)(,6 _ 5 _

+1 1

H(Qna q2)7 n Z 3 q2 + q + 1 I 3 q2("72q)71 (q ! )
H2n+1,¢*),n>2| ¢F+q+1 P41

Table 1: Bounds on maximal partial ovoids

In Table 1, the results on H(3,¢*) are proven in [2, 8, 15]. The results on
H(d,q?), d > 4, arise from the present paper. We remark that the bounds
for H(3,4%), q even, are sharp. Also the upper bound for H(3,¢?%), ¢ odd, is
sharp.

In Table 2, the lower bounds for H(d, ¢*), d > 5, have been proven in Theorem
8.1 of [7]. The lower bound for H (3, ¢?*) is proven in [10], and the lower bound
for H(4,q?) in [16]. The upper bound ¢* + 1 for H(5,q?) was proven in [§]
and this upper bound is sharp. The upper bound for H(2n,q?), n > 2, is
just the size of a spread, whose existence is still open and one of the main
problems in this field. The upper bounds for H(2n + 1,4¢%), n > 1, have all
been proven in the present paper.

Remark 5.1 Next to the upper bounds on the size of maximal partial ovoids
in hermitian polar spaces, presented in Table 1, there are the important
bounds of Blokhuis and Moorhouse [3]. For large values of n, these upper
bounds of Blokhuis and Moorhouse are better than the bounds of Table 1.
It is however difficult to make an exact comparison between the bounds of
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polar space

H

lower bounds

upper bounds

2g+1, for ¢ <3

2 1/.3
3 1
¢+ avq4— 34 5
H(4,q°) 3 7 q°+1
—5Vat s
H(5,¢%) q+1 ¢ +1
H(27’L’q2)’ nzg q3+1 q2n+1+1
H(2n+1,¢%), n >3, n odd g+1 @2t — qa Bt 4 o3 (3n43)
2n+1 n - o
H(2n+1,¢%), n >3, n even q+1 ¢ A 1+q"g 1)

—q"V @ (g —1) + (¢ —1)?

Table 2: Bounds on maximal partial spreads

Table 1 and those of Blokhuis and Moorhouse. For this reason, we refer to
3] for the bounds of Blokhuis and Moorhouse.
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